HBLXT9785HC.B2SE001 [INTEL]

Ethernet Transceiver, 8-Trnsvr, PQFP208,;
HBLXT9785HC.B2SE001
型号: HBLXT9785HC.B2SE001
厂家: INTEL    INTEL
描述:

Ethernet Transceiver, 8-Trnsvr, PQFP208,

以太网:16GBASE-T 电信 电信集成电路
文件: 总150页 (文件大小:1859K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LXT9785/9785E  
Advanced 10/100 8-Port Transceivers  
Datasheet  
The LXT9785 and LXT9785E are 8-port Fast Ethernet PHY Transceivers that support IEEE  
802.3 physical layer applications at 10 Mbps and 100 Mbps. These devices provide both Serial/  
Source Synchronous Serial Media Independent Interfaces (SMII/SS-SMII) and Reduced Media  
Independent Interface (RMII) for switching and other independent port applications. The  
LXT9785 and LXT9785E are identical except for the IP telephony features included in the  
LXT9785E transceiver. The LXT9785E is an enhanced version of the LXT9785 that detects  
Data Terminal Equipment (DTE) capable of being powered remotely from the switch over a  
Category 5 cable. The system can use the information collected by the LXT97985E to apply  
power if the DTE at the far end requires power over the cable, such as an IP telephone.  
All network ports provide a combination twisted-pair (TP) or pseudo-ECL (PECL) interface for  
both 10 Mbps or 100 Mbps (10BASE-T and 100BASE-TX) Ethernet over twisted-pair, or 100  
Mbps (100BASE-FX) Ethernet over fiber-optic media.  
The LXT9785/9785E provides three discrete LED driver outputs for each port. The devices  
support both half-duplex and full-duplex operation at 10 Mbps and 100 Mbps and require only a  
single 2.5V power supply.  
Applications  
I Enterprise switches  
I Storage Area Networks  
I IP telephony switches  
I Multi-port Network Interface Cards (NICs)  
Product Features  
I Eight IEEE 802.3-compliant 10BASE-T or I MDIO sectionalization into 2x4 or 1x8  
100BASE-TX ports with integrated filters. configurations.  
I 100BASE-FX fiber-optic capability on all I Supports both auto-negotiation systems and  
ports.  
I 2.5V operation.  
legacy systems without auto-negotiation  
capability.  
I Robust baseline wander correction.  
I Low power consumption; 250 mW per port  
typical.  
I Configurable via MDIO port or external  
control pins.  
I Multiple RMII or SMII/SS-SMII ports for  
independent PHY port operation.  
I JTAG boundary scan.  
I Auto MDIX crossover capabilities.  
I 208-pin PQFP: LXT9785HC,  
LXT9785EHC, LXT9785HE.  
I Proprietary Optimal Signal Processing™  
architecture improves SNR by 3 dB over  
ideal analog filters.  
I 241-ball BGA: LXT9785BC,  
LXT9785EBC.  
I Optimized for dual-high stacked RJ-45  
I DTE detection for remote powering  
applications.  
applications (LXT9785E only).  
o
I Extended temperature operation of -40 C to  
o
+85 C (LXT9785HE).  
Order Number: 249241-005  
January 2002  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The LXT9785/9785E may contain design defects or errors known as errata which may cause the product to deviate from published specifications.  
Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 2002  
*Third-party brands and names are the property of their respective owners.  
2
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Contents  
Contents  
1.0 Pin Assignments and Signal Descriptions ...............................................................................12  
1.1 Signal Name Conventions ..................................................................................................39  
2.0 Functional Description................................................................................................................52  
2.1  
2.2  
Introduction.........................................................................................................................52  
2.1.1 OSPArchitecture ...............................................................................................52  
2.1.2 Comprehensive Functionality ................................................................................52  
2.1.2.1 Sectionalization......................................................................................53  
Interface Descriptions.........................................................................................................53  
2.2.1 10/100 Network Interface.......................................................................................53  
2.2.1.1 Twisted-Pair Interface............................................................................54  
2.2.1.2 MDI Crossover (MDIX)...........................................................................54  
2.2.1.3 Fiber Interface........................................................................................55  
Media Independent Interface (MII) Interfaces.....................................................................55  
2.3.1 Global MII Mode Select .........................................................................................55  
2.3.2 Internal Loopback ..................................................................................................55  
2.3.3 RMII Data Interface................................................................................................56  
2.3.4 Serial Media Independent Interface (SMII) and Source  
2.3  
Synchronous- Serial Media Independent Interface (SS-SMII)...............................56  
2.3.4.1 SMII Interface.........................................................................................56  
2.3.4.2 Source Synchronous-Serial Media Independent Interface ....................56  
2.3.5 Configuration Management Interface ....................................................................56  
2.3.6 MII Isolate ..............................................................................................................57  
2.3.6.1 MDIO Management Interface.................................................................57  
2.3.6.2 MII Sectionalization................................................................................58  
2.3.6.3 MII Interrupts..........................................................................................58  
2.3.6.4 Global Hardware Control Interface ........................................................59  
Operating Requirements.....................................................................................................59  
2.4.1 Power Requirements .............................................................................................59  
2.4.2 Clock/SYNC Requirements....................................................................................59  
2.4.2.1 Reference Clock ....................................................................................59  
2.4.2.2 TxCLK Signal (SS-SMII only).................................................................60  
2.4.2.3 TxSYNC Signal (SMII/SS-SMII).............................................................60  
2.4.2.4 RxSYNC Signal (SS-SMII only) .............................................................60  
2.4.2.5 RxCLK Signal (SS-SMII only) ................................................................60  
Initialization.........................................................................................................................60  
2.5.1 MDIO Control Mode...............................................................................................60  
2.5.2 Hardware Control Mode.........................................................................................60  
2.5.3 Power-Down Mode ................................................................................................61  
2.5.3.1 Global (Hardware) Power Down ............................................................62  
2.5.3.2 Port (Software) Power Down .................................................................62  
2.5.4 Reset .....................................................................................................................62  
2.5.5 Hardware Configuration Settings...........................................................................63  
Link Establishment..............................................................................................................63  
2.6.1 Auto-Negotiation ....................................................................................................63  
2.6.1.1 Base Page Exchange ............................................................................63  
2.6.1.2 Next Page Exchange .............................................................................63  
2.4  
2.5  
2.6  
Datasheet  
3
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Contents  
2.6.1.3 Controlling Auto-Negotiation..................................................................64  
2.6.1.4 Link Criteria............................................................................................64  
2.6.1.5 Parallel Detection...................................................................................64  
2.6.1.6 Reliable Link Establishment while Auto MDIX is  
Enabled in Forced Speed Mode ............................................................65  
2.7  
Serial MII Operation............................................................................................................65  
2.7.1 SMII Reference Clock............................................................................................69  
2.7.2 TxSYNC Pulse (SMII/SS-SMII)..............................................................................69  
2.7.3 Transmit Data Stream............................................................................................69  
2.7.3.1 Transmit Enable.....................................................................................69  
2.7.3.2 Transmit Error........................................................................................69  
2.7.4 Receive Data Stream.............................................................................................70  
2.7.4.1 Carrier Sense.........................................................................................70  
2.7.4.2 Receive Data Valid ................................................................................70  
2.7.4.3 Receive Error.........................................................................................70  
2.7.4.4 Receive Status Encoding.......................................................................70  
2.7.5 Collision ................................................................................................................. 70  
2.7.5.1 Source Synchronous-Serial Media Independent Interface ....................72  
RMII Operation ...................................................................................................................76  
2.8.1 RMII Reference Clock............................................................................................76  
2.8.2 Transmit Enable.....................................................................................................76  
2.8.3 Carrier Sense & Data Valid....................................................................................76  
2.8.4 Receive Error.........................................................................................................76  
2.8.5 Out-of-Band Signalling...........................................................................................76  
2.8.6 4B/5B Coding Operations......................................................................................76  
100 Mbps Operation ...........................................................................................................80  
2.9.1 100BASE-X Network Operations...........................................................................80  
2.9.2 100BASE-X Protocol Sublayer Operations............................................................80  
2.9.2.1 PCS Sublayer ........................................................................................80  
2.9.3 PMA Sublayer........................................................................................................82  
2.9.3.1 Twisted-Pair PMD Sublayer...................................................................84  
2.9.3.2 Fiber PMD Sublayer...............................................................................84  
2.8  
2.9  
2.10 10 Mbps Operation .............................................................................................................85  
2.10.1 Preamble Handling ................................................................................................85  
2.10.2 Dribble Bits ............................................................................................................85  
2.10.3 Link Test ................................................................................................................85  
2.10.3.1 Link Failure ............................................................................................86  
2.10.4 Jabber....................................................................................................................86  
2.11 DTE Discovery Process......................................................................................................86  
2.11.1 Definitions..............................................................................................................87  
2.11.2 Interaction between Processor, MAC and PHY.....................................................87  
2.11.3 Management Interface and Control .......................................................................88  
2.11.4 DTE Discovery Process Flow ................................................................................89  
2.12 Monitoring Operations ........................................................................................................92  
2.12.1 Monitoring Auto-Negotiation ..................................................................................92  
2.12.2 Per-Port LED Driver Functions ..............................................................................92  
2.12.3 Out-of-Band Signalling...........................................................................................93  
2.12.4 Boundary Scan Interface .......................................................................................94  
2.12.5 State Machine........................................................................................................94  
2.12.6 Instruction Register................................................................................................94  
2.12.7 Boundary Scan Register........................................................................................94  
4
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Contents  
3.0 Application Information ..............................................................................................................95  
3.1  
3.2  
Design Recommendations..................................................................................................95  
General Design Guidelines.................................................................................................95  
3.2.1 Power Supply Filtering...........................................................................................95  
3.2.2 Power and Ground Plane Layout Considerations..................................................96  
3.2.2.1 Chassis Ground .....................................................................................96  
3.2.3 MII Terminations ....................................................................................................96  
3.2.4 Twisted-Pair Interface............................................................................................96  
3.2.4.1 Magnetic Requirements .........................................................................97  
3.2.5 The Fiber Interface ................................................................................................97  
3.2.6 LED Circuit.............................................................................................................98  
Typical Application Circuits.................................................................................................99  
3.3  
4.0 Test Specifications....................................................................................................................104  
5.0 Register Definitions...................................................................................................................129  
6.0 Package Specifications.............................................................................................................147  
Ordering Information 150  
Datasheet  
5
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Contents  
Figures  
1
2
3
4
5
6
7
8
9
LXT9785/9785E Block Diagram .................................................................................................11  
LXT9785/9785E RMII 208-Pin PQFP Assignments ...................................................................12  
LXT9785/9785E SMII 208-Pin PQFP Assignments ...................................................................13  
LXT9785/9785E SS-SMII 208-Pin PQFP Assignments .............................................................14  
LXT9785/9785E RMII 241-Ball PBGA Assignments ..................................................................15  
LXT9785/9785E SMII 241-Ball PBGA Assignments ..................................................................16  
LXT9785/9785E SS-SMII 241-Ball PBGA Assignments ............................................................17  
LXT9785/9785E Interfaces.........................................................................................................54  
Internal Loopback.......................................................................................................................56  
10 Management Interface Read Frame Structure...........................................................................57  
11 Management Interface Write Frame Structure ...........................................................................57  
12 Port Address Scheme.................................................................................................................58  
13 Interrupt Logic.............................................................................................................................59  
14 Initialization Sequence................................................................................................................61  
15 Auto-Negotiation Operation........................................................................................................65  
16 Typical SMII Interface Diagram ..................................................................................................67  
17 Typical SMII Quad Sectionalization Diagram .............................................................................68  
18 100 Mbps Serial MII Data Flow ..................................................................................................69  
19 Serial MII Transmit Synchronization...........................................................................................70  
20 Serial MII Receive Synchronization............................................................................................71  
21 Typical SS-SMII Interface Diagram ............................................................................................73  
22 Typical SS-SMII Quad Sectionalization Diagram .......................................................................74  
23 SS-SMII Transmit Timing ...........................................................................................................75  
24 SS-SMII Receive Timing ............................................................................................................75  
25 RMII Data Flow...........................................................................................................................77  
26 Typical RMII Interface Diagram ..................................................................................................78  
27 Typical RMII Quad Sectionalization Diagram .............................................................................79  
28 100BASE-X Frame Format.........................................................................................................80  
29 Protocol Sublayers .....................................................................................................................81  
30 Typical IP Telephone System Connection..................................................................................86  
31 LXT9785E Negotiation Flow Chart.............................................................................................91  
32 LED Pulse Stretching .................................................................................................................93  
33 RMII Programmable Out-of-Bank Signaling ...............................................................................93  
34 LED Circuit .................................................................................................................................98  
35 Power and Ground Supply Connections ....................................................................................99  
36 Typical Twisted-Pair Interface ..................................................................................................100  
37 Typical LXT9785/9785E to 3.3V Fiber Transceiver Interface Circuitry.....................................101  
38 Typical LXT9785/9785E to 5V Fiber Transceiver Interface Circuitry........................................102  
39 ON Semiconductor Triple PECL-to-LVPECL Translator ..........................................................103  
40 SMII - 100BASE-TX Receive Timing........................................................................................108  
41 SMII - 100BASE-TX Transmit Timing.......................................................................................109  
42 SMII - 100BASE-FX Receive Timing........................................................................................110  
43 SMII - 100BASE-FX Transmit Timing.......................................................................................111  
44 SMII - 10BASE-T Receive Timing ............................................................................................112  
45 SMII - 10BASE-T Transmit Timing ...........................................................................................113  
46 SS-SMII - 100BASE-TX Receive Timing..................................................................................114  
47 SS-SMII - 100BASE-TX Transmit Timing.................................................................................115  
48 SS-SMII - 100BASE-FX Receive Timing..................................................................................116  
49 SS-SMII - 100BASE-FX Transmit Timing.................................................................................117  
6
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Contents  
50 SS-SMII - 10BASE-T Receive Timing ......................................................................................118  
51 SS-SMII - 10BASE-T Transmit Timing .....................................................................................119  
52 RMII - 100BASE-TX Receive Timing........................................................................................120  
53 RMII - 100BASE-TX Transmit Timing.......................................................................................121  
54 RMII - 100BASE-FX Receive Timing........................................................................................122  
55 RMII - 100BASE-FX Transmit Timing.......................................................................................123  
56 RMII - 10BASE-T Receive Timing ............................................................................................124  
57 RMII - 10BASE-T Transmit Timing ...........................................................................................125  
58 Auto-Negotiation and Fast Link Pulse Timing...........................................................................126  
59 Fast Link Pulse Timing .............................................................................................................126  
60 MDIO Write Timing (MDIO Sourced by MAC) ..........................................................................127  
61 MDIO Read Timing (MDIO Sourced by PHY)...........................................................................127  
62 Power-Up Timing......................................................................................................................128  
63 Reset Recovery Timing ............................................................................................................128  
64 PHY Identifier Bit Mapping........................................................................................................132  
65 LXT9785/9785E 208-Pin PQFP Plastic Package Specification................................................147  
66 LXT9785/9785E 241-Ball PBGA Package Specs - Top/Side View(LXT9785BC) ....................148  
67 LXT9785/9785E 241-Ball PBGA Package Specs - Bottom View (LXT9785BC) ......................149  
68 Ordering Information - Sample .................................................................................................150  
Tables  
1
RMII PQFP Pin List.....................................................................................................................18  
2
3
4
6
5
7
8
9
SMII PQFP Pin List.....................................................................................................................25  
SS-SMII PQFP Pin List...............................................................................................................32  
LXT9785/9785E RMII Signal Descriptions .................................................................................39  
LXT9785/9785E SMII Specific Signal Descriptions....................................................................41  
LXT9785/9785E SMII / SS-SMII Common Signal Descriptions..................................................41  
LXT9785/9785E SS-SMII Specific Signal Descriptions..............................................................42  
MDIO Control Interface Signals..................................................................................................43  
LXT9785/9785E Signal Detect ...................................................................................................44  
10 LXT9785/9785E Network Interface Signal Descriptions.............................................................44  
11 LXT9785/9785E JTAG Test Signal Descriptions........................................................................45  
12 LXT9785/9785E Miscellaneous Signal Descriptions ..................................................................46  
13 LXT9785/9785E LED Signal Descriptions..................................................................................48  
14 LXT9785/9785E Power Supply Signal Descriptions...................................................................49  
15 Unused / Reserved Pins.............................................................................................................51  
16 MDIX Selection...........................................................................................................................55  
17 MII Mode Select..........................................................................................................................55  
18 Global Hardware Configuration Settings ....................................................................................63  
19 SMII Signal Summary.................................................................................................................66  
20 RX Status Encoding Bit Definitions.............................................................................................71  
21 SS-SMII .....................................................................................................................................72  
22 4B/5B Coding..............................................................................................................................82  
23 Next Page Message #5 Code Word Definitions .........................................................................90  
24 BSR Mode of Operation..............................................................................................................94  
25 Supported JTAG Instructions......................................................................................................94  
26 Magnetics Requirements............................................................................................................97  
27 Absolute Maximum Ratings......................................................................................................104  
28 Operating Conditions................................................................................................................104  
Datasheet  
7
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Contents  
29 Digital I/O DC Electrical Characteristics (VCCIO = 2.5V +/- 5%) .............................................105  
30 Digital I/O DC Electrical Characteristics (VCCIO = 3.3V +/- 5%) .............................................106  
31 Required Clock Characteristics ................................................................................................106  
32 100BASE-TX Transceiver Characteristics................................................................................106  
33 100BASE-FX Transceiver Characteristics................................................................................107  
34 10BASE-T Transceiver Characteristics....................................................................................107  
35 SMII - 100BASE-TX Receive Timing Parameters ....................................................................108  
36 SMII - 100BASE-TX Transmit Timing Parameters ...................................................................109  
37 SMII - 100BASE-FX Receive Timing Parameters ....................................................................110  
38 SMII - 100BASE-FX Transmit Timing Parameters ...................................................................111  
39 SMII - 10BASE-T Receive Timing Parameters.........................................................................112  
40 SMII-10BASE-T Transmit Timing Parameters..........................................................................113  
41 SS-SMII - 100BASE-TX Receive Timing Parameters ..............................................................114  
42 SS-SMII - 100BASE-TX Transmit Timing.................................................................................115  
43 SS-SMII - 100BASE-FX Receive Timing Parameters ..............................................................116  
44 SS-SMII - 100BASE-FX Transmit Timing Parameters .............................................................117  
45 SS-SMII - 10BASE-T Receive Timing Parameters...................................................................118  
46 SS-SMII - 10BASE-T Transmit Timing Parameters..................................................................119  
47 RMII - 100BASE-TX Receive Timing Parameters ....................................................................120  
48 RMII - 100BASE-TX Transmit Timing Parameters...................................................................121  
49 RMII - 100BASE-FX Receive Timing Parameters ....................................................................122  
50 RMII - 100BASE-FX Transmit Timing Parameters...................................................................123  
51 RMII - 10BASE-T Receive Timing Parameters ........................................................................124  
52 RMII - 10BASE-T Transmit Timing Parameters .......................................................................125  
53 Auto-Negotiation and Fast Link Pulse Timing Parameters.......................................................126  
54 MDIO Timing Parameters.........................................................................................................127  
55 Power-Up Timing Parameters .................................................................................................128  
56 Reset Recovery Timing Parameters.........................................................................................128  
57 Register Set..............................................................................................................................129  
58 Control Register (Address 0)....................................................................................................130  
59 Status Register (Address 1) .....................................................................................................131  
60 PHY Identification Register 1 (Address 2)................................................................................132  
61 PHY Identification Register 2 (Address 3)................................................................................132  
62 Auto-Negotiation Advertisement Register (Address 4)6...........................................................133  
63 Auto-Negotiation Link Partner Base Page Ability Register (Address 5) ...................................134  
64 Auto-Negotiation Expansion (Address 6) .................................................................................135  
65 Auto-Negotiation Next Page Transmit Register (Address 7)....................................................135  
