MPM21CUB600B [INTEL]

Microprocessor, 32-Bit, 600MHz, CMOS, MMC-2;
MPM21CUB600B
型号: MPM21CUB600B
厂家: INTEL    INTEL
描述:

Microprocessor, 32-Bit, 600MHz, CMOS, MMC-2

时钟 外围集成电路
文件: 总64页 (文件大小:826K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Celeron Processor Mobile Module:  
Mobile Module Connector 2 (MMC-2)  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz,  
500 MHz, and 450 MHz  
Datasheet  
Product Features  
Mobile Celeron processor with processor  
speeds of 700 MHz, 650 MHz, 600 MHz,  
550 MHz, 500 MHz, 450 MHz  
Intel 82443BX Host Bridge system  
controller  
DRAM controller supports 3.3-V  
SDRAM at 100 MHz  
On-die, primary 16-K Instruction cache and  
16-K Write Back Data cache  
Supports PCI CLKRUN# protocol  
On-die, 128-K L2 cache  
SDRAM clock enable support and self-  
refresh of SDRAM during Suspend  
mode  
Four-way set associative  
Runs at the speed of the processor core  
Fully compatible with previous Intel  
PCI bus control 3.3V only, PCI  
Specification, Revision 2.1 compliant  
mobile microprocessors  
Binary compatible with all applications  
Support for MMX technology  
Supports streaming SIMD  
Supports single AGP 66-MHz, 3.3-V  
device  
Two-piece thermal transfer plate (TTP) for  
heat dissipation  
Power management features providing low-  
The CPU TTP is made of nickel-plated  
copper  
power dissipation  
Quick Start mode  
Deep Sleep mode  
The BX TTP is made of aluminum  
Mobile Celeron processor core voltage  
regulation supports input voltages from  
7.5V to 21.0V DC  
Integrated math co-processor  
Integrated Active Thermal Feedback (ATF)  
system  
Above 80% peak efficiency  
Programmable trip point interrupt or poll  
mode for temperature reading  
243357-005  
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Celeron processor mobile module may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled  
platforms may require licenses from various entities, including Intel Corporation.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 2000  
*Other brands and names are the property of their respective owners.  
243357-005  
Datasheet  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Contents  
1.0  
Introduction.........................................................................................................................1  
1.1 References............................................................................................................1  
2.0  
3.0  
Architecture Overview ........................................................................................................2  
Signal Information ..............................................................................................................4  
3.1  
Signal Definitions...................................................................................................4  
3.1.1 Signal List.................................................................................................4  
3.1.2 Memory Signal Description ......................................................................5  
3.1.3 AGP Signals.............................................................................................6  
3.1.4 PCI Signals...............................................................................................8  
3.1.5 Processor and PIIX4E/M Sideband Signals...........................................10  
3.1.6 Power Management Signals ..................................................................11  
3.1.7 Clock Signals..........................................................................................12  
3.1.8 Voltage Signals ......................................................................................13  
3.1.9 ITP and JTAG Pins.................................................................................14  
3.1.10 Miscellaneous Pins.................................................................................14  
Connector Pin Assignments................................................................................15  
Pin and Pad Assignments ...................................................................................17  
3.2  
3.3  
4.0  
Functional Description......................................................................................................19  
4.1  
4.2  
4.3  
Celeron Processor Mobile Module ......................................................................19  
L2 Cache.............................................................................................................19  
The 82443BX Host Bridge System Controller.....................................................19  
4.3.1 Memory Organization.............................................................................19  
4.3.2 Reset Strap Options...............................................................................20  
4.3.3 PCI Interface ..........................................................................................20  
4.3.4 AGP Interface.........................................................................................21  
Power Management ............................................................................................21  
4.4.1 Clock Control Architecture......................................................................21  
4.4.1.1 Normal State .............................................................................23  
4.4.1.2 Auto Halt State ..........................................................................23  
4.4.1.3 Stop Grant State........................................................................24  
4.4.1.4 Quick Start State .......................................................................24  
4.4.1.5 HALT/Grant Snoop State ..........................................................25  
4.4.1.6 Sleep State................................................................................25  
4.4.1.7 Deep Sleep State ......................................................................25  
Power Consumption in Power Management Modes ...........................................26  
4.4  
4.5  
5.0  
Electrical Specifications....................................................................................................28  
5.1  
System Bus Clock Signal Quality Specifications.................................................28  
5.1.1 BCLK DC Specifications.........................................................................28  
5.1.2 BCLK AC Specifications.........................................................................28  
System Power Requirements..............................................................................30  
Processor Core Voltage Regulation....................................................................30  
5.3.1 Voltage Regulator Efficiency ..................................................................30  
5.3.2 Voltage Regulator Control......................................................................32  
5.2  
5.3  
243357-005  
Datasheet  
iii  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
5.3.3 Power Planes: Bulk Capacitance Requirements....................................35  
5.3.4 Surge Current Guidelines.......................................................................36  
5.3.4.1 DC Power System Protection....................................................36  
5.3.4.2 V_DC Power Supply..................................................................37  
5.3.4.3 Overcurrent Protection ..............................................................37  
5.3.4.4 Current Limit Shift Point ............................................................39  
5.3.4.5 Slew Rate Control .....................................................................41  
5.3.4.6 Undervoltage Lockout ...............................................................43  
5.3.4.7 Overvoltage Lockout .................................................................44  
Active Thermal Feedback ...................................................................................48  
Thermal Sensor Configuration Register..............................................................48  
5.4  
5.5  
6.0  
Mechanical Specification..................................................................................................49  
6.1  
Mobile Module Dimensions.................................................................................49  
6.1.1 Pin 1 Location of the MMC-2 Connector................................................49  
6.1.2 Printed Circuit Board..............................................................................50  
6.1.3 Height Restrictions.................................................................................51  
Thermal Transfer Plate .......................................................................................51  
Mobile Module Physical Support.........................................................................53  
6.3.1 Mobile Module Mounting Requirements.................................................53  
6.3.2 Mobile Module Weight............................................................................54  
6.2  
6.3  
7.0  
Thermal Specification.......................................................................................................55  
7.1 Thermal Design Power........................................................................................55  
8.0  
9.0  
Labeling Information.........................................................................................................56  
Environmental Standards.................................................................................................58  
Figures  
1
2
3
4
5
6
7
8
Celeron Processor Mobile Module Block Diagram................................................3  
MMC-2 Connector Pad Footprint ........................................................................18  
Clock Control States ...........................................................................................23  
BCLK Waveform at the Processor Core Pins .....................................................29  
VR Efficiency Chart.............................................................................................31  
Power Sequence Timing.....................................................................................34  
V_DC Ripple Current ..........................................................................................36  
V_DC Power System Protection Block Diagram.................................................37  
Overcurrent Protection Circuit.............................................................................38  
Current Shift Model .............................................................................................39  
Undervoltage Lockout .........................................................................................43  
Undervoltage Lockout Model ..............................................................................44  
Overvoltage Lockout ...........................................................................................45  
Overvoltage Lockout Model ................................................................................45  
Recommended Power Supply Protection Circuit for the System Electronics .....47  
Simulation of V_DC Voltage Skew......................................................................47  
Board Dimensions and MMC-2 Connector Orientation.......................................49  
Board Dimensions and MMC-2 ConnectorPin 1 Orientation...........................50  
Printed Circuit Board Thickness..........................................................................50  
Keep-out Zone ....................................................................................................51  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
iv  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
21  
22  
23  
24  
25  
82443BX Thermal Transfer Plate (Reference Only) ...........................................52  
82443BX Thermal Transfer Plate Detail..............................................................52  
CPU Thermal Transfer Plate (Reference Only)...................................................53  
Standoff Holes, Board Edge Clearance, and EMI Containment Ring .................54  
Product Tracking Code........................................................................................57  
Tables  
1
2
3
4
5
6
7
8
Connector Signal Summary ..................................................................................4  
Memory Signals.....................................................................................................5  
AGP Signal Descriptions.......................................................................................6  
PCI Signal Description ..........................................................................................8  
Processor and PIIX4E/M Sideband Signal Description.......................................10  
Power Management Signal Descriptions ............................................................11  
Clock Signal Definitions.......................................................................................12  
Voltage Descriptions ...........................................................................................13  
ITP and JTAG Pins..............................................................................................14  
Miscellaneous Pins..............................................................................................14  
Connector Pin Assignment..................................................................................15  
Connector Specifications.....................................................................................18  
Configuration Straps for the 82443BX Host Bridge System Controller ...............20  
Clock State Characteristics .................................................................................22  
Power Consumption Values I .............................................................................26  
Power Consumption Values II.............................................................................27  
Power Consumption Values II.............................................................................27  
BCLK DC Specifications......................................................................................28  
BCLK AC Specifications at the Processor Core Pins..........................................28  
BCLK Signal Quality AC Specifications at the Processor Core...........................29  
System Power Requirements..............................................................................30  
Vcore Power Conversion Efficiency ....................................................................31  
Voltage Signal Definitions and Sequences .........................................................33  
VR_ON In-rush Current.......................................................................................34  
Bulk Capacitance Requirements.........................................................................35  
Thermal Sensor SMBus Address........................................................................48  
Thermal Sensor Configuration Register..............................................................48  
Thermal Design Power (TDP MODULE ) Specification ......................................55  
Environmental Standards....................................................................................58  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
243357-005  
Datasheet  
v
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Revision History  
Date  
Revision  
Updates  
February 2000  
April 2000  
1.0  
2.0  
Initial Release  
Revision 2.0 contains the following updates:  
Added the new 550-MHz processor speed  
Updated Section 4.5, Power Consumption in Power Management  
Modes”  
Added Table 16, Power Consumption Values II”  
In Table 20, BCLK Signal Quality AC Specifications at the Processor  
Corenote 3 was updated for clarification  
Added maximum and minimum designators to Figure 4, BCLK Waveform  
at the Processor Core Pinsfor clarity  
Rewrote Section 5.3.3, Power Planes: Bulk Capacitance Requirements”  
for clarity  
Added 550-MHz TDPmodule values to Table 27, Thermal Design Power  
Specifications  
April 2000  
May 2000  
3.0  
4.0  
Revision 3.0 contains the following updates:  
Added product tracking codes (PTCs) for conversion modules. See Table  
16, Power Consumption Values II”  
Revision 4.0 contains the following updates:  
Added new processor speeds 650 MHz and 600 MHz  
Added Table 17, Power Consumption Values III, which contains new  
power management data  
September 2000  
5.0  
Revision 5.0 contains the following updates:  
Added new 700-MHz processor speed  
Revised Table 17, Power Consumption Values III”  
vi  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
1.0  
Introduction  
This document provides the technical information for integrating the Intel Celeron processor  
mobile module connector 2 (MMC-2) into the latest notebook systems for todays notebook  
market.  