66 Auto-Negotiation Link Partner Next Page Receive Register (Address 8).................................136  
67 Port Configuration Register (Address 16, Hex 10) ...................................................................137  
68 Quick Status Register (Address 17, Hex 11)............................................................................138  
69 Interrupt Enable Register (Address 18, Hex 12).......................................................................139  
70 Interrupt Status Register (Address 19, Hex 13)........................................................................140  
71 LED Configuration Register (Address 20, Hex 14)...................................................................141  
72 Receive Error Count Register (Address 21).............................................................................142  
73 RMII Out-of-Band Signalling Register (Address 25).................................................................143  
74 Trim Enable Register (Address 27) ..........................................................................................144  
75 Trim Status Register (Address 28) ...........................................................................................144  
76 Register Bit Map.......................................................................................................................145  
77 LXT9785/9785E 241-Ball PBGA Package Dimensions............................................................149  
78 Product Information ..................................................................................................................150  
8
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Contents  
Revision History  
Date  
Revision  
Page  
Description  
Added bullet to Product Features  
1
Modified Table 12 LXT9785/9785E Miscellaneous Signal  
Descriptions(Added FIFOSEL1 and FIFOSEL0)  
46  
65  
Added Section 2.6.1.6, Reliable Link Establishment while Auto  
MDIX is Enabled in Forced Speed Mode”  
Modified Figure 37 Typical LXT9785/9785E to 3.3V Fiber  
Transceiver Interface Circuitry”  
101  
102  
103  
Added Figure 38 Typical LXT9785/9785E to 5V Fiber Transceiver  
Interface Circuitry”  
Added Figure 39 ON Semiconductor Triple PECL-to-LVPECL  
Translator”  
104  
104  
Modified Table 27 Absolute Maximum Ratings”  
Modified Table 28 Operating Conditions”  
January 2002  
005  
Modified Table 30 Digital I/O DC Electrical Characteristics (VCCIO  
= 3.3V +/- 5%)(Output low voltage SD pins - Max)  
106  
120  
122  
124  
137  
Modified Figure 52 RMII - 100BASE-TX Receive Timingand  
Table 47 RMII - 100BASE-TX Receive Timing Parameters”  
Modified Figure 54 RMII - 100BASE-FX Receive Timingand  
Table 49 RMII - 100BASE-FX Receive Timing Parameters”  
Modified Figure 56 RMII - 10BASE-T Receive Timingand  
Table 51 RMII - 10BASE-T Receive Timing Parameters”  
Modified Table 67 Port Configuration Register (Address 16, Hex  
10)(Bits 16.5 and 16.6)  
139  
150  
Modified Table 69 Interrupt Enable Register (Address 18, Hex 12)”  
Added product ordering table and diagram.  
Datasheet  
9
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Contents  
Date  
Revision  
Page  
Description  
1
Modified and added new language to front page.  
Reset: Modified language in first paragraph.  
Added new section on DTE discovery.  
62  
87  
Supported JTAG Instructions table: replaced long hit streams with  
hex.  
94  
98  
98  
LED Circuit: Modified paragraph language.  
LED Circuit diagram: Modified diagram.  
Replaced Typical Fiber Interface diagram.  
100  
Required Clock Characteristics table: Replaced SMII Input  
frequency and RMII Input frequency symbol with f.  
103  
123  
April 2001  
003  
Auto-Negotiation and Fast Link Pulse Timing Parameters: FLP  
burst width under Typ = 2.  
127  
129  
129  
132  
134  
142  
147  
Control Register table: Modified table and tablenotes.  
PHY Identification Register 2 (Address 3): Modified table.  
PHY Identifier Bit Mapping: Modified diagram.  
Auto-Negotiation Expansion: Modified table and tablenotes.  
Port Configuration Register table: Modified table and tablenotes.  
Trim Enable Register: Modified table (DTE Discovery).  
Modified Register Bit Map table.  
10  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY — LXT9785/9785E  
Figure 1. LXT9785/9785E Block Diagram  
8-Port Global  
Functions  
RMII/SMII Contr  
ADD_<4:0>  
Management /  
Mode Select  
Logic & LED  
Drivers  
RESET  
MDIO  
PWRDN  
2
MDC  
Clock  
Generator  
REFCLK  
2
MDINT  
2
SYNC (SMII only)  
Register Set  
+
Manchester  
Encoder  
10  
TP  
Driver  
Pulse  
Shaper  
TxDatan  
TP /  
Fiber  
Out  
TPFOPn  
TPFONn  
Parallel/Serial  
Converter  
Scrambler  
& Encoder  
100  
-
+
ECL  
Driver  
Auto  
Negotiation  
Mgmt  
Counters  
CIM  
-
Fiber  
select n  
Register Set  
+
Media  
Select  
Clock Generator  
Adaptive EQ with BL  
Wander Cancellation  
100TX  
100FX  
10BT  
Port LED  
Drivers  
-
3
LEDn_<2:0>  
RxDatan  
+
Manchester  
TPFIPn  
TPFINn  
TP /  
Fiber In  
Serial to  
Parallel  
Converter  
10  
Decoder  
Slicer  
-
Decoder &  
Descrambler  
100  
Carrier Sense  
Data Valid  
+
Error Detect  
-
Per-Port Functions  
PORT 0  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
PORT 5  
PORT 6  
PORT 7  
Datasheet  
11  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E — Advanced 10/100 8-Port PHY  
1.0  
Pin Assignments and Signal Descriptions  
Figure 2. LXT9785/9785E RMII 208-Pin PQFP Assignments  
CRS_DV6..... 1  
RxER6 ..... 2  
TxEN6..... 3  
TxData6_0 ..... 4  
TxData6_1 ..... 5  
REFCLK1..... 6  
RxData5_1..... 7  
RxData5_0..... 8  
GNDIO..... 9  
CRS_DV5..... 10  
RxER5 ..... 11  
TxEN5..... 12  
TxData5_0 ..... 13  
TxData5_1 ..... 14  
RxData4_1..... 15  
RxData4_0..... 16  
CRS_DV4..... 17  
VCCIO ..... 18  
156 .......TPFIN7  
155 .......GNDR7  
154 .......TPFOP7  
153 .......TPFON7  
152 .......VCCT6/7  
151 .......TPFON6  
150 .......TPFOP6  
149 .......GNDR6  
148 .......GNDT6/7  
147 .......TPFIN6  
146 .......TPFIP6  
145 .......VCCR6  
144 .......VCCR5  
143 .......TPFIP5  
142 .......TPFIN5  
141 .......GNDR5  
140 .......TPFOP5  
139 .......TPFON5  
138 .......VCCT4/5  
137 .......TPFON4  
136 .......TPFOP4  
135 .......GNDR4  
134 .......GNDT4/5  
133 .......TPFIN4  
132 .......TPFIP4  
131 .......VCCR4  
130 .......VCCR3  
129 .......TPFIP3  
128 .......TPFIN3  
127 .......GNDT2/3  
126 .......GNDR3  
125 .......TPFOP3  
124 .......TPFON3  
123 .......VCCT2/3  
122 .......TPFON2  
121 .......TPFOP2  
120 .......GNDR2  
119 .......TPFIN2  
118 .......TPFIP2  
117 .......VCCR2  
116 .......VCCR1  
115 .......TPFIP1  
114 .......TPFIN1  
113 .......GNDT0/1  
112 .......GNDR1  
111 .......TPFOP1  
110 .......TPFON1  
109 .......VCCT0/1  
108 .......TPFON0  
107 .......TPFOP0  
106 .......GNDR0  
105 .......TPFIN0  
GNDIO..... 19  
RxER4 ..... 20  
TxEN4..... 21  
TxData4_0 ..... 22  
TxData4_1 ..... 23  
MDC1 ..... 24  
Part #  
LOT #  
FPO #  
LXT9785/9785E XX  
XXXXXX  
XXXXXXXX  
Rev #  
MDIO1 ..... 25  
MDINT1..... 26  
RxData3_1..... 27  
RxData3_0..... 28  
VCCIO ..... 29  
GNDIO..... 30  
CRS_DV3..... 31  
RxER3 ..... 32  
TxEN3..... 33  
TxData3_0 ..... 34  
TxData3_1 ..... 35  
RxData2_1..... 36  
RxData2_0..... 37  
GNDIO..... 38  
CRS_DV2..... 39  
RxER2 ..... 40  
TxEN2..... 41  
TxData2_0 ..... 42  
TxData2_1 ..... 43  
REFCLK0..... 44  
RxData1_1..... 45  
RxData1_0..... 46  
VCCIO ..... 47  
GNDIO..... 48  
CRS_DV1..... 49  
xER1/PAUSE..... 50  
TxEN1..... 51  
TxData1_0 ..... 52  
12  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 3. LXT9785/9785E SMII 208-Pin PQFP Assignments  
N/C..... 1  
N/C..... 2  
N/C..... 3  
156 .......TPFIN7  
155 .......GNDR7  
154 .......TPFOP7  
153 .......TPFON7  
152 .......VCCT6/7  
151 .......TPFON6  
150 .......TPFOP6  
149 .......GNDR6  
148 .......GNDT6/7  
147 .......TPFIN6  
146 .......TPFIP6  
145 .......VCCR6  
144 .......VCCR5  
143 .......TPFIP5  
142 .......TPFIN5  
141 .......GNDR5  
140 .......TPFOP5  
139 .......TPFON5  
138 .......VCCT4/5  
137 .......TPFON4  
136 .......TPFOP4  
135 .......GNDR4  
134 .......GNDT4/5  
133 .......TPFIN4  
132 .......TPFIP4  
131 .......VCCR4  
130 .......VCCR3  
129 .......TPFIP3  
128 .......TPFIN3  
127 .......GNDT2/3  
126 .......GNDR3  
125 .......TPFOP3  
124 .......TPFON3  
123 .......VCCT2/3  
122 .......TPFON2  
121 .......TPFOP2  
120 .......GNDR2  
119 .......TPFIN2  
118 .......TPFIP2  
117 .......VCCR2  
116 .......VCCR1  
115 .......TPFIP1  
114 .......TPFIN1  
113 .......GNDT0/1  
112 .......GNDR1  
111 .......TPFOP1  
110 .......TPFON1  
109 .......VCCT0/1  
108 .......TPFON0  
107 .......TPFOP0  
106 .......GNDR0  
105 .......TPFIN0  
TxData6 ..... 4  
N/C..... 5  
REFCLK1..... 6  
N/C..... 7  
RxData5..... 8  
GNDIO..... 9  
N/C..... 10  
N/C..... 11  
N/C..... 12  
TxData5 ..... 13  
N/C..... 14  
N/C..... 15  
RxData4..... 16  
N/C..... 17  
VCCIO..... 18  
GNDIO..... 19  
N/C..... 20  
N/C..... 21  
TxData4 ..... 22  
N/C..... 23  
MDC1 ..... 24  
MDIO1..... 25  
MDINT1..... 26  
N/C..... 27  
RxData3..... 28  
VCCIO..... 29  
GNDIO..... 30  
N/C..... 31  
Rev #  
Part #  
LOT #  
FPO #  
LXT9785/9785E XX  
XXXXXX  
XXXXXXXX  
N/C..... 32  
N/C..... 33  
TxData3 ..... 34  
SYNC0..... 35  
N/C..... 36  
RxData2..... 37  
GNDIO..... 38  
N/C..... 39  
N/C..... 40  
N/C..... 41  
TxData2 ..... 42  
N/C..... 43  
REFCLK0..... 44  
N/C..... 45  
RxData1..... 46  
VCCIO..... 47  
GNDIO..... 48  
N/C..... 49  
PAUSE..... 50  
N/C..... 51  
TxData1 ..... 52  
Datasheet  
13  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 4. LXT9785/9785E SS-SMII 208-Pin PQFP Assignments  
N/C..... 1  
N/C..... 2  
N/C..... 3  
156 .......TPFIN7  
155 .......GNDR7  
154 .......TPFOP7  
153 .......TPFON7  
152 .......VCCT6/7  
151 .......TPFON6  
150 .......TPFOP6  
149 .......GNDR6  
148 .......GNDT6/7  
147 .......TPFIN6  
146 .......TPFIP6  
145 .......VCCR6  
144 .......VCCR5  
143 .......TPFIP5  
142 .......TPFIN5  
141 .......GNDR5  
140 .......TPFOP5  
139 .......TPFON5  
138 .......VCCT4/5  
137 .......TPFON4  
136 .......TPFOP4  
135 .......GNDR4  
134 .......GNDT4/5  
133 .......TPFIN4  
132 .......TPFIP4  
131 .......VCCR4  
130 .......VCCR3  
129 .......TPFIP3  
128 .......TPFIN3  
127 .......GNDT2/3  
126 .......GNDR3  
125 .......TPFOP3  
124 .......TPFON3  
123 .......VCCT2/3  
122 .......TPFON2  
121 .......TPFOP2  
120 .......GNDR2  
119 .......TPFIN2  
118 .......TPFIP2  
117 .......VCCR2  
116 .......VCCR1  
115 .......TPFIP1  
114 .......TPFIN1  
113 .......GNDT0/1  
112 .......GNDR1  
111 .......TPFOP1  
110 .......TPFON1  
109 .......VCCT0/1  
108 .......TPFON0  
107 .......TPFOP0  
106 .......GNDR0  
105 .......TPFIN0  
TxData6 ..... 4  
N/C..... 5  
REFCLK1..... 6  
RxData5..... 7  
N/C..... 8  
GNDIO..... 9  
N/C..... 10  
N/C..... 11  
N/C..... 12  
TxData5 ..... 13  
N/C..... 14  
RxData4..... 15  
N/C..... 16  
RxSYNC1 ..... 17  
VCCIO ..... 18  
GNDIO..... 19  
N/C..... 20  
RxCLK1..... 21  
TxData4 ..... 22  
N/C..... 23  
MDC1 ..... 24  
MDIO1 ..... 25  
MDINT1..... 26  
RxData3..... 27  
N/C..... 28  
VCCIO ..... 29  
GNDIO..... 30  
N/C..... 31  
TxCLK0 ..... 32  
N/C..... 33  
TxData3 ..... 34  
TxSYNC0 ..... 35  
RxData2..... 36  
N/C..... 37  
GNDIO..... 38  
N/C..... 39  
Rev #  
Part #  
LOT #  
FPO #  
LXT9785/9785E XX  
XXXXXX  
XXXXXXXX  
N/C..... 40  
N/C..... 41  
TxData2 ..... 42  
N/C..... 43  
REFCLK0..... 44  
RxData1..... 45  
N/C..... 46  
VCCIO ..... 47  
GNDIO..... 48  
N/C..... 49  
PAUSE..... 50  
N/C..... 51  
TxData1 ..... 52  
14  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 5. LXT9785/9785E RMII 241-Ball PBGA Assignments  
RMI  
I
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
RxData  
1_0  
TxData  
2_1  
CRS_D  
V2  
TxData  
3_1  
TxData  
4_0  
RxData  
4_0  
TxData  
6_1  
A
B
C
D
E
F
GNDD  
VCCIO  
TxEN3  
VCCIO  
GNDD  
MDIO1  
RxER4  
TxEN5  
RxER5  
RxER6  
A
B
RxData  
0_1  
RxData  
1_1  
TxData  
2_0  
RxData  
2_0  
CRS_D  
V3  
RxData  
3_1  
CRS_D  
V4  
TxData  
5_0  
RxData  
5_0  
RxData  
5_1  
CRS_  
DV6  
RXD6_  
1
TxEN1  
GNDD  
TXD1_0  
GNDD  
GNDD  
MDC1  
TxEN4  
VCCIO  
RXD0_  
0
CRS_D  
V1  
RxData  
2_1  
TxData  
4_1  
RxData  
4_1  
RxData  
6_0  
TxData  
7_1  
VCCIO  
GNDD  
GNDD  
TxEN2  
GNDD  
RxER3  
MDINT1  
GNDD  
TxEN6  
VCCIO  
GNDD  
RxER7  
GNDD  
C
D
E
F
RxER0/  
MDIX  
TxData  
1_1  
RxER1/  
PAUSE  
TxData  
3_0  
RxData  
3_0  
TxData  
5_1  
CRS_D  
V5  
TxData  
6_0  
RxER2  
GNDD  
GNDD  
GNDD  
TxEN7  
TxData  
0_0  
CRS_D  
V0  
REF  
CLK0  
REF  
CLK1  
CRS_D  
V7  
RxData  
7_0  
MDC0  
TxEN0  
MDIO0  
LED3_2  
LED2_2  
LED1_2  
LED0_1  
CFG_2  
ADD_2  
GNDD  
VCCD  
N/C  
GNDD  
GNDD  
GNDD  
GNDD  
VCCD  
TXD7_0  
TxData  
0_1  
RXD7_  
1
MDINT0  
LED2_3  
LED1_3  
LED0_3  
LED3_1  
N/C  
N/C  
LED7_3  
N/C  
LED7_2  
LED6_3  
LED5_3  
LED4_3  
LED4_2  
G
H
J
LED3_3  
N/C  
N/C  
N/C  
LED7_1  
LED6_1  
LED5_1  
N/C  
G
H
J
LED2_1  
N/C  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
LED6_2  
LED5_2  
LED4_1  
LED1_1  
N/C  
VCCD  
N/C  
VCCD  
SGND  
AMDIX_  
EN  
K
L
LED0_2  
CFG_3  
ADD_3  
ADD_0  
SD0  
K
L
VCC  
PECL  
VCC  
PECL  
PWR  
DWN  
SEC  
TION  
MODE  
SEL_0  
MODE  
SEL_1  
MDDIS  
CFG_1  
ADD_1  
ADD_4  
TxSLE  
W_1  
GND  
PECL  
GND  
PECL  
G_FX/  
TP  
M
N
P
R
T
RESET  
TDO  
TCK  
TMS  
SD5  
TRST  
SD7  
M
N
P
R
T
TxSLE  
W_0  
SD1  
SD3  
VCCT  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
VCCR  
GNDR  
GNDR  
TDI  
SD_2P5  
V
SD2  
VCCR  
GNDR  
GNDT  
VCCR  
VCCR  
GNDT  
SD4  
SD6  
TPFIP  
(0)  
TPFON(  
1)  
TPFIP  
(2)  
TPFIN  
(3)  
TPFON  
(4)  
TPFIP  
(6)  
TPFOP  
(7)  
TPFIP  
(7)  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
TPFIN  
(0)  
TPFOP  
(0)  
TPFOP  
(1)  
TPFIN  
(1)  
TPFIN  
(2)  
TPFOP  
(2)  
TPFON  
(3)  
TPFIP  
(3)  
TPFIP  
(4)  
TPFOP  
(4)  
TPFOP  
(5)  
TPFIN  
(5)  
TPFIN  
(6)  
TPFOP  
(6)  
TPFON  
(7)  
TPFIN  
(7)  
TPFON  
(0)  
TPFIP  
(1)  
TPFON  
(2)  
TPFOP  
(3)  
TPFIN  
(4)  
TPFON  
(5)  
TPFIP  
(5)  
TPFON  
(6)  
U
GNDT  
GNDT  
GNDT  
GNDR  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
U
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Datasheet  
15  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 6. LXT9785/9785E SMII 241-Ball PBGA Assignments  
SMI  
I
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
RxData  
1
TxData  
4
RxData  
4
A
GNDD  
VCCIO  
N/C  
N/C  
SYNC0  
N/C  
VCCIO  
GNDD  
MDIO1  
N/C  
N/C  
N/C  
N/C  
N/C  
A
B
TxData  
2
RxData  
2
TxData  
5
RxData  
5
B
C
D
E
F
N/C  
N/C  
GNDD  
N/C  
N/C  
GNDD  
N/C  
N/C  
N/C  
N/C  
MDC1  
N/C  
N/C  
VCCIO  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
SYNC1  
N/C  
N/C  
RxData  
0
TxData  
1
RxData  
6
VCCIO  
GNDD  
GNDD  
PAUSE  
GNDD  
VCCD  
N/C  
N/C  
MDINT1  
GNDD  
N/C  
GNDD  
C
D
E
F
TxData  
3
RxData  
3
TxData  
6
MDIX  
GNDD  
N/C  
N/C  
GNDD  
N/C  
GNDD  
VCCIO  
GNDD  
N/C  
N/C  
TxData  
0
REF  
CLK0  
REF  
CLK1  
TxData  
7
RxData  
7
MDC0  
N/C  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VCCD  
GNDD  
MDINT0  
LED2_3  
LED1_3  
LED0_3  
LED3_1  
N/C  
MDIO0  
LED3_2  
LED2_2  
LED1_2  
LED0_1  
CFG_2  
ADD_2  
N/C  
N/C  
N/C  
N/C  
N/C  
LED7_3  
N/C  
LED7_2  
LED6_3  
LED5_3  
LED4_3  
LED4_2  
G
H
J
LED3_3  
N/C  
LED7_1  
LED6_1  
LED5_1  
N/C  
G
H
J
LED2_1  
N/C  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
LED6_2  
LED5_2  
LED4_1  
LED1_1  
N/C  
VCCD  
N/C  
VCCD  
SGND  
AMDIX_  
EN  
K
L
LED0_2  
CFG_3  
ADD_3  
ADD_0  
SD0  
K
L
VCC  
PECL  
VCC  
PECL  
PWR  
DWN  
SECTIO  
N
MODE  
SEL_0  
MODE  
SEL_1  
MDDIS  
CFG_1  
ADD_1  
ADD_4  
TxSLE  
W_1  
GND  
PECL  
GND  
PECL  
G_FX/  
TP  
M
N
P
R
T
RESET  
TDO  
TCK  
TMS  
SD5  
TRST  
SD7  
M
N
P
R
T
TxSLE  
W_0  
SD1  
SD3  
VCCT  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
VCCR  
GNDR  
GNDR  
TDI  
SD_2P5  
V
SD2  
VCCR  
GNDR  
GNDT  
VCCR  
VCCR  
GNDT  
SD4  
SD6  
TPFIP  
(0)  
TPFON(  
1)  
TPFIP  
(2)  
TPFIN  
(3)  
TPFON(  
4)  
TPFIP  
(6)  
TPFOP(  
7)  
TPFIP  
(7)  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
TPFIN(0  
)
TPFOP(  
0)  
TPFOP(  
1)  
TPFIN(1  
)
TPFIN(2  
)
TPFOP(  
2)  
TPFON(  
3)  
TPFIP  
(3)  
TPFIP  
(4)  
TPFOP(  
4)  
TPFOP(  
5)  
TPFIN  
(5)  
TPFIN  
(6)  
TPFOP(  
6)  
TPFON(  
7)  
TPFIN(7  
)
TPFON(  
0)  
TPFIP  
(1)  
TPFON(  
2)  
TPFOP(  
3)  
TPFIN  
(4)  
TPFON(  
5)  
TPFIP  
(5)  
TPFON(  
6)  
U
GNDT  
GNDT  
GNDT  
GNDR  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
U
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
16  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 7. LXT9785/9785E SS-SMII 241-Ball PBGA Assignments  
SS-  
SMI  
I
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
TxSYN  
C0  
TxData  
4
A
B
C
D
E
F
GNDD  
VCCIO  
N/C  
N/C  
N/C  
N/C  
VCCIO  
GNDD  
MDIO1  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
A
B
RxData  
0
RxData  
1
TxData  
2
RxData  
3
Rx  
CLK1  
RxSYN  
C1  
TxData  
5
RxData  
5
RxData  
6
N/C  
GNDD  
N/C  
N/C  
GNDD  
N/C  
MDC1  
N/C  
N/C  
N/C  
N/C  
RxData  
0
TxData  
1
RxData  
2
TxCLK  
0
RxData  
4
TxSYN  
C1  
VCCIO  
GNDD  
N/C  
N/C  
GNDD  
PAUSE  
GNDD  
VCCD  
N/C  
MDINT1  
N/C  
VCCIO  
N/C  
GNDD  
N/C  
GNDD  
N/C  
GNDD  
C
D
E
F
TxData  
3
TxData  
6
TxCLK  
1
MDIX  
TXD0  
GNDD  
GNDD  
N/C  
GNDD  
N/C  
VCCIO  
N/C  
Rx  
CLK0  
RxSYN  
C0  
REF  
CLK0  
REF  
CLK1  
TxData  
7
MDC0  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VCCD  
N/C  
GNDD  
RxData  
7
MDINT0  
LED2_3  
LED1_3  
LED0_3  
LED3_1  
N/C  
MDIO0  
LED3_2  
LED2_2  
LED1_2  
LED0_1  
CFG_2  
ADD_2  
N/C  
LED3_3  
N/C  
N/C  
LED7_3  
N/C  
LED7_2  
LED6_3  
LED5_3  
LED4_3  
LED4_2  
G
H
J
N/C  
N/C  
LED7_1  
LED6_1  
LED5_1  
N/C  
G
H
J
LED2_1  
N/C  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
LED6_2  
LED5_2  
LED4_1  
LED1_1  
N/C  
VCCD  
N/C  
VCCD  
SGND  
AMDIX_  
EN  
K
L
LED0_2  
CFG_3  
ADD_3  
ADD_0  
SD0  
K
L
VCC  
PECL  
VCC  
PECL  
PWR  
DWN  
SEC  
TION  
MODE  
SEL_0  
MODE  
SEL_1  
MDDIS  
CFG_1  
ADD_1  
ADD_4  
TxSLE  
W_1  
GND  
PECL  
GND  
PECL  
G_FX/  
TP  
M
N
P
R
T
RESET  
TDO  
TCK  
TMS  
SD5  
TRST  
SD7  
M
N
P
R
T
TxSLE  
W_0  
SD1  
SD3  
VCCT  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
GNDR  
VCCT  
VCCR  
VCCR  
GNDR  
GNDR  
TDI  
SD_2P  
5V  
SD2  
VCCR  
GNDR  
GNDT  
VCCR  
VCCR  
GNDT  
SD4  
SD6  
TPFIP  
(0)  
TPFON  
(1)  
TPFIP  
(2)  
TPFIN  
(3)  
TPFON  
(4)  
TPFIP  
(6)  
TPFOP  
(7)  
TPFIP  
(7)  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
TPFIN  
(0)  
TPFOP  
(0)  
TPFOP  
(1)  
TPFIN  
(1)  
TPFIN  
(2)  
TPFOP  
(2)  
TPFON  
(3)  
TPFIP  
(3)  
TPFIP  
(4)  
TPFOP  
(4)  
TPFOP  
(5)  
TPFIN  
(5)  
TPFIN  
(6)  
TPFOP  
(6)  
TPFON  
(7)  
TPFIN  
(7)  
TPFON  
(0)  
TPFIP  
(1)  
TPFON  
(2)  
TPFOP  
(3)  
TPFIN  
(4)  
TPFON  
(5)  
TPFIP  
(5)  
TPFON  
(6)  
U
GNDT  
GNDT  
GNDT  
GNDR  
GNDT  
GNDT  
GNDT  
GNDT  
GNDT  
U
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Datasheet  
17  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 1. RMII PQFP Pin List  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
1
CRS_DV6  
RxER6  
O, TS, SL  
O, TS, SL, ID  
I, ID  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 8 on page 43  
Table 8 on page 43  
Table 8 on page 43  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
2
3
TxEN6  
4
TxData6_0  
TxData6_1  
REFCLK1  
RxData5_1  
RxData5_0  
GNDIO  
I, ID  
5
I, ID  
6
I
7
O, TS, ID  
O, TS  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
CRS_DV5  
RxER5  
O, TS, SL  
O, TS, SL, ID  
I, ID  
TxEN5  
TxData5_0  
TxData5_1  
RxData4_1  
RxData4_0  
CRS_DV4  
VCCIO  
I, ID  
I, ID  
O, TS,ID  
O, TS  
O, TS, SL  
GNDIO  
RxER4  
O, TS, SL, ID  
I, ID  
TxEN4  
TxData4_0  
TxData4_1  
MDC1  
I, ID  
I, ID  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
O, TS, ID  
O, TS  
MDIO1  
MDINT1  
RxData3_1  
RxData3_0  
VCCIO  
GNDIO  
CRS_DV3  
RxER3  
O, TS, SL  
O, TS, SL, ID  
I, ID  
TxEN3  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
18  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
TxData3_0  
TxData3_1  
RxData2_1  
RxData2_0  
GNDIO  
I, ID  
I, ID  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 12 on page 46  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 12 on page 46  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 8 on page 43  
Table 8 on page 43  
Table 14 on page 49  
Table 14 on page 49  
Table 8 on page 43  
O, TS, ID  
O, TS  
CRS_DV2  
RxER2  
O, TS, SL  
O, TS, SL, ID  
TxEN2  
I, ID  
TxData2_0  
TxData2_1  
REFCLK0  
RxData1_1  
RxData1_0  
VCCIO  
I, ID  
I, ID  
I
O, TS, ID  
O, TS  
GNDIO  
CRS_DV1  
RxER1/PAUSE  
TxEN1  
O, TS, SL  
O, TS, SL, ID  
I, ID  
TxData1_0  
TxData1_1  
RxData0_1  
RxData0_0  
VCCIO  
I, ID  
I, ID  
O, TS, ID  
O, TS  
GNDIO  
CRS_DV0  
RxER0/MDIX  
TxEN0  
O, TS, SL  
O, TS, SL, ID  
I, ID  
TxData0_0  
TxData0_1  
MDC0  
I, ID  
I, ID  
I, ST, ID  
MDIO0  
I/O, TS, SL, IP  
VCCD  
GNDD  
MDINT0  
OD, TS, SL, IP  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
Datasheet  
19  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
LED3_3  
OD, TS, SO, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 12 on page 46  
Table 8 on page 43  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 9 on page 44  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
LED3_2  
LED3_1  
LED2_3  
LED2_2  
LED2_1  
GNDIO  
LED1_3  
LED1_2  
LED1_1  
VCCD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
GNDD  
LED0_3  
LED0_2  
LED0_1  
AMDIX_EN  
MDDIS  
CFG_3  
CFG_2  
CFG_1  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
TxSLEW_1  
TxSLEW_0  
SD_2P5V  
SD0  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I
SD1  
I
VCCPECL  
GNDPECL  
SD2  
I
SD3  
I
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
20  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
N/C  
Table 15 on page 51  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
VCCR0  
TPFIP0  
TPFIN0  
GNDR0  
TPFOP0  
TPFON0  
VCCT0/1  
TPFON1  
TPFOP1  
GNDR1  
GNDT0/1  
TPFIN1  
TPFIP1  
VCCR1  
VCCR2  
TPFIP2  
TPFIN2  
GNDR2  
TPFOP2  
TPFON2  
VCCT2/3  
TPFON3  
TPFOP3  
GNDR3  
GNDT2/3  
TPFIN3  
TPFIP3  
VCCR3  
VCCR4  
TPFIP4  
TPFIN4  
GNDT4/5  
GNDR4  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
Datasheet  
21  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
TPFOP4  
AO/AI  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
Table 11 on page 45  
Table 11 on page 45  
Table 11 on page 45  
TPFON4  
VCCT4/5  
TPFON5  
TPFOP5  
GNDR5  
TPFIN5  
TPFIP5  
VCCR5  
VCCR6  
TPFIP6  
TPFIN6  
GNDT6/7  
GNDR6  
TPFOP6  
TPFON6  
VCCT6/7  
TPFON7  
TPFOP7  
GNDR7  
TPFIN7  
TPFIP7  
VCCR7  
N/C  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
N/C  
SD4  
I
SD5  
I
GNDPECL  
VCCPECL  
SD6  
I
SD7  
I
TDI  
I, ST, IP  
O, TS  
I, ST, IP  
TDO  
TMS  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
22  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
TCK  
I, ST, ID  
Table 11 on page 45  
Table 11 on page 45  
Table 15 on page 51  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
TRST  
I, ST, IP  
N/C  
G_FX/TP  
PWRDWN  
RESET  
Section  
ModeSel0  
ModeSel1  
SGND  
I, ST, ID  
I, ST, ID  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
LED4_1  
LED4_2  
LED4_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
LED5_1  
LED5_2  
LED5_3  
GNDIO  
LED6_1  
LED6_2  
LED6_3  
LED7_1  
LED7_2  
LED7_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
RxData7_1  
RxData7_0  
GNDIO  
CRS_DV7  
RxER7  
O, TS, ID  
O, TS  
O, TS, SL  
O, TS, SL, ID  
I, ID  
TxEN7  
TxData7_0  
I, ID  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
Datasheet  
23  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 1. RMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
204  
205  
206  
207  
208  
TxData7_1  
RxData6_1  
RxData6_0  
GNDIO  
I, ID  
Table 4 on page 39  
Table 4 on page 39  
Table 4 on page 39  
Table 14 on page 49  
Table 14 on page 49  
O, TS, ID  
O, TS  
VCCIO  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak Internal  
Pull-up, ID=Weak Internal Pull-down  
24  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 2. SMII PQFP Pin List  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
1
N/C  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 6 on page 41  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 15 on page 51  
Table 6 on page 41  
Table 15 on page 51  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 8 on page 43  
Table 8 on page 43  
Table 8 on page 43  
Table 15 on page 51  
Table 6 on page 41  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
2
N/C  
3
N/C  
4
TxData6  
N/C  
I, ID  
5
I, ID  
6
REFCLK1  
N/C  
I
7
8
RxData5  
GNDIO  
N/C  
O, TS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
N/C  
N/C  
TxData5  
N/C  
I, ID  
N/C  
O, TS,ID  
RxData4  
N/C  
O, TS  
VCCIO  
GNDIO  
N/C  
O, TS, SL, ID  
N/C  
I, ID  
TxData4  
N/C  
I, ID  
MDC1  
MDIO1  
MDINT1  
N/C  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
RxData3  
VCCIO  
GNDIO  
N/C  
O, TS  
N/C  
N/C  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
25  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
TxData3  
I, ID  
Table 5 on page 41  
Table 6 on page 41  
Table 15 on page 51  
Table 6 on page 41  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 6 on page 41  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 51  
Table 12 on page 46  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 15 on page 51  
Table 6 on page 41  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 51  
Table 12 on page 46  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 8 on page 43  
Table 8 on page 43  
Table 14 on page 49  
Table 14 on page 49  
Table 8 on page 43  
SYNC0  
N/C  
I, ID  
RxData2  
GNDIO  
N/C  
O, TS  
N/C  
N/C  
TxData2  
N/C  
I, ID  
REFCLK0  
N/C  
I
RxData1  
VCCIO  
GNDIO  
N/C  
O, TS  
PAUSE  
N/C  
I, ID  
TxData1  
N/C  
I, ID  
N/C  
RxData0  
VCCIO  
GNDIO  
N/C  
O, TS  
MDIX  
N/C  
I, ID  
TxData0  
N/C  
I, ID  
MDC0  
MDIO0  
VCCD  
GNDD  
MDINT0  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
26  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
LED3_3  
OD, TS, SO, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 12 on page 46  
Table 8 on page 43  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 9 on page 44  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
LED3_2  
LED3_1  
LED2_3  
LED2_2  
LED2_1  
GNDIO  
LED1_3  
LED1_2  
LED1_1  
VCCD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
GNDD  
LED0_3  
LED0_2  
LED0_1  
AMDIX_EN  
MDDIS  
CFG_3  
CFG_2  
CFG_1  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
TxSLEW_1  
TxSLEW_0  
SD_2P5V  
SD0  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I
SD1  
I
VCCPECL  
GNDPECL  
SD2  
I
SD3  
I
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
27  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
N/C  
Table 15 on page 51  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
VCCR0  
TPFIP0  
TPFIN0  
GNDR0  
TPFOP0  
TPFON0  
VCCT0/1  
TPFON1  
TPFOP1  
GNDR1  
GNDT0/1  
TPFIN1  
TPFIP1  
VCCR1  
VCCR2  
TPFIP2  
TPFIN2  
GNDR2  
TPFOP2  
TPFON2  
VCCT2/3  
TPFON3  
TPFOP3  
GNDR3  
GNDT2/3  
TPFIN3  
TPFIP3  
VCCR3  
VCCR4  
TPFIP4  
TPFIN4  
GNDT4/5  
GNDR4  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
28  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
TPFOP4  
TPFON4  
VCCT4/5  
TPFON5  
TPFOP5  
GNDR5  
TPFIN5  
TPFIP5  
VCCR5  
VCCR6  
TPFIP6  
TPFIN6  
GNDT6/7  
GNDR6  
TPFOP6  
TPFON6  
VCCT6/7  
TPFON7  
TPFOP7  
GNDR7  
TPFIN7  
TPFIP7  
VCCR7  
N/C  
AO/AI  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
Table 11 on page 45  
Table 11 on page 45  
Table 11 on page 45  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
N/C  
SD4  
I
SD5  
I
GNDPECL  
VCCPECL  
SD6  
I
SD7  
I
TDI  
I, ST, IP  
O, TS  
I, ST, IP  
TDO  
TMS  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
29  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
TCK  
I, ST, ID  
Table 11 on page 45  
Table 11 on page 45  
Table 15 on page 51  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 4 on page 39  
Table 6 on page 41  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
Table 5 on page 41  
TRST  
I, ST, IP  
N/C  
G_FX/TP  
PWRDWN  
RESET  
Section  
ModeSel0  
ModeSel1  
SGND  
I, ST, ID  
I, ST, ID  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
LED4_1  
LED4_2  
LED4_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
LED5_1  
LED5_2  
LED5_3  
GNDIO  
LED6_1  
LED6_2  
LED6_3  
LED7_1  
LED7_2  
LED7_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
N/C  
O, TS, ID  
RxData7  
GNDIO  
N/C  
O, TS  
N/C  
N/C  
TxData7  
I, ID  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
30  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 2. SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
204  
205  
206  
207  
208  
SYNC1  
I, ID  
Table 6 on page 41  
Table 15 on page 51  
Table 6 on page 41  
Table 14 on page 49  
Table 14 on page 49  
N/C  
O, TS  
RxData6  
GNDIO  
VCCIO  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
31  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 3. SS-SMII PQFP Pin List  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
1
N/C  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 5 on page 41  
Table 7 on page 42  
Table 15 on page 51  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 7 on page 42  
Table 15 on page 51  
Table 7 on page 42  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 51  
Table 7 on page 42  
Table 5 on page 41  
Table 15 on page 51  
Table 8 on page 43  
Table 8 on page 43  
Table 8 on page 43  
Table 7 on page 42  
Table 15 on page 51  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 51  
Table 7 on page 42  
Table 15 on page 51  
2
N/C  
3
N/C  
4
TxData6  
N/C  
I, ID  
5
I, ID  
6
REFCLK1  
RxData5  
N/C  
I
7
O, TS, ID  
8
9
GNDIO  
N/C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
N/C  
N/C  
TxData5  
N/C  
I, ID  
RxData4  
N/C  
O, TS, ID  
RxSYNC1  
VCCIO  
GNDIO  
N/C  
O, TS, ID  
RxCLK1  
TxData4  
N/C  
O, TS, ID  
I, ID  
MDC1  
MDIO1  
MDINT1  
RxData3  
N/C  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
O, TS, ID  
VCCIO  
GNDIO  
N/C  
TxCLK0  
N/C  
I, ID  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
32  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
TxData3  
I, ID  
Table 5 on page 41  
Table 7 on page 42  
Table 7 on page 42  
Table 15 on page 51  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 5 on page 41  
Table 7 on page 42  
Table 15 on page 51  
Table 14 on page 49  
Table 14 on page 49  
Table 15 on page 51  
Table 12 on page 46  
Table 15 on page 51  
Table 5 on page 41  
Table 15 on page 51  
Table 7 on page 42  
Table 15 on page 51  
Table 14 on page 49  
Table 14 on page 49  
Table 7 on page 42  
Table 12 on page 46  
Table 7 on page 42  
Table 5 on page 41  
Table 15 on page 51  
Table 8 on page 43  
Table 8 on page 43  
Table 14 on page 49  
Table 14 on page 49  
Table 8 on page 43  
TxSYNC0  
RxData2  
N/C  
I, ID  
O, TS, ID  
GNDIO  
N/C  
N/C  
N/C  
TxData2  
N/C  
I, ID  
REFCLK0  
RxData1  
N/C  
I
O, TS, ID  
VCCIO  
GNDIO  
N/C  
PAUSE  
N/C  
I, ID  
TxData1  
N/C  
I, ID  
RxData0  
N/C  
O, TS, ID  
VCCIO  
GNDIO  
RxSYNC0  
MDIX  
O, TS, ID  
I, ID  
RxCLK0  
TxData0  
N/C  
I, ID  
MDC0  
MDIO0  
VCCD  
GNDD  
MDINT0  
I, ST, ID  
I/O, TS, SL, IP  
OD, TS, SL, IP  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
33  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
LED3_3  
OD, TS, SO, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 12 on page 46  
Table 8 on page 43  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 9 on page 44  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
LED3_2  
LED3_1  
LED2_3  
LED2_2  
LED2_1  
GNDIO  
LED1_3  
LED1_2  
LED1_1  
VCCD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
GNDD  
LED0_3  
LED0_2  
LED0_1  
AMDIX_EN  
MDDIS  
CFG_3  
CFG_2  
CFG_1  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
TxSLEW_1  
TxSLEW_0  
SD_2P5V  
SD0  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I, ST, ID  
I
SD1  
I
VCCPECL  
GNDPECL  
SD2  
I
SD3  
I
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
34  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
N/C  
Table 15 on page 51  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
VCCR0  
TPFIP0  
TPFIN0  
GNDR0  
TPFOP0  
TPFON0  
VCCT0/1  
TPFON1  
TPFOP1  
GNDR1  
GNDT0/1  
TPFIN1  
TPFIP1  
VCCR1  
VCCR2  
TPFIP2  
TPFIN2  
GNDR2  
TPFOP2  
TPFON2  
VCCT2/3  
TPFON3  
TPFOP3  
GNDR3  
GNDT2/3  
TPFIN3  
TPFIP3  
VCCR3  
VCCR4  
TPFIP4  
TPFIN4  
GNDT4/5  
GNDR4  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
35  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
TPFOP4  
TPFON4  
VCCT4/5  
TPFON5  
TPFOP5  
GNDR5  
TPFIN5  
TPFIP5  
VCCR5  
VCCR6  
TPFIP6  
TPFIN6  
GNDT6/7  
GNDR6  
TPFOP6  
TPFON6  
VCCT6/7  
TPFON7  
TPFOP7  
GNDR7  
TPFIN7  
TPFIP7  
VCCR7  
N/C  
AO/AI  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 10 on page 44  
Table 10 on page 44  
Table 14 on page 49  
Table 15 on page 51  
Table 15 on page 51  
Table 9 on page 44  
Table 9 on page 44  
Table 14 on page 49  
Table 14 on page 49  
Table 9 on page 44  
Table 9 on page 44  
Table 11 on page 45  
Table 11 on page 45  
Table 11 on page 45  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
AI/AO  
AI/AO  
AO/AI  
AO/AI  
AO/AI  
AO/AI  
AI/AO  
AI/AO  
N/C  
SD4  
I
SD5  
I
GNDPECL  
VCCPECL  
SD6  
I
SD7  
I
TDI  
I, ST, IP  
O, TS  
I, ST, IP  
TDO  
TMS  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
36  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
TCK  
I, ST, ID  
Table 11 on page 45  
Table 11 on page 45  
Table 15 on page 51  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 12 on page 46  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 13 on page 48  
Table 14 on page 49  
Table 14 on page 49  
Table 7 on page 42  
Table 15 on page 51  
Table 14 on page 49  
Table 15 on page 51  
Table 7 on page 42  
Table 15 on page 51  
Table 5 on page 41  
TRST  
I, ST, IP  
N/C  
G_FX/TP  
PWRDWN  
RESET  
Section  
ModeSel0  
ModeSel1  
SGND  
I, ST, ID  
I, ST, ID  
I, ST, IP  
I, ST, ID  
I, ST, ID  
I, ST, ID  
LED4_1  
LED4_2  
LED4_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
LED5_1  
LED5_2  
LED5_3  
GNDIO  
LED6_1  
LED6_2  
LED6_3  
LED7_1  
LED7_2  
LED7_3  
GNDD  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
OD, TS, SL, IP  
VCCD  
RxData7  
N/C  
O, TS, ID  
GNDIO  
N/C  
TxCLK1  
N/C  
I, ID  
TxData7  
I, ID  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
Datasheet  
37  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 3. SS-SMII PQFP Pin List (Continued)  
Reference for Full  
Description  
Pin  
Symbol  
Type1  
204  
205  
206  
207  
208  
TxSYNC1  
RxData6  
N/C  
I, ID  
Table 7 on page 42  
Table 7 on page 42  
Table 15 on page 51  
Table 14 on page 49  
Table 14 on page 49  
O, TS, ID  
GNDIO  
VCCIO  
1. AI=Analog Input, AO=Analog Output, I=Input, O=Output,  
OD=Open Drain output, ST=Schmitt Triggered input, TS=Tri-  
State-able output, SL=Slew-rate Limited output, IP=Weak  
Internal Pull-up, ID=Weak Internal Pull-down  
38  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
1.1  
Signal Name Conventions  
Signal names may contain either a port designation or a serial designation, or a combination of the  
two designations. Signal naming conventions are as follows:  
Port Number Only. Individual signals that apply to a particular port are designated by the  
Signal Mnemonic, immediately followed by the Port Designation. For example, Transmit  
Enable signals would be identified as TxEN0, TxEN1, and TxEN2.  
Serial Number Only. A set of signals which are not tied to any specific port are designated by  
the Signal Mnemonic, followed by an underscore and a serial designation. For example, a set  
of three Global Configuration signals would be identified as CFG_1, CFG_2, and CFG_3.  
Port and Serial Number. In cases where each port is assigned a set of multiple signals, each  
signal is designated in the following order: Signal Mnemonic, Port Designation, an  
underscore, and the serial designation. For example, a set of three Port Configuration signals  
would be identified as RxData0_0 and RxData0_1, RxData1_0 and RxData1_1, and  
RxData2_0 and RxData2_1.  
Table 4. LXT9785/9785E RMII Signal Descriptions  
Pin-Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Reference Clock. 50 MHz RMII reference clock is always required. RMII  
inputs are sampled on the rising edge of REFCLK, RMII outputs are  
sourced on the falling edge. See Clock/SYNC Requirementson page 59  
for detailed CLK requirements.  
44  
6
E6,  
E12  
REFCLK0  
REFCLK1  
I
61  
62  
E2,  
F4  
TxData0_0  
TxData0_1  
Transmit Data - Port 0. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 0 are clocked in synchronously to REFCLK.  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
I, ID  
52  
53  
C3,  
D4  
TxData1_0  
TxData1_1  
Transmit Data - Port 1. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 1 are clocked in synchronously to REFCLK  
42  
43  
B5  
A4  
TxData2_0  
TxData2_1  
Transmit Data - Port 2. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 2 are clocked in synchronously to REFCLK.  
34  
35  
D8,  
A6  
TxData3_0  
TxData3_1  
Transmit Data - Port 3. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 3 are clocked in synchronously to REFCLK.  
22  
23  
A11,  
C10  
TxData4_0  
TxData4_1  
Transmit Data - Port 4. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 4 are clocked in synchronously to REFCLK.  
13  
14  
B13,  
D11  
TxData5_0  
TxData5_1  
Transmit Data - Port 5. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 5 are clocked in synchronously to REFCLK.  
4
5
D13,  
A16  
TxData6_0  
TxData6_1  
Transmit Data - Port 6. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 6 are clocked in synchronously to REFCLK.  
203  
204  
E14,  
C16  
TxData7_0  
TxData7_1  
Transmit Data - Port 7. Inputs containing 2-bit parallel di-bits to be  
transmitted from port 7 are clocked in synchronously to REFCLK.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are tri-stated in Isolation and H/W Power-Down modes  
and during H/W reset.  
Datasheet  
39  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 4. LXT9785/9785E RMII Signal Descriptions (Continued)  
Pin-Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
60  
PBGA  
E3,  
TxEN0  
51  
41  
33  
21  
12  
3
B2,  
C6,  
A7,  
B11,  
A14,  
C14,  
D16  
TxEN1  
TxEN2  
TxEN3  
TxEN4  
TxEN5  
TxEN6  
TxEN7  
Transmit Enable - Ports 0-7. Active High input enables respective port  
transmitter. This signal must be synchronous to the REFCLK.  
I, ID  
202  
55  
54  
C2,  
B1  
RxData0_0  
RxData0_1  
O, TS  
O, TS, ID  
Receive Data - Port 0. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
46  
45  
A3,  
B4  
RxData1_0  
RxData1_1  
O, TS  
O, TS, ID  
Receive Data - Port 1. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
37  
36  
B6,  
C7  
RxData2_0  
RxData2_1  
O, TS  
O, TS, ID  
Receive Data - Port 2. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
28  
27  
D9,  
B9  
RxData3_0  
RxData3_1  
O, TS  
O, TS, ID  
Receive Data - Port 3. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
16  
15  
A13,  
C12  
RxData4_0  
RxData4_1  
O, TS  
O, TS, ID  
Receive Data - Port 4. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
8
7
B14,  
B15  
RxData5_0  
RxData5_1  
O, TS  
O, TS, ID  
Receive Data - Port 5. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
206  
205  
C15,  
B17  
RxData6_0  
RxData6_1  
O, TS  
O, TS, ID  
Receive Data - Port 6. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
198  
197  
E16,  
F14  
RxData7_0  
RxData7_1  
O, TS  
O, TS, ID  
Receive Data - Port 7. Receive data signals (2-bit parallel di-bits) are  
driven synchronously to REFCLK.  
58  
49  
39  
31  
17  
10  
1
E4,  
C4,  
A5,  
B8,  
B12,  
D12,  
B16,  
E15  
CRS_DV0  
CRS_DV1  
CRS_DV2  
CRS_DV3  
CRS_DV4  
CRS_DV5  
CRS_DV6  
CRS_DV7  
Carrier Sense/Receive Data Valid - Ports 0-7. On detection of valid  
carrier, these signals are asserted asynchronously with respect to  
REFCLK. CRS_DVn is de-asserted on loss of carrier, synchronous to  
REFCLK.  
O, TS, SL,  
ID  
200  
59  
50  
40  
32  
20  
11  
2
D2,  
D5,  
D7,  
C8,  
A12,  
A15,  
A17,  
D17  
RxER0  
RxER1  
RxER2  
RxER3  
RxER4  
RxER5  
RxER6  
RxER7  
Receive Error - Ports 0-7. These signals are synchronous to the  
respective REFCLK. Active High indicates that received code group is  
invalid, or that PLL is not locked.  
O, TS, SL,  
ID  
201  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are tri-stated in Isolation and H/W Power-Down modes  
and during H/W reset.  
40  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 5. LXT9785/9785E SMII / SS-SMII Common Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
61  
52  
42  
34  
22  
13  
4
E2,  
C3,  
B5,  
D8,  
A11,  
B13,  
D13,  
E14  
TxData0  
TxData1  
TxData2  
TxData3  
TxData4  
TxData5  
TxData6  
TxData7  
Transmit Data - Ports 0-7. These serial input streams provide data to be  
transmitted to the network. The LXT9785/9785E clocks the data in  
synchronously to REFCLK.  
I, ID  
203  
Reference Clock. The LXT9785/9785E always requires a 125 MHz reference  
clock input. Refer to Functional Description for detailed clock requirements.  
REFCLK0 and REFCLK1 are always connected regardless of sectionalization  
mode.  
E6,  
44  
6
REFCLK0  
REFCLK1  
I
E12  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
Table 6. LXT9785/9785E SMII Specific Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
SMII Synchronization. The MAC must generate a SYNC pulse every 10  
REFCLK cycles to synchronize the SMII. SYNC0 is used when 1x8 port  
sectionalization is selected. SYNC0 and SYNC1 are to be used when 2x4  
port sectionalization is chosen.  
35  
204  
A6,  
C16  
SYNC0  
SYNC1  
I, ID  
55  
46  
37  
28  
16  
8
C2,  
A3,  
B6,  
D9,  
A13,  
B14,  
C15,  
E16  
RxData0  
RxData1  
RxData2  
RxData3  
RxData4  
RxData5  
RxData6  
RxData7  
Receive Data - Ports 0-7. These serial output streams provide data received  
from the network. The LXT9785/9785E drives the data out synchronously to  
REFCLK.  
O, TS  
206  
198  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
3. RxData[0:7] outputs are tri-stated in Isolation and H/W Power-Down modes and during H/W reset.  
Datasheet  
41  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 7. LXT9785/9785E SS-SMII Specific Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
SS-SMII Transmit Synchronization. The MAC must generate a TxSYNC  
pulse every 10 TxCLK cycles to mark the start of TxData segments.  
TxSYNC0 is used when 1x8 port sectionalization is selected.  
35  
204  
A6,  
C16  
TxSYNC0  
TxSYNC1  
I, ID  
SS-SMII Receive Synchronization. The LXT9785/9785E generates these  
pulses every 10 RxCLK cycles to mark the start of RxData segments for the  
MAC. RxSYNC1 is used and RxSYNC0 is tri-stated when 1x8 port  
sectionalization is selected. These outputs are only enabled when SS-SMII  
mode is enabled.  
RxSYNC0  
RxSYNC1  
58  
17  
E4,  
B12  
O, TS,  
ID  
SS-SMII Transmit Clock. The MAC sources this 125 MHz clock as the  
timing reference for TxData and TxSYNC. Only TxCLK0 is used when 1x8  
port sectionalization is selected. See “Clock/SYNC Requirements” on page 59 for  
detailed clock requirements.  
32  
201  
C8,  
D17  
TxCLK0  
TxCLK1  
I, ID  
SS-SMII Receive Clock. The LXT9785/9785E generates these clocks,  
based on REFCLK, to provide a timing reference for RxData and RxSYNC to  
the MAC. RxCLK1 used and RxCLK0 is tri-stated when 1x8 port  
sectionalization is selected. See “Clock/SYNC Requirements” on page 59 for  
detailed clock requirements. These outputs are only enabled when SS-SMII  
mode is enabled.  
60  
21  
E3,  
B11  
RxCLK0  
RxCLK1  
O, TS,  
ID  
54  
45  
36  
27  
15  
7
B1,  
B4,  
C7,  
B9,  
C12,  
B15,  
B17,  
F14  
RxData0  
RxData1  
RxData2  
RxData3  
RxData4  
RxData5  
RxData6  
RxData7  
Receive Data - Ports 0-7. These serial output streams provide data received  
from the network. The LXT9785/9785E drives the data out synchronously to  
REFCLK.  
O, TS,  
ID  
205  
197  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. RxData[0:7], RxSYNC[0:1], and RxCLK[0:1] outputs are tri-stated in Isolation and H/W Power-Down modes and during H/W  
reset.  
42  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 8. MDIO Control Interface Signals  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3,4  
PQFP  
PBGA  
Management Data Input/Output. Bidirectional serial data channel for  
communication between the PHY and MAC or switch ASIC. Only MDIO0  
is used when 1x8 port sectionalization is selected. In 2x4 port  
sectionalization mode, MDIO0 accesses ports 0-3 and MDIO1 accesses  
ports 4-7. Refer to Figure 22 on page 74.  
64  
25  
F3,  
A10  
MDIO0  
MDIO1  
I/O, TS, SL,  
IP  
Management Data Interrupt. When Register bit 18.1 = 1, an active Low  
output on this Pin indicates status change. Only MDINT0 is used when 1x8  
67  
26  
F1,  
C9  
MDINT0  
MDINT1  
OD,TS, SL, port sectionalization is selected. In 2x4 port sectionalization mode,  
IP  
MDINT0 is associated with ports 0-3 and MDINT1 is associated with ports  
4-7. Refer to Figure 22 on page 74.  
Management Data Clock. Clock for the MDIO serial data channel.  
Maximum frequency is 20 MHz. Only MDC0 is used when 1x8 port  
sectionalization is selected. In 2x4 port sectionalization mode, MDC0  
clocks ports 0-3 register accesses and MDC1 clocks ports 4-7 register  
accesses. Refer to Figure 22 on page 74.  
63  
24  
E1,  
B10  
MDC0  
MDC1  
I, ST, ID  
Management Disable. When MDDIS is tied High, the MDIO port is  
completely disabled and the Hardware Control Interface pins set their  
respective bits at power up and reset.  
When MDDIS is pulled Low at power up or reset, via the internal pull-down  
resistor or by tieing it to ground, the Hardware Control Interface Pins  
control only the initial or defaultvalues of their respective register bits.  
After the power-up/reset cycle is complete, bit control reverts to the MDIO  
serial channel.  
84  
L1  
MDDIS  
I, ST, ID  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. MDIO[0:1] and MDINT[0:1] outputs are tri-stated in H/W Power-Down mode and during H/W reset.  
4. Supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an X.Ynotation, where X is the  
register number (0-32) and Y is the bit number (0-15).  
Datasheet  
43  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 9. LXT9785/9785E Signal Detect  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Signal Detect 2.5 Volt Interface. When the SD interface is at 2.5 V, tie this  
input to VCCPECL. Floating this input or tieing it to GNDPECL indicates that  
a 3.3 V SD interface is being used.  
95  
P1  
SD_2P5V  
I, ST, ID  
96  
97  
P2,  
N4,  
P3,  
N5,  
P15,  
P16,  
P17,  
N17  
SD0  
SD1  
SD2  
SD3  
SD4  
SD5  
SD6  
SD7  
Signal Detect - Ports 0-7. The SD inputs are only applicable for ports set in  
Fiber mode.  
100  
101  
161  
162  
165  
166  
I
When SD is high, the process of searching for receive idles for the purpose of  
bring link up is initiated.  
If SD is low, link is declared lost.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
3. Tie SD[0:7] inputs to GNDPECL if unused.  
Table 10. LXT9785/9785E Network Interface Signal Descriptions  
Pin/Ball Designation  
Symbol  
Type1  
Signal Description  
PQFP  
PBGA  
107, 108  
111, 110  
121, 122  
125, 124  
136, 137  
140, 139  
150, 151  
154, 153  
T2, U1,  
T3, R4,  
T6, U5,  
U7, T7,  
T10, R10,  
T11, U11,  
T14,U15,  
R14, T15  
TPFOP0, TPFON0  
TPFOP1, TPFON1  
TPFOP2, TPFON2  
TPFOP3, TPFON3  
TPFOP4, TPFON4  
TPFOP5, TPFON5  
TPFOP6, TPFON6  
TPFOP7, TPFON7  
Twisted-Pair/Fiber Outputs2, Positive & Negative,  
Ports 0-7.  
During 100BASE-TX or 10BASE-T operation, TPFO pins drive  
802.3 compliant pulses onto the line.  
AO/AI  
During 100BASE-FX operation, TPFO pins produce differential  
PECL outputs for fiber transceivers.  
104, 105  
115, 114  
118, 119  
129, 128  
132, 133  
143, 142  
146, 147  
157, 156  
R2, T1,  
U3, T4,  
R6, T5,  
T8, R8,  
TPFIP0, TPFIN0  
TPFIP1, TPFIN1  
TPFIP2, TPFIN2  
TPFIP3, TPFIN3  
TPFIP4, TPFIN4  
TPFIP5, TPFIN5  
TPFIP6, TPFIN6  
TPFIP7, TPFIN7  
Twisted-Pair/Fiber Inputs3, Positive & Negative,  
Ports 0-7.  
During 100BASE-TX or 10BASE-T operation, TPFI pins receive  
differential 100BASE-TX or 10BASE-T signals from the line.  
AI/AO  
T9, U9,  
U13, T12,  
R12, T13,  
R16, T16  
During 100BASE-FX operation, TPFI pins receive differential  
PECL inputs from fiber transceivers.  
1. Type Column Coding: AI = Analog Input, AO = Analog Output.  
2. Switched to Inputs (see TPFIP/N desc.) when not in Fiber mode and MDIX is not active [i.e., Twisted-Pair, non-crossover MDI  
mode].  
3. Switched to Outputs (see TPFOP/N desc.) when not in Fiber mode and MDIX is not active [i.e., Twisted-Pair, non-crossover  
MDI mode].  
44  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 11. LXT9785/9785E JTAG Test Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
167  
168  
169  
170  
171  
N14  
N15  
N16  
M16  
M17  
TDI  
I, ST, IP  
O, TS  
Test Data Input. Test data sampled with respect to the rising edge of TCK.  
Test Data Output. Test data driven with respect to the falling edge of TCK.  
Test Mode Select.  
TDO  
TMS  
TCK  
I, ST, IP  
I, ST, ID  
I, ST, IP  
Test Clock. Clock input for JTAG test.  
TRST  
Test Reset. Reset input for JTAG test.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain, TS = Tri-State-able output, SMT = Schmitt Triggered input, SL  
= Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. TDO output is tri-stated in H/W Power-Down mode and during H/W reset.  
Datasheet  
45  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 12. LXT9785/9785E Miscellaneous Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
Tx Output Slew Controls 0 and 1 Defaults.  
These pins are read at startup or reset. Their value at that time is used to  
set the default state of Register bits 27.11:10 for all ports. These register  
bits can be read and overwritten after startup / reset.  
These pins select the TX output slew rate for all ports (rise and fall time)  
as follows:  
TxSLEW_0  
TxSLEW_1  
94  
93  
N3,  
M4  
I, ST, ID  
TxSLEW_1  
TxSLEW_0  
Slew Rate (Rise and Fall Time)  
0
0
1
1
0
1
0
1
3.3 ns  
3.6 ns  
3.9 ns  
4.2 ns  
Pause Default. This pin is read at startup or reset. Its value at that time is  
used to set the default state of Register bit 4.10 for all ports. This register  
bit can be read and overwritten after startup / reset.  
When High, the LXT9785/9785E advertises Pause capabilities on all  
ports during auto-negotiation.  
50  
D5  
PAUSE  
I, ID  
This pin is shared with RMII-RxER1. An external pull-up resistor (see  
applications section for value) can be used to set Pause active while  
RxER1 is tri-stated during H/W reset. If no pull-up is used, the default  
Pause state is set inactive via the internal pull-down resistor.  
Power-Down. When High, forces the LXT9785/9785E into global power-  
down mode.  
174  
175  
L14  
PWRDWN  
RESET  
I, ST, ID  
I, ST, IP  
Pin is not on JTAG chain.  
Reset. This active low input is ORed with the control register Reset  
Register bit 0.15. When held Low, all outputs are forced to inactive state.  
M15  
Pin is not on JTAG chain.  
Address <4:0>. Sets base address. Each port adds its port number  
(starting with 0) to this address to determine its PHY address.  
Port 0 Address = Base  
88  
89  
90  
91  
92  
L4,  
M2,  
M3,  
N1,  
N2  
ADD_4  
ADD_3  
ADD_2  
ADD_1  
ADD_0  
Port 1 Address = Base + 1  
Port 2 Address = Base + 2  
Port 3 Address = Base + 3  
Port 4 Address = Base + 4  
Port 5 Address = Base + 5  
Port 6 Address = Base + 6  
Port 7 Address = Base + 7  
I, ST, ID  
Mode Select[1:0]  
00 = RMII  
01 = SMII  
10 = SS-SMII  
11= Reserved  
178  
177  
L17,  
L16  
MODESEL_1  
MODESEL_0  
I, ST, ID  
All ports are configured the same. Interfaces cannot be mixed and must  
be all RMII, SMII, or SS-SMII.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
46  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 12. LXT9785/9785E Miscellaneous Signal Descriptions (Continued)  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
Sectionalization Select. This pin selects sectionalization into separate  
ports.  
176  
L15  
K1  
SECTION  
I, ST, ID  
0 = 1x8 ports,  
1 = 2x4 ports  
Auto-MDIX Enable Default. This pin is read at startup or reset. Its value  
at that time is used to set the default state of Register bit 27.9 for all ports.  
These register bits can be read and overwritten after startup / reset. Refer  
to Table 16 on page 55.  
83  
AMDIX_EN  
I, ST, IP  
When active (high), automatic MDI crossover (MDIX) (regardless of  
segmentation) is selected for all ports. When inactive (low) MDIX is  
selected according to the MDIX pin.  
MDIX Select Default. This pin is read at startup or reset. Its value at that  
time is used to set the default state of Register bit 27.8 for all ports. These  
register bits can be read and overwritten after startup / reset. Refer to  
Table 16 on page 55.  
When AMDIX_EN is active this pin is ignored.  
When AMDIX_EN is inactive, all ports are forced to the MDI or the MDIX  
function regardless of segmentation. If this pin is active (high), MDI  
crossover (MDIX) is selected. If this pin is inactive, non-crossover MDI  
mode is set.  
59  
D2  
MDIX  
I, ID  
This pin is shared with RMII-RxER0. An external pull-up resistor (see  
applications section for value) can be used to set MDIX active while  
RxER0 is tri-stated during H/W reset. If no pull-up is used, the default  
MDIX state is set inactive via the internal pull-down resistor. Do not tie this  
pin directly to VCCIO (vs. using a pull-up) in non-RMII modes.  
Global Port Configuration Defaults 1-3. These pins are read at startup  
or reset. Their value at that time is used to set the default state of register  
bits shown in Table 18 on page 63 for all ports. These register bits can be  
read and overwritten after startup / reset.  
85  
86  
87  
L2,  
L3,  
M1  
CFG_3  
CFG_2  
CFG_1  
I, ST, ID  
When operating in Hardware Control Mode, these pins provide  
configuration control options for all the ports (refer to page 63 for details).  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
Datasheet  
47  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 12. LXT9785/9785E Miscellaneous Signal Descriptions (Continued)  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2  
PQFP  
PBGA  
Global FX/TP Enable Default. This pin is read at startup or reset. Its  
value at that time is used to set the default state of Register bit 16.0 for all  
ports. These register bits can be read and overwritten after startup /  
reset. Refer to Port Configuration Register (Address 16, Hex 10)on  
page 137.  
173  
M14  
G_FX/TP  
I, ST, ID  
This input selects whether all the ports are defaulted to TP vs. FX mode.  
FIFO Select <1:0>: These pins are read at startup or reset. Their value at  
that time is used to set the default state of Register bits 18.15:14 for all  
ports. These register bits can be read and overwritten after startup/reset.  
11  
20  
A15  
A12  
FIFOSEL1  
FIFOSEL0  
These pins are shared with RMII-RxER<5:4>. An external pull-up resistor  
(see applications section for value) can be used to set FIFO Select<1:0>  
to active while RxER<5:4> are tri-stated during hardware reset. If no pull-  
up is used, the default FIFO select state is set via the internal pull-down  
resistors.  
I, ID  
Preamble Select: This pin is read at startup or reset. Its value at that time  
is used to set the default state of Register bit 16.5 for all ports. This  
register bit can be read and overwritten after startup/reset.  
This pin is shared with RMII-RxER2. An external pull-up resistor (see  
applications section for value) can be used to set Preamble Select to  
active while RxER2 is tri-stated during hardware reset. If no pull-up is  
used, the default Preamble Select state is set via the internal pull-down  
resistors.  
40  
D7  
PREASEL  
I, ID  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode.  
Table 13. LXT9785/9785E LED Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Port 0 LED Drivers 1-3. These pins drive LED indicators for Port 0.  
OD, TS, SL, Each LED can display one of several available status conditions as  
82  
81  
80  
K3,  
K2,  
J1  
LED0_1  
LED0_2  
LED0_3  
IP  
selected by the LED Configuration Register (refer to Table 71 on  
page 141 for details).  
Port 1 LED Drivers 1-3. These pins drive LED indicators for Port 1.  
OD, TS, SL, Each LED can display one of several available status conditions as  
77  
76  
75  
J4,  
J3,  
H1  
LED1_1  
LED1_2  
LED1_3  
IP  
selected by the LED Configuration Register (refer to Table 71 on  
page 141 for details).  
Port 2 LED Drivers 1-3. These pins drive LED indicators for Port 2.  
OD, TS, SL, Each LED can display one of several available status conditions as  
73  
72  
71  
H2,  
H3,  
G1  
LED2_1  
LED2_2  
LED2_3  
IP  
selected by the LED Configuration Register (refer to Table 71 on  
page 141 for details).  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. The LED outputs are tri-stated in H/W Power-Down mode and during H/W reset.  
4.  
48  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
(Continued)  
Table 13. LXT9785/9785E LED Signal Descriptions  
Pin/Ball  
Designation  
Symbol  
Type1  
Signal Description2,3  
PQFP  
PBGA  
Port 3 LED Drivers 1-3. These pins drive LED indicators for Port 3.  
OD, TS, SL, Each LED can display one of several available status conditions as  
70  
69  
68  
F2,  
G3,  
G4  
LED3_1  
LED3_2  
LED3_3  
IP  
selected by the LED Configuration Register (refer to Table 71 on  
page 141 for details).  
Port 4 LED Drivers 1-3. These pins drive LED indicators for Port 4.  
OD, TS, SL, Each LED can display one of several available status conditions as  
180  
181  
182  
K16,  
K17,  
J17  
LED4_1  
LED4_2  
LED4_3  
IP  
selected by the LED Configuration Register (refer to Table 71 on  
page 141 for details).  
Port 5 LED Drivers 1-3. These pins drive LED indicators for Port 5.  
OD, TS, SL, Each LED can display one of several available status conditions as  
185  
186  
187  
J15,  
J16,  
H17  
LED5_1  
LED5_2  
LED5_3  
IP  
selected by the LED Configuration Register (refer to Table 71 on  
page 141 for details).  
Port 6 LED Drivers 1-3. These pins drive LED indicators for Port 6.  
OD, TS, SL, Each LED can display one of several available status conditions as  
189  
190  
191  
H15,  
H16,  
G17  
LED6_1  
LED6_2  
LED6_3  
IP  
selected by the LED Configuration Register (refer to Table 71 on  
page 141 for details).  
Port 7 LED Drivers 1-3. These pins drive LED indicators for Port 7.  
OD, TS, SL, Each LED can display one of several available status conditions as  
192  
193  
194  
G15,  
F17,  
F16  
LED7_1  
LED7_2  
LED7_3  
IP  
selected by the LED Configuration Register (refer to Table 71 on  
page 141 for details).  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also  
disabled when the output is enabled.  
3. The LED outputs are tri-stated in H/W Power-Down mode and during H/W reset.  
4.  
Table 14. LXT9785/9785E Power Supply Signal Descriptions  
Pin/Ball Designation  
Symbol  
Type  
Signal Description  
PQFP  
PBGA  
65, 78, 184, G13, J14,  
VCCD  
-
-
Digital Power Supply - Core. +2.5V supply for core digital circuits.  
196  
F5, J5  
Digital Power Supply - I/O Ring. +2.5/3.3V supply for digital I/O  
circuits. The digital input circuits running off of this rail, having a TTL-level  
threshold and over-voltage protection, may be interfaced with 3.3/5.0V,  
when the IO supply is 3.3V, and 2.5/3.3/5.0V when 2.5V.  
A2, A8,  
C1, C11,  
D14  
18, 29, 47,  
56, 208  
VCCIO  
VCCPECL  
VCCR  
Digital Power Supply - PECL Signal Detect Inputs. +2.5/3.3V supply  
for PECL Signal Detect input circuits. If Fiber Mode is not used, tie these  
pins to GNDPECL to save power.  
98, 164  
L13, L5  
-
-
-
103, 116,  
117, 130,  
131, 144,  
145, 158  
N13, P4,  
P7, P8,  
P9, P10,  
P11, P12  
Analog Power Supply - Receive. +2.5V supply for all analog receive  
circuits.  
N6, N7,  
N9, N11,  
N12  
109, 123,  
138, 152  
Analog Power Supply - Transmit. +2.5V supply for all analog transmit  
circuits.  
VCCT  
Datasheet  
49  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 14. LXT9785/9785E Power Supply Signal Descriptions (Continued)  
Pin/Ball Designation  
Symbol  
Type  
Signal Description  
PQFP  
PBGA  
A1, A9,  
B3, B7,  
C5, C13,  
C17, D1,  
D3, D6,  
D10, D15,  
66, 79,  
183, 195  
E5, E7,  
Digital Ground. Ground return for core digital supplies (VCCD). All  
ground pins can be tied together using a single ground plane.  
GNDD  
-
E9, E11,  
E13, E17,  
F13, H8,  
H9, H10,  
J8, J9,  
J10, K8,  
K9, K10  
9, 19, 30,  
38, 48, 57,  
74, 188,  
GNDIO  
-
-
-
Digital GND - I/O Ring. Ground return for digital I/O circuits (VCCIO).  
199, 207  
Digital GND - PECL Signal Detect Inputs. Ground return for PECL  
Signal Detect input circuits.  
99, 163  
M5, M13  
GNDPECL  
GNDR  
106, 112,  
120, 126,  
135, 141,  
149, 155  
P5, P6,  
P13, R7,  
R9, R11,  
R13, U8  
Analog Ground - Receive. Ground return for receive analog supply. All  
ground pins can be tied together using a single ground plane.  
P14, R1,  
R3, R5,  
R15, R17,  
T17, U2,  
U4, U6,  
U10, U12,  
U14, U16,  
U17  
113, 127,  
134, 148  
Analog Ground - Transmit. Ground return for transmit analog supply.  
All ground pins can be tied together using a single ground plane.  
GNDT  
SGND  
-
-
Substrate Ground. Ground for chip substrate. All ground pins can be  
tied together using a single ground plane.  
179  
K14  
50  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 15. Unused / Reserved Pins  
Pin/Ball Designation  
Symbol  
Type1  
Signal Description  
PQFP  
PBGA  
F15, G2,  
G5, G14,  
G16, H4,  
H14, J2,  
J13, K4,  
K15  
N/C  
N/C  
No Connection.  
1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able  
output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down.  
2.  
Datasheet  
51  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
2.0  
Functional Description  
2.1  
Introduction  
The LXT9785/9785E is an 8-port Fast Ethernet 10/100 PHY transceiver that supports 10 Mbps and  
100 Mbps networks, complying with all applicable requirements of IEEE 802.3 standards. The  
device incorporates a Serial Media Independent Interface (SMII), Source Synchronous-Serial  
Media Independent Interface (SS-SMII), and a Reduced Serial Independent Interface (RMII) to  
enable each individual network port to interface with multiple 10/100 MACs. Each port directly  
drives either a 100BASE-TX line or a 10BASE-T line. The LXT9785/9785E also supports  
100BASE-FX operation via a Pseudo-ECL (PECL) interface. The device has a 241-pin BGA or a  
208- pin QFP package.  
Unless otherwise noted, all information in this document applies to both the LXT9785 and  
LXT9785E.  
2.1.1  
OSP™ Architecture  
The Intel LXT9785/9785E incorporates high-efficiency Optimal Signal Processingdesign  
techniques, combining the best properties of digital and analog signal processing to produce a truly  
optimal device.  
The receiver utilizes decision feedback equalization to increase noise and cross-talk immunity by  
as much as 3 dB over an ideal all-analog equalizer. Using OSP mixed-signal processing techniques  
in the receive equalizer avoids the quantization noise and calculation truncation errors found in  
traditional DSP-based receivers (typically complex DSP engines with A/D converters). The result  
is improved receiver noise and cross-talk performance.  
The OSP architecture also requires substantially less computational logic than traditional DSP-  
based designs. The result is lower power consumption and reduced logic switching noise generated  
by DSP engines clocked at speeds up to 125 MHz. The logic switching noise can be a considerable  
source of EMI when generated from the devices power supplies.  
The OSP-based LXT9785/9785E provides improved data recovery, EMI performance and power  
consumption.  
2.1.2  
Comprehensive Functionality  
The LXT9785/9785E performs all functions of the Physical Coding Sublayer (PCS) and Physical  
Media Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X specification. This  
device also performs all functions of the Physical Media Dependent (PMD) sublayer for  
100BASE-TX connections.  
On power-up, the LXT9785/9785E reads its configuration inputs to check for forced operation  
settings. If not configured for forced operation, each port uses auto-negotiation/parallel detection to  
automatically determine line operating conditions. If the PHY device on the other side of the link  
supports auto-negotiation, the LXT9785/9785E auto-negotiates with it using Fast Link Pulse (FLP)  
Bursts. If the PHY partner does not support auto-negotiation, the LXT9785/9785E automatically  
detects the presence of either link pulses (10 Mbps PHY) or Idle symbols (100 Mbps PHY) and set  
its operating conditions accordingly.  
52  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
The LXT9785/9785E provides half-duplex and full-duplex operation at 100 Mbps and 10 Mbps.  
2.1.2.1  
Sectionalization  
The LXT9785/9785Es sectional design allows flexibility with large multiport MACs and ASICs.  
With the use of the Section pin, the LXT9785/9785E can be configured into a single 8-port or two  
separate 4-port sections, each with its own MDIO (with separate MDC clock) and MII data (with  
separate REFCLK/TxCLK/RxCLK clocks) interfaces. See Figure 17 on page 68, Figure 22 on  
page 74, and Figure 27 on page 79.  
2.2  
Interface Descriptions  
2.2.1  
10/100 Network Interface  
The LXT9785/9785E supports 10 Mbps and 100 Mbps (10BASE-T and 100BASE-TX) Ethernet  
over twisted-pair, or 100 Mbps (100BASE-FX) Ethernet over fiber media. Each network interface  
port consists of four external pins (two differential signal pairs). The pins are shared between  
twisted-pair (TP) and fiber. The LXT9785/9785E pinout is designed to interface seamlessly with  
dual-high stacked RJ-45 connectors. Refer to Table 10 on page 44 for specific pin assignments.  
The LXT9785/9785E output drivers generate either 100BASE-TX, 10BASE-T, or 100BASE-FX  
output. When not transmitting data, the device generates IEEE 802.3-compliant link pulses or idle  
code. Input signals are decoded either as a 100BASE-TX, 100BASE-FX, or 10BASE-T input,  
depending on the mode selected. Auto-negotiation/parallel detection or manual control is used to  
determine the speed of this interface.  
Datasheet  
53  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 8. LXT9785/9785E Interfaces  
TXENn  
TXDn_0  
TPFOPn  
TXDn_1  
TXCLK  
RXCLK  
RXDn_1  
TPFONn  
Network  
I/F  
DATA  
I/F  
TPFIPn  
TPFINn  
RXDn_0  
RXERn  
CRS_DVn  
MDIOn  
MDCn  
MDIO  
Mgmt  
I/F  
MDINTn  
MDDIS  
Direct Drive  
LEDn_2  
Port LEDs/  
Controls  
LEDn_2  
LEDn_3  
+3.3V  
OR  
+2.5V  
MDIX_Enb  
Mode Select  
ADD<4:0>  
Addr &  
MDIX/  
Contr  
VCCIO  
VCCD  
GNDD  
+2.5V  
.01uF  
2.2.1.1  
Twisted-Pair Interface  
The LXT9785/9785E supports either 100BASE-TX or 10BASE-T connections over 100Ω,  
Category 5, Unshielded Twisted-Pair (UTP). Only a transformer, RJ-45, and bypass capacitors are  
required to complete this interface. Using Intels patented waveshaping technology, the transmitter  
shapes the outgoing signal to help reduce the need for external EMI filters. Four slew rate settings  
(refer to Table 12 on page 46) allow the designer to match the output waveform to the magnetic  
characteristics. Both transmit and receive terminations are built into the LXT9785/9785E so no  