Building around this design gives the system manufacturer these advantages:  
Avoids complexities associated with designing high-speed processor core logic boards  
Provides an upgrade path from previous Intel mobile modules using a standard interface  
1.1  
References  
Refer to the following documents for additional information on the Celeron processor mobile  
module.  
Mobile Celeron™ Processor in BGA2 and Micro-PGA2 Packages at 700 MHz, 650 MHz, 600  
MHz, 500 MHz, 450 MHz, and 400A MHz datasheet (Order Number 245417)  
Intel 440BX AGPSet: 82443BX Host Bridge/Controller Datasheet (Order Number: 290633-  
001)  
82371AB PCI-to-ISA/IDE Xcelerator (PIIX4) (Order Number: 290562-001)  
Intel 82371MB (PIIX4E/M) Specification Update  
CK97 Clock Synthesizer/Driver Specification (OR-1089)  
Intel Mobile Module MMC-2 Simulation and Validation Kit Rev. 4.0 (OR- 2333)  
Intel Pentium III Processor Mobile Module System Electronics 100-MHz Layout Guidelines  
Rev. 1.0 (OR-1780)  
Mobile Pentium III Processor/440BX AGPset Recommended Design and Debug Practices  
(RDDP-A) 100 MHz Rev. 2.0 (SC-2760)  
66/100 MHz PC SDRAM Unbuffered SO-DIMM Specification Rev 1.0  
Intel Mobile Module Design Guide (AP-590)  
Pentium® II Processor Mobile Module MMC-2 Insertion & Extraction User Manual Rev 1.0  
Mobile Pentium II Processor Mobile Module 400-Pin BGA Connector Assembly  
Development Guide Rev. 1.0  
Focused Discussion on Intel Mobile Modules Design for Mfg. & Best Methods for MHPG  
Customers Rev. 1.0 (OR-1385)  
EMI design Guide (order number ORMD6-0859)  
Intel Mobile Module Newsletters  
Intel Mobile Module Thermal Diode Temperature Sensor Application Note  
Intel MMC-2 Standoff/Receptacle Height Spreadsheet  
AGP Interface Specification Version 2.0  
243357-005  
Datasheet  
1
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
2.0  
Architecture Overview  
A highly integrated assembly, the Celeron processor mobile module contains the mobile Celeron  
processor core with with a 100-MHz processor system bus speed (PSB) and processor speeds of  
700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz.  
The Intel 440BX AGPset provides immediate system-level support for the mobile Celeron  
processor and includes the PIIX4E/M PCI/ISA Bridge and the 82443BX Host Bridge. The PIIX4E/  
M provides extensive power management capabilities and supports the Intel 82443BX Host  
Bridge. A notebooks system electronics must include a PIIX4E/M device to connect to the mobile  
module.  
Key features of the Intel 82443BX Host Bridge include: the DRAM controller supporting SDRAM  
at 3.3Vwith a burst read at 4-1-1-1; the 82443BX Host Bridge also provides a PCI CLKRUN#  
signal to request the PIIX4E/M to regulate the PCI clock on the PCI bus; the 82443BX clock  
enables Self-Refresh mode of SDRAM during Suspend mode and is compatible with SMRAM  
(C_SMRAM) and Extended SMRAM (E_SMRAM) modes of power management. E_SMRAM  
mode supports write-back cacheable SMRAM up to 1 MB.  
The thermal transfer plates (TTP) on the processor and the 82443BX Host Bridge provide heat  
dissipation and thermal attach points for the manufacturers thermal solution.  
An on-board voltage regulator converts the system DC voltage to the processors core and I/O  
voltage. Isolating the processor voltage requirements allows the system manufacturer to  
incorporate different processor variants into a single notebook system. Supporting input voltages  
from 7.5V to 21.0V, the integrated module voltage regulator enables an above 80% peak efficiency  
and de-couples the processor voltage requirements from the system.  
Also incorporated is active thermal feedback (ATF) sensing, compliant to the ACPI Specification  
Rev 1.0.  
Figure 1 illustrates the block diagram of the Celeron processor mobile module.  
2
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 1. Celeron Processor Mobile Module Block Diagram  
Processor Core Voltage  
VTT  
Mobile  
Celeron  
Processor  
Core  
R
-
G
T
L
CPU  
Voltage  
Reg  
ATF  
Sense  
82443BX  
"Northbridge"  
V_3  
400-Pin, Board-to-Board Connector  
243357-005  
Datasheet  
3
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
3.0  
Signal Information  
This section provides information on the signal groups for the Celeron processor mobile module.  
The signals are defined for compatibility with future Intel mobile modules.  
3.1  
Signal Definitions  
Table 1 provides a list of signals by category and the corresponding number of signals in each  
category. For proper signal termination, please contact your Intel Field Representative for further  
information.  
Table 1. Connector Signal Summary  
Signal Group  
Number of Pins  
Memory  
109  
60  
58  
8
AGP  
PCI  
Processor/PIIX4E/M Sideband  
Power Management  
Clocks  
7
9
Voltage: V_DC  
Voltage: V_3  
Voltage: V_3S  
Voltage: V_5  
Voltage: VCCAGP  
Voltage: V_CPUPU  
Voltage: V_CLK  
ITP/JTAG  
20  
16  
9
3
4
1
1
9
Module ID  
4
Ground  
45  
37  
400  
Reserved  
Total  
3.1.1  
Signal List  
The following notations are used to denote signal type:  
I
Input pin  
O
Output pin  
O D  
I D  
Open-drain output pin requiring a pullup resistor  
Open-drain input pin requiring a pullup resistor  
4
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
I/O D  
I/O  
Input/Open-drain output pin requiring a pullup resistor  
Bi-directional input/output pin  
The signal description also includes the type of buffer used for a particular signal:  
GTL+  
PCI  
Open-drain GTL+ interface signal  
PCI bus interface signals  
AGP  
AGP bus interface signals  
CMOS  
The CMOS signals, depending on functional group, are 1.5V, 2.5V, or 3.3V.  
3.1.2  
Memory Signal Description  
Table 2 provides descriptions of the memory interface signals.  
Table 2. Memory Signals  
Name  
Type  
Voltage  
Description  
Memory ECC Data: These signals carry Memory ECC data during  
access to DRAM.  
I/O  
MECC[7:0]  
V_3  
CMOS  
ECC is not supported on the mobile module.  
O
Chip Select (SDRAM): These pins activate the SDRAMs. SDRAM  
accepts any command when its CS# pin is active low.  
CSA[5:O]#  
DQMA[7:0]  
V_3  
V_3  
CMOS  
Input/Output Data Mask (SDRAM): These pins act as synchronized  
output enables during a read cycle and as a byte mask during a write  
cycle.  
O
CMOS  
Memory Address (SDRAM): This is the row and column address for  
DRAM. The 82443BX Host Bridge system controller has two identical  
sets of address lines (MAA and MAB#). The mobile module supports  
only the MAB set of address lines. For additional addressing features,  
please refer to the Intel 440BX AGPSet: 82443BX Host Bridge/  
Controller Datasheet (Order Number: 290633-001).  
MAB[9:0]#  
MAB[10]  
O
V_3  
MAB[12:11]#  
MAB[13]  
CMOS  
O
Memory Write Enable (SDRAM): MWEA# should be used as the  
write enable for the memory data bus.  