external components are required between the LXT9785/9785E and the external transformer. The  
transmitter uses a transformer with a center tap to help reduce power consumption.  
When operating at 100 Mbps, MLT3 symbols are continuously transmitted and received. When not  
transmitting data, the LXT9785/9785E generates IDLEsymbols.  
During 10 Mbps operation, LXT9785/9785E encoded data is exchanged. When no data are being  
exchanged, the line is left in an idle state with NLPs transmitted to maintain link.  
2.2.1.2  
MDI Crossover (MDIX)  
The LXT9785/9785E crossover function, which is compliant to the IEEE 802.3, clause 23  
standard, connects the transmit output of the device to the far-end receiver in a link segment. This  
function can be disabled via Register bit 27.9:8 or by using the hardware configuration pins.  
54  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 16. MDIX Selection  
AMDIX_EN  
MDIX  
MDIX Mode  
0
0
1
0
1
X
MDI forced  
MDIX forced  
Auto-MDIX  
2.2.1.3  
Fiber Interface  
The LXT9785/9785E provides a PECL interface that complies with the ANSI X3.166  
specification. This interface is suitable for driving a fiber-optic coupler (see Figure 37 on page  
101).  
Fiber ports cannot be enabled via auto-negotiation and must be enabled via the Global Hardware  
Control Interface pins or MDIO registers. All ports are selected for fiber or twisted-pair when  
configured via hardware, and can only be intermixed via software. Using external circuitry, the  
LXT9785/9785E can interface the fiber transceiver with 2.5V, 3.3V, or 5V supply voltages. Fiber  
mode per port may be selected using Register 16.0. Please refer to Table 10 on page 44 for correct  
pin assignments.  
2.3  
Media Independent Interface (MII) Interfaces  
The LXT9785/9785E supports Reduced MII or Serial MII, but not concurrently. The interface  
mode selection pins configures the device for either RMII or SMII/SS-SMII on all eight ports.  
Refer to Table 17 for the mode select settings.  
2.3.1  
Global MII Mode Select  
The mode select pins are used for MII interface configuration settings upon power-up sequencing.  
All ports are configured the same and cannot be intermixed.  
Table 17. MII Mode Select  
ModeSel1  
ModeSel0  
RMII  
SMII  
0
0
1
1
0
1
0
1
SS-SMII  
Reserved  
2.3.2  
Internal Loopback  
A test loopback function is available for 10 Mbps and 100 Mbps mode testing. Bits 0.8, 0.13, and  
0.14 must be set to 1 for correct operation. When data is looped back, whatever the MAC transmits  
is looped back in its entirety, including the preamble.  
Datasheet  
55  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 9. Internal Loopback  
LXT9785/9785E  
Fx  
Driver  
RMII/  
SMII/  
SS-  
SMII  
inter  
face  
Analog  
Block  
Digital  
Block  
Loopback  
Tx  
Driver  
2.3.3  
RMII Data Interface  
The LXT9785/9785E provides a separate RMII for each network port, each complying with the  
RMII standard. The RMII includes both a data interface and an MDIO management interface. The  
RMII Data Interface exchanges data between the LXT9785/9785E and up to eight Media Access  
Controllers (MACs).  
2.3.4  
Serial Media Independent Interface (SMII) and Source Synchronous-  
Serial Media Independent Interface (SS-SMII)  
2.3.4.1  
SMII Interface  
The LXT9785/9785E provides an independent serial interface for each network port. All SMII  
ports use a common reference clock and SYNC signal. The SMII Data Interface exchanges data  
between the LXT9785/9785E and multiple Media Access Controllers (MACs). All signals are  
synchronous to the reference clock. One SYNC control stream is sourced by the MAC to the PHY.  
Both the transmit and receive data streams are segmented into boundaries delimited by the SYNC  
pulses. This interface is expected to drive up to 6 inches of trace lengths.  
2.3.4.2  
2.3.5  
Source Synchronous-Serial Media Independent Interface  
The new revision to the SMII interface, SS-SMII, allows for a longer trace length and helps to  
relieve timing constraints, requiring the addition of four new signals, TxCLK, TxSYNC, RxCLK,  
and RxSYNC. The transmit TxCLK and TxSYNC are sourced from the MAC to the PHY and  
referenced to the REFCLK input. The receive RxCLK and RxSYNC are sourced by the PHY to the  
MAC and in reference to the REFCLK.  
Configuration Management Interface  
The LXT9785/9785E provides an MDIO Management Interface and a Hardware Control Interface  
(via the CFG pins) for device configuration and management. Mode control selection is provided  
via the MDDIS pin as shown in Table 8 on page 43. When sectionalization (2x4) is selected,  
separate MDIO interfaces are enabled (see Figure 14 on page 61).  
56  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
2.3.6  
MII Isolate  
In applications where the MII needs to be isolated from the bus, the RMII and the SMII/SS-SMII  
configurations can be tri-stated using Register 0.10. Ports 0 and 1 control RxCLK0, RxCLK1,  
RxSYNC0, and RxSYNC1. When 2x4 sectionalization is selected, ports 1-3 and 5-7 can be  
individually port isolated. For global shut down, Ports 0 and 1 must be isolated to control the  
RxCLKn and RxSYNCn synchronization pins. If ports 0 and 1 are individually set to isolate, the  
remaining associated quad sectionalization ports must also be set to isolate.  
2.3.6.1  
MDIO Management Interface  
The LXT9785/9785E supports the IEEE 802.3 MII Management Interface, also known as the  
Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to  
monitor and control the state of the LXT9785/9785E. The MDIO interface consists of a physical  
connection, a specific protocol that runs across the connection, and an internal set of addressable  
registers. Some registers are required and their functions are defined by the IEEE 802.3  
specification. Additional registers allow for expanded functionality. Specific bits in the registers  
are referenced using an X.Ynotation, where X is the register number (0-32) and Y is the bit  
number (0-15).  
The physical interface consists of a data line (MDIO) and clock line (MDC). Operation of this  
interface is controlled by the MDDIS input pin. When MDDIS is High, all the MDIOs are  
completely disabled. The Hardware Control Interface provides primary configuration control.  
When MDDIS is Low, the MDIO port is enabled for both read and write operations and the  
Hardware Control Interface is not used. The timing for the MDIO Interface is shown in Table 54  
on page 127. MDIO read and (write) cycles are shown in Figures 10 (read) and 11 (write) on  
page 57.  
Figure 10. Management Interface Read Frame Structure  
MDC  
MDIO  
(Read)  
High Z  
D0  
A4  
A3  
A0  
R4  
R3  
R0  
D14 D1  
D15  
Z
0
0
1
1
0
32 "1"s  
Turn  
Around  
Data  
Read  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
Write  
Figure 11. Management Interface Write Frame Structure  
MDC  
MDIO  
(Write)  
A4  
A3  
A0  
R4  
R3  
R0  
D15  
D14  
D1  
D0  
32 "1"s  
0
1
0
1
0
1
Turn  
Around  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
Data  
Idle  
Write  
The protocol allows one controller to communicate with multiple LXT9785/9785E chips. Pins  
ADD_<4:0> determine the base address. Each port adds its port number to the base address to  
obtain its port address as shown in Figure 12.  
Datasheet  
57  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 12. Port Address Scheme  
BASE ADD_<4:0>  
(exampleADD_<4:0> = 4)  
LXT9785/9785E  
PHY ADD_<4:0> (BASE+0)  
ex. 4  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Por t 7  
PHY ADD_<4:0> (BASE+1)  
ex. 5  
PHY ADD_<4:0> (BASE+2)  
ex. 6  
PHY ADD_<4:0> (BASE+3)  
ex. 7  
PHY ADD_<4:0> (BASE+4)  
ex. 8  
PHY ADD_<4:0> (BASE+5)  
ex. 9  
PHY ADD_<4:0> (BASE+6)  
ex. 10  
PHY ADD_<4:0> (BASE+7)  
ex. 11  
2.3.6.2  
MII Sectionalization  
When sectionalized into two quad sections, the MDIO bus splits into two separate PHY access  
ports. Ports 0-3 of the MDIO section operate independently of ports 4-7. The MII isolate function  
is unaffected and operates normally. Sectionalization is selected by pulling pin 176 (Section) High  
on the initial power-up sequence (refer to Figure 14). In applications that need sectionalization,  
such as 1x8 and 2x4 and have a single MDIO bus structure, it is necessary that the addressing  
scheme be contiguous. For example, the first eight ports are addressed 0-7, so the next four ports  
must be addressed 8-11.  
2.3.6.3  
MII Interrupts  
The LXT9785/9785E provides a single per-section interrupt pin that is available to all ports.  
Interrupt logic is shown in Figure 13. The LXT9785/9785E also provides two dedicated interrupt  
registers for each port. Register 18 provides interrupt enable and mask functions and Register 19  
provides interrupt status. Setting Register bit 18.1 = 1 enables a port to request interrupt via the  
MDINT pin. An active Low on this pin indicates a status change on the device. Because it is a  
shared interrupt, there is no indication which port is requesting interrupt service (see Figure 13).  
There are five conditions that may cause an interrupt:  
Auto-negotiation complete.  
Speed status change.  
58  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Duplex status change.  
Link status change.  
Isolate status change.  
Figure 13. Interrupt Logic  
Event X Enable Reg  
AND  
Event X Status Reg  
OR  
Port  
Combine  
Logic  
Interrupt Pin  
AND  
.
.
.
.
.
Per Event  
.
Per port  
Force Interrupt  
Interrupt Enable  
Interrupt (Event) Status Register is cleared on read.  
X = Any Interrupt capability  
2.3.6.4  
Global Hardware Control Interface  
The LXT9785/9785E provides a Hardware Control Interface for applications where the MDIO is  
not desired. Refer to Initializationon page 60 for additional details.  
2.4  
Operating Requirements  
2.4.1  
Power Requirements  
The LXT9785/9785E requires four power supply inputs: VCCD, VCCA, VCCPECL and VCCIO.  
The digital and analog circuits require 2.5V supplies (VCCD, VCCR, and VCCT). These inputs  
may be supplied from a single source although decoupling is required to each respective ground.  
The fiber VCCPECL supply can be connected to either 2.5V or 3.3V.  
A separate power supply may be used for the MII, JTAG and MDIO (VCCIO) interfaces. The  
power supply may be either +2.5V or +3.3V. VCCIO should be supplied from the same power  
source used to supply the controller on the other side of the interface. Refer to Table 29 and  
Table 30 on page 106 for I/O characteristics.  
As a matter of good practice, these supplies should be as clean as possible. Typical filtering and  
decoupling are shown in Figure 35 on page 99.  
2.4.2  
Clock/SYNC Requirements  
Reference Clock  
2.4.2.1  
The LXT9785/9785E requires a constant enabled reference clock (REFCLK). REFCLKs  
frequency must be 50 MHz for RMII or 125 MHz for SMII/SS-SMII. The reference clock is used  
to generate transmit signals and recover receive signals. A crystal-based clock is recommended  
over a derived clock (i.e., PLL-based) to minimize transmit jitter. Refer to Table 31 on page 106  
for clock timing requirements.  
Datasheet  
59  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
For applications that use a single 8-port sectionalization, REFCLK0 and REFCLK1 must always  
be tied together and to the source. In 2x4 applications, REFCLK0 and REFCLK1 are not tied  
together.  
2.4.2.2  
2.4.2.3  
2.4.2.4  
2.4.2.5  
TxCLK Signal (SS-SMII only)  
The LXT9785/9785E requires a 125 MHz input transmit clock synchronous with TxDatan and  
frequency locked to REFCLK. See Figure 23 on page 75.  
TxSYNC Signal (SMII/SS-SMII)  
The LXT9785/9785E requires a 12.5 MHz input pulse for SMII synchronization. See Figure 23 on  
page 75.  
RxSYNC Signal (SS-SMII only)  
The LXT9785/9785E provides a 12.5 MHz output pulse synchronous with the RxDatan outputs.  
See Figure 24 on page 75.  
RxCLK Signal (SS-SMII only)  
In SMII mode, the LXT9785/9785E provides a 125 MHz clock output in reference to the output  
RxDatan. RxCLK is referenced and synchronized to the REFCLK. See Figure 24 on page 75.  
2.5  
Initialization  
When the LXT9785/9785E is first powered on, reset, or encounters a link failure state, it checks the  
MDIO register configuration bits to determine the line speed and operating conditions to use for  
the network link. The configuration bits may be set by the Hardware Control or MDIO interface as  
shown in Figure 14 on page 61.  
2.5.1  
2.5.2  
MDIO Control Mode  
In the MDIO Control mode, the LXT9785/9785E reads the Hardware Control Interface pins to set  
the initial (default) values of the MDIO registers. Once the initial values are set, bit control reverts  
to the MDIO interface.  
Hardware Control Mode  
In the Hardware Control Mode, the LXT9785/9785E disables direct write operations to the MDIO  
registers via the MDIO Interface. On power-up or hardware reset, the LXT9785/9785E reads the  
Hardware Control Interface pins and sets the MDIO registers accordingly.  
The following modes are available using either Hardware Control or MDIO Control:  
Force network link to 100BASE-FX (Fiber).  
Force network link operation to:  
100BASE-TX, Full-Duplex  
100BASE-TX, Half-Duplex  
60  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
10BASE-T, Full-Duplex  
10BASE-T, Half-Duplex  
Allow auto-negotiation/parallel-detection.  
Auto/Manual MDIX enable/disable.  
Pause for full duplex links operation.  
Global Output Slew Rate Control.  
When the network link is forced to a specific configuration, the LXT9785/9785E immediately  
begins operating the network interface as commanded. When auto-negotiation is enabled, the  
LXT9785/9785E begins the auto-negotiation/ parallel-detection operation.  
Figure 14. Initialization Sequence  
Power-up or Reset  
Read H/W Control  
Interface  
Initialize MDIO Registers  
MDIO Control  
Mode  
Hardware Control  
Mode  
MDDIS Voltage  
Level?  
Low  
High  
Pass Control to MDIO  
Interface  
Disable MDIO Writes  
Software  
Reset?  
Hardware  
Reset?  
Yes  
Yes  
Reset MDIO Registers to  
values read at H/W  
Control Interface at last  
Hardware Reset  
2.5.3  
Power-Down Mode  
The LXT9785/9785E incorporates numerous features to maintain the lowest power possible. The  
device can be put into a low-power state via Register 0 as well as a near-zero power state with the  
power down pin. When in power-down mode, the device is not capable of receiving or transmitting  
packets.  
Datasheet  
61  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
The lowest power operation is achieved using the Global power-down pin, which is active High.  
This pin powers down every circuit in the device, including all clocks. All registers are unaltered  
and maintained when the Global PWRDWN pin is released.  
Individual ports (software power down) can be powered down using Register bit 0.11. This bit  
powers down a significant portion of the port, but clocks to the register section remain active. This  
allows the management interface to remain active during register power-down. The power-down  
bit is active High.  
2.5.3.1  
Global (Hardware) Power Down  
The global power-down mode is controlled by the PWRDWN pin. When PWRDWN is High, the  
following conditions are true:  
All LXT9785/9785E ports and the clock are shut down.  
All outputs are tri-stated.  
All weak pad pull-up and pull-down resistors are disabled.  
The MDIO registers are not accessible.  
Configuration pins are not read upon release of the PWRDWN pin, and registers are reloaded  
with the value of the last Hardware reset.  
2.5.3.2  
Port (Software) Power Down  
Individual port power-down control is provided by Register bit 0.11 in the respective port Control  
Registers (refer to Table 58 on page 130). During individual port power-down, the following  
conditions are true:  
The individual port is shut down.  
The MDIO registers remain accessible.  
Pull-up and pull-down resisters are not affected and the outputs are not tri-stated.  
The register remains unchanged.  
2.5.4  
Reset  
The LXT9785/9785E provides both hardware and software resets. Configuration control of Auto-  
Negotiation, speed, and duplex mode selection is handled differently for each. During a hardware  
reset, settings for bits 0.13, 0.12, 0.8, and 4.8:5 are read in from the pins (refer to Table 18 on  
page 63 for pin settings and Table 58 on page 130 and Table 62 on page 133 for register bit  
definitions).  
During a software reset (Register bit 0.15 = 1), the bit settings are not re-read from the pins and  
revert back to the values that were read in during the last hardware reset. Any changes to pin values  
from the last hardware reset is not detected during a software reset.  
During a hardware reset, register information is unavailable for 1 ms after de-assertion of the reset.  
All MII interface pins are disabled during a hardware reset and released to the bus on de-assertion  
of reset.  
62  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
During a software reset (0.15 = 1) the registers are available for reading. The reset bit should be  
polled to see when the part has completed reset (0.15 = 0). Pull up and pull down resisters are not  
affected.  
2.5.5  
Hardware Configuration Settings  
The LXT9785/9785E provides a hardware option to set the initial device configuration. The  
hardware option uses three Global CFG pins that provide control for all ports (see Table 18).  
Table 18. Global Hardware Configuration Settings  
CFG  
Desired Mode  
Resulting Register Bit Values  
Pin Settings1  
AutoNeg  
Speed  
Duplex  
1
2
3
0.12  
0.13  
0.8  
4.8  
4.7  
4.6  
4.5  
Half  
Full  
Half  
Full  
Half  
Full  
Half  
Full  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
0
1
0
1
0
1
0
1
10  
0
N/A  
Auto-Negotiation Advertisement  
Disabled  
0
100  
100  
1
1
1
1
1
0
1
0
1
1
1
1
1
N/A  
0
Enabled  
1
0
1
1
1
10/100  
1. Refer to for CFG pin assignments.  
2.6  
Link Establishment  
2.6.1  
Auto-Negotiation  
The LXT9785/9785E attempts to auto-negotiate with its link partner by sending Fast Link Pulse  
(FLP) bursts. Each burst consists of 33 link pulses spaced 62.5 µs apart. Odd link pulses (clock  
pulses) are always present. Even link pulses (data pulses) may also be present or absent to indicate  
a 1or a 0. Each FLP burst exchanges 16 bits of data, referred to as a page. All devices that  
support auto-negotiation must implement the Base Page, defined by IEEE 802.3 (registers 4 and  
5). The LXT9785/9785E also supports the optional Next Pagefunction (registers 7 and 8).  
2.6.1.1  
2.6.1.2  
Base Page Exchange  
By exchanging Base Pages, the LXT9785/9785E and its link partner communicate their  
capabilities to each other. Both sides must receive at least three identical base pages for negotiation  
to proceed. Each side finds their highest common capabilities, exchange more pages, and agree on  
the operating state of the line.  
Next Page Exchange  
Additional information, exceeding that required by base page exchange, is also sent via Next  
Pages.The LXT9785/9785E fully supports the IEEE 802.3 method of negotiation via Next Page  
exchange. The Next Page exchange uses Register 7 to send information and Register 8 to receive it.  
Datasheet  
63  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Next Page exchange occurs only if both ends of the link partners advertise their ability to exchange  
Next Pages. A special mode has been added to make next page exchange easier for software. When  
Register 6 pageis received, it stays set until read. This bit should be cleared whenever a new  
negotiation occurs, preventing the user from reading an old value in Register 6 and assuming there  
is valid information in Registers 5 and 8. Additionally, Register 6 contains a new bit that indicates  
when the current received page is the base page. This information is useful for recognizing when  
next pages must be resent due to the start of a new negotiation process. Register bit 16.1 and the  
page received bit are also cleared upon reading Register 6.  
2.6.1.3  
Controlling Auto-Negotiation  
When auto-negotiation is controlled by software, the following steps are recommended:  
After power-up, power-down, or reset, the power-down recovery time, as specified in Table 55  
on page 128, must be exhausted before proceeding.  
Set the auto-negotiation advertisement register bits.  
Enable auto-negotiation (set MDIO Register bit 0.12 = 1).  
2.6.1.4  
Link Criteria  
In 100 Mbps mode, link is established when the scrambler becomes locked and remains locked for  
approximately 50ms. Link remains up unless the descrambler receives less than 12 consecutive idle  
symbols in any 2 ms period. This provides a very robust operation, filtering out any small noise hits  
that may disrupt the link.  
In 10 Mbps mode, link is established based on the link state machine found in IEEE 802.3, 14.X.  
Receiving 100 Mbps idle patterns does not bring up a 10 Mbps link.  
2.6.1.5  
Parallel Detection  
In parallel with auto-negotiation, the LXT9785/9785E also monitors for 10 Mbps Normal Link  
Pulses (NLP) or 100 Mbps Idle symbols. If either symbol is detected, the device automatically  
reverts to the corresponding operating mode. Parallel detection allows the LXT9785/9785E to  
communicate with devices that do not support auto-negotiation.  
64  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 15. Auto-Negotiation Operation  
Power-Up, Reset,  
Link Failure  
Start  
Disable  
Auto-Negotiation  
Enable  
0.12 = 0  
0.12 = 1  
Auto-Neg/Parallel Detection  
Check Value  
0.12  
Go To Forced  
Settings  
Attempt Auto-  
Negotiation  
Listen for 100TX  
Idle Symbols  
Listen for 10T  
Link Pulses  
YES  
NO  
Done  
Link Set?  
2.6.1.6  
Reliable Link Establishment while Auto MDIX is Enabled in Forced Speed  
Mode  
With auto MDIX hardware enabled, end users experience reliable link establishment under all  
possible settings of auto MDIX and speed between the LXT9785 and its link partners. As stated in  
the IEEE clauses 40.4.5.1 (Auto MDIX) and 28.3.2 (Parallel Detect), when ports are forced to  
10 Mbps or 100 Mbps and auto MDIX is enabled, and the port is connected to a partner with auto-  
negotiate enabled, an undefined condition exists between the IEEE auto MDIX and Parallel Detect  
specifications. Therefore, link may never occur according to the IEEE specification. In this  
situation, the LXT9785 performs beyond IEEE specification requirements and establishes link.  
During the undefined condition, the LXT9785/9785E establishes link within 10 seconds when the  
link partner is auto-negotiate enabled and the LXT9785/9785E is set to 10 Mbps or 100 Mbps  
speeds, and auto MDIX is hardware enabled. Customers who want auto MDIX disabled on power-  
up and enabled through software can disable auto MDIX via software with a boot program and re-  
enable auto MDIX via software at any time. Hardware disabling auto MDIX is recommended for  
systems not requiring auto MDIX during a forced 100 Mbps speed setting. Ports forced to  
100 Mbps speed will not establish link when auto MDIX is hardware disabled and software re-  
enabled.  
2.7  
Serial MII Operation  
The LXT9785/9785E exchanges transmit and receive data with the controller via the Serial MII  
(SMII). The SMII performs the following functions:  
Conveys complete MII information between a 10/100 PHY and MAC with two pins per port.  
Allows a multi-port MAC/PHY communication with one system clock.  
Operates in both half and full duplex.  
Supports per-packet switching between 10 Mbps and 100 Mbps data rates.  
Datasheet  
65  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
The Serial MII operates at 125 MHz using a global reference clock and frame synchronization  
signal (REFCLK and SYNC). Each port has an individual two-line data interface (TxDatan and  
RxDatan). All signals are synchronous to REFCLK. Table 19 summarizes the SMII signals.  
Data is exchanged in 10-bit serial words. Each word contains one data byte (two nibbles of 4B  
coded data) and two status bits. When the port is operating at 100 Mbps, each word contains a new  
data byte. When the port is operating at 10 Mbps, each data byte is repeated 10 times.  
Table 19. SMII Signal Summary  
Signal  
TxData  
To  
PHY  
From  
MAC  
Purpose  
Transmit data & control  
Synchronization  
SYNC  
PHY  
MAC  
MAC  
PHY  
RxData  
Receive data & control  
MAC &  
PHY  
REFCLK  
System  
Synchronization  
1. Refer to Table 5 on page 41 for detailed signal descriptions.  
66  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 16. Typical SMII Interface Diagram  
Typical SMII Interface  
in a 16-Port System  
SECTION  
8
8
TxDatan  
SYNC0  
n
RxData  
MDIO0  
MDC0  
MDINT0  
RefCLK0 RefCLK1  
125 MHz Sourced  
Externally or from  
Switch ASIC  
SYSTEM CLK  
RefCLK0 RefCLK1  
8
8
TxData  
SYNC0  
n
RxDatan  
MDIO0  
MDC0  
MDINT0  
SECTION  
Datasheet  
67  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 17. Typical SMII Quad Sectionalization Diagram  
Typical SMII Interface in a  
24-Port System  
RefClk1  
RefClk0  
8
TxDatan  
SYNC0  
8
RxDatan  
MDIO0  
MDC0  
MDINT0  
SECTION  
n
TxData  
4
SYNC0  
n
RxData  
4
MDIO0  
MDC0  
MDINT0  
RefClk0  
125 MHz Sourced  
Externally or from  
Switch ASIC  
RefClk1  
TxDatan  
4
SYNC1  
4
n
RxData  
VCC  
MDINT1  
MDIO1  
MDC1  
SECTION  
MDINT0  
MDIO0  
MDC0  
8
TxData n  
SYNC0  
8
RxData n  
SECTION  
RefClk0 RefClk1  
68  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 18. 100 Mbps Serial MII Data Flow  
Strip  
Serial Data Stream  
To/From  
2 Nibbles Tx/Rx Data  
D0 D1 D2 D3  
2 Symbols Tx/Rx Data  
S0 S1 S2 S3 S4  
TX_EN &  
TX_ER  
Status  
Bits  
MAC  
S0 S1 D0 D1 D2  
4B/5B  
To/From  
PMD  
Insert  
CRS &  
RX_DV  
Status  
Bits  
D3 D4 D5 D6 D7  
D0 D1 D2 D3  
S0 S1 S2 S3 S4  
Sublayer  
2.7.1  
2.7.2  
2.7.3  
SMII Reference Clock  
The REFCLK operates at 125 MHz. The transmit and receive data and control streams must always  
be synchronized to the REFCLK by the MAC and PHY. The LXT9785/9785E samples these  
signals on the rising edge of the REFCLK.  
TxSYNC Pulse (SMII/SS-SMII)  
The TxSYNC pulse delimits segment boundaries and synchronizes with REFCLK. The MAC must  
continuously generate a TxSYNC pulse once every 10 REFCLK cycles. The TxSYNC pulse  
signals the start of each new segment (see Figure 22 on page 74).  
Transmit Data Stream  
Transmit data and control information are signaled in ten- bit segments. In 100 Mbps mode, each  
segment contains a new byte of data. In 10 Mbps mode, the MAC must repeat a 10M serial word  
ten times on TxData. The LXT9785/9785E may sample that serial word at any point.  
The TxSYNC pulse signals the start of a new segment as shown in Figure 19.  
2.7.3.1  
2.7.3.2  
Transmit Enable  
The MAC must assert the TxEN bit in each segment of TxData, and de-assert TxENn after the last  
segment of the packet.  
Transmit Error  
When the MAC asserts the TxER bit in 100BASE-X mode, the LXT9785/9785E drives H”  
symbols onto the network interface. TxER does not have any function in 10M operation.  
Datasheet  
69  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 19. Serial MII Transmit Synchronization  
CLOCK  
TxSYNC  
TX  
TxER TxEN  
TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TxER  
2.7.4  
Receive Data Stream  
Receive data and control information are signalled in ten-bit segments. In 100 Mbps mode, each  
segment contains a new byte of data. In 10 Mbps mode, each segment is repeated ten times (except  
for the CRS bit), and the MAC can sample any of the ten segments.  
2.7.4.1  
2.7.4.2  
Carrier Sense  
The CRS bit (slot 0) is generated when a packet is received from the network interface. The CRS  
bit is set in real time, even in 10 Mbps mode (all other bits are repeated in 10 sequential segments).  
Receive Data Valid  
The LXT9785/9785E asserts the RX_DV bit (slot 1) when it receives a valid packet. The assertion  
timing changes depending on line operating speed:  
For 100BASE-TX and 100BASE-FX links, the RX_DV bit is asserted from the first nibble of  
preamble to the last nibble of the data packet.  
For 10BASE-T links, the entire preamble is truncated. The RX_DV bit is asserted with the  
first nibble of the Start-of-Frame Delimiter (SFD) 5Dand remains asserted until the end of  
the packet.  
2.7.4.3  
2.7.4.4  
Receive Error  
When the LXT9785/9785E receives an invalid symbol from the network in 100BASE-TX mode, it  
drives 1110on the associated RxData pin.  
Receive Status Encoding  
The LXT9785/9785E encodes status information onto the RxData line during IPG as seen in  
Table 20 on page 71. Status bit RxData<5> indicates the validity of the upper nibble (RxData<7:4>  
of the last byte of the previous frame). RxData and RX_DV are passed through the internal  
elasticity FIFO to smooth any clock rate differences between the recovered clock and the 125 MHz  
reference clock.  
2.7.5  
Collision  
The SMII interface does not provide a collision output and relies on the MAC to interpret COL  
conditions using CRS and TxEN. CRS is unaffected by the transmit path.  
70  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 20. Serial MII Receive Synchronization  
CLOCK  
RxSYNC  
RXD0  
RXER  
RXD1  
Speed  
RXD2  
RXD3  
RXD4  
Jabber  
RXD5  
Valid  
RXD6  
FCE  
RXD7  
RXD7  
RX  
CRS  
CRS  
RX_DV  
Duplex Link  
Table 20. RX Status Encoding Bit Definitions  
Signal  
Definition  
CRS  
Carrier Sense - identical to MII, except that it is not an asynchronous signal.  
Receive Data Valid - identical to MII. When RX_DV = 0, status information is  
transmitted to the MAC. When RX_DV = 1, received data is transmitted to the  
MAC.  
0 = Status Byte  
1 = Valid Data Byte  
RxDV  
RxER  
Inter-frame status bit RxData0 indicates whether or not the PHY detected an error 0 = No Error  
(RxData0)  
somewhere in the previous frame.  
1 = Error  
SPEED  
(RxData1)  
0 = 10 Mbps  
1 = 100 Mbps  
Inter-frame status bit RxData1 indicates port operating speed.  
DUPLEX  
(RxData2)  
0 = Half  
1 = Full  
Inter-frame status bit RxData2 indicates port duplex condition.  
Inter-frame status bit RxData3 indicates port link status.  
Inter-frame status bit RxData4 indicates port jabber status.  
LINK  
(RxData3)  
0 = Down  
1 = Up  
JABBER  
(RxData4)  
0 = OK  
1 = Error  
VALID  
(RxData5)  
Inter-frame status bit RxData5 conveys the validity of the upper nibble of the last  
byte of the previous frame.  
0 = Invalid  
1 = Valid  
False Carrier  
(RxData6)  
Inter-frame status bit RxData6 indicates whether or not the PHY has detected a  
false carrier event.  
0 = No FC detected  
1 = FC detected  
RxData7  
This bit is set to 1.  
Always = 1  
1. Both RxData0 and RxData5 bits are valid in the segment immediately following a frame, and remain valid until the first data  
segment of the next frame begins.  
Datasheet  
71  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
2.7.5.1  
Source Synchronous-Serial Media Independent Interface  
Some system designs require the PHY to be placed between 3 to 12 inches away from the MAC. A  
new Source Synchronous-Serial Media Independent Interface (SS-SMII) definition has been added  
because of this requirement. To provide a source synchronous interface between the PHY and  
MAC, the PHY must drive the RxCLK and the RxSYNC signals to the MAC. Also, the MAC must  
drive the TxCLK and the TxSYNC signal to the PHY. The REFCLK is also needed to synchronize  
the data to the PHYs core clock domain. TxData is clocked in using TxCLK and then  
synchronized to REFCLK and transmitted to the twisted-pair. The RxData is synchronized to the  
RxCLK. See Figure 24 on page 75.  
Table 21. SS-SMII  
Signal  
To  
From  
MAC  
Purpose  
TxData  
TxCLK  
PHY  
PHY  
PHY  
MAC  
MAC  
MAC  
MAC  
Transmit data & control  
Transmit clock  
MAC  
MAC  
PHY  
TxSYNC  
RxData  
RxCLK  
Synchronization pulses  
Receive data & control  
Receive clock  
PHY  
RxSYNC  
REFCLK  
PHY  
Receive Synchronization  
Synchronization  
System  
72  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 21. Typical SS-SMII Interface Diagram  
Typical SS-SMII Interface in  
a 16-Port System  
SECTION  
8
TxDatan  
TxSYNC0  
TxCLK0  
8
RxDatan  
RxSYNC1  
RxCLK1  
MDIO0  
MDC0  
MDINT0  
RefCLK0,1  
125 MHz Sourced  
Externally or from  
Switch ASIC  
SYS_CLK  
RefCLK0,1  
8
8
TxData  
n
TxSYNC0  
TxCLK0  
RxData  
n
RxSYNC1  
RxCLK1  
MDIO0  
MDC0  
MDINT0  
SECTION  
NOTE: For SMII operation TxCLK1, RxSYNCn and RxCLKn pins are ignored  
Datasheet  
73  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 22. Typical SS-SMII Quad Sectionalization Diagram  
Typical SS-SMII Interface  
in a 24-Port System  
RefClk0 RefClk1  
8
TxData n  
TxSYNC0  
TxCLK0  
8
RxData n  
RxSYNC1  
RxCLK1  
MDIO0  
MDC0  
MDINT0  
SECTION  
TxData  
n
4
TxSYNC0  
TxCLK0  
RxData  
n
4
RxSYNC0  
RxCLK0  
MDIO0  
MDC0  
MDINT0  
RefClk0  
125 MHz Sourced  
Externally or from  
Switch ASIC  
RefClk1  
TxData  
n
4
TxSYNC1  
TxCLK1  
4
RxData  
n
RxSYNC1  
RxCLK1  
VCC  
MDINT1  
MDIO1  
SECTION  
MDC1  
MDINT0  
MDIO0  
MDC0  
8
TxData  
n
TxSYNC0  
TxCLK0  
8
RxData n  
RxSYNC1  
RxCLK1  
SECTION  
RefClk0 RefClk1  
74  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 23. SS-SMII Transmit Timing  
SS-SMII Transmit Timing  
TxCLK  
TxSYNC  
TxData  
TXER  
TXEN TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TXER  
TxCLK  
TxSYNC  
TxData  
TXER  
Frcerr Speed  
Dplx LINK Jabr  
TXEN  
TXER  
All signals are  
synchronous to the clock  
Figure 24. SS-SMII Receive Timing  
SS-SMII Receive Timing  
RxCLK  
RxSYNC  
RxData  
CRS  
RXDV RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7 CRS  
RxCLK  
RxSYNC  
RxData  
CRS  
RXER Speed  
CRS  
RXDV  
Dplx LINK Jabr UPnib FlsCar  
All signals are  
synchronous to the clock  
Datasheet  
75  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
2.8  
RMII Operation  
The LXT9785/9785E provides an independent Reduced MII port for each network port. Each  
RMII uses four signals to pass received data to the MAC: RxDatan<1:0>, RxERn, and CRS_DVn  
(where n reflects the port number). Three signals are used to transmit data from the MAC:  
TxDatan_<1:0> and TxENn. Both receive and transmit signals are clocked by REFCLK. Data  
transmission across the RMII is implemented in di-bit pairs which equal a 4-bit wide nibble.  
2.8.1  
2.8.2  
RMII Reference Clock  
The LXT9785/9785E requires a 50 MHz reference clock (REFCLK). The device samples the RMII  
input signals on the rising edge of REFCLK and drives RMII output signals on the falling edge.  
Transmit Enable  
TxENn must be asserted and de-asserted synchronously with REFCLK. The MAC must assert  
TxENn at the same time as the first nibble of preamble. TxENn must be de-asserted after the last  
bit of the packet.  
2.8.3  
2.8.4  
Carrier Sense & Data Valid  
The LXT9785/9785E asserts CRS_DVn when it detects activity on the line. However, RxDatan  
outputs zeros until the received data is decoded and available for transfer to the controller.  
Receive Error  
Whenever the LXT9785/9785E receives an error symbol from the network, it asserts RxERn.  
When it detects a bad Start-of-Stream Delimiter (SSD) it drives a 10jam pattern on the RxData  
pins to indicate a false carrier event.  
2.8.5  
2.8.6  
Out-of-Band Signalling  
The LXT9785/9785E has the capability of encoding status information in the RxData stream  
during IPG. See Monitoring Operationson page 92 for details.  
4B/5B Coding Operations  
The 100BASE-X protocol specifies the use of a 5-bit symbol code on the network media. However,  
data is normally transmitted across the RMII interface in 2-bit nibblets or di-bits. The LXT9785/  
9785E incorporates a parallel/serial converter that translates between di-bit pairs and 4-bit nibbles,  
and a 4B/5B encoder/decoder circuit that translates between 4-bit nibbles and 5-bit symbols for the  
100BASE-X connection. Figure 25 on page 77 shows the data conversion flow from nibbles to  
symbols. Table 22 on page 82 shows 4B/5B symbol coding (not all symbols are valid).  
76  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 25. RMII Data Flow  
Reduced MII Mode Data Flow  
+1  
Parallel  
to  
Serial  
0
0
0
Scramble  
D0 D2  
D1 D3  
-1  
4B/5B  
MLT3  
D0 D1 D2 D3  
S0 S1 S2 S3 S4  
De-  
Scramble  
Transition = 1.  
No Transition = 0.  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
Serial  
to  
Parallel  
di-bit  
pairs  
4-bit  
nibbles  
5-bit  
symbols  
Datasheet  
77  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 26. Typical RMII Interface Diagram  
Typical RMII Interface  
in a 16-Port System  
SECTION  
TxD0n  
8
8
TxD1n  
8
8
TxENn  
RxD0n  
8
8
8
RxD1n  
CRS_DV  
n
RxERn  
MDIO0  
MDC0  
MDINT0  
RefClk0 RefClk1  
50 Mhz Sourced  
Externally or from  
Switch ASIC  
RefClk0  
MDINT0  
RefClk1  
MDIO0  
MDC0  
8
8
TxD0  
TxD1  
n
n
8
8
TxEN  
RxD0  
n
n
8
RxD1  
CRS_DV  
RxER  
n
8
8
n
n
SECTION  
78  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 27. Typical RMII Quad Sectionalization Diagram  
Typical RMII Interface  
in a 24-Port System  
RefClk0 RefClk1  
TxD0n  
TxD1  
8
8
n
8
8
TxENn  
RxD0n  
8
8
8
RxD1n  
CRS_DVn  
RxERn  
MDIO0  
MDC0  
MDINT0  
SECTION  
4
TxD0n  
TxD1n  
TxENn  
RxD0n  
RxD1n  
4
4
4
4
4
CRS_DVn  
RxERn  
4
MDIO0  
MDC0  
MDINT0  
RefClk0  
50 MHz Sourced  
Externally or from  
Switch ASIC  
RefClk1  
4
TxD0  
TxD1  
TxEN  
n
n
n
4
4
4
4
4
4
RxD0n  
RxD1n  
CRS_DV  
RxER n  
n
VCC  
MDINT1  
MDIO1  
MDC1  
SECTION  
MDINT0  
MDIO0  
MDC0  
8
8
8
TxD0n  
n
TxD1  
n
TxEN  
8
8
8
8
RxD0n  
RxD1n  
CRS_DVn  
RxERn  
SECTION  
RefClk0 RefClk1  
Datasheet  
79  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
2.9  
100 Mbps Operation  
2.9.1  
100BASE-X Network Operations  
During 100BASE-X operation, the LXT9785/9785E transmits and receives 5-bit symbols across  
the network link. Figure 28 shows the structure of a standard frame packet. When the MAC is not  
actively transmitting data, the LXT9785/9785E sends out Idle symbols on the line.  
In 100BASE-TX mode, the device scrambles the data and transmits it to the network using MLT-3  
line code. The MLT-3 signals received from the network are de-scrambled and decoded, and sent  
across the RMII to the MAC.  
In 100BASE-FX mode, the LXT9785/9785E transmits and receives NRZI signals across the PECL  
interface. An external 100BASE-FX transceiver module is required to complete the fiber  
connection.  
As shown in Figure 28, the MAC starts each transmission with a preamble pattern. As soon as the  
LXT9785/9785E detects the start of preamble, it transmits a J/K Start-of-Stream Delimiter (SSD)  
symbol to the network. It then encodes and transmits the rest of the packet, including the balance of  
the preamble, the Start-of-Frame Delimiter (SFD), packet data, and CRC. Once the packet ends,  
the LXT9785/9785E transmits the T/R End-of-Stream Delimiter (ESD) symbol and then returns to  
transmitting Idle symbols.  
Figure 28. 100BASE-X Frame Format  
64-Bit Preamble  
(8 Octets)  
Destination and Source  
Address (6 Octets each)  
Packet Length  
(2 Octets)  
Data Field  
(Pad to minimum packet size)  
Frame Check Field InterFrame Gap / Idle Code  
(4 Octets)  
(> 12 Octets)  
CRC  
IFG  
SFD  
P0 P1 P6  
DA DA SA SA L1  
L2  
D0 D1 Dn  
I0  
Replaced by  
/T/R/ code-groups  
End-of-Stream Delimiter (ESD)  
Replaced by  
Start-of-Frame  
Delimiter (SFD)  
/J/K/ code-groups  
Start-of-Stream  
Delimiter (SSD)  
2.9.2  
100BASE-X Protocol Sublayer Operations  
In a 7-layer communications model, the LXT9785/9785E is a Physical Layer 1 (PHY) device. The  
LXT9785/9785E implements the Physical Coding Sublayer (PCS), Physical Medium Attachment  
(PMA), and Physical Medium Dependent (PMD) sublayers of the reference model defined by the  
IEEE 802.3u specification. The following paragraphs discuss the LXT9785/9785E operation from  
the reference model point of view.  
2.9.2.1  
PCS Sublayer  
The Physical Coding Sublayer (PCS) provides the RMII interface, as well as the 4B/5B encoding/  
decoding function. For 100BASE-TX and 100BASE-FX operation, the PCS layer provides IDLE  
symbols to the PMD-layer line driver as long as TxEN is de-asserted. For 10T operation, the PCS  
layer merely provides a bus interface and serialization/de-serialization function. 10T operation  
does not use the 4B/5B encoder.  
80  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
2.9.2.1.1 Preamble Handling  
When the MAC asserts TxEN, the PCS substitutes a /J/K/ symbol pair, also known as the Start-of-  
Stream Delimiter (SSD), for the first two nibbles received across the RMII. The PCS layer  
continues to encode the remaining RMII data until TxEN is de-asserted (see Table 22 on page 82).  
It then returns to supplying IDLE symbols to the line driver.  
The PCS layer performs the opposite function in the receive direction by substituting two preamble  
nibbles for the SSD.  
2.9.2.1.2 Dribble Bits  
The LXT9785/9785E handles dribble bits in all modes. If one through four dribble bits are  
received, the nibble is passed across the RMII, padded with ones if necessary. If five through seven  
dribble bits are received, the second nibble is not sent to the RMII bus.  
Figure 29. Protocol Sublayers  
MII Interface  
LXT9785  
PCS  
Encoder/Decoder  
Serializer/De-serializer  
Sublayer  
PMA  
Sublayer  
Link/Carrier Detect  
PECL Interface  
PMD  
Sublayer  
Scrambler/  
De-scrambler  
Fiber Transceiver  
100BASE-TX  
100BASE-FX  
Datasheet  
81  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
2.9.3  
PMA Sublayer  
Table 22. 4B/5B Coding  
4B Code  
Code Type  
5B Code  
4 3 2 1 0  
Name  
Interpretation  
3 2 1 0  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0
1 1 1 1 0  
0 1 0 0 1  
1 0 1 0 0  
1 0 1 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 11  
1 1 0 0 0  
1 0 0 0 1  
0 1 1 0 1  
0 0 1 1 1  
0 0 1 0 0  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 0  
0 1 0 0 0  
0 1 1 0 0  
1 0 0 0 0  
1 1 0 0 1  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
Data F  
1
2
3
4
5
6
DATA  
0 1 1 1  
1 0 0 0  
7
8
1 0 0 1  
9
1 0 1 0  
A
1 0 1 1  
B
1 1 0 0  
C
1 1 0 1  
D
1 1 1 0  
E
1 1 1 1  
F
I 1  
J 2  
K 2  
T 3  
R 3  
H 4  
IDLE  
undefined  
0 1 0 1  
Idle. Used as inter stream fill code.  
Start-of-Stream Delimiter (SSD), part 1 of 2.  
CONTROL  
0 1 0 1  
Start-of-Stream Delimiter (SSD), part 2 of 2.  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
End-of-Stream Delimiter (ESD), part 1 of 2.  
End-of-Stream Delimiter (ESD), part 2 of 2.  
Transmit Error. Used to force signalling errors.  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
INVALID  
1. The /I/ (Idle) code group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code group is used to signal an error condition.  
82  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
2.9.3.0.1 Link  
In 100 Mbps mode, the LXT9785/9785E establishes a link whenever the scrambler becomes  
locked and remains locked for approximately 50 ms. Whenever the scrambler loses lock (<12  
consecutive idle symbols during a 2 ms window), the link is taken down. This provides a robust  
link, filtering out any small noise hits that may otherwise disrupt the link. Furthermore, 100 Mbps  
idle patterns will not bring up a 10 Mbps link.  
The LXT9785/9785E reports link failure via the RMII status bits (1.2, 17.10, and 19.4) and  
interrupt functions. If auto-negotiate is enabled, link failure causes the device to re-negotiate.  
2.9.3.0.2 Link Failure Override  
The LXT9785/9785E normally transmits 100 Mbps data packets or Idle symbols only if it detects  
the link is up, and transmits only FLP bursts if the link is not up. Setting bit 16.14 = 1 overrides this  
function, allowing the LXT9785/9785E to transmit data packets even when the link is down. This  
feature is provided as a diagnostic tool.  
Note: Auto-negotiation must be disabled to transmit data packets in the absence of link. If auto-  
negotiation is enabled, the LXT9785/9785E automatically begins transmitting FLP bursts if the  
link goes down.  
2.9.3.0.3 Carrier Sense/Data Valid (RMII)  
The LXT9785/9785E asserts CRS_DV whenever the respective port receiver is in a non-idle state  
(as defined by the RMII Specification Revision 1.2), including false carrier events. Assertion of  
CRS_DV is asynchronous with respect to REFCLK. In the event that signal decoding is not  
complete when CRS_DV is asserted, the LXT9785/9785E outputs 00 on the RxData1:0 lines until  
the decoded data are available.  
When the line returns to an idle state, CRS_DV is de-asserted asynchronously with respect to  
REFCLK. If the FIFO still contains data to be passed to the MAC via the RMII when CRS is de-  
asserted, CRS_DV toggles on nibble boundaries until the FIFO is empty. For 100BASE-X signals,  
CRS_DV toggles at 25 MHz. For 10BASE-T signals, CRS_DV toggles at 2.5 MHz.  
2.9.3.0.4 Carrier Sense (SMII)  
For 100BASE-TX and 100BASE-FX links, a Start-of-Stream Delimiter (SSD) or /J/K/ symbol pair  
causes assertion of carrier sense (CRS). An End-of-Stream Delimiter (ESD), or /T/R/ symbol pair  
causes de-assertion of CRS. The PMA layer also de-asserts CRS if IDLE symbols are received  
without /T/R/. In this event, the RxER bit in the RX Status Frame is asserted for one clock cycle  
when CRS is de-asserted.  
For 10T links, CRS assertion is based on receipt of valid preamble, and de-assertion on receipt of  
an End-of-Frame (EOF) marker.  
2.9.3.0.5 Receive Data Valid (SMII)  
The LXT9785/9785E asserts the RX_DV bit when it receives a valid packet. However, RxData  
outputs zeros until the received data are decoded and available for transfer to the controller.  
Datasheet  
83  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
2.9.3.1  
Twisted-Pair PMD Sublayer  
The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling and  
descrambling, line coding and decoding (MLT-3 for 100BASE-TX, Manchester for 10T), as well  
as receiving, polarity correction, and baseline wander correction functions.  
2.9.3.1.1 Scrambler/Descrambler (100BASE-TX Only)  
The purpose of the scrambler is to spread the signal power spectrum and further reduce EMI using  
an 11-bit, non-data-dependent polynomial. The receiver automatically decodes the polynomial  
whenever IDLE symbols are received.  
The scrambler/descrambler can be bypassed by setting Register bit 16.12 = 1. The scrambler is  
automatically bypassed when the fiber port is enabled. Scrambler bypass is provided for diagnostic  
and test support.  
2.9.3.1.2 Baseline Wander Correction  
The LXT9785/9785E provides a baseline wander correction function which makes the device  
robust under all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is,  
by definition, unbalanced. This means that the DC average value of the signal voltage can  
wandersignificantly over short time intervals (tenths of seconds). This wander may cause  
receiver errors, particularly in less robust designs, at long line lengths (100 meters). The exact  
characteristics of the wander are completely data dependent.  
The LXT9785/9785E baseline wander correction characteristics allow the device to recover error-  
free data while receiving worst-case killerpackets over all cable lengths.  
2.9.3.1.3 Polarity Correction  
The LXT9785/9785E automatically detects and corrects for the condition where the receive signal  
(TPFIP/N) is inverted. Reversed polarity is detected if eight inverted link pulses or four inverted  
End-of-Frame (EOF) markers are received consecutively. If link pulses or data are not received by  
the maximum receive time-out period, the polarity state is reset to a non-inverted state.  
2.9.3.2  
Fiber PMD Sublayer  
The LXT9785/9785E provides a PECL interface for connection to an external fiber-optic  
transceiver. (The external transceiver provides the PMD function for fiber media.) The device uses  
an NRZI format for the fiber interface. The fiber interface operates at 100 Mbps and does not  
support 10FL applications.  
2.9.3.2.1 Far End Fault Indications  
The LXT9785/9785E Signal Detect pins independently detect signal faults from the local fiber  
transceivers via the SD pins. The device also uses Register bit 1.4 to report Remote Fault  
indications received from its link partner. The device ORsboth fault conditions to set bit 1.4.  
Register bit 1.4 is set once and clears when read.  
Either fault condition causes the LXT9785/9785E to drop the link unless Forced Link Pass is  
selected (16.14 = 1). Link down condition is then reported via interrupts and status bits.  
84  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
In response to locally detected signal faults (SD activated by the local fiber transceiver), the  
affected port can transmit the far end fault code if fault code transmission is enabled by Register bit  
16.2.  
When Register bit 16.2 = 1, transmission of the far end fault code is enabled. The LXT9785/  
9785E transmits far end fault code if fault conditions are detected by the Signal Detect pins.  
When Register bit 16.2 = 0, the LXT9785/9785E does not transmit far end fault code. It  
continues to transmit idle code and may or may not drop link depending on the setting for  
Register bit 16.14.  
The occurrence of a Far End Fault causes all transmission of data from the Reconciliation Sublayer  
to stop and the Far End fault code to begin. The Far End Fault code consists of 84 oness followed  
by a single 0and is repeated until the Far End Fault condition is removed.  
2.10  
10 Mbps Operation  
The LXT9785/9785E operates as a standard 10BASE-T transceiver and supports all the standard  
10 Mbps functions. During 10BASE-T (10T) operation, the LXT9785/9785E transmits and  
receives Manchester-encoded data across the network link. When the MAC is not actively  
transmitting data, the device sends out link pulses on the line.  
In 10T mode, the polynomial scrambler/descrambler is inactive. Manchester-encoded signals  
received from the network are decoded by the LXT9785/9785E and sent across the RMII to the  
MAC.  
Note: The LXT9785/9785E does not support fiber connections at 10 Mbps.  
2.10.1  
Preamble Handling  
The LXT9785/9785E offers two options for preamble handling, selected by Register bit 16.5. In  
10T Mode when Register bit 16.5 = 0, the device strips the entire preamble off the received  
packets. CRS_DV is asserted simultaneously with SFD. CRS_DV is held Low for the duration of  
the preamble. When CRS_DV is asserted, the very first two nibbles driven by the LXT9785/9785E  
are the SFD 5Dhex followed by the body of the packet.  
When Register bit 16.5 = 1 in 10T mode, the LXT9785/9785E passes the preamble through the  
RMII and asserts CRS_DV simultaneously.  
2.10.2  
2.10.3  
Dribble Bits  
The LXT9785/9785E device handles dribble bits in all modes. If one through four dribble bits are  
received, the nibble is passed across the RMII. If five through seven dribble bits are received, the  
second nibble is not sent onto the RMII bus.  
Link Test  
The LXT9785/9785E always transmits link pulses in 10T mode. When enabled, the link test  
function monitors the connection for link pulses. Once link pulses are detected, data transmission is  
enabled and remains enabled as long as either the link pulses or data transmission continue. If link  
pulses stop, the data transmission is disabled.  
Datasheet  
85  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
If the link test function is disabled, the LXT9785/9785E transmits to the connection regardless of  
detected link pulses. The link test function is disabled by setting Register bit 16.14 = 1.  
2.10.3.1  
2.10.4  
Link Failure  
Link failure occurs if Link Test is enabled and link pulses or packets stop being received. If this  
condition occurs, the LXT9785/9785E returns to the auto-negotiation phase if auto-negotiation is  
enabled.  
Jabber  
If a transmission exceeds the jabber timer, the LXT9785/9785E disables the transmit and loopback  
functions. The RMII does not include a Jabber pin, but the MAC may read Register 1 or 25 to  
determine Jabber status. The LXT9785/9785E automatically exits jabber mode after the unjab time  
has expired. This function is disabled by setting Register bit 16.10 = 1.  
2.11  
DTE Discovery Process  
The DTE discovery process is port dependent and must be enabled through software. The process  
is implemented as a next page option to the auto-negotiation flow. This feature applies to the  
LXT9785E transceiver only.  
The process depends upon an IP phone, or any other DTE capable of being powered remotely,  
having a specific filter that passes NLPs and FLPs. This filter should be non-polarized to insure  
that the latest status of Auto-MDIX operation does not effect operation. This filter attenuates 100  
Mbps MLT3 signals and 10 Mbps Manchester-encoded signals, and must be bypassed when power  
is applied to the IP phone. Figure 30 shows a typical IP telephone system connection.  
Figure 30. Typical IP Telephone System Connection  
VoIP-Enabled Switch  
S
D
Pro  
HP  
i
l
10 / 1 0 0B a s e- T Ports  
M
o
d
u
e
S
a
t
u
s
t
1
X
2
X
3
X
4
X
5
X
6
X
1
3
X
1
4
X
1
5
X
1
6
X
1
7
X
1
8
X
1
2
3
4
5
6
1
3
1
4
1
5
1
6
1
7
1
8
L
i
n
k
SelfTes  
Mode  
1
9
2
0
2
1
2
2
2
3
2
4
7
8
9
1
0
1
1
1
2
L
i
n
k
Consol e  
M
o
d
e
Power  
Ac  
t
Fdx  
1
0
0
R
e
s
e
t
C lear  
M
o
d
Fautl  
7
1
0
1
2
1
2
4
Power cable  
Power and data over  
Category 5 cable  
Power  
Outlet  
UPS/  
Generator  
Power cable  
1
2
3
4
7
5
8
6
9
8
#
*
Power  
Outlet  
IP Telephone  
Computer  
Data only over  
Category 5 cable  
86  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
2.11.1  
Definitions  
The following terms are used throughout the DTE discovery sections:  
Negotiation Process:  
System:  
This includes auto-negotiation and parallel detection processes  
The switch system using the LXT9785E for DTE Discovery  
A device connected to the LXT9785E through twisted pair cables  
Data Terminal Equipment; any end-of-link partner  
Link Partner:  
DTE:  
A link partner that is not requiring power over a Category 5 cable;  
typically a PC  
Standard Link Partner:  
Data Terminal Equipment requiring power over a Category 5 cable;  
typically an IP telephone  
Remote-Power DTE:  
Discovery:  
The process of identifying the type of link partner present  
2.11.2  
Interaction between Processor, MAC and PHY  
The state machines that control the mechanics of the Discovery process reside within the  
LXT9785E device. However, control of the power supply and overall system control reside in the  
system processor. The processor communicates with the power supply unit (PSU) and switches it  
on and off dependant on the data that is supplied by the PHY. The PHY register data is read by the  
MAC using the MDIO interface. The required control bits are contained in the PHY device register  
map and are discussed in detail in the section labeled Management Interface and Controlon  
page 88.  
Note: The details of the processor/MAC interface and the processor/PSU interface are implementation  
specific and therefore are out of the scope of this specification.  
The following is an overview of the system control for a successful Remote-Power DTE discovery:  
1. The discovery process is enabled by the DTE Discovery Process Enable (Dis_EN) Register bit  
27.6 and the Auto-Negotiation Enable Register bit 0.12.  
2. The LXT9785E PHY then tests to see if a Remote-Power DTE is present as the link partner. If  
a Remote-Power DTE is found, the Power Enable (Power_EN) Register bit 27.4 is set. The  
processor polls this signal via the MAC.  
3. Upon detecting a Remote-Power DTE, the processor instructs the power supply to switch on.  
Once power has been applied to the DTE, normal negotiation takes place. The processor must  
enable the required negotiation process by restarting auto-negotiation, or by setting forced  
speed mode after power has been applied. The processor must poll the link-up Register bit 1.2  
for the corresponding LXT9785E port, or the link status change interrupt, to ensure that the  
link has been established.  
4. A time-out must be connected with this feature so that if link is not established within a pre-  
determined time period (system dependant), the processor instructs the power supply to switch  
off. If link is not established prior to the expiration of the link fail inhibit timer, the  
LXT9785E restarts negotiation with DTE detection if auto-negotiation mode was used to  
establish link with the phone, and the DTE process is still enabled. The LXT9785E restarts  
negotiation without DTE detection if either forced speed mode is used to establish link with  
the phone, or the DTE process is disabled.  
Datasheet  
87  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
5. If power is applied and link is established, the system must still poll the Link Status Register  
bit 1.2 for the corresponding LXT9785E port or the link status change interrupt. This is  
required since link status is the only way to know when the Remote-Power DTE is removed or  
unplugged. On seeing the Link_Down condition, the processor instructs the power supply to  
switch off, and the DTE Discovery begins again or is disabled.  
2.11.3  
Management Interface and Control  
The management and control of the DTE discovery process is via the MDIO port. Each port on the  
LXT9785E is capable of running the discovery process, thus each port is independently controlled.  
This is achieved by each port having a dedicated set of control and status bits. These bits are found  
in Register 27 as follows:  
DTE DISCOVERY PROCESS ENABLE - Register Bit 27.6 (Dis_EN)  
R/W Default value = 0: Disabled.  
Register bit 27.6 controls the operation of the process. The discovery process is disabled when  
Register bit 27.6 = 0, and enabled when Register bit 27.6 = 1. The MAC controller sets Register bit  
27.6 to a 1 when a port search for a DTE requiring power is desired. Once set, Register bit 27.6  
remains = 1 until the MAC clears it, either by directly clearing it or by resetting the PHY. This  
allows the discovery process to continue to function if unsuccessful in detecting a DTE, without  
being continually re-enabled by the MAC. If Register bit 27.6 is set after link is established, no  
action is taken until after the link goes down.  
POWER ENABLE - Register Bit 27.4 (Power_EN)  
RO Default value = 0: No Remote-Power DTE found.  
Register bit 27.4 contains the result of the discovery process. When Register bit 27.4 = 0, the  
discovery process has not found Remote-Power DTE, and when Register bit 27.4 = 1, the  
discovery process has potentially found a DTE requiring power. This indicates power should be  
applied to the Category 5 cable. Register bit 27.4 is polled by the MAC during the discovery  
process, and is cleared when the PHY is reset, when auto-negotiation is restarted, or when auto-  
negotiation is disabled. In the event of a discovery process being interrupted due to detection of an  
already powered link partner (auto-negotiation completion or Parallel Detection), Register  
bit 27.4 = 0.  
STANDARD LINK PARTNER DETECTED - Register Bit 27.3 (SLP_Det)  
R/W Clear on Read Default value = 0: No link partner found.  
When Register bit 27.3 = 1, a standard link partner has been detected by the LXT9785E (NLPs,  
MLT3 data, FLPs without next page support, or FLPs with non-matching next pages). This  
indicates power should not be applied to the Category 5 cable. When Register bit 27.3 = 0, other  
bits are checked to determine overall status of the link partner. Register bit 27.3 is cleared on read,  
or DTE discovery is disabled, link is established, or auto-negotiation is either restarted or disabled.  
LINK FAIL TIMEOUT - Register Bit 27.2 (LFIT Expired)  
R/W Clear on Read Default value = 0 (Link Fail Inhibit timer has expired without establishment of  
link with a standard link partner). Valid only when Standard Link Partner Detected Register bit  
27.3 = 1.  
Register bit 27.2 is set if link is not established prior to the Link Fail Inhibit Timer expiring. This  
indicates that the Discovery process has restarted and the Standard Link Partner Detected Register  
bit may no longer be valid. Register bit 27.2 is cleared on read, or DTE discovery is disabled, link  
is established, or auto-negotiation is either restarted or disabled.  
88  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
2.11.4  
DTE Discovery Process Flow  
The following section describes the DTE Discovery process. See Figure 31 on page 91 for a flow  
chart of the discovery process.When DTE Discovery (27.6) and auto-negotiation (0.12) are enabled  
(auto-negotiation mode is required), the LXT9785E transmits the auto-negotiation base page with  
the next page ability bit set (Auto-Negotiation Advertisement Register (Address 4)).  
System software polls Register 27 to determine if or when a Remote-Power DTE is detected. The  
receiver monitors the line to determine if NLPs, MLT3 data, or FLP bursts are being received. If  
the receive activity is FLP bursts, the status of the next page ability bit is checked. If the detected  
link partneralso supports next page, then the LXT9785E transmits out the next page sequence  
associated with message code #5 (Organizationally Unique Identifier (OUI) Tag Code). The  
definition for the next pages to be sent out for this message code include some user-defined code  
values. These values are loaded with randomly created data from an internal LSFR that is free  
running and seeded with the PHY address of the LXT9785E port. The Next Pages are hard coded  
in the logic (the LXT9785E ignores any data written into Register 7) and are outlined in Table 23  
on page 90. The receiver monitors the next pages to determine that the exact next page data  
(especially the random data) transmitted is received. The Power-Enable Register bit 27.4 is set  
when a Remote-Power DTE is detected as the link partner, and the last next page is repeatedly  
transmitted until software restarts the required negotiation process (auto-negotiation or forced-  
speed mode).  
The software should be written so that the negotiation is not restarted until the DTE has been  
powered up over the Category 5 cable. The Power-Enable Register bit 27.4 is cleared upon  
restarting or disabling auto-negotiation (selecting forced mode). The system must be able to detect  
over-current conditions and be capable of disabling power in case the link partner is not a Remote-  
Power DTE. Some examples of devices that would mistakenly set Power-Enable Register bit 27.4  
are a token-ring balun and a loopback cable. Once link partner power has been stabilized and  
sufficient time has passed for the link partner to initialize, the auto-negotiation process may be  
restarted.  
The negotiation process establishes link if a compatible mode exists between the LXT9785E and  
the link partner. If a compatible mode does not exist (not compatible or not established within the  
Link Fail Inhibit Timer period), the LXT9785E either restarts auto-negotiation/DTE discovery  
(discovery is enabled (27.6=1) and auto-negotiation is enabled (0.12 = 1)), or normal negotiation  
(discovery is disabled (27.6=0) and auto-negotiation is enabled (0.12 = 1)), or either 10 Mbps or  
100 Mbps forced-mode operation (auto-negotiation is disabled (0.12 = 0)). The software must  
detect this non-link state and disable power.  
Datasheet  
89  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 23. Next Page Message #5 Code Word Definitions  
NextPage  
Encoding  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
OUI  
Tagged  
Message  
1
a
1
0
t
0
0
0
0
0
0
0
0
1
0
1
UserPage  
1
1
1
1
1
a
a
a
a
0
0
0
0
0
0
0
0
t
t
t
t
3.10 3.11 3.12 3.13 3.14 3.15 2.0 2.1 2.2 2.3 2.4  
2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15  
UserPage  
2
UserPage  
3
0
0
L.8 L.7 L.6 L.5 L.4 L.3 L.2 L.1 L.0  
UserPage  
4
L.10 L.9 L.8 L.7 L.6 L.5 L.4 L.3 L.2 L.1 L.0  
1. a is the acknowledge bit; t is the toggle bit; L is the LFSR  
90  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 31. LXT9785E Negotiation Flow Chart  
Start  
Assumptions:  
Auto-Negotiation/Forced Speed Set by Pins  
Advertisement Requirements Set by Pins  
Power Up  
or  
Link Down 1.2 = 0 and Dis_EN 27.6 = 0  
or  
Link Down 1.2 = 0 and Forced Mode  
LFIT Expired 27.2 = 1  
Link Fail Timeout = 1  
Dis_EN Not Set 27.6 = 0  
Default Mode  
Transmit based upon hardware  
configuration  
NLPs or IDLE Symbols  
Detected  
FLP, NLP or IDLE Symbols  
LFIT Expired 27.2 = 1  
Dis_EN 27.6 = 0  
Software Intervention  
Auto-negotiation 0.12 = 1 (if needed)  
Power_EN 27.6 = 1  
FLP Detected  
NLPs or IDLE Symbols  
Link Down 1.2 = 0  
Discovery Base  
Transmit FLPs  
Base Page (Register 4)  
with Next Page 4.15 = 1  
Detected  
Parallel Detection  
Determine Compatibility on  
Speed and Duplex  
and  
Dis_EN 27.6 = 1  
and  
Auto-Neg 0.12 = 1  
LFIT Expired 27.2 = 1  
Check Advertisement  
Dis_EN 27.6 = 1  
LFIT Expired 27.2 = 1  
Dis_EN 27.6 = 1  
FLP Detected  
No  
Auto Negotiation  
Determine Compatibility Options  
Next Page  
Set?  
No  
Yes  
Yes  
Auto-  
Negotiation?  
Compatibility  
Next Page Transmission  
Use Random Data for User Defined  
Bits as Code  
Power Applied  
No  
Next Pages Received  
Compatibility  
Power On  
Wait State for  
Proper Power  
Assertiion  
Pages = Code  
Transmitted?  
Set Mode  
Restart  
Auto-Negotiation  
Yes  
or  
Software Intervention  
Software Polled Power_EN 27.4 = 1  
Turn On Power Supply  
Force Speed  
DTE Discovered  
Transmit Last Page Continuously  
Power_EN 27.4 = 1  
Link Up  
Datasheet  
91  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
2.12  
Monitoring Operations  
2.12.1  
Monitoring Auto-Negotiation  
Auto-negotiation may be monitored as follows:  
Bits 1.2 and 17.10 = 1 once the link is established.  
Additional bits in Register 1 (refer to Table 59 on page 131) and Register 17 (refer to Table 68  
on page 138) can be used to determine the link operating conditions and status.  
2.12.2  
Per-Port LED Driver Functions  
The LXT9785/9785E incorporates three direct drive LEDs per port (LEDn_1, LEDn_2, and  
LEDn_3). On power up, all the LEDs lights up for approximately one second after reset de-asserts.  
Each LED may be programmed to one of several different display modes using the LED  
Configuration Register. Each per-port LED may be programmed (refer to Table 71 on page 141) to  
indicate one of the following conditions:  
Operating Speed  
Transmit Activity  
Receive Activity  
Collision Condition  
Link Status  
Duplex Mode  
Isolate Condition  
The LEDs can also be programmed to display various combined status conditions. For example,  
setting bits 20.15:12 = 1101 produces the following combination of Link and Activity indications:  
If Link is down, LED is off.  
If Link is up, LED is on.  
If Link is up AND activity is detected, the LED blinks at the stretch interval selected by bits  
20.3:2 and continues to blink as long as activity is present.  
The LED driver pins are open drain circuits (10mA max current rating). Refer to LED Circuiton  
page 98 under the Application Information Section for LED circuit design details. The LED  
Configuration Register also provides optional LED pulse stretching to 30, 60, or 100 ms. If during  
this pulse stretch period, the event occurs again, the pulse stretch time is further extended (see  
Table 71 on page 141).  
When an event such as receiving a packet occurs, it is edge detected and starts the stretch timer.  
The LED driver remains asserted until the stretch timer expires. If another event occurs before the  
stretch timer expires, the stretch timer is reset and the stretch time extended.  
When a long event (such as duplex status) occurs, it is edge detected and starts the stretch timer.  
When the stretch timer expires, the edge detector is reset so that a long event causes another pulse  
to be generated from the edge detector. The edge detector resets the stretch timer, causing the LED  