MWEA#  
SRASA#  
V_3  
V_3  
CMOS  
SDRAM Row Address Strobe (SDRAM): When active low, this  
signal latches Row Address on the positive edge of the clock. This  
signal also allows Row access and pre-charge.  
O
CMOS  
SDRAM Column Address Strobe (SDRAM): When active low, this  
signal latches Column Address on the positive edge of the clock. This  
signal also allows Column access.  
O
SCASA#  
V_3  
CMOS  
SDRAM Clock Enable (SDRAM): SDRAM clock enable pin. When  
these signals are deasserted, SDRAM enters power-down mode.  
Each row is individually controlled by its own clock enable.  
O
CKE[5:0]  
MD[63:0]  
V_3  
V_3  
CMOS  
O
Memory Data: These signals are connected to the DRAM data bus.  
They are not terminated on the mobile module.  
CMOS  
243357-005  
Datasheet  
5
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
3.1.3  
AGP Signals  
Table 3 provides descriptions of the AGP interface signals.  
Table 3. AGP Signal Descriptions  
Name  
Type  
Voltage  
Description  
AGP Address/Data: The standard AGP address and data lines. This  
bus functions in the same way as the PCI AD[31:0] bus. The address  
is driven with FRAME# assertion, and data is driven or received in  
following clocks.  
I/O  
GAD[31:]  
V_3  
V_3  
V_3  
V_3  
AGP  
AGP Command/Byte Enable: This bus carries the command  
information during AGP cycles when PIPE# is used. During an AGP  
write, this bus contains byte enable information. The command is  
driven with FRAME# assertion and byte enables corresponding to  
supplied or requested data are driven on the following clocks.  
I/O  
GC/BE[3:0]#  
GFRAME#  
GDEVSEL#  
AGP  
AGP Frame: Not used during AGP transactions. Remains  
deasserted by an internal pullup resistor. Assertion indicates the  
address phase of a PCI transfer. Negation indicates that the cycle  
initiator desires one more data transfer.  
I/O  
AGP  
AGP Device Select: This signal provides the same function as PCI  
DEVSEL#. It is not used during AGP transactions. The 82443BX Host  
Bridge system controller drives this signal when a PCI initiator is  
attempting to access DRAM. DEVSEL# is asserted at medium  
decode time.  
I/O  
AGP  
AGP Initiator Ready: Indicates the AGP-compliant target is ready to  
provide all write data for the current transaction. Asserted when the  
initiator is ready for a data transfer.  
I/O  
GIRDY#  
GTRDY#  
V_3  
V_3  
AGP  
AGP Target Ready: Indicates the AGP-compliant master is ready to  
provide all write data for the current transaction. Asserted when the  
target is ready for a data transfer.  
I/O  
AGP  
AGP Stop: This signal provides the same function as PCI STOP#. It  
is not used during AGP transactions. Asserted by the target to  
request the master to stop the current transaction.  
I/O  
GSTOP#  
GREQ#  
GGNT#  
GPAR  
V_3  
V_3  
V_3  
V_3  
V_3  
AGP  
I
AGP Request: AGP master requests for AGP.  
AGP  
AGP Grant: This signal provides the same function as on PCI.  
Additional information is provided on the ST[2:0] bus. PCI Grant:  
Permission is given to the master to use PCI.  
O
AGP  
I/O  
AGP Parity: A single parity bit is provided over GAD[31:0] and GC/  
BE[3:0]. This signal is not used during AGP transactions.  
AGP  
Pipelined Request: Asserted by the current master to indicate a full  
width address that is to be queued by the target. The master queues  
one request each rising clock edge while PIPE# is asserted.  
I
PIPE#  
AGP  
Sideband Address: This bus provides an additional conduit to pass  
address and commands to the 82443BX Host Bridge System  
Controller from the AGP master.  
I
SBA[7:0]  
RBF#  
V_3  
V_3  
AGP  
I
Read Buffer Full: RBF# indicates if the master is ready to accept  
previously requested, low-priority read data.  
AGP  
6
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Table 3. AGP Signal Descriptions  
Name  
Type  
Voltage  
Description  
Status Bus: This signal provides information from the arbiter to an  
AGP Master on what it may do. These bits only have meaning when  
GGNT is asserted.  
O
ST[2:0]  
V_3  
AGP  
AD Bus Strobes: Provide timing for double-clocked data on the GAD  
bus. The agent providing data drives these signals. These are  
identical copies of each other.  
I/O  
ADSTB[B:A]  
SBSTB  
V_3  
V_3  
AGP  
I/O  
Sideband Strobe: Provides timing for a sideband bus. The SBA[7:0]  
(AGP master) drives the sideband strobe.  
AGP  
243357-005  
Datasheet  
7
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
3.1.4  
PCI Signals  
Table 4 provides descriptions of the PCI signals.  
Table 4. PCI Signal Description  
Name  
Type  
Voltage  
Description  
Address/Data: The standard PCI address and data lines. The  
address is driven with FRAME# assertion, and data is driven or  
received in the following clocks.  
I/O  
AD[31:0]  
C/BE[3:0]  
FRAME#  
DEVSEL#  
V_3  
PCI  
Command/Byte Enable: The command is driven with FRAME#  
assertion, and byte enables corresponding to supplied or requested  
data are driven on the following clocks.  
I/O  
V_3  
V_3  
V_3  
PCI  
Frame: Assertion indicates the address phase of a PCI transfer.  
Negation indicates that the cycle initiator desires one more data  
transfer.  
I/O  
PCI  
Device Select: The 82443BX Host Bridge drives this signal when a  
PCI initiator is attempting to access DRAM. DEVSEL# is asserted at  
medium decode time.  
I/O  
PCI  
I/O  
Initiator Ready: This signal is asserted when the initiator is ready for  
data transfer.  
IRDY#  
TRDY#  
STOP#  
V_3  
V_3  
V_3  
PCI  
I/O  
Target Ready: The signal is asserted when the target is ready for a  
data transfer.  
PCI  
I/O  
Stop: Asserted by the target to request the master to stop the current  
transaction.  
PCI  
Lock: Indicates an exclusive bus operation and may require multiple  
transactions to complete. When LOCK# is asserted, nonexclusive  
transactions may proceed. The 82443BX supports lock for CPU  
initiated cycles only. PCI initiated locked cycles are not supported.  
I/O  
PLOCK#  
V_3  
PCI  
I
REQ[4:0]#  
GNT[4:0]#  
V_3  
V_3  
PCI Request: PCI master requests for PCI.  
PCI  
O
PCI Grant: Permission is given to the master to use PCI.  
PCI  
PCI Hold: This signal comes from the expansion bridge. It is the  
bridge request for PCI. The 82443BX Host Bridge will drain the DRAM  
write buffers, drain the processor-to-PCI posting buffers, and acquire  
the host bus before granting the request via PHLDA#. This process  
ensures that GAT timing is met for ISA masters. The PHOLD#  
protocol has been modified to include support for passive release.  
I
PHOLD#  
V_3  
PCI  
PCI Hold Acknowledge: This signal is driven by the 82443BX Host  
Bridge to grant PCI to the expansion bridge. The PHLDA# protocol  
has been modified to include support for passive release.  
O
PHLDA#  
PAR  
V_3  
V_3  
PCI  
I/O  
Parity: A single parity bit is provided over AD[31:0] and C/BE[3:0]#.  
PCI  
8
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Table 4. PCI Signal Description  
Name  
Type  
Voltage  
Description  
System Error: The 82443BX asserts this signal to indicate an error  
condition. For further information, refer to the Intel 440BX AGPSet:  
82443BX Host Bridge/Controller Datasheet (Order Number: 290633-  
001).  
I/O  
SERR#  
V_3  
PCI  
Clock Run: An open-drain output and input. The 82443BX Host  
Bridge requests the central resource, PIIX4E/M, to start or maintain  
the PCI clock by asserting CLKRUN#. The 82443BX Host Bridge tri-  
states CLKRUN# upon deassertion of Reset (since CLK is running  
upon deassertion of Reset).  
I/O D  
PCI  
CLKRUN#  
PCI_RST#  
V_3  
V_3  
Reset: When asserted, this signal asynchronously resets the  
82443BX Host Bridge. The PCI signals also tri-state, compliant with  
PCI Rev 2.1 Specifications.  
I
CMOS  
243357-005  
Datasheet  
9
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
3.1.5  
Processor and PIIX4E/M Sideband Signals  
Table 5 provides descriptions of the processor and PIIX4E/M sideband signals.  
Table 5. Processor and PIIX4E/M Sideband Signal Description  
Name  
Type  
Voltage  
Description  
Numeric Co-processor Error: This pin functions as an FERR# signal  
supporting co-processor errors. This signal is tied to the co-processor  
error signal on the processor, and it is pulled active low by the  
processor to the PIIX4E/M.  
O D  
FERR#  
V_CPUPU  
CMOS  
I D  
Ignore Error: This open-drain signal is connected to the Ignore Error  
pin on the processor, and it is driven by the PIIX4E/M.  
IGNNE#  
INT#  
V_CPUPU  
V_CPUPU  
CMOS  
I D  
Initialization: INIT# is asserted by the PIIX4E/M to the processor for  
system initialization. This signal is an open-drain.  