driver to remain asserted. Figure 32 on page 93 shows how the stretch operation functions.  
92  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 32. LED Pulse Stretching  
Event  
LED  
stretch  
stretch  
stretch  
Note: The direct drive LED outputs in this diagram are shown as active Low.  
2.12.3  
Out-of-Band Signalling  
The LXT9785/9785E provides an out-of-band signalling option to transfer status information  
across the RMII receive interface. This feature is enabled when Register bit 25.0 = 1 and uses the  
RxData(1:0) data bus during the Inter-Packet Gap (IPG) time as shown in Figure 33.  
The two status bits transferred across the RxData bus are software selectable via Register 25 (see  
Table 73 on page 143).  
In normal operation, the LXT9785/9785E stuffs the RxData bus with zeros during the IPG. A  
software-selectable bit enables the RMII out-of-band signalling feature. Once this bit is set, the  
LXT9785/9785E replaces the zeros with selected status bits during the IPG.  
Figure 33. RMII Programmable Out-of-Bank Signaling  
REFCLK  
CRS_DV  
RXD(1)  
RXD(0)  
status 1  
status 0  
status 1  
status 0  
data  
data  
data  
data  
data  
data  
data  
data  
status 1  
status 0  
status 1  
status 0  
status 1  
status 0  
status 1  
status 0  
0s  
0s  
statu s 1  
status 0  
1. When network activity is detected, the LXT9785/9785E asserts CRS_DV asynchronously with respect to REFCLK.  
2. After CRS_DV is asserted, the LXT9785/9785E zero-stuffs the RxData bits until the received data has been processed  
through the FIFO.  
3. When network activity ceases, the LXT9785/9785E de-asserts CRS_DV synchronously with respect to REFCLK. CRS_DV  
toggles until all data in the FIFO has been processed through the RMII. Once the FIFO is empty, LXT9785/9785E drives the  
status bits selected by the Out-of-Band Signalling Register (refer to Table 73 on page 143) on the RxData outputs.  
The LXT9785/9785E includes an IEEE 1149.1 boundary scan test port for board level testing. All  
digital input, output, and input/output pins are accessible.  
Datasheet  
93  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
2.12.4  
2.12.5  
2.12.6  
2.12.7  
Boundary Scan Interface  
This interface consists of five pins (TMS, TDI, TDO, TCK and TRST). It includes a state machine,  
data register array, and instruction register. The TMS and TDI pins are internally pulled up and the  
TCK pin is internally pulled down. TDO does not have an internal pull-up or pull-down.  
State Machine  
The TAP controller is a 16-state machine driven by the TCK and TMS pins. Upon reset, the  
TEST_LOGIC_RESET state is entered. The state machine is also reset when TMS and TDI are  
High for five TCK periods.  
Instruction Register  
The IDCODE instruction is always invoked after the state machine resets. The decode logic  
ensures the correct data flow to the Data registers according to the current instruction. Valid  
instructions are listed in Table 25.  
Boundary Scan Register  
Each Boundary Scan Register (BSR) cell has two stages. A flip-flop and a latch are used for the  
serial shift stage and the parallel output stage. There are four modes of operation as listed in  
Table 24.  
Table 24. BSR Mode of Operation  
Mode  
Description  
Capture  
1
2
3
4
Shift  
Update  
System Function  
Table 25. Supported JTAG Instructions  
Data  
Register  
Name  
Code  
Description  
External Test  
EXTEST  
IDCODE  
SAMPLE  
High Z  
0000 Hex  
BSR  
FFFE Hex  
FFF8 Hex  
FFCF Hex  
FFEF Hex  
FFFF Hex  
ID Code Inspection  
Sample Boundary  
Force Float  
ID REG  
BSR  
Bypass  
BSR  
Clamp  
Clamp  
BYPASS  
Bypass Scan  
Bypass  
94  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
3.0  
Application Information  
3.1  
Design Recommendations  
The LXT9785/9785E is designed to comply with IEEE 802.3 requirements to provide outstanding  
receive Bit Error Rate (BER), and long-line-length performance. To achieve maximum  
performance from the LXT9785/9785E, attention to detail and good design practices are required.  
Refer to the LXT9785 Design and Layout Guide application note for detailed design and layout  
information.  
3.2  
General Design Guidelines  
Adherence to generally accepted design practices is essential to minimize noise levels on power  
and ground planes. Up to 50mV maximum of noise is considered acceptable. High-frequency  
switching noise can be reduced, and its effects eliminated, by following these simple guidelines  
throughout the design:  
Fill in unused areas of the signal planes with solid copper and attach them with vias to a VCC  
or ground plane that is not located adjacent to the signal layer.  
Use ample bulk and decoupling capacitors throughout the design (a value of 0.01µF is  
recommended for decoupling caps).  
Provide ample power and ground planes.  
Provide termination on all high-speed switching signals and clock lines.  
Provide impedance matching on long traces to prevent reflections.  
Route high-speed signals next to a continuous, unbroken ground plane.  
Filter and shield DC-DC converters, oscillators, etc.  
Do not route any digital signals between the LXT9785/9785E and the RJ-45 connectors at the  
edge of the board.  
Do not extend any circuit power and ground plane past the center of the magnetics or to the  
edge of the board. Use this area for chassis ground, or leave it void.  
3.2.1  
Power Supply Filtering  
Power supply ripple and digital switching noise on the VCC plane may cause EMI problems and  
degrade line performance. The best approach to this problem is to minimize ground noise as much  
as possible using good general techniques and by filtering the VCC plane. It is generally difficult to  
predict in advance the performance of any design, although certain factors greatly increase the risk  
of having problems:  
Poorly-regulated or over-burdened power supplies.  
Wide data busses (32-bits+) running at a high clock rate.  
DC-to-DC converters.  
Datasheet  
95  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Intel recommends filtering the power supply to the analog VCC pins of the LXT9785/9785E. This  
has two benefits. First, it keeps digital switching noise out of the analog circuitry inside the  
LXT9785/9785E, helping with line performance. Second, if the VCC planes are laid out correctly,  
digital switching noise is kept away from external connectors, reducing EMI problems.  
The recommended implementation is to break the VCC plane into two sections. The digital section  
supplies power to the VCCD and VCCIO pins of the LXT9785/9785E. The analog section supplies  
power to the VCCA pins. The break between the two planes should run underneath the device. In  
designs with more than one the LXT9785/9785E, a single continuous analog VCC plane can be  
used to supply them all.  
The digital and analog VCC planes should be joined at one or more points by ferrite beads. The  
beads should produce at least a 100impedance at 100 MHz. Beads should be placed so that  
current flow is evenly distributed. The maximum current rating of the beads should be at least  
150% of the current that is actually expected to flow through them. A bulk cap (2.2 -10µF) should  
be placed on each side of each bead.  
In addition, a high-frequency bypass cap (0.01uF) should be placed near each analog VCC pin.  
3.2.2  
Power and Ground Plane Layout Considerations  
Great care needs to be taken when laying out the power and ground planes.  
Follow the guidelines in the LXT9785 Design and Layout Guide (formerly Application Note  
151) for locating the split between the digital and analog VCC planes.  
Keep the digital VCC plane away from the TPFOP/N and TPFIP/N signals, the magnetics, and  
the RJ-45 connectors.  
Place the layers so that the TPFOP/N and TFPIP/N signals can be routed near or next to the  
ground plane. For EMI reasons, it is more important to shield TPFOP/N than TPFIP/N.  
3.2.2.1  
Chassis Ground  
For ESD reasons, it is a good design practice to create a separate chassis ground that encircles the  
board and is isolated via moats and keep-out areas from all circuit-ground planes and active  
signals. Chassis ground should extend from the RJ-45 connectors to the magnetics, and can be used  
to terminate unused signal pairs (Bob Smith termination). In single-point grounding applications,  
provide a single connection between chassis and circuit grounds with a 2kV isolation capacitor. In  
multi-point grounding schemes (chassis and circuit grounds joined at multiple points), provide 2kV  
isolation to the Bob Smith termination.  
3.2.3  
MII Terminations  
Series termination resistors are required on all the SS-SMII output signals driven by the LXT9785/  
9785E. Special trace layout consideration should be used when using the SMII interface. Keep all  
traces orthogonal and as short as possible. Whenever possible, route the clock and sync traces  
evenly between the longest and shortest data routes. This minimizes round-trip, clock-to-data  
delays and allows a larger margin to the setup and hold requirements.  
3.2.4  
Twisted-Pair Interface  
Use the following standard guidelines for a twisted-pair interface:  
96  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Place the magnetics as close as possible to the LXT9785/9785E.  
Keep transmit pair traces as short as possible; both traces should have the same length.  
Avoid vias and layer changes as much as possible.  
Keep the transmit and receive pairs apart to avoid cross-talk.  
Route the transmit pair adjacent to a ground plane. The optimum arrangement is to place the  
transmit traces two to three layers from the ground plane, with no intervening signals.  
Improve EMI performance by filtering the TPO center tap. A single ferrite bead rated at 400  
mA may be used to supply center tap current to all ports.  
3.2.4.1  
Magnetic Requirements  
The LXT9785/9785E requires a 1:1 ratio for both the receive transformers and the transmit  
transformers. The transmit isolation voltage should be rated at 1.5 kV to protect the circuitry from  
static voltages across the connectors and cables. The LXT9785/9785E is a current driven  
transceiver that requires an external voltage (center tap) to drive the transmit signal. In order to  
support the Auto-MDIX functionality of the LXT9785/9785E, the magnetic must provide a center  
tap for both the transmit and receive magnetic winding, with both connected to VCCT. See the  
LXT9785/9785E Design and Layout Guide (249509-001) for magnetic testing with the LXT9785/  
9785E. Before committing to a specific component, designers should contact the manufacturer for  
current product specifications, and validate the magnetics for the specific application. Table 26  
provides the magnetics requirements.  
Table 26. Magnetics Requirements  
Parameter  
Min  
Nom  
Max  
Units  
Test Condition  
Rx turns ratio  
1:1  
1:1  
0.6  
Tx turns ratio  
Insertion loss  
0.0  
350  
1.1  
dB  
µH  
kV  
Primary inductance  
Transformer isolation  
2
Differential to common mode  
rejection  
40  
dB  
.1 to 60 MHz  
35  
-16  
-10  
dB  
dB  
dB  
60 to 100 MHz  
30 MHz  
Return Loss  
80 MHz  
3.2.5  
The Fiber Interface  
The fiber interface consists of an LVPECL transmit and receive pair to an external fiber optic  
transceiver. 3.3V fiber optic transceivers and 5V fiber optic transceivers can be used with the  
LXT9785/9785E. The transmit pair should always be AC-coupled to the transceiver, and re-biased  
appropriately. The receive pair should be DC-coupled to a 3.3V fiber optic transceiver, and AC-  
coupled and re-biased to a 5V fiber optic transceiver. The signal detect pin can be DC-coupled to a  
3.3V fiber optic transceiver. In 5V fiber optic transceiver applications, a PECL-to-LVPECL logic  
translator is required on the signal detect pin. Refer to the fiber transceiver manufacturers  
recommendations for termination circuitry. Figure 37, Typical LXT9785/9785E to 3.3V Fiber  
Transceiver Interface Circuitryon page 101 shows a typical example of an LXT9785/9785E-to-  
3.3V fiber transceiver interface. Figure 38, Typical LXT9785/9785E to 5V Fiber Transceiver  
Datasheet  
97  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Interface Circuitryon page 102 shows a typical example of an LXT9785-to-5V fiber transceiver  
interface, and Figure 39, ON Semiconductor Triple PECL-to-LVPECL Translatoron page 103  
shows the interface circuitry for the logic translator.  
3.2.6  
LED Circuit  
Each Direct Drive LED has a corresponding open-drain pin. The LEDs are connected via a current-  
limiting resistor to a positive-voltage rail. The LEDs are turned on when the output pin drives Low.  
The open-drain LED pins are 5V tolerant, allowing use of either a 3.3V or 5V rail (a 2.5V rail is  
unlikely to work with standard forward voltage LEDs). A 5V rail eases LED component selection  
by allowing more common, high-forward voltage LEDs to be used. Refer to Figure 34 for a circuit  
illustration.  
Figure 34. LED Circuit  
VLED  
R
LEDn_m  
Outside  
IC  
Inside  
IC  
VCCIO VLED  
5.0V + 5%  
98  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
3.3  
Typical Application Circuits  
Figure 35 through Figure 38 on page 102 show typical application circuits for the LXT9785/  
9785E. Figure 39 on page 103 shows the interface circuitry for the logic translator.  
Figure 35. Power and Ground Supply Connections  
SGND  
GNDR/GNDT  
0.01µF  
VCCR/VCCT  
10µF  
+
Analog Supply Plane  
Ferrite  
Bead  
LXT9785/9785E  
Digital Supply Plane  
10µF  
+2.5V  
VCCD  
GNDD  
VCCIO  
0.01µF  
0.01µF  
+ 2.5V  
or +3.3V  
+2.5V  
or +3.3V  
VCCPECL  
GNDPECL  
0.1µF  
Datasheet  
99  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 36. Typical Twisted-Pair Interface  
TPFOP  
RJ-45  
1:1  
1:1  
1
2
3
4
5
6
7
8
1
TPFON  
TPFIP  
50 Ω  
50 Ω  
50 Ω  
LXT9785/9785E  
50 Ω  
50 Ω  
2
50 Ω  
TPFIN  
.01 µF  
* = 0.001 µF /  
2.0 kV  
* = 0.001 µF /  
2.0 kV  
VCCT  
GNDA  
.01µF  
0.1µF  
1. The 100transmit load termination resistor typically required is integrated in the LXT9785/  
9785E.  
2. The 100receive load termination resistor typically required is integrated in the LXT9785/9785E.  
100  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 37. Typical LXT9785/9785E to 3.3V Fiber Transceiver Interface Circuitry  
+3.3V  
+2.5V +2.5V  
0.01µF  
0.1µF  
0.01µF  
1.3kΩ 1.3kΩ  
27Ω  
50Ω  
− 0.1µF  
50Ω  
0.01 µF  
TPFONn  
TPFOPn  
TD -  
TD +  
0.01 µF  
2kΩ  
2kΩ  
Fiber Txcvr  
LXT9785  
+3.3V  
130Ω  
SD/TPn  
SD  
1
82Ω  
RD -  
TPFINn  
TPFIPn  
RD +  
130Ω 130Ω  
2D_2P5V  
GNDPECL  
3.3V  
VCCPECL  
1. Refer to the transceiver manufacturersrecommendations for termination circuitry.  
Datasheet  
101  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 38. Typical LXT9785/9785E to 5V Fiber Transceiver Interface Circuitry  
+5V  
+2.5V  
+2.5V  
0.01µF  
− 0.1µF  
0.01µF  
− 0.1µF  
27Ω  
1.1kΩ  
1.1kΩ  
50Ω  
50Ω  
0.01µF  
0.01µF  
TD -  
TPFONn  
TPFOPn  
TD +  
3.1kΩ  
3.1kΩ  
Fiber Txcvr  
LXT9785  
2
ON Semiconductor  
MC100LVEL92  
SD/TPn  
SD  
PECL-to-LVPECL  
Logic Translator  
+2.5V  
1
0.01µF  
− 0.1µF  
169Ω 169Ω  
0.01µF  
0.01µF  
RD -  
TPFINn  
TPFIPn  
RD +  
158Ω 158Ω  
130Ω 130Ω  
2D_2P5V  
GNDPECL  
3.3V  
VCCPECL  
1. Refer to the transceiver manufacturersrecommendations for termination circuitry.  
2. See Figure 39 on page 103 for recommended logic translator interface circuitry.  
102  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 39. ON Semiconductor Triple PECL-to-LVPECL Translator  
5V  
0.01 µF  
0.01 µF  
5V  
3.3V  
ON Semiconductor  
Vcc  
82Ω  
130Ω  
82Ω  
1
2
3
Vcc  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PECL Input  
Signal  
(5V Fiber  
Txcvr)  
LVPECL  
Output Signal  
(LXT9785)  
D0  
__  
D0  
Q0  
__  
Q0  
130Ω  
VBB PECL  
4
5
6
LVCC  
3.3V  
D1  
__  
D1  
Q1  
__  
Q1  
VBB PECL  
7
LVCC  
D2  
__  
D2  
Q2  
__  
Q2  
8
9
0.01 µF  
3.3V  
130Ω  
GND  
Vcc  
10  
MC100LVEL92  
82Ω  
Datasheet  
103  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
4.0  
Test Specifications  
Note: Table 27 through Table 56 and Figure 40 through Figure 63 represent the target specifications of  
the LXT9785/9785E. These specifications are not guaranteed and are subject to change without  
notice. Minimum and maximum values listed in Table 29 through Table 56 apply over the  
recommended operating conditions specified in Table 28.  
Table 27. Absolute Maximum Ratings  
Parameter  
Sym  
Min  
Max  
Units  
VCCIO, VCCPECL  
VCCA, VCCD  
TST  
-0.3  
-0.3  
-65  
4.0  
3.0  
V
V
Supply voltage  
Storage temperature  
+150  
ºC  
Caution: Exceeding these values may cause permanent damage. Functional operation under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 28. Operating Conditions  
1
1
Typ  
Typ  
Parameter  
Sym  
Min  
Max  
Units  
(2.5 VCCIO)  
(3.3 VCCIO)  
Ambient  
TOPA  
TOPC  
TOPA  
TOPC  
0
0
70  
108  
85  
ºC  
ºC  
Commercial Operating  
Temperature  
Case  
Ambient  
-40  
-40  
2.38  
2.38  
3.14  
2.38  
ºC  
Extended Operating  
Temperature  
Case  
123  
2.63  
3.46  
3.46  
2.63  
810  
160  
410  
200  
765  
90  
ºC  
Analog & Digital  
I/O  
Vcca, Vccd  
Vccio  
2.5  
2.5  
N/A  
2.5  
2.5  
3.3  
3.3  
N/A  
V
V
Supply voltage2  
I/O (SD_2P5V = 0)  
I/O (SD_2P5V = 1)  
V
VCCPECL  
V
ICC  
ICCIO  
ICC  
780  
380  
710  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
100BASE-TX  
100BASE-FX  
60  
90  
30  
2
130  
170  
70  
3
ICCIO  
ICC  
Operating Current - RMII 10BASE-T  
ICCIO  
ICC  
20  
Power-Down Mode  
Hardware  
ICCIO  
ICC  
4
500  
540  
4
Auto-Negotiation  
ICCIO  
2
4
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Voltages with respect to ground unless otherwise specified.  
104  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 28. Operating Conditions (Continued)  
1
1
Typ  
Typ  
Parameter  
Sym  
Min  
Max  
Units  
(2.5 VCCIO)  
(3.3 VCCIO)  
ICC  
800  
380  
740  
50  
830  
160  
410  
200  
770  
130  
50  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
100BASE-TX  
100BASE-FX  
10BASE-T  
ICCIO  
ICC  
70  
90  
60  
3
130  
170  
110  
5
ICCIO  
ICC  
Operating Current - SMII  
ICCIO  
ICC  
Power-Down Mode  
Hardware  
ICCIO  
ICC  
5
520  
800  
380  
740  
30  
570  
30  
Auto-Negotiation  
100BASE-TX  
100BASE-FX  
10BASE-T  
ICCIO  
ICC  
20  
90  
90  
90  
3
30  
835  
200  
410  
200  
770  
180  
40  
ICCIO  
ICC  
170  
170  
150  
5
ICCIO  
ICC  
Operating Current -  
SS-SMII  
ICCIO  
ICC  
Power-Down Mode  
Hardware  
ICCIO  
ICC  
5
530  
570  
80  
Auto-Negotiation  
ICCIO  
50  
70  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Voltages with respect to ground unless otherwise specified.  
Table 29. Digital I/O DC Electrical Characteristics (VCCIO = 2.5V +/- 5%)  
1
Parameter  
Input Low voltage  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
1.75  
-100  
0.75  
V
V
Input High voltage  
Input current  
II  
100  
0.2  
0.5  
µA  
V
0.0 < VI < VCC  
IOL = 4 mA  
IOL = 10 mA  
IOH = -4 mA  
Output Low voltage  
VOL  
Output Low voltage (LEDm_n pins)  
Output High voltage  
VOL-LED  
VOH  
V
2.07  
V
Input Low voltage SD pins  
Input High voltage SD pins  
VIL-SD  
VIH-SD  
0.755  
V
1.58  
V
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Datasheet  
105  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 30. Digital I/O DC Electrical Characteristics (VCCIO = 3.3V +/- 5%)  
1
Parameter  
Input Low voltage  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
2.0  
-100  
0.8  
V
V
Input High voltage  
Input current  
II  
100  
0.2  
0.5  
µA  
V
0.0 < VI < VCC  
IOL = 4 mA  
IOL = 10 mA  
IOH = -4 mA  
Output Low voltage  
VOL  
Output Low voltage (LEDm_n pins)  
Output High voltage  
VOL-LED  
VOH  
V
2.4  
V
Input Low voltage SD pins  
Input High voltage SD pins  
VIL-SD  
VIH-SD  
1.515  
V
2.42  
V
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 31. Required Clock Characteristics  
2
Parameter  
SMII Input frequency  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
f
f
125  
50  
MHz  
MHz  
ppm  
%
RMII Input frequency  
Input clock frequency tolerance1  
Input clock duty cycle1  
f  
Tdc  
± 50  
65  
35  
50  
RMII selection  
Input clock duty cycle - REFCLK,  
TxCLK1  
Tdc  
Tdc  
40  
45  
50  
50  
60  
55  
%
%
SMII/SS-SMII selection  
SS-SMII only  
Output RxCLK duty cycle  
1. Parameter is guaranteed by design; not subject to production testing.  
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 32. 100BASE-TX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Peak differential output voltage  
Signal amplitude symmetry  
Signal rise/fall time  
VP  
Vss  
trf  
0.95  
98  
3
1.05  
102  
5
V
Note 2  
Note 2  
Note 2  
Note 2  
%
ns  
ns  
Rise/fall time symmetry  
trfs  
0.5  
Offset from 16 ns pulse width at  
50% of pulse peak  
Duty cycle distortion  
Overshoot  
+/- 0.5  
5
ns  
%
VO  
Jitter magnitude (measured  
differentially)  
ttx-jit  
1.4  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Measured at the line side of the transformer, line replaced by 100(+/-1%) resistor.  
106  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 33. 100BASE-FX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
Peak differential output voltage  
(single ended)  
VOP  
trf  
0.6  
1.44  
V
Signal rise/fall time  
1.6  
1.4  
ns  
ns  
10 to 90%, 2.0 pF load  
Jitter magnitude (measured  
differentially)  
ttx-jit  
Receiver  
Peak differential input voltage  
Common mode input range  
VIP  
0.55  
V
V
VCMIR  
VCC - 0.5  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 34. 10BASE-T Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
Peak differential output voltage  
Link transmit period  
VOP  
2.2  
8
2.5  
2.8  
V
Note 2  
24  
11  
ms  
Jitter magnitude added by the  
MAU and PLS sections 3, 4  
ttx-jit  
ns  
Receiver  
Receive input impedance3  
Link min receive timer  
ZIN  
2
100  
7
W
ms  
Between TPFIP and TPFIN  
TLRmin  
TLRmax  
VDS  
Link max receive timer  
50  
150  
ms  
Differential squelch threshold  
475  
mV Peak  
5 MHz square wave input  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Parameter is guaranteed by design; not subject to production testing.  
3. IEEE 802.3 specifies maximum jitter addition at 1.5 ns for the AUI cable, 0.5 ns from the encoder, and 3.5 ns from the MAU.  
4. After line model specified by IEEE 802.3 for 10BASE-T MAU.  
Datasheet  
107  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 40. SMII - 100BASE-TX Receive Timing  
REFCLK  
t5  
t6  
SYNC  
RxData  
TPFI  
t1  
t2  
t3  
t4  
Table 35. SMII - 100BASE-TX Receive Timing Parameters  
1
Parameter  
Sym  
Min Typ  
Max Units  
Test Conditions  
RxData output delay from REFCLK  
rising edge  
Minimum CL = 5 pF  
Maximum CL = 20 pF  
t1  
t2  
t3  
1.5  
5
ns  
ns  
RxData Rise/Fall Time  
1.0  
21  
Synchronous sampling of  
SMII  
Receive start of /J/ to CRS asserted  
29  
BT2  
Receive start of /T/ to CRS de-  
asserted  
Synchronous sampling of  
SMII  
t4  
25  
30  
BT2  
SYNC setup to REFCLK rising edge  
SYNC hold from REFCLK rising edge  
t5  
t6  
1.5  
1.0  
ns  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
108  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 41. SMII - 100BASE-TX Transmit Timing  
REFCLK  
t1  
t2  
SYNC  
t1  
t2  
TxData  
t3  
TPFO  
Table 36. SMII - 100BASE-TX Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
SYNC setup to REFCLK rising edge and  
TxData setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold from REFCLK rising edge and  
TxData hold from REFCLK rising edge  
t2  
t3  
1.0  
ns  
TxEN sampled to start of /J/  
11  
14  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
109  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 42. SMII - 100BASE-FX Receive Timing  
REFCLK  
t5  
t6  
SYNC  
RxData  
TPFI  
t1  
t2  
t3  
t4  
Table 37. SMII - 100BASE-FX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
RxData output delay from REFCLK  
rising edge  
Minimum CL = 5 pF  
Maximum CL = 20 pF  
t1  
t2  
t3  
1.5  
1
5
ns  
ns  
RxData Rise/Fall Time  
Synchronous  
sampling of SMII  
Receive start of /J/ to CRS asserted  
18  
26  
BT2  
Receive start of /T/ to CRS de-  
asserted  
Synchronous  
sampling of SMII  
t4  
23  
27  
BT2  
SYNC setup to REFCLK rising edge  
SYNC hold from REFCLK rising edge  
t5  
t6  
1.5  
1.0  
ns  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
110  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 43. SMII - 100BASE-FX Transmit Timing  
REFCLK  
t1  
t2  
SYNC  
t1  
t2  
TxData  
t3  
TPFO  
Table 38. SMII - 100BASE-FX Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
SYNC setup to REFCLK rising edge and  
TxData setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold from REFCLK rising edge  
and TxData hold from REFCLK rising  
edge  
t2  
t3  
1.0  
ns  
TxEN sampled to start of /J/  
10  
13  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
111  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 44. SMII - 10BASE-T Receive Timing  
REFCLK  
t5  
t6  
SYNC  
t1  
t2  
RxData  
t3  
t4  
TPFI  
Table 39. SMII - 10BASE-T Receive Timing Parameters  
1
Parameter  
Sym  
t1  
Min  
Typ  
Max  
Units  
Test Conditions  
RxData output delay from  
REFCLK rising edge  
Minimum CL = 5 pF  
Maximum CL = 20 pF  
1.5  
5
ns  
RxData Rise/Fall Time  
t2  
t3  
1
ns  
Receive Start-of-Frame to CRS  
asserted  
17  
18  
BT3  
Synchronous sampling of SMII2  
Receive Start-of-Idle to CRS  
de-asserted  
t4  
t5  
t6  
17  
18  
BT3  
ns  
Synchronous sampling of SMII2  
SYNC setup to REFCLK rising  
edge  
1.5  
1.0  
SYNC hold from REFCLK rising  
edge  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Assumes each SMII segment is sampled for CRS.  
3. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
112  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 45. SMII - 10BASE-T Transmit Timing  
REFCLK  
t1  
t2  
SYNC  
t1  
t2  
TxData  
t3  
TPFO  
Table 40. SMII-10BASE-T Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
SYNC setup to REFCLK rising edge and  
TxData setup to REFCLK rising edge  
t1  
1.5  
ns  
SYNC hold to REFCLK rising edge and  
TxData hold from REFCLK rising edge  
t2  
t3  
1.0  
ns  
TxEN sampled to start-of-frame  
10  
12.5  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
113  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 46. SS-SMII - 100BASE-TX Receive Timing  
REFCLK  
t1  
RxCLK  
t2  
RxSYNC  
t3  
t3  
t3  
RxData  
t4  
t5  
TPFI  
Table 41. SS-SMII - 100BASE-TX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
REFCLK rising edge to RxCLK  
rising edge  
t1  
1.5  
ns  
RxData/RxSYNC output delay  
from RxCLK rising edge  
Minimum CL = 5pF  
Maximum CL = 40pF  
t2  
t3  
t4  
1.5  
5
ns  
ns  
RxData/RxSYNC Rise/Fall time  
1.0  
21  
Receive start of /J/ to CRS  
asserted  
25  
BT2  
Receive start of /T/ to CRS  
de-asserted  
t5  
25  
30  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
114  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 47. SS-SMII - 100BASE-TX Transmit Timing  
TxCLK  
t1  
t2  
TxSYNC  
TxData  
t1  
t2  
t3  
TPFO  
Table 42. SS-SMII - 100BASE-TX Transmit Timing  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxSYNC setup to TxCLK rising edge and  
TxData setup to TxCLK rising edge  
t1  
1.5  
ns  
TxSYNC hold from TxCLK rising edge and  
TxData hold to TxCLK rising edge  
t2  
t3  
1.0  
ns  
TxEN sampled to start of /J/  
11  
14  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
115  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 48. SS-SMII - 100BASE-FX Receive Timing  
REFCLK  
t1  
RxCLK  
t2  
RxSYNC  
t3  
t3  
t3  
RxData  
t4  
t5  
TPFI  
Table 43. SS-SMII - 100BASE-FX Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
REFCLK rising edge to RxCLK rising edge  
t1  
1.5  
ns  
RxData/RxSYNC output delay from RxCLK  
rising edge  
Minimum CL = 5pF  
Maximum CL = 40pF  
t2  
1.5  
5
ns  
RxData/RxSYNC Rise/Fall time  
t3  
t4  
t5  
1
ns  
Receive start of /J/ to CRS asserted  
Receive start of /T/ to CRS de-asserted  
18  
21  
23  
26  
BT2  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
116  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 49. SS-SMII - 100BASE-FX Transmit Timing  
TxCLK  
t1  
t2  
TxSYNC  
TxData  
t1  
t2  
t3  
TPFO  
Table 44. SS-SMII - 100BASE-FX Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
TxSYNC setup to TxCLK rising edge and  
TxData setup to TxCLK rising edge  
t1  
1.5  
ns  
TxSYNC hold from TxCLK rising edge and  
TxData hold to TxCLK rising edge  
t2  
t3  
1.0  
ns  
TxData to TPFO Latency  
11  
13  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
117  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 50. SS-SMII - 10BASE-T Receive Timing  
REFCLK  
t1  
RxCLK  
t2  
RxSYNC  
t3  
RxData  
t4  
t5  
TPFI  
Table 45. SS-SMII - 10BASE-T Receive Timing Parameters  
1
Parameter  
Sym  
Min Typ  
Max Units  
Test Conditions  
REFCLK rising edge to RxCLK rising  
edge  
t1  
1.5  
ns  
RxData/RxSYNC output delay from  
RxCLK rising edge  
Minimum CL = 5pF  
Maximum CL = 40pF  
t2  
t3  
t4  
1.5  
1
5
ns  
ns  
RxData/RxSYNC Rise/Fall time  
Synchronous sampling of  
SMII2  
Receive Start-of-Frame to CRS asserted  
10  
11  
BT3  
Synchronous sampling of  
SMII2  
Receive Start-of-Idle to CRS de-asserted  
t5  
18  
19  
BT3  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. Assumes each SMII segment is sampled for CRS.  
3. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
118  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 51. SS-SMII - 10BASE-T Transmit Timing  
TxCLK  
t1  
t2  
TxSYNC  
TxData  
t1  
t2  
t3  
TPFO  
Table 46. SS-SMII - 10BASE-T Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxSYNC setup to TxCLK rising edge and  
TxData setup to TxCLK rising edge  
t1  
1.5  
ns  
TxSYNC hold to TxCLK rising edge and TxData  
hold from TxCLK rising edge  
t2  
t3  
1.0  
ns  
TxData to TPFO Latency  
10  
12.5  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
119  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 52. RMII - 100BASE-TX Receive Timing  
REFCLK  
t1 t2  
RxData[1:0]  
TPFI  
t3  
t4  
CRS_DV  
Table 47. RMII - 100BASE-TX Receive Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
RxData<1:0>, CRS_DV, RXER setup to REFCLK  
rising edge3  
t1  
t2  
2
2
14  
14  
ns  
ns  
RxData<1:0>, CRS_DV, RXER hold from REFCLK  
rising edge3  
Receive start of /J/ to CRS_DV asserted  
Receive start of /T/ to CRS_DV de-asserted  
t3  
t4  
16  
20  
20  
27  
BT2  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
3. Values and conditions from RMII Specification, Rev. 1.2.  
120  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 53. RMII - 100BASE-TX Transmit Timing  
REFCLK  
t1  
t2  
TxData(1:0)  
TPFO  
t1  
t3  
t2  
TxEN  
Table 48. RMII - 100BASE-TX Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxData<1:0>/TxEN setup to REFCLK rising  
edge  
t1  
4
ns  
TxData<1:0>/TxEN hold from REFCLK rising  
edge  
t2  
t3  
2
ns  
TxEN sampled to TPFO out (Tx latency)  
12  
13  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
121  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 54. RMII - 100BASE-FX Receive Timing  
REFCLK  
t1  
t2  
RxData[1:0]  
TPFI  
t3  
t4  
CRS_DV  
Table 49. RMII - 100BASE-FX Receive Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
RxData<1:0>, CRS_DV, RXER setup to  
REFCLK rising edge3  
t1  
t2  
2
2
14  
14  
ns  
ns  
RxData<1:0>, CRS_DV, RXER hold from  
REFCLK rising edge3  
Receive start of /J/ to CRS_DV asserted  
Receive start of /T/ to CRS_DV de-asserted  
t3  
t4  
14  
18  
18  
25  
BT2  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
3. Values and conditions from RMII Specification, Rev. 1.2.  
122  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 55. RMII - 100BASE-FX Transmit Timing  
REFCLK  
t1  
t2  
TxData(1:0)  
TPFO  
t1  
t3  
t2  
TxEN  
Table 50. RMII - 100BASE-FX Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxData<1:0>/TxEN setup to REFCLK rising edge  
t1  
t2  
t3  
4
2
ns  
ns  
TxData<1:0>/TX-EN hold from REFCLK rising  
edge  
TxEN sampled to TPFO out (Tx latency)  
10  
12  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
123  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 56. RMII - 10BASE-T Receive Timing  
REFCLK  
t1 t2  
RxData[1:0]  
TPFI  
t3  
t4  
CRS_DV  
Table 51. RMII - 10BASE-T Receive Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
RxData<1:0>, CRS_DV setup to REFCLK rising  
edge3  
t1  
t2  
2
2
14  
14  
ns  
ns  
RxData<1:0>, CRS_DV hold from REFCLK rising  
edge3  
TPFI in to CRS_DV asserted  
t3  
t4  
1.5  
14  
3
4
BT2  
BT2  
TPFI quiet to CRS_DV de-asserted  
15  
16  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
3. Values and conditions from RMII Specification, Rev. 1.2.  
124  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 57. RMII - 10BASE-T Transmit Timing  
REFCLK  
t1  
t2  
TxData(1:0)  
TPFO  
t1  
t3  
t2  
TxEN  
Table 52. RMII - 10BASE-T Transmit Timing Parameters  
Test  
Conditions  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
TxData<1:0>/TxEN setup to REFCLK rising  
edge  
t1  
4
ns  
TxData<1:0>/TxEN hold from REFCLK rising  
edge  
t2  
t3  
2
ns  
TxEN sampled to TPFO out (Tx latency)  
8.5  
10.5  
BT2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
2. BTsignifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-  
TX or 100BASE-FX).  
Datasheet  
125  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 58. Auto-Negotiation and Fast Link Pulse Timing  
Clock Pulse  
Data Pulse  
Clock Pulse  
TPFOP  
t1  
t1  
t3  
t2  
Figure 59. Fast Link Pulse Timing  
FLP Burst  
FLP Burst  
TPFOP  
t4  
t5  
Table 53. Auto-Negotiation and Fast Link Pulse Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Clock/Data pulse width  
Clock pulse to Data pulse  
Clock pulse to Clock pulse  
FLP burst width  
t1  
t2  
t3  
t4  
t5  
55.5  
111  
100  
69.5  
139  
ns  
µs  
µs  
2
ms  
ms  
ea  
FLP burst to FLP burst  
Clock/Data pulses per burst  
8
24  
17  