CMOS  
Processor Interrupt: INTR is driven by the PIIX4E/M to signal the  
processor that an interrupt request is pending and needs to be serviced.  
This signal is an open-drain.  
I D  
INTR  
NMI  
V_CPUPU  
V_CPUPU  
V_CPUPU  
V_CPUPU  
CMOS  
Non-maskable Interrupt: NMI is used to force a non-maskable  
interrupt to the processor. The PIIX4E/M ISA bridge generates an NMI  
when either SERR# or IOCHK# is asserted, depending on how the NMI  
Status and Control Register is programmed. This signal is an open-  
drain.  
I D  
CMOS  
Address Bit 20 Mask: When enabled, this open-drain signal causes  
the processor to emulate the address wraparound at 1 MB, which  
occurs on the Intel 8086 processor.  
I D  
A20M#  
SMI#  
CMOS  
System Management Interrupt: SMI# is an active low synchronous  
output from the PIIX4E/M that is asserted in response to one of many  
enabled hardware or software events. The SMI# open-drain signal can  
be an asynchronous input to the processor. However, in this chipset  
SMI# is synchronous to PCLK.  
I D  
CMOS  
Stop Clock: STPCLK# is an active-low, synchronous open-drain output  
from the PIIX4E/M that is asserted in response to one of many  
hardware or software events. STPCLK# connects directly to the  
processor, and it is synchronous to PCICLK. When the processor  
samples STPCLK# asserted, it responds by entering a low-power state  
(Quick Start). The processor will only exit this mode when this signal is  
deasserted.  
I D  
STPCLK#  
V_CPUPU  
CMOS  
NOTE: See Table 8 for V_CPUPU definition.  
10  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
3.1.6  
Power Management Signals  
Table 6 provides descriptions of the power management signals. The SM_CLK and SM_DATA  
signals refer to the two-wire serial SMBus interface. Although this interface is currently used  
solely for the digital thermal sensor, the SMBus contains reserved serial addresses for future use.  
Table 6. Power Management Signal Descriptions  
Name  
Type  
Voltage  
Description  
Suspend Status: This signal connects to the SUS_STAT1#  
output of PIIX4E/M. It provides information on host clock status,  
and it is asserted during all suspend states.  
I
SUS_STAT1#  
V_3ALWAYS  
CMOS  
VR_ON: Voltage regulator ON. This 3.3-V (5.0-V tolerant) signal  
controls the operation of the voltage regulator. VR_ON should  
be generated as a function of the PIIX4E/M SUSB# signal,  
which is used for controlling the Suspend State Bvoltage  
planes. This signal should be driven by a digital signal with a  
I
VR_ON  
V_3  
CMOS  
rise/fall time of less than or equal to 1 µS. (V  
=0.4V, V  
IL,max  
IH,min  
=3.0V.)  
VR_PWRGD: This signal is driven high by the mobile module to  
indicate that the voltage regulator is stable. The signal is pulled  
low using a 100-K resistor when inactive. It can be used in some  
combination to generate the system PWRGOOD signal.  
VR_PWRGD  
BXPWROK  
O
V_3  
V_3  
Power OK to BX: This signal must go active at least 1 mS after  
the V_3 power rail is stable, and 1 mS prior to deassertion of  
PCIRST#.  
I
CMOS  
I/O D  
Serial Clock: This clock signal is used on the SMBus interface  
to the digital thermal sensor.  
SM_CLK  
SM_DATA  
ATF_INT#  
V_3  
V_3  
V_3  
CMOS  
I/O D  
Serial Data: Open-drain data signal on the SMBus interface to  
the digital thermal sensor.  
CMOS  
O D  
ATF Interrupt: This signal is an open-drain output signal of the  
digital thermal sensor.  
CMOS  
NOTE: V_3ALWAYS is a 3.3-V supply and is generated whenever V_DC is available and supplied to the  
PIIX4E/M resume well.  
243357-005  
Datasheet  
11  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
3.1.7  
Clock Signals  
Table 7 provides descriptions of the clock signals.  
Table 7. Clock Signal Definitions  
Name  
Type  
Voltage  
Description  
PCI Clock In: PCLK, an input to the mobile module, is one of the  
systems PCI clocks. This clock is used by all of the 82443BX Host  
Bridge logic in the PCI clock domain. This clock is stopped when the  
PIIX4E/M PCI_STP# signal is asserted and/or during all suspend  
states.  
I
PCLK  
V_3  
PCI  
Host Clock In: This clock is input to the mobile module from the  
CK100-M/CK100-SM clock source. The processor and the 82443BX  
I
HCLK0  
V_CLK Host Bridge system controller use HCLK0. This clock is stopped when  
the PIIX4E/M CPU_STP# signal is asserted and/or during all suspend  
states.  
CMOS  
Host Clock In: This clock is an input to the mobile module from the  
CK100-M/CK100-SM clock source.  
I
HCLK1  
DCLK0  
V_CLK  
V_3  
CMOS  
This signal is not implemented on the mobile module.  
SDRAM Clock Out: A 66-MHz SDRAM clock reference generated  
internally by the 82443BX Host Bridge system controller onboard PLL.  
It feeds an external buffer that produces multiple copies for the SO-  
DIMMs.  
O
CMOS  
SDRAM Read Clock: Feedback reference from the SDRAM clock  
buffer. The 82443BX Host Bridge System Controller uses this clock  
when reading data from the SDRAM array.  
I
DCLKRD  
V_3  
CMOS  
This signal is not implemented on the mobile module .  
SDRAM Write Clock: Feedback reference from the SDRAM clock  
buffer. The 82443BX Host Bridge system controller uses this clock  
when writing data to the SDRAM array.  
I
DCLKWR  
GCLKIN  
V_3  
V_3  
CMOS  
I
AGP Clock In: The GCLKIN input is a feedback reference from the  
GCLKO signal.  
CMOS  
AGP Clock Out: This signal is generated by the 82443BX Host  
Bridge system controller onboard the PLL from the HCLK0 host clock  
reference. The frequency of GCLKO is 66 MHz. The GCLKO output is  
used to feed both the PLL reference input pins on the 82443BX Host  
Bridge system controller and the AGP device. The board layout must  
maintain complete symmetry on loading and trace geometry to  
minimize AGP clock skew.  
O
GCLKO  
FQS  
V_3  
CMOS  
O
Frequency Select: This output indicates the desired host clock  
frequency for the mobile module.  
V_3S  
CMOS  
12  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
3.1.8  
Voltage Signals  
Table 8 provides descriptions of the voltage signals.  
Table 8. Voltage Descriptions  
Number  
of pins  
Name  
Type  
Description  
V_DC  
V_3S  
I
20  
9
DC Input: 7.5V ~ 21.0V  
SUSB# controlled 3.3V: A power managed 3.3-V supply. An  
output of the voltage regulator on the system electronics. This rail  
is off during STR, STD, and Soff.  
I
I
I
SUSC# controlled 5.0V: A power managed 5.0-V supply. An  
output of the voltage regulator on the system electronics. This rail  
is off during STD and Soff.  
V_5  
V_3  
3
SUSC# controlled 3.3V: A power managed 3.3-V supply. An  
output of the voltage regulator on the system electronics. This rail  
is off during STD and Soff.  
16  
AGP I/O Voltage: This voltage rail is not implemented on the  
module and is defined for upgrade purposes only. Intel  
recommends that this voltage rail be connected to V_3 on the  
system electronics.  
VCCAGP  
I
4
Processor I/O Ring: Driven by the mobile module to power  
processor interface signals such as the PIIX4E/M open-drain  
pullups for the processor/PIIX4E/M sideband signals. V_CPUPU is  
tied to 1.5V for the mobile module.  
V_CPUPU  
V_CLK  
O
O
4
1
Processor Clock Rail: Driven by the mobile module to power  
CK100-M VDDCPU rail.  
243357-005  
Datasheet  
13  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
3.1.9  
ITP and JTAG Pins  
Table 9 provides descriptions of the ITP and JTAG signals, which the system manufacturer can use  
to implement a JTAG chain and an ITP port if desired.  
Table 9. ITP and JTAG Pins  
Name  
TDO  
Type  
Voltage  
Description  
JTAG Test Data Out: Serial output port. TAP instructions and data  
are shifted out of the processor from this port.  
O
V_CPUPU  
JTAG Test Data In: Serial input port. TAP instructions and data are  
shifted into the processor from this port.  
TDI  
I
I
I
I
VTT  
VTT  
VTT  
VTT  
JTAG Test Mode Select: Controls the TAP controller change  
sequence.  
TMS  
JTAG Test Clock: Testability clock for clocking the JTAG boundary  
scan sequence.  
TCLK  
JTAG Test Reset: Asynchronously resets the TAP controller in the  
processor.  
TRST#  
FS_PREQ#  
Debug Mode Request: Driven by the ITP makes request to enter  
debug mode.  
Debug Mode Ready: Driven by the processor informs the ITP that  
the processor is in debug mode.  
FS_PRDY#  
O
O
VTT  
VTT  
FS_RESET#  
Processor Reset: Processor reset status to the ITP.  
GTL+ Termination Voltage: Used by the POWERON pin on the ITP  
debug port to determine when target system is on. POWERON pin is  
pulled up using a 1-Kresistor to VTT. Other ITP signals might use  
this power rail for pullup.  
VTT  
O
VTT  
NOTE: FS_RESET# and FS_PRDY# are pulled up to VTT inside the mobile processor core.  
3.1.10  
Miscellaneous Pins  
Table 10 provides descriptions of the miscellaneous signal pins.  
Table 10. Miscellaneous Pins  
Name  
Type Number  
Description  
Module Revision ID: These pins track the revision level of the mobile  
module. A 100-K pullup resistor to V_3S must be placed on the system  
electronics for these signals. See Section 8.0 for more detail.  
O
Module ID[3:0]  
Ground  
4
CMOS  
I
45  
33  
Ground  
Unallocated Reserved pins.  
Reserved  
RSVD  
All Reserved pins must not be connected.  
14  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
3.2  
Connector Pin Assignments  
Table 11 lists the signals for each pin of the connector to the system electronics. Refer to Section  
3.3 for the pin assignments.  
Table 11. Connector Pin Assignment  
Pin  
Number  
Row A  
Row B  
Row C  
Row D  
Row E  
1
SBA5  
GAD25  
ADSTBB  
GAD24  
GAD29  
VCCAGP  
GAD1  
GND  
SBA6  
GAD31  
SBA4  
SBA7  
SBA0  
2
3
GAD30  
GAD26  
GAD4  
GAD3  
GAD2  
V_3  
GAD27  
GAD6  
GND  
4
GND  
GDA8  
5
RBF#  
GAD5  
GC/BE0#  
GND  
6
BXPWROK  
MD0  
RESERVED  
MD1  
ADSTBA  
CLKRUN#  
MD32  
7
GAD7  
8
MD2  
MD33  
GND  
MD34  
9
MD36  
MD4  
MD3  
MD35  
MD34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
MD7  
MD38  
MD37  
MD40  
GND  
MD6  
MD5  
MD41  
MD42  
MD39  
MD8  
MD43  
MD11  
MD10  
MD9  
MD14  
MD45  
MD44  
ND15  
MD13  
MD12  
MECC4  
SCASA#  
GND  
MECC0  
MWEA#  
MID1  
ND47  
ND46  
MECC5  
DQMA0  
MID0  
RESERVED  
DQMA1  
DQMA5  
CSA3#  
GND  
RESERVED  
CSA#  
V_3  
DQMA4  
CSA2#  
CSA5#  
RESERVED  
MAB4#  
RESERVED  
RESERVED  
MAB11#  
V_3  
CSA1#  
CSA4#  
MAB0#  
MAB2#  
GND  
GND  
SRASA#  
RESERVED  
RESERVED  
RESERVED  
MAB8#  
MAB1#  
RESERVED  
RESERVED  
RESERVED  
MSB9#  
RESERVED  
CKE0  
RESERVED  
MAB3#  
MAB6#  
MAB7#  
MAB10  
DCLK0  
DCLKRD  
GND  
MAB5#  
RESERVED  
MAB12#  
GND  
RESERVED  
MAB13  
CKE1  
MID2  
CKE3  
CE4  
CKE5  
CKE2  
MID3  
RESERVED  
DCLKWR  
FS_PREQ#  
GND  
RESERVED#  
GND  
RESERVED  
GND  
RESERVED  
VTT  
DQMA2  
RESERVED  
MD26  
MD58  
TDO  
DQMA3  
MD25  
FS_RESET#  
FS_PRDY#  
RESERVED  
RESERVED  
V_3  
GND  
MD57  
MD60  
SMCLK  
SMDAT  
TCLK  
FERR#  
IGNNE#  
TDI  
TMS  
243357-005  
Datasheet  
15  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Table 11. Connector Pin Assignment  
Pin  
Number  
Row A  
Row B  
Row C  
Row D  
Row E  
34  
35  
36  
37  
38  
39  
40  
RESERVED  
RESERVED  
V_CPUPU  
V_CLK  
FQS  
V_5  
RESERVED  
V_3S  
TRST#  
V_3S  
ATF_INT#  
V_3S  
V_5  
V_3S  
V_3S  
V_3S  
V_5  
V_3S  
V_3S  
V_3S  
RESERVED  
V_DC  
RESERVED  
V_DC  
V_DC  
RESERVED  
V_DC  
RESERVED  
V_DC  
RESERVED  
V_DC  
V_DC  
V_DC  
V_DC  
V_DC  
Pin  
Number  
Row F  
Row G  
Row H  
Row J  
Row K  
1
GREQ#  
ST0  
GND  
ST1  
PIP#  
SBA1  
SBA3  
SBSTB  
GND  
GND  
GCLKI  
CGLK0  
GAD23  
GC/BE3#  
GAD22  
GAD21  
GAD19  
GAD28  
AD1  
2
3
GGNT#  
GAD13  
GAD12  
GAD10  
GAD11  
GAD9  
ST2  
SBA2  
4
GSTOP#  
GPAR  
GAD15  
GC/BE1#  
GAD14  
VCCAGP  
AD4  
GAD16  
GAD18  
GFRAME#  
GTRDY#  
GDEVESEL#  
GND  
GAD20  
GAD17  
GND  
5
6
7
GC/BE2#  
GIRDY#  
VCCAGP  
AD3  
8
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
AD0  
AD2  
GND  
C/BE0#  
AD10  
AD6  
GND  
AD5  
VCCAGP  
MECC1  
SERR#  
AD16  
AD7  
AD8  
AD9  
AD13  
GND  
AD12  
AD11  
PAR  
AD15  
C/BE1#  
DEVSEL#  
GND  
AD14  
TRDY#  
GND  
STOP#  
AD17  
PLOCK#  
AD18  
AD19  
AD23  
AD30  
AD24  
C/BE2#  
AD26  
AD21  
AD27  
AD22  
C/BE3#  
AD20  
PCLK  
GND  
PCI_RST#  
RESERVED  
IRDY#  
GND  
GND  
AD28  
PHOLD#  
FRAME#  
GNT2#  
GNT4#  
PHLDA#  
MECC7  
MD48  
AD31  
AD29  
AD25  
GND  
REQ1#  
REQ3#  
REQ4#  
V_3  
REQ0#  
GNT3#  
GND  
REQ2#  
GNT0#  
GND  
GNT1#  
GND  
MD59  
MD54  
MD24  
DQMA6  
MECC2  
MD50  
MD51  
MD18  
MD52  
16  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
DQMA7  
MECC6  
MECC3  
MD27  
GND  
MD16  
MD17  
MD19  
MD21  
GND  
MD53  
MD22  
MD62  
MD30  
GND  
MD23  
MD55  
MD56  
MD63  
MD31  
GND  
MD49  
MD20  
MD28  
GND  
MD29  
MD61  
DMI#  
INTR  
VR_ON  
VR_PWRGD  
INIT#  
NMI  
SUS_STAT1#  
STPCLK#  
V_3  
GND  
HCLK0  
GND  
A20M#  
V_3  
GND  
V_3  
GND  
HCLK1  
GND  
V_3  
V_3  
V_3  
GND  
V_3  
V_3  
V_3  
V_3  
V_3  
RESERVED  
V_DC  
V_DC  
RESERVED  
V_DC  
RESERVED  
V_DC  
RESERVED  
V_DC  
V_DC  
RESERVED  
V_DC  
V_DC  
V_DC  
V_DC  
3.3  
Pin and Pad Assignments  
The 400-pin MMC-2 connector has a 1.27-mm pitch and a BGA-style surface mount. Refer to  
Section 6.1.3 for size information. Figure 2 shows the MMC-2 connector pad assignments.  
243357-005  
Datasheet  
17  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 2. MMC-2 Connector Pad Footprint  
400-Pin Connector Footprint  
OEM Pad Assignments  
K
A
1
40  
Table 12 summarizes some of the connector key specifications.  
Table 12. Connector Specifications  
Parameter  
Condition  
Specification  
Contact  
Housing  
Current  
Voltage  
Copper Alloy  
Material  
Thermo Plastic Molded Compound: LCP  
0.5A  
50 VAC  
Electrical  
Insulation Resistance  
Termination Resistance  
Capacitance  
100 MΩ  
20-mmaximum at 20 mV open circuit with 10 mA  
5-pF maximum per contact  
50 cycles  
Mating Cycles  
Mechanical  
Connector Mating Force  
Contact Unmating Force  
50 lbs (22.7 kg) maximum  
30 lbs (13.6 kg) maximum  
18  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
4.0  
Functional Description  
4.1  
Celeron Processor Mobile Module  
The Celeron processor mobile module offers processor speeds of 700 MHz, 650 MHz, 600 MHz,  
550 MHz, 500 MHz, and 450 MHz with a 100-MHz PSB.  
4.2  
4.3  
L2 Cache  
The on-die L2 cache is 128K, four-way set associative, and runs at the speed of the processor core.  