33  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production  
testing.  
Datasheet  
126  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 60. MDIO Write Timing (MDIO Sourced by MAC)  
MDC  
t2  
t1  
MDIO  
Figure 61. MDIO Read Timing (MDIO Sourced by PHY)  
MDC  
t3  
MDIO  
Table 54. MDIO Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
MDIO setup before MDC, sourced by  
STA  
t1  
10  
ns  
MDIO hold after MDC,  
sourced by STA  
t2  
t3  
10  
0
ns  
ns  
MDC to MDIO output delay, sourced  
by PHY  
40  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production  
testing.  
Datasheet  
127  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 62. Power-Up Timing  
v1  
VCC  
tPDR  
MDIO,etc  
Table 55. Power-Up Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Voltage Threshold  
v1  
2.1  
V
Power-Up recovery time  
tPDR  
100  
ms  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production  
testing.  
Figure 63. Reset Recovery Timing  
tPW  
RESET  
tRcdly  
MDIO,etc  
Table 56. Reset Recovery Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Reset pulse width  
tPW  
10  
ns  
Reset recovery delay  
tRcdly  
0.4  
ms  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production  
testing.  
128  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
5.0  
Register Definitions  
The LXT9785/9785E register set includes multiple 16-bit registers, 17 registers per port. Table 57  
presents a complete register listing. Table 58 through Table 73 define individual registers and  
Table 76 provides a consolidated memory map of all registers.  
Base registers (0 through 8) are defined in accordance with the Reconciliation Sublayer and  
Media Independent Interfaceand Physical Layer Link Signalling for 10/100 Mbps Auto-  
Negotiationsections of the IEEE 802.3 standard.  
Additional registers (16 through 20) are defined in accordance with the IEEE 802.3 standard for  
adding unique chip functions.  
Table 57. Register Set  
Address  
Register Name  
Bit Assignments  
0
1
Control Register  
Status Register  
Refer to Table 58 on page 130  
Refer to Table 59 on page 131  
Refer to Table 60 on page 132  
Refer to Table 61 on page 132  
Refer to Table 62 on page 133  
Refer to Table 63 on page 134  
Refer to Table 64 on page 135  
Refer to Table 65 on page 135  
2
PHY Identification Register 1  
3
PHY Identification Register 2  
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Base Page Ability Register  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page Transmit Register  
5
6
7
8
Auto-Negotiation Link Partner Next Page Receive Register Refer to Table 66 on page 136  
9
1000BASE-T/100BASE-T2 Control Register  
1000BASE-T/100BASE-T2 Status Register  
Extended Status Register  
Port Configuration Register  
Quick Status Register  
Not Implemented  
10  
15  
16  
17  
18  
19  
20  
21  
22  
23 - 24  
25  
26  
27  
28-31  
Not Implemented  
Not Implemented  
Refer to Table 67 on page 137  
Refer to Table 68 on page 138  
Refer to Table 69 on page 139  
Refer to Table 70 on page 140  
Refer to Table 71 on page 141  
Refer to Table 72 on page 142  
Interrupt Enable Register  
Interrupt Status Register  
LED Configuration Register  
Receive Error Count Register  
Reserved  
Reserved-Analog Status Register  
RMII Out-of-Band Signalling Register  
Reserved-Analog Status Register  
Trim Enable Register  
Refer to Table 73 on page 143  
Refer to Table 74 on page 144  
Reserved  
Datasheet  
129  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 58. Control Register (Address 0)  
Bit  
Name  
Description  
Type 2  
Default  
1 = PHY reset  
R/W  
SC  
0.15  
RESET  
01  
0 = normal operation  
1 = Enable loopback mode  
0 = Disable loopback mode  
0.14  
0.13  
Loopback  
R/W  
0
0.6 0.13  
1
1
0
0
1 = Reserved  
0 = 1000 Mbps (not allowed)  
1 = 100 Mbps  
Speed Selection  
R/W  
LSHR3,4  
0 = 10 Mbps  
1 = Enable Auto-Negotiation Process  
0 = Disable Auto-Negotiation Process  
Auto-Negotiation  
Enable  
0.12  
R/W  
LSHR3,4  
1 = power-down  
0 = normal operation  
0.11  
0.10  
Power-Down  
Isolate  
R/W  
R/W  
0
0
1 = Electrically isolate PHY from RMII or SMII interface  
0 = normal operation  
Restart  
R/W  
SC  
1 = Restart Auto-Negotiation Process  
0 = normal operation  
0.9  
0.8  
01  
Auto-Negotiation  
1 = Full Duplex  
0 = Half Duplex  
Duplex Mode  
Collision Test  
R/W  
R/W  
LSHR3,4  
This bit is ignored by the LXT9785/9785E  
0.7  
0
1 = Enable COL signal test  
0 = Disable COL signal test  
0.6 0.13  
1
1
0
0
1 = Reserved  
0 = 1000 Mbps (not allowed)  
1 = 100 Mbps  
Speed Selection  
1000 Mbps  
0.6  
R/W  
R/W  
0
0 = 10 Mbps  
0.5:0  
Reserved  
Write as 0, ignore on Read  
00000  
1. During a hardware reset, all LHR information is latched in from the pins. During a software reset (0.15), the  
LHR information is not re-read from the pins. This information reverts back to the information that was read  
in during the hardware reset. During a hardware rest, register information is unavailable from 1 ms after de-  
assertion of the reset. During a software reset (0.15) the registers are available for reading. The reset bit  
should be polled to see when the part has completed reset.  
2. R/W = Read/Write, RO = Read Only, SC = Self Clearing when read.  
3. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
4. Default value of bits 0.12, 0.13, and 0.8 are determined by the CFG pins as described in Table 18 on  
page 63.  
130  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 59. Status Register (Address 1)  
Bit  
Name  
Description  
Type 1  
Default  
1 = PHY able to perform 100BASE-T4  
0 = PHY not able to perform 100BASE-T4  
1.15 100BASE-T4  
RO  
0
100BASE-X Full  
Duplex  
1 = PHY able to perform full-duplex 100BASE-X  
0 = PHY not able to perform full-duplex 100BASE-X  
1.14  
RO  
RO  
1
1
100BASE-X Half  
Duplex  
1 = PHY able to perform half-duplex 100BASE-X  
0 = PHY not able to perform half-duplex 100BASE-X  
1.13  
1 = PHY able to operate at 10 Mbps in full-duplex mode  
0 = PHY not able to operate at 10 Mbps full-duplex  
mode  
1.12 10 Mbps Full Duplex  
RO  
RO  
1
1
1 = PHY able to operate at 10 Mbps in half-duplex  
1.11 10 Mbps Half Duplex mode  
0 = PHY not able to operate at 10 Mbps in half-duplex  
100BASE-T2 Full  
Duplex  
1 = PHY able to perform full-duplex 100BASE-T2  
0 = PHY not able to perform full-duplex 100BASE-T2  
1.10  
1.9  
RO  
RO  
0
0
100BASE-T2 Half  
Duplex  
1 = PHY able to perform half duplex 100BASE-T2  
0 = PHY not able to perform half-duplex 100BASE-T2  
1 = Extended status information in Register 15  
0 = No extended status information in Register 15  
1.8  
1.7  
Extended Status  
Reserved  
RO  
RO  
0
0
1 = Ignore on read  
1 = PHY accepts management frames with preamble  
suppressed  
0 = PHY will not accept management frames with  
MF Preamble  
Suppression  
1.6  
RO  
0
preamble suppressed  
Auto-Negotiation  
complete  
1 = Auto-negotiation complete  
0 = Auto-negotiation not complete  
1.5  
1.4  
1.3  
1.2  
RO  
0
0
1
0
RO/LH  
Note 2  
1 = Remote fault condition detected  
0 = No remote fault condition detected  
Remote Fault  
Auto-Negotiation  
Ability  
1 = PHY is able to perform Auto-Negotiation  
0 = PHY is not able to perform Auto-Negotiation  
RO  
RO/LL  
Note 2  
1 = Link is up  
0 = Link is down  
Link Status  
RO/LH  
Note 2  
1 = Jabber condition detected  
0 = Jabber condition not detected  
1.1  
1.0  
Jabber Detect  
0
1
1 = Extended register capabilities  
0 = Basic register capabilities  
Extended Capability  
RO  
1. RO = Read Only  
2. Bits that Latch High (LH) or Latch Low (LL) automatically clear when read.  
Datasheet  
131  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 60. PHY Identification Register 1 (Address 2)  
Bit  
Name  
Description  
Type 1  
Default  
The PHY identifier composed of bits 3 through 18 of the  
OUI  
2.15:0 PHY ID Number  
1. RO = Read Only  
RO  
0013 hex  
Table 61. PHY Identification Register 2 (Address 3)  
Bit  
Name  
Description  
Type 1  
Default  
The PHY identifier composed of bits 19  
through 24 of the OUI  
3.15:10 PHY ID Number  
RO  
011110  
Manufacturers  
3.9:4  
6 bits containing manufacturers part number  
RO  
RO  
RO  
001111  
XXX  
(See Table 3 in  
Specification  
Update)  
Model Number  
Manufacturers  
3 bits containing manufacturers revision  
number  
3.3:1  
Revision  
Number  
0 = LXT9785  
1 = LXT9785E  
3.0  
Model Variant  
X
1. RO = Read Only  
Figure 64. PHY Identifier Bit Mapping  
a
1
r
s
x
b
2
c
Organizationally Unique Identifier  
18 19  
24  
3
0
0
1
3
9
3
I/G  
0
15  
0
0
1
15  
0
10  
4
0
PHY ID Register #1 (Address 2)  
PHY ID Register #2 (Address 3)  
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
1
1
1
1
0
X
X
X
X
X
X
X
X
X
X
0
0
0
2
B
7
5
0
3
1
0
00  
20  
7B  
Revision  
Number  
Manufacturers  
Model Number  
The Intel OUI is 00207B hex.  
Model  
Variant  
132  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 62. Auto-Negotiation Advertisement Register (Address 4)6  
Bit  
Name  
Description  
Type 1  
Default  
1 = Port has ability to send multiple pages  
0 = Port has no ability to send multiple pages  
4.15  
4.14  
4.13  
4.12  
4.11  
Next Page  
Reserved  
R/W  
RO  
0
0
0
0
0
Ignore on read  
1 = Remote fault  
0 = No remote fault  
Remote Fault  
Reserved  
R/W  
R/W  
R/W  
Ignore  
Asymmetric  
Pause  
Pause operation defined in Clause 40 and 27  
1 = Pause operation enabled for full-duplex links  
0 = Pause operation disabled  
4.10  
Pause5  
R/W  
LSHR2,3  
1 = 100BASE-T4 capability is available  
0 = 100BASE-T4 capability is not available  
(The LXT9785/9785E does not support 100BASE-T4 but  
allows this bit to be set to advertise in the Auto-Negotiation  
sequence for 100BASE-T4 operation. An external 100BASE-  
T4 transceiver could be switched in if this capability is  
desired.)  
4.9  
100BASE-T4  
R/W  
0
100BASE-TX 1 = Port is 100BASE-TX full duplex capable  
4.8  
4.7  
R/W  
R/W  
LSHR2,4  
LSHR2,4  
full duplex  
0 = Port is not 100BASE-TX full duplex capable.  
1 = Port is 100BASE-TX capable  
0 = Port is not 100BASE-TX capable  
100BASE-TX  
1 = Port is 10BASE-T full duplex capable  
0 = Port is not 10BASE-T full duplex capable  
10BASE-T  
full duplex  
4.6  
4.5  
R/W  
R/W  
LSHR2,4  
LSHR243  
1 = Port is 10BASE-T capable  
10BASE-T  
0 = Port is not 10BASE-T capable  
<00001> = IEEE 802.3  
<00010> = IEEE 802.9 ISLAN-16T  
Selector  
4.4:0 Field,  
S<4:0>  
<00000> = Reserved for future Auto-Negotiation development  
<11111> = Reserved for future Auto-Negotiation development  
Unspecified or reserved combinations should not be  
transmitted  
R/W  
00001  
1. R/W = Read/Write, RO = Read Only  
2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
3. The default setting of Register bit 4.10 is determined by the PAUSE pin.  
4. Default settings for bits 4.5:8 are determined by CFG pins as described in Table 18 on page 63.  
5. Pause operation is only valid for full-duplex modes.  
6. Restart Auto-Negotiation process whenever Register 4 is written/modified.  
Datasheet  
133  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 63. Auto-Negotiation Link Partner Base Page Ability Register (Address 5)  
Bit  
Name  
Description  
Type 1  
Default  
1 = Link Partner has ability to send multiple pages  
0 = Link Partner has no ability to send multiple pages  
5.15 Next Page  
RO  
0
1 = Link Partner has received Link Code Word from the  
LXT9785/9785E.  
0 = Link Partner has not received Link Code Word from the  
the LXT9785/9785E  
5.14 Acknowledge  
RO  
0
1 = Remote fault  
0 = No remote fault  
5.13 Remote Fault  
5.12 Reserved  
RO  
RO  
0
0
Ignore on read  
Pause operation defined in Clause 40 and 27  
Asymmetric  
Pause  
5.11  
RO  
0
1 = Link Partner is Pause capable  
0 = Link Partner is not Pause capable  
1 = Link Partner is Pause capable  
0 = Link Partner is not Pause capable  
5.10 Pause  
RO  
RO  
RO  
RO  
0
0
0
0
1 = Link Partner is 100BASE-T4 capable  
0 = Link Partner is not 100BASE-T4 capable  
5.9  
5.8  
5.7  
100BASE-T4  
100BASE-TX  
full duplex  
1 = Link Partner is 100BASE-TX full duplex capable  
0 = Link Partner is not 100BASE-TX full duplex capable  
1 = Link Partner is 100BASE-TX capable  
0 = Link Partner is not 100BASE-TX capable  
100BASE-TX  
10BASE-T  
full duplex  
1 = Link Partner is 10BASE-T full duplex capable  
0 = Link Partner is not 10BASE-T full duplex capable  
5.6  
5.5  
RO  
RO  
0
0
1 = Link Partner is 10BASE-T capable  
0 = Link Partner is not 10BASE-T capable  
10BASE-T  
<00001> = IEEE 802.3  
<00010> = IEEE 802.9 ISLAN-16T  
Selector Field  
S<4:0>  
5.4:0  
<00000> = Reserved for future Auto-Negotiation development  
<11111> = Reserved for future Auto-Negotiation development  
Unspecified or reserved combinations shall not be transmitted  
RO  
00000  
1. RO = Read Only  
134  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 64. Auto-Negotiation Expansion (Address 6)  
Bit  
Name  
Description  
Type 1  
Default  
6.15:6 Reserved  
Ignore on read  
RO  
0
This bit indicates the status of the Auto-Negotiation  
variable, base page. It flags synchronization with the Auto-  
Negotiation state diagram allowing detection of interrupted  
links. This bit is only used if Register bit 16.1 (Alternate NP  
feature) is set.  
RO/  
LH  
6.5  
Base Page  
Parallel  
0
1 = base_page = true  
0 = base_page = false  
1 = Parallel detection fault has occurred.  
Detection Fault 0 = Parallel detection fault has not occurred.  
RO/  
LH  
6.4  
6.3  
6.2  
0
0
1
Link Partner 1 = Link partner is next page able  
Next Page Able 0 = Link partner is not next page able  
RO  
RO  
1 = Local device is next page able  
Next Page Able  
0 = Local device is not next page able  
Indicates that a new page has been received and the  
received code word has been loaded into Register 5 or  
Register 8 as specified in clause 28 of 802.3.  
RO  
LH  
6.1  
6.0  
Page Received 1 = Three identical and consecutive link code words have  
been received from link partner  
0
0
0 = Three identical and consecutive link code words have  
not been received from link partner  
Link Partner A/ 1 = Link partner is auto-negotiation able  
RO  
N Able  
0 = Link partner is not auto-negotiation able  
1. RO = Read Only, LH = Latching High cleared when read  
Table 65. Auto-Negotiation Next Page Transmit Register (Address 7)  
Bit  
Name  
Description  
Type 1  
Default  
Next Page  
(NP)  
1 = Additional next pages follow  
0 = Last page  
7.15  
R/W  
RO  
0
0
1
7.14 Reserved  
Write as 0, ignore on read  
Message Page 1 = Message page  
7.13  
7.12  
R/W  
(MP)  
0 = Unformatted page  
Acknowledge 2 1 = Complies with message  
R/W  
R/W  
0
0
(ACK2)  
0 = Cannot comply with message  
1 = Previous value of the transmitted Link Code Word  
equalled logic zero  
0 = Previous value of the transmitted Link Code Word  
equalled logic one  
Toggle  
(T)  
7.11  
Message/  
7.10:0 Unformatted  
Code Field  
MP = 1: Code interpreted as message page”  
MP = 0: Code interpreted as unformatted page”  
R/W  
00000000001  
1. R/W = Read Write, RO = Read Only  
Datasheet  
135  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 66. Auto-Negotiation Link Partner Next Page Receive Register (Address 8)  
Bit  
Name  
Description  
Type 1  
Default  
Next Page  
1 = Link Partner has additional next pages to send  
0 = Link Partner has no additional next pages to send  
8.15  
RO  
0
(NP)  
1 = Link Partner has received Link Code Word from  
the LXT9785/9785E  
Acknowledge  
(ACK)  
8.14  
RO  
0
0 = Link Partner has not received Link Code Word  
from the LXT9785/9785E  
1 = Page sent by the Link Partner is a Message Page  
Message Page  
(MP)  
8.13  
8.12  
RO  
RO  
0
0
0 = Page sent by the Link Partner is an Unformatted  
Page  
Acknowledge 2  
(ACK2)  
1 = Link Partner complies with the message  
0 = Link Partner cannot comply with the message  
1 = Previous value of the transmitted Link Code Word  
equalled logic zero  
0 = Previous value of the transmitted Link Code Word  
Toggle  
(T)  
8.11  
RO  
RO  
0
equalled logic one  
Message/  
8.10:0 Unformatted  
MP = 1: Code interpreted as message page”  
MP = 0: Code interpreted as unformatted page”  
00000000000  
Code Field  
1. RO = Read Only  
136  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 67. Port Configuration Register (Address 16, Hex 10)  
Bit  
Name  
Reserved  
Description  
Write as 0, ignore on read  
Type 1  
Default  
16.15  
R/W  
0
1 = Force Link pass. Sets appropriate registers and LEDs  
16.14  
Link Disable  
to Pass.  
R/W  
0
0 = Normal operation  
1 = Disable Twisted-Pair transmitter  
0 = Normal Operation  
16.13  
16.12  
16.11  
16.10  
Transmit Disable  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Bypass Scramble 1 = Bypass Scrambler and Descrambler  
(100BASE-TX)  
0 = Normal Operation  
Bypass 4B5B  
(100BASE-TX)  
1 = Bypass 4B5B encoder and decoder  
0 = Normal Operation  
Jabber  
(10BASE-T)  
1 = Disable Jabber  
0 = Normal operation  
This bit is ignored by the LXT9785/9785E  
SQE  
(10BASE-T)  
16.9  
16.8  
R/W  
R/W  
0
1
1 = Enable Heart Beat  
0 = Disable Heart Beat  
TP Loopback  
(10BASE-T)  
1 = Disable TP loopback during half duplex operation  
0 = Normal Operation  
16.7  
16.6  
Reserved  
Reserved  
Write as one. Ignore on read.  
Write as zero. Ignore on read.  
R/W  
RW  
1
0
0 = No Preamble (default)  
10 Mbps  
0
1 = Preamble Enabled  
16.5  
Preamble Enable  
R/W  
100 Mbps Always enabled  
Write as zero. Ignore on read.  
Write as zero. Ignore on read.  
N/A  
0
16.4  
16.3  
Reserved  
Reserved  
R/W  
R/W  
0
Far End Fault  
Transmission  
Enable  
1 = Enable Far End Fault Transmission  
0 = Disable Far End Fault Transmission  
16.2  
R/W  
1
16.1  
16.0  
Reserved  
Write as zero. Ignore on read.  
R/W  
R/W  
0
1 = Select fiber mode for this port  
0 = Select TP mode for this port  
Fiber Select  
LSHR2,3  
1. R/W = Read/Write  
2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
3. The default value of Register bit 16.0 is determined by the G_FX/TP pin.  
If G_FX/TP is tied Low, the default value of Register bit 16.0 = 0. If G_FX/TP is not tied Low, the default  
value of Register bit 16.0 = 1.  
Datasheet  
137  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 68. Quick Status Register (Address 17, Hex 11)  
Bit  
Name  
Description  
Type 1  
Default  
17.15 Reserved  
Always 0  
RO  
0
1 = The LXT9785/9785E is operating in 100BASE-TX  
mode.  
17.14 10/100 Mode  
RO  
0
0 = The LXT9785/9785E is not operating 100BASE-TX  
mode.  
1 = The LXT9785/9785E is transmitting a packet  
0 = The LXT9785/9785E is not transmitting a packet  
RO  
LH  
17.13 Transmit Status  
17.12 Receive Status  
17.11 Collision Status  
17.10 Link  
0
0
0
0
0
0
1 = The LXT9785/9785E is receiving a packet  
0 = The LXT9785/9785E is not receiving a packet  
RO  
LH  
1 = Collision is occurring  
0 = No collision  
RO  
LH  
1 = Link is up  
0 = Link is down  
RO  
RO  
RO  
1 = Full duplex  
0 = Half duplex  
17.9  
17.8  
Duplex Mode  
1 = The LXT9785/9785E is in Auto-Negotiation Mode  
0 = The LXT9785/9785E is in manual mode  
Auto-Negotiation  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
Auto-Negotiation  
Complete  
17.7  
17.6  
RO  
0
0
This bit is only valid when auto-negotiate is enabled, and is  
equivalent to Register bit 1.5.  
1 = FIFO error has occurred (Overflow or Underflow)  
0 = No FIFO error has occurred  
RO  
LH  
FIFO Error  
1 = Polarity is reversed  
0 = Polarity is not reversed  
17.5  
17.4  
Polarity  
Pause  
RO  
RO  
0
0
1 = The LXT9785/9785E is Pause capable  
0 = The LXT9785/9785E is Not Pause capable  
1 = Error Occurred (Remote Fault, RxERCntFUL, FIFO  
error, Jabber, Parallel Detect Fault)  
0 = No error occurred  
RO  
LH  
17.3  
Error  
0
17.2  
17.1  
17.0  
Reserved  
Reserved  
Reserved  
Reserved  
Ignore  
RO  
RO  
RO  
0
0
0
Always 0  
1. RO = Read Only, LH = Latching High cleared when read.  
138  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 69. Interrupt Enable Register (Address 18, Hex 12)  
Bit  
Name  
Description  
Type1  
Default  
00 =  
01 =  
10 =  
11 =  
Reserve  
Low, 16 bits  
18.15:142 RxFIFO Initial Fill  
R/W  
0
Normal, 32 bits (Default)  
Jumbo packets, 256 bits  
When 16.5 = 1:  
1 = Enabled  
SFD Frame  
Alignment3  
10 Mbps  
R/W  
0
0 = Disabled  
18.132  
( RxDV asserts  
with CRS when  
enabled)  
When 16.5 = 0, SFD is always aligned  
1 =  
0 =  
Enabled  
Disabled  
100 Mbps  
R/W  
R/W  
0
0
18.12:9  
18.8  
Reserved  
Write as 0, ignore on read  
Mask for Counter Full  
CNTRMSK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
Mask for Auto-Negotiate Complete  
18.7  
18.6  
18.5  
18.4  
18.3  
ANMSK  
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
Mask for Speed Interrupt  
SPEEDMSK  
DUPLEXMSK  
LINKMSK  
ISOLMSK  
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
Mask for Duplex Interrupt  
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
Mask for Link Status Interrupt  
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
Mask for Isolate Interrupt  
1 = Enable event to cause interrupt  
0 = Do not allow event to cause interrupt  
18.2  
18.1  
Reserved  
INTEN  
Write as 0, ignore on read  
R/W  
R/W  
0
0
1 = Enable interrupts on this port  
0 = Disable interrupts on this port  
1 = Test Force interrupt on MDINT  
0 = Normal operation  
18.0  
TINT  
R/W  
0
1. R/W = Read/Write  
2. In 10 Mbps operation, Register bit 18.13 = 1 cannot be used when Register bits 18.15:14 = 11because  
the minimum Inter-Packet Gap becomes less than IEEE 802.3 specification.  
3. SFD Frame Alignment is applicable to SMII and SS-SMII only.  
Datasheet  
139  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 70. Interrupt Status Register (Address 19, Hex 13)  
Bit  
Name  
Description  
Type 1  
Default  
19.15:9 Reserved  
Ignore on read  
RO  
0
RxER Counter Full Status  
0
N/A  
0
1 = One of the internal counters has reached its maximum  
value  
0 = The internal counters have not reached maximum values  
19.8  
19.7  
RxERCntFUL  
RO/SC  
RO/SC  
Auto-Negotiation Status  
ANDONE  
1= Auto-Negotiation has completed  
0= Auto-Negotiation has not completed  
Speed Change Status  
1 = A Speed Change has occurred since last reading this  
register  
19.6  
19.5  
19.4  
SPEEDCHG  
RO/SC  
RO/SC  
RO/SC  
0 = A Speed Change has not occurred since last reading this  
register  
Duplex Change Status  
1 = A Duplex Change has occurred since last reading this  
DUPLEXCHG register  
0
0
0 = A Duplex Change has not occurred since last reading  
this register  
Link Status Change Status  
1 = A Link Change has occurred since last reading this  
register  
LINKCHG  
0 = A Link Change has not occurred since last reading this  
register  
MII Isolate Change Status  
1 = An Isolate change has occurred since last reading this  
register  
19.3  
19.2  
Isolate  
MDINT  
RO/SC  
RO/SC  
0
0
0 = An Isolate change has not occurred since last reading  
this register  
1 = RMII/SMII/SS-SMII interrupt pending  
0 = No RMII/SMII/SS-SMII interrupt pending  
19.1  
19.0  
Reserved  
Reserved  
Ignore on read  
Ignore on read  
RO/SC  
RO  
0
0
1. R/W = Read/Write, RO = Read Only, SC = Self Clearing when read  
140  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 71. LED Configuration Register (Address 20, Hex 14)  
Bit  
Name  
Description  
Type 1 Default  
0000 = Display Speed Status (Continuous, Default)  
0001 = Display Transmit Status (Stretched)  
0010 = Display Receive Status (Stretched)  
0011 = Display Collision Status (Stretched)  
0100 = Display Link Status (Continuous)  
0101 = Display Duplex Status (Continuous)  
0110 = Display Isolate Status (Continuous)  
0111 = Display Receive or Transmit Activity (Stretched)  
1000 = Test mode- turn LED on (Continuous)  
1001 = Test mode- turn LED off (Continuous)  
1010 = Test mode- blink LED fast (Continuous)  
1011 = Test mode- blink LED slow (Continuous)  
1100 = Display Link and Receive Status combined 2  
(Stretched)3  
LED1  
20.15:12  
R/W  
0000  
Programming  
bits  
1101 = Display Link and Activity Status combined 2  
(Stretched)3  
1110 = Display Duplex and Collision Status combined 4  
(Stretched)3  
1111 = Display Link and RxER Status combined 2 (Blink)  
0000 = Display Speed Status  
0001 = Display Transmit Status  
0010 = Display Receive Status  
0011 = Display Collision Status  
0100 = Display Link Status  
0101 = Display Duplex Status  
0110 = Display Isolate Status  
0111 = Display Receive or Transmit Activity  
1000 = Test mode- turn LED on  
1001 = Test mode- turn LED off  
1010 = Test mode- blink LED fast  
1011 = Test mode- blink LED slow  
1100 = Display Link and Receive Status combined 2  
(Stretched)3  
LED2  
20.11:8  
R/W  
1101  
Programming  
bits  
1101 = Display Link and Activity Status combined 2  
(Default)(Stretched)3  
1110 = Display Duplex and Collision Status combined 4  
(Stretched)3  
1111 = Display Link and RxER Status combined 2 (Blink)  
1. R/W = Read/Write, RO = Read Only, LH = Latching High.  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch Register bit 20.1. These display settings  
are stretched regardless of the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
Datasheet  
141  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 71. LED Configuration Register (Address 20, Hex 14) (Continued)  
Bit  
Name  
Description  
Type 1 Default  
0000 = Display Speed Status  
0001 = Display Transmit Status  
0010 = Display Receive Status  
0011 = Display Collision Status  
0100 = Display Link Status  
0101 = Display Duplex Status  
0110 = Display Isolate Status  
0111 = Display Receive or Transmit Activity  
1000 = Test mode- turn LED on  
1001 = Test mode- turn LED off  
1010 = Test mode- blink LED fast  
1011 = Test mode- blink LED slow  
1100 = Display Link and Receive Status combined 2  
(Stretched)3  
LED3  
20.7:4  
R/W  
1110  
Programming  
bits  
1101 = Display Link and Activity Status combined 2  
(Stretched)3  
1110 = Display Duplex and Collision Status combined 4  
(Default) (Blink)3  
1111 = Display Link and RxER Status combined 2 (Blink)  
00 = Stretch LED events to 30 ms  
01 = Stretch LED events to 60 ms  
10 = Stretch LED events to 100 ms  
11 = Reserved  
20.3:2  
LEDFREQ  
R/W  
00  
PULSE-  
STRETCH  
1 = Enable pulse stretching of all LEDs  
0 = Disable pulse stretching of all LEDs 2  
20.1  
20.0  
R/W  
R/W  
1
0
Reserved  
Reserved  
1. R/W = Read/Write, RO = Read Only, LH = Latching High.  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch Register bit 20.1. These display settings  
are stretched regardless of the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
Table 72. Receive Error Count Register (Address 21)  
Bit  
Name  
Description  
Type 1  
Default  
A 16-bit counter value indicating the number of times a  
receive packet with errors occurred. Only one event gets  
Receive Error counted per packet. When maximum count is reached, the  
RO/  
SC  
21.15:0  
0
Count  
16-bit counter remains full until cleared. Refer to the  
discussion of Out-of-Band Signallingon page 76 for  
details.  
1. RO = Read Only  
S/C = Self Clearing when read  
142  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Table 73. RMII Out-of-Band Signalling Register (Address 25)  
Bit  
Name  
Description  
Type 1  
Default  
25.15:7 Reserved  
Reserved  
R/W  
0
These three bits select which status information is  
available on the RxData(1) bit of the RMII bus.  
000 = Link  
001 = Speed  
010 = Duplex  
25.6:4  
BIT1  
R/W  
000  
011 = Auto-negotiation complete  
100 = Polarity reversed  
101 = Jabber detected  
110 = Interrupt pending  
111 = Isolate  
These three bits select which status information is  
available on the RxData(0) bit of the RMII bus.  
000 = Link  
001 = Speed  
010 = Duplex  
25.3:1  
BIT0  
R/W  
000  
011 = Auto-negotiation complete  
100 = Polarity reversed  
101 = Jabber detected  
110 = Interrupt pending  
111 = Isolate  
1 = Enable programmable RMII Out-of-Band  
signalling. When enabled, bits 6:1 specify which  
status bits are available on the RMII RxData data  
bus.  
25.0  
PROGRMII  
R/W  
0
0 = Disable Out-of-Band signalling.  
1. R/W = Read/Write  
RO = Read Only  
Datasheet  
143  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Table 74. Trim Enable Register (Address 27)  
00 = 3.3ns  
Per-Port  
27.11:10 Rise Time  
01 = 3.6ns  
R/W  
LSHR1,2  
10 = 3.9ns  
Control  
11 = 4.2ns  
0 = Disable auto MDIX  
27.9  
27.8  
AMDIX_EN  
MDIX  
R/W  
R/W  
LSHR1,3  
LSHR1,4  
1 = Enable auto MDIX  
Manual MDI/MDIX selection: (This bit is ignored when  
Register bit 27.9 = 1)  
0 = MDI, transmit on pair A and receive on pair B  
1 = MDIX transmit on pair B and receive on pair A  
1 = Enable analog loop back (transmits on twisted-pair)  
0 = Disable analog loop back  
Analog  
Loop back  
27.7  
27.6  
R/W  
R/W  
0
0
DTE Discovery Process Enable  
1 = Enable DTE discovery process  
0 = Disable DTE discovery process  
Dis_EN  
Loop back  
Speed Up  
Enable  
1 = enable automatic loop back detection speed up  
0 = disable automatic loop back detection speed up  
27.5  
27.4  
R/W  
RO  
0
0
Power Enable (Requires Auto-Negotiation Enable Register  
bit 0.12 = 1)  
1 = Potential Remote-Power DTE discovered; indication to  
turn on power over the cable.  
Power_EN  
SLP_Det  
0 = Remote-Power DTE not discovered; process may not be  
complete.  
Standard Link Partner Detected  
1 = Standard link partner discovered; indication not to turn on  
power over the cable.  
0 = Standard link partner not discovered; process may not be  
complete.  
R/W  
SC  
27.3  
27.2  
0
0
Link Fail Inhibit Timer expiration indicator. Valid only when  
SLP_Det = 1.  
1 = Link Fail Inhibit Timer expired with a standard link partner  
detected since last register read or link establishment  
0 = Timer has not expired or standard link partner not  
discovered  
LFIT  
Expired  
R/W  
SC  
1. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as  
the pin(s) are latched at startup or hardware reset.  
2. Default values for Register bits 27.11:10 are determined by the TxSLEW pins.  
3. Default value for Register bit 27.9 is determined by the AMDIX_EN pin.  
4. Default value for Register bit 27.8 is determined by the MDIX pin.  
5. SC = Self Clearing when read; RO = Read Only; R/W = Read/Write.  
144  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Datasheet  
145  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
146  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
6.0  
Package Specifications  
Figure 65. LXT9785/9785E 208-Pin PQFP Plastic Package Specification  
208-Pin Plastic Quad Flat Package  
Part Number LXT9785HC, LXT9785EHC,  
LXT9785HE  
Commercial Temperature Range (0°C to 70°C)  
Extended Temperature Range (-40°C to +85°C)  
Millimeters  
Max  
Dim  
Min  
D
D1  
A
-
4.10  
-
A1  
A2  
0.25  
3.20  
3.60  
0.27  
30.90  
28.30  
30.90  
28.30  
b
D
0.17  
e
E1  
30.30  
27.70  
30.30  
27.70  
E
D1  
E
e
/
2
E1  
e
.50 BASIC  
L
0.50  
0.75  
θ
L1  
q
1.30 REF  
2
L1  
0°  
5°  
5°  
7°  
θ2  
θ3  
A2  
16°  
16°  
A
θ
A1  
θ
3
b
L
Datasheet  
147  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Figure 66. LXT9785/9785E 241-Ball PBGA Package Specs - Top/Side View(LXT9785BC)  
D
D1  
Pin A1 corner  
Pin A1 I.D.  
14.70 REF  
E1 E  
14.70 REF  
45° Chamfer  
(4 places)  
Top View  
A2  
A
c
30°  
A1  
Side View  
Seating Plane  
148  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
Advanced 10/100 8-Port PHY LXT9785/9785E  
Figure 67. LXT9785/9785E 241-Ball PBGA Package Specs - Bottom View (LXT9785BC)  
Pin A1 corner  
16  
14  
12  
10  
8
6
4
2
17  
15  
13  
11  
9
7
5
3
1
A
B
C
D
E
F
b
G
H
J
e
K
L
M
N
P
R
T
U
J
e
241 BGA  
Bottom View  
l
Table 77. LXT9785/9785E 241-Ball PBGA Package Dimensions  
Symbol  
Min  
2.14  
Nominal  
2.33  
Max  
2.51  
Units  
mm  
Note  
A
A1  
A2  
D
0.50  
0.60  
0.70  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
1.12  
1.17  
1.22  
22.90  
19.30  
22.90  
19.30  
23.00  
10.50  
23.00  
19.50  
24.00  
19.70  
24.00  
19.70  
D1  
E
E1  
e
1.27 (solder ball pitch)  
1.34 REF.  
I
J
1.34 REF.  
M
b2  
c
17 x 17 Matrix  
0.60  
0.52  
0.75  
0.56  
1.27  
0.90  
0.60  
e
1. All dimensions and tolerances conform to ANSI Y14.5-1982.  
2. Dimension is measured at maximum solder ball diameter parallel to primary  
datum (-C-).  
3. Primary datum (-C-) and seating plane are defined by the spherical crowns of  
the solder balls.  
Datasheet  
149  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  
LXT9785/9785E Advanced 10/100 8-Port PHY  
Appendix A Ordering Information  
Table 78. Product Information  
Number  
Revision  
Qualification  
Tray MM  
Tape & Reel MM  
HBLXT9785HC.A4  
FWLXT9785BC.A4  
HBLXT9785HC.B2  
FWLXT9785BC.B2  
HBLXT9785EHC.B2  
FWLXT9785EBC.B2  
HBLXT9785HE.B2  
A4  
A4  
B2  
B2  
B2  
B2  
B2  
S
S
S
Q
Q
Q
S
837464  
834129  
N/A  
837465  
837457  
844582  
838254  
838225  
N/A  
N/A  
N/A  
838202  
839978  
N/A  
Figure 68. Ordering Information - Sample  
A6  
S
E001  
FW  
LXT  
9785E  
B
C
Build Format  
= Tray  
= Tape and reel  
E000  
E001  
Qualification  
= Pre-production material  
= Production material  
Q
S
Product Revision  
= 2 Alphanumeric characters  
xn  
Temperature Range  
= Ambient (0 - 55° C)  
= Commercial (0 - 70° C)  
= Extended (-40 - +85° C)  
A
C
E
Internal Package Designator  
= LQFP  
L
= PLCC  
= DIP  
= PQFP  
= QFP with heat spreader  
= TQFP  
P
N
Q
H
T
= BGA  
= TBGA  
= HSBGA (BGA with heat slug)  
B
E
K
xxxx  
= 3-5 Digit Alphanumeric Product Code  
IXA Product Prefix  
= PHY layer device  
= Switching engine  
= Formatting device (MAC)  
= Network processor  
LXT  
IXE  
IXF  
IXP  
Intel Package Designator  
DJ  
FA  
FL  
FW  
HB  
HD  
HG  
S
= LQFP  
= TQFP  
= PBGA (<1.0 mm pitch)  
= PBGA (1.27 mm pitch)  
= QFP with heat spreader  
= QFP with heat slug  
= SOIC  
= QFP  
GC  
N
= TBGA  
= PLCC  
150  
Datasheet  
Document #: 249241  
Revision #: 005  
Rev. Date: January 24, 2002  