The 82443BX Host Bridge System Controller  
Intels 82443BX Host Bridge system controller is a highly integrated device that combines the bus  
controller, the DRAM controller, and the PCI bus controller into one component. The 82443BX  
Host Bridge has multiple power management features designed specifically for notebook systems  
such as:  
CLKRUN#, a feature that enables controlling of the PCI clock on or off.  
The 82443BX Host Bridge suspend modes, which include Suspend-To-RAM (STR), Suspend-  
To-Disk (STD), and Power-On-Suspend (POS).  
System Management RAM (SMRAM) power management modes, which include Compatible  
SMRAM (C_SMRAM) and Extended SMRAM (E_SMRAM). C_SMRAM is the traditional  
SMRAM feature implemented in all Intel PCI chipsets.  
E_SMRAM is a new feature that supports write-back cacheable SMRAM space up to 1 MB.  
To minimize power consumption while the system is idle, the internal 82443BX Host Bridge  
clock is turned off (gated off) when there is no processor and PCI activity. This is  
accomplished by setting the G_CLK enable bit in the power management register in the  
82443BX through the system BIOS.  
4.3.1  
Memory Organization  
The memory interface of the 82443BX Host Bridge is available at the connector. This allows for  
the following:  
One set of memory control signals, sufficient to support up to three SO-DIMM sockets and six  
banks of SDRAM at 100 MHz.  
One CKE signal for each bank.  
Memory features not supported by the 82443BX Host Bridge system controller standard MMC-2  
mode are:  
Eight banks of memory  
256-Mb memory devices  
Second set of memory address lines (MAA[13:0])  
243357-005  
Datasheet  
19  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Extended Data Out (EDO) DRAM  
66-MHz memory bus  
The mobile modules clocking architecture supports the use of SDRAM. The clocking mode for  
100-MHz SDRAM memory configurations allows all host and SDRAM clocks to be generated  
from the same clocking source on the system electronics. For complete details about memory  
device support, organization, size, and addressing when using SDRAM memory and trace length  
guidelines, refer to the Intel® Pentium® III Processor Mobile Module System Electronics 100-MHz  
Layout Guidelines Revision. 1.0 (OR-1780).  
4.3.2  
Reset Strap Options  
Several strap options on the memory address bus define the behavior of the mobile module after  
reset. Other straps are allowed to override the default settings. Table 13 shows the various straps  
and their implementation.  
Table 13. Configuration Straps for the 82443BX Host Bridge System Controller  
Optional Override on  
System Electronics  
Signal  
Function  
Module Default Setting  
Strapped high on the module for 100  
MHz  
MAB[12]#  
MAB[11]#  
MAB[10]#  
Host Frequency Select  
In Order Queue Depth  
Quick Start Select  
None  
No strap, maximum queue depth is set  
at 8  
None  
None  
Strapped high on the module for Quick  
Start mode  
Strap high to disable  
AGP  
MAB[9]#  
MAB[7]#  
MAB[6]#  
AGP Disable  
No strap, AGP is enabled  
MM Configuration  
No strap, standard MMC-2 mode  
None  
None  
Host Bus Buffer mode  
select  
Strapped high on the module for mobile  
PSB buffers  
4.3.3  
PCI Interface  
The PCI interface of the 82443BX Host Bridge is available at the MMC-2 connector. The  
82443BX Host Bridge supports the PCI Clockrun protocol for PCI bus power management. In this  
protocol, PCI devices assert the CLKRUN# open-drain signal when they require the use of the PCI  
interface. Refer to the PCI Mobile Design Guide for complete details on the PCI Clockrun  
protocol.  
The 82443BX Host Bridge is responsible for arbitrating the PCI bus. The 82443BX Host Bridge  
can support up to five PCI bus masters. There are five PCI Request/Grant pairs, REQ[4:0]# and  
GNT[4:0]#, available on the connector to the system electronics.  
Note: The PCI interface on the MMC-2 connector is 3.3V only. PCI devices that are 5.0V are not  
supported.  
The 82443BX Host Bridge system controller is compliant with the PCI 2.1 Specification, which  
improves the worst case PCI bus access latency from earlier PCI specifications. The 82443BX  
Host Bridge supports only Mechanism #1 for accessing PCI configuration space. This implies that  
signals AD[31:11] are available for PCI IDSEL signals. However, since the 82443BX Host Bridge  
20  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
is always device #0, AD11 will never be asserted during PCI configuration cycles as an IDSEL.  
The 82443BX reserves AD12 for the AGPbus. Thus, AD13 is the first available address line usable  
as an IDSEL. Intel recommends that AD18 be used by the PIIX4E/M.  
4.3.4  
AGP Interface  
The 82443BX Host Bridge system controller is compliant with the AGP Interface Specification  
Revision 2.0, which supports an asynchronous AGP interface coupling to the 82443BX core  
frequency. The AGP interface can achieve real data throughput in excess of 500 MB per second  
using an AGP 2X graphics device. Actual bandwidth may vary depending on specific hardware  
and software implementations.  
4.4  
Power Management  
4.4.1  
Clock Control Architecture  
The clock control architecture has been optimized for notebook designs. The clock control  
architecture consists of seven different clock states: Normal, Stop Grant, Auto Halt, Quick Start,  
HALT/Grant Snoop, Sleep, and Deep Sleep states. The Auto Halt state provides a low-power clock  
state that can be controlled through the software execution of the HLT instruction. The Quick Start  
state provides a very low-power, low-exit latency clock state that can be used for hardware  
controlled "idle" states. The Deep Sleep state provides an extremely low-power state that can be  
used for Power-On-Suspend states, which is an alternative to shutting off the processors power.  
The exit latency of the Deep Sleep state is 30 µS. The Stop Grant state and the Quick Start clock  
state are mutually exclusive. For example, a strapping option on signal A15# chooses which state is  
entered when the STPCLK# signal is asserted. Strapping the A15# signal to ground at Reset  
enables the Quick Start state. Otherwise, asserting the STPCLK# signal puts the processor into the  
Stop Grant state.  
Figure 3 illustrates the clock control architecture. Performing state transitions not shown in Figure  
3 are neither recommended nor supported.  
243357-005  
Datasheet  
21  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Table 14. Clock State Characteristics  
Clock State  
Exit Latency  
Snooping  
System Uses  
Normal program  
Notes  
Note 4  
Normal  
N/A  
Yes  
execution  
Software controlled entry  
idle mode  
Auto Halt  
Approximately 10 bus clocks  
10 bus clocks  
Yes  
Yes  
Note 2  
Note 1  
Hardware controlled  
entry/exit mobile throttling  
Stop Grant  
Through Snoop, to HALT/Grant Snoop  
state: immediate  
Hardware controlled  
entry/exit mobile throttling  
Quick Start  
Yes  
Note 2  
Through STPCLK#, to Normal state: 10  
bus clocks  
HALT/Grant A few bus clocks after the end of snoop  
Supports snooping in the  
low-power states  
Yes  
No  
Snoop  
activity  
Hardware controlled  
entry/exit desktop idle  
mode support  
Sleep  
To Stop Grant state 10 bus clocks  
Note 1  
Note 3  
Hardware controlled  
entry/exit mobile POS  
support  
Deep Sleep 30 µS  
No  
NOTES:  
1. Intel mobile modules do not support the Sleep and Stop Grant clock states.  
2. These values are not 100% tested and are specified at 50°C by design and characterization.  
3. This value is not 100% tested and is specified at 35°C by design and characterization.  
4. Specification marked N/A are not available.  
22  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 3. Clock Control States  
STPCLK# and  
QSE and SGA  
Quick  
Normal  
State  
Start  
HS=false  
(!STPCLK# and !HS)  
or RESET#  
STPCLK# and  
QSE and SGA  
HLT and  
halt bus cycle  
BCLK  
stopped  
halt  
break  
!STPCLK#  
and HS  
BCLK on  
and QSE  
STPCLK# and  
!QSE and SGA  
Auto  
Snoop  
serviced  
Snoop  
occurs  
Deep  
Sleep  
Halt  
HS=true  
(!STPCLK#  
and !HS) or  
stop break  
!STPCLK#  
and HS  
Snoop  
occurs  
STPCLK# and  
!QSE and SGA  
Snoop  
serviced  
Snoop  
occurs  
Stop  
Grant  
HALT/Grant  
Snoop  
Snoop  
serviced  
BCLK on  
and !QSE  
SLP#  
BCLK  
stopped  
!SLP# or  
RESET#  
Sleep  
NOTES: Halt break A20M#, BINIT#, FLUSH#, INIT#, INTR, NMI, PREQ#, RESET#,  
HLT HLT instruction executed  
HS Processor Halt State  
QSE Quick Start State Enabled  
SGA Stop Grant Acknowledge bus cycle issued  
Stop break BINIT#, FLUSH#, RESET#  
Intel mobile modules do not support shaded clock control states  
4.4.1.1  
4.4.1.2  
Normal State  
The normal operating mode where the processors core clock is running and the processor is  
actively executing instructions.  
Auto Halt State  
This is a low-power mode entered by the processor through the execution of the HLT instruction.  
The power level of this mode is similar to the Stop Grant state. A transition to the Normal state is  
made by a halt break event (one of the following signals going active: NMI, INTR, BINIT#, INIT#,  
RESET#, FLUSH#, or SMI#).  
243357-005  
Datasheet  
23  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Asserting the STPCLK# signal while in the Auto Halt state will cause the processor to transition to  
the Stop Grant state or the Quick Start state, where a Stop Grant Acknowledge bus cycle will be  
issued. Deasserting STPCLK# will cause the processor to return to the Auto Halt state without  
issuing a new Halt bus cycle.  
The SMI# (System Management Interrupt) is recognized in the Auto Halt state. The return from the  
SMI handler can be to either the Normal state or the Auto Halt state. See the Intel® Architecture  
Software Developer's Manual, Volume III: System Programmer's Guide for more information. No  
Halt bus cycle is issued when returning to the Auto Halt state from System Management Mode  
(SMM).  
The FLUSH# signal is serviced in the Auto Halt state. After flushing the on-chip, the processor  
will return to the Auto Halt state without issuing a Halt bus cycle. Transitions in the A20M# and  
PREQ# signals are recognized while in the Auto Halt state.  
4.4.1.3  
Stop Grant State  
The Celeron processor mobile module does not support the Stop Grant state.  
The processor enters this mode with the assertion of the STPCLK# signal when it is configured for  
Stop Grant state (via the A15# strapping option). The processor is still able to respond to snoop  
requests and latch interrupts. Latched interrupts will be serviced when the processor returns to the  
Normal state. Only one occurrence of each interrupt event will be latched. A transition back to the  
Normal state can be made by the deassertion of the STPCLK# signal, or the occurrence of a stop  
break event (a BINIT#, FLUSH#, or RESET# assertion).  
The processor will return to the Stop Grant state after the completion of a BINIT# bus initialization  
unless STPCLK# has been deasserted. RESET# assertion will cause the processor to immediately  
initialize itself. However, the processor will stay in the Stop Grant state after initialization until  
STPCLK# is deasserted. If the FLUSH# signal is asserted, the processor will flush the on-chip  
caches and return to the Stop Grant state. A transition to the Sleep state can be made by the  
assertion of the SLP# signal.  
While in the Stop Grant state, assertions of SMI#, INIT#, INTR, and NMI (or LINT[1:0]) will be  
latched by the processor. These latched events will not be serviced until the processor returns to the  
Normal state. Only one of each event will be recognized upon return to the Normal state.  
4.4.1.4  
Quick Start State  
This is a mode entered by the processor with the assertion of the STPCLK# signal when it is  
configured for the Quick Start state (via the A15# strapping option). In the Quick Start state the  
processor is only capable of acting on snoop transactions generated by the PSB priority device.  
Because of its snooping behavior, Quick Start can only be used in single processor configurations.  
A transition to the Deep Sleep state can be made by stopping the clock input to the processor. A  
transition back to the Normal state (from the Quick Start state) is made only if the STPCLK# signal  
is deasserted.  
While in this state the processor is limited in its ability to respond to input. It is incapable of  
latching any interrupts, servicing snoop transactions from symmetric bus masters, or responding to  
FLUSH# and BINIT# assertions. In the Quick Start state, the processor will not respond properly to  
any input signal other than STPCLK#, RESET#, or BPRI#. If any other input signal changes, then  
the behavior of the processor will be unpredictable. No serial interrupt messages may begin or be in  
progress while the processor is in the Quick Start state.  
24  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
RESET# assertion will cause the processor to immediately initialize itself, but the processor will  
stay in the Quick Start state after initialization until STPCLK# is deasserted.  
4.4.1.5  
HALT/Grant Snoop State  
The processor will respond to snoop transactions on the PSB while in the Auto Halt, Stop Grant, or  
Quick Start state. When a snoop transaction is presented on the system bus, the processor will enter  
the HALT/Grant Snoop state. The processor will remain in this state until the snoop has been  
serviced and the PSB is quiet. After the snoop has been serviced, the processor will return to its  
previous state. If the HALT/Grant Snoop state is entered from the Quick Start state, then the input  
signal restrictions of the Quick Start state still apply in the HALT/Grant Snoop state (except for  
those signal transitions that are required to perform the snoop).  
4.4.1.6  
Sleep State  
Intel mobile modules do not support the Sleep state.  
The Sleep state is a very low power state in which the processor maintains its context and the phase  
locked loop (PLL) maintains phase lock. The Sleep state can only be entered from the Stop Grant  
state. After entering the Stop Grant state the SLP# signal can be asserted, causing the processor to  
enter the Sleep state. The SLP# signal is not recognized in the Normal state or the Auto Halt state.  
The processor can be reset by the RESET# signal while in the Sleep state. If RESET# is driven  
active while the processor is in the Sleep state, then SLP# and STPCLK# must immediately be  
driven inactive to ensure that the processor correctly initializes itself.  
Input signals (other than RESET#) may not change while the processor is in or transitioning into or  
out of the Sleep state. Input signal changes at these times will cause unpredictable behavior. Thus,  
the processor is incapable of snooping or latching any events in the Sleep state.  
While in the Sleep state the processor can enter its lowest power state, the Deep Sleep state.  
Removing the processors input clock puts the processor in the Deep Sleep state. PICCLK may be  
removed in the Sleep state.  
4.4.1.7  
Deep Sleep State  
The Deep Sleep state is the lowest power mode that the processor can enter while maintaining its  
context. Stopping the BCLK input to the processor enters the Deep Sleep statewhile the  
processor is in the Sleep state or the Quick Start state. For proper operation, the BCLK input should  
be stopped in the low state.  
The processor will return to the Sleep state or the Quick Start state from the Deep Sleep state when  
the BCLK input is restarted. Due to the PLL lock latency, there is a 30.0-µs delay after the clocks  
have started before this state transition happens. PICCLK may be removed in the Deep Sleep state.  
PICCLK should be designed to turn on when BCLK turns on when transitioning out of the Deep  
Sleep state.  
The input signal restrictions for the Deep Sleep state are the same as for the Sleep state, except that  
RESET# assertion will result in unpredictable behavior.  
243357-005  
Datasheet  
25  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
4.5  
Power Consumption in Power Management Modes  
The power data is broken down into each power rail. Each power rail is supplied to the module  
through the MMC-2 connector. The total power values are based on typical power consumption.  
The data is captured at Tamb = 25°C, T TTP = 25 °C, and V_DC = 18.0V.  
Note: The values in Table 15 and Table 16 below are not 100% tested and have been characterized by  
design.  
Table 15, Table 16, and Table 17 provide the module power consumption values in various power  
management modes. Because mobile modules with the same frequencies may have different  
printed circuit board (PCB) revisions, refer to the product tracking code (PTC) lists before each  
table below to match the correct power consumption information with the correct mobile module.  
Table 15 applies to mobile modules with the following PTCs.  
PMN50001001AA  
PMN45001001AA  
Table 15. Power Consumption Values I  
State  
Auto Halt  
V_DC  
V_5  
V_3  
V_3S  
Total Power  
2.19W  
1.77W  
1.29W  
0.04W  
0.08W  
0.08W  
0.08W  
0.01W  
2.27W  
2.04W  
0.24W  
0.01W  
0.57W  
0.62W  
0.45W  
0.00W  
4.17W  
3.43W  
1.35W  
0.05W  
Quick Start  
Deep Sleep  
STR  
NOTE: These power values should be used as power supply guidelines for power management modes. They  
have some guardband added for design margin. Therefore, the total power does not necessarily add up  
as the sum of each power rail. "Total Power" is the sum of " the individual "raw" power requirements with  
guardband added.  
Table 16 applies to mobile modules with the following PTCs.  
PMN65001201AB  
PMN60001201AB  
PMN55001201AB  
PMN50001201AC  
PMN45001201AC  
PMN65001101AA  
PMN60001101AA  
PMN55001101AA  
PMN50001101AB  
PMN45001101AB  
26  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Table 16. Power Consumption Values II  
State  
Auto Halt  
V_DC  
V_5  
V_3  
V_3S  
Total Power  
2.56W  
2.10W  
1.64W  
0.03W  
0.06W  
0.06W  
0.05W  
0.01W  
2.31W  
2.00W  
0.26W  
0.02W  
0.03W  
0.03W  
0.04W  
0.00W  
4.93W  
4.13W  
1.96W  
0.05W  
Quick Start  
Deep Sleep  
STR  
NOTE: These power values should be used as power supply guidelines for power management modes. They  
have some guardband added for design margin. Therefore, the total power does not necessarily add up  
as the sum of each power rail. "Total Power" is the sum of the individual "raw" power requirements with  
guardband added.  
Table 17 applies to mobile modules with the following PTCs.  
PMN70001201AA  
Table 17. Power Consumption Values II  
State  
Auto Halt  
V_DC  
2.81W  
V_5  
V_3  
V_3S  
Total Power  
0.18W  
0.18W  
0.22W  
0.00W  
2.23W  
1.97W  
0.25W  
0.01W  
0.02W  
0.04W  
0.04W  
0.00W  
5.05W  
4.37W  
1.88W  
0.06W  
Quick Start  
Deep Sleep  
STR  
2.35W  
1.46W  
0.05W  
NOTE: These power values should be used as power supply guidelines for power management modes. They  
have some guardband added for design margin. Therefore, the total power does not necessarily add up  
as the sum of each power rail. "Total Power" is the sum of the individual "raw" power requirements with  
guardband added.  