相关型号:

HBLXT9785HCD0SE001

Interface Circuit, PQFP208, PLASTIC, QFP-208
INTEL

HBLXT9785HE.B2SE000

Ethernet Transceiver, 8-Trnsvr, PQFP208,
INTEL

HBLXT9785HE.D0SE001

Ethernet Transceiver, 8-Trnsvr, PQFP208,
INTEL

HBLXT9785HED0SE001

Interface Circuit, PQFP208, PLASTIC, QFP-208
INTEL

HBLXT9860AHC.B4SE001

Micro Peripheral IC
INTEL

HBLXT9863AHC.B4SE000

Micro Peripheral IC
INTEL

HBLXT9880AHC.B4SE000

Micro Peripheral IC
INTEL

HBLXT9883AHC.B4SE000

Micro Peripheral IC
INTEL

HBLXT9883AHC.B4SE001

Micro Peripheral IC
INTEL

HBM-F191-005-1-2

Telecom and Datacom Connector, 19 Contact(s), Female, Right Angle, Surface Mount Terminal, Receptacle, ROHS COMPLIANT
AMPHENOL

HBM-F191-005-1-2-TR

Telecom and Datacom Connector, 19 Contact(s), Female, Right Angle, Surface Mount Terminal, Receptacle, ROHS COMPLIANT
AMPHENOL

HBM-F191-005-2-2

Telecom and Datacom Connector, 19 Contact(s), Female, Right Angle, Surface Mount Terminal, Receptacle, ROHS COMPLIANT
AMPHENOL