243357-005  
Datasheet  
27  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
5.0  
Electrical Specifications  
The following section provides the electrical specifications for the Celeron processor mobile  
module.  
5.1  
System Bus Clock Signal Quality Specifications  
5.1.1  
BCLK DC Specifications  
Table 18. BCLK DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
Input Low Voltage, BCLK  
Input High Voltage, BCLK  
- 0.3  
2.0  
0.5  
V
V
IL,BCLK  
2.625  
IH,BCLK  
NOTE: V  
and V  
only apply when BCLK is stopped. BCLK should be stopped in the low state. See  
ILX,min  
IH,max  
Table 19 for the BCLK voltage range specifications when BCLK is running.  
5.1.2  
BCLK AC Specifications  
Table 19. BCLK AC Specifications at the Processor Core Pins  
T#  
Parameter  
Min  
Nom  
Max  
Unit  
Note  
Notes 5, 6  
System Bus Frequency  
BCLK Period  
N/A  
N/A  
100.0  
10.0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
MHz  
nS  
pS  
nS  
nS  
nS  
nS  
Notes 2, 5, 6  
BCLK Period Stability  
BCLK High Time  
BCLK Low Time  
BCLK Rise Time  
BCLK Fall Time  
N/A  
± 250  
N/A  
Notes 3, 4, 5, 6  
T3:  
2.85  
2.55  
0.175  
0.175  
At > 1.7V, Notes 5, 6  
At > 0.7V, Notes 5, 6  
0.9V ~ 1.6V, Notes 5, 6  
1.6V ~ 0.9V, Notes 5, 6  
T4:  
T5:  
T6:  
N/A  
0.875  
0.875  
NOTES:  
1. All AC timings for GTL+ and CMOS signals are referenced to the BCLK rising edge at 1.25V. All CMOS  
signals are referenced at 0.75V.  
2. The internal core clock frequency is derived from the PSB clock. The PSB clock to core clock ratio is  
determined during initialization and is predetermined by the Intel mobile module. The BCLK period allows a  
+0.5 nS tolerance for clock driver variation.  
3. This value is measured on the rising edge of adjacent BCLKs at 1.25V. The jitter present must be accounted  
for as a component of BCLK skew between devices.  
4. The clock drivers closed loop jitter bandwidth must be set low to allow any PLL-based device to track the  
jitter created by the clock driver. The -20 dB attenuation point, as measured into a 10-pF to a 2-pF load,  
should be less than 500 kHz. This specification may be ensured by design characterization and/or measured  
with a spectrum analyzer. See the CK97 Clock Synthesizer/Driver Specification (OR-1089) for further details.  
5. These values are not 100% tested and are specified by design characterization as a clock driver  
requirement.  
6. Specifications labeled N/A are not available.  
28  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Table 20 describes the signal quality specifications at the processor core for the PSB clock (BCLK)  
signal. Figure 4 describes the signal quality waveforms for the PSB clock at the processor core pins  
For proper signal termination, refer to the Clocking Guidelinessection in the Mobile Pentium  
III Processor/440BX AGPset Recommended Design and Debug Practices (RDDP-A) 100 MHz Rev.  
2.0 (SC-2760).  
Table 20. BCLK Signal Quality AC Specifications at the Processor Core  
T#  
V1  
Parameter  
Min  
Max  
Unit  
Notes  
V
-0.3  
1.7  
0.7  
2.625  
3.5  
V
V
Note 1  
Note 1  
IL,BCLK  
V2  
V3  
V4  
V5  
V
IH,BCLK  
V
Absolute Voltage Range  
-0.7  
1.7  
V
Undershoot, Overshoot, Note 2  
Absolute Value, Notes 3, 4  
Absolute Value, Notes 3, 4  
IN  
Rising Edge Ringback  
N/A  
0.7  
V
Falling Edge Ringback  
N/A  
0.8  
V
BCLK Rising/Falling Slew Rate  
4.0  
V/nS  
NOTES:  
1. On the rising edge of BCLK, there must be a minimum overshoot to 2.0V. The clock must rise monotonically  
between V and 2.0V and fall monotonically between V and V  
.
IL,BCLK  
IL,BCLK  
IH,BCLK  
2. These specifications apply only when BCLK is running. See Table 18 for the DC specifications when BCLK is  
stopped. BCLK may not be above V or below V for more than 50% of the clock cycle.  
IH,BCLK,MAX  
IL,BCLK,MIN  
3. The rising edge ringback voltage is the minimum absolute voltage that the BCLK signal can dip back to after  
passing the V (rising) voltage limits. The falling edge ringback voltage is the maximum absolute  
IH,BCLK,MIN  
voltage that the BCLK signal can dip back to after passing the V  
(falling) voltage limits.  
IL,BCLK,MAX  
4. Specifications labeled N/A are not available.  
Figure 4. BCLK Waveform at the Processor Core Pins  
T3  
V3MAX  
V4  
V2MIN  
V1MAX  
V5  
T6  
T5  
V3MIN T4  
V0012-00  
243357-005  
Datasheet  
29  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
5.2  
System Power Requirements  
Table 21 provides the DC power supply design criteria.  
Table 21. System Power Requirements  
Symbol  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
V
DC Input Voltage  
DC Input Current  
7.5  
0.1  
12.0  
2.6  
21.0  
5.0  
V
A
DC  
I
I
I
Notes 1,2  
Notes 4,6  
Notes 3,6  
DC  
RMS Ripple Current  
N/A  
N/A  
N/A  
5.0  
7.5  
A
DC_RMS  
Maximum Surge Current for V  
Power Managed 5.0-V Supply  
N/A  
20.0  
5.25  
100.0  
1.5  
A
DC_Surge  
DC  
V
4.75  
20.0  
N/A  
V
5
I
Power Managed 5.0-V Current, Operating  
50.0  
N/A  
3.3  
mA  
A
5
I
Maximum Surge Current for V  
Power Managed 3.3-V Supply  
Notes 3,6  
Notes 3,6  
5_Surge  
5
V
3.135  
0.8  
3.465  
3.0  
V
3
I
Power Managed 3.3-V Current  
1.2  
A
3
I
Maximum Surge Current for V  
Processor I/O Ring Voltage  
Processor I/O Ring Current  
Processor Clock Rail Voltage  
Processor Clock Rail Current  
N/A  
N/A  
1.5  
4.0  
A
3_Surge  
3
V
1.375  
0.0  
1.625  
20.0  
2.625  
80.0  
V
CPUPU  
CPUPU  
I
10.0  
2.5  
mA  
V
V
2.375  
24.0  
CLK  
I
35.0  
mA Note 5  
CLK  
NOTES:  
1. V_DC is set for 12.0V in order to determine typical V_DC current.  
2. V_DC is set for 7.5V in order to determine maximum V_DC current.  
3. A 20-µS duration.  
4. This is V_DC dependent. See Figure 7 for data of IDC-RMS vs. V_DC.  
5. These values are system dependent.  
6. Specifications labeled N/A are not applicable.  
5.3  
Processor Core Voltage Regulation  
The DC voltage regulator (DC/DC converter) is designed to support the core voltage and I/O ring  
voltage for current and future Intel mobile processors. The DC voltage regulator provides the  
appropriate mobile Celeron processor core voltage, the GTL+ bus termination voltage, the  
processor sideband signal pull-up voltage, and the clock driver buffer voltage. Of these voltages,  
only the processor sideband pullup voltage (V_CPUPU) and the clock driver buffer voltage  
(V_CLK) are delivered to the system electronics.  
The mobile module supports input DC voltage range of 7.5V ~ 21.0V from the system battery or  
power supply for mobile applications.  
5.3.1  
Voltage Regulator Efficiency  
There are three voltage regulators on the mobile module. These voltage regulators generate the  
core voltage used by the CPU and the voltage for the CPU I/O ring voltage. The core voltage  
regulator provides the required current from the V_DC supply and its relative efficiencies are  
shown in Table 22 and Figure 5. The V_CLK and Vtt voltage regulators tap the V_3 plane.  
30  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Table 22. Vcore Power Conversion Efficiency  
Vcore = 1.60V  
Efficiency at  
Icore  
(A)  
Efficiency at  
V_DC + 7.50V  
Efficiency at  
V_DC + 21.0V  
V_DC + 12.0V  
1
2
77%  
85%  
87%  
87%  
86%  
85%  
84%  
83%  
81%  
80%  
79%  
71%  
82%  
85%  
86%  
86%  
85%  
84%  
83%  
82%  
81%  
80%  
63%  
78%  
81%  
82%  
83%  
83%  
82%  
81%  
81%  
80%  
79%  
3
4
5
6
7
8
9
10  
11  
Figure 5. VR Efficiency Chart  
VR Efficiency  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
68%  
66%  
64%  
62%  
60%  
V_DC = 7.5V  
V_DC = 12V  
V_DC = 21V  
1
2
3
4
5
6
7
8
9
10 11  
Icore(A)  
243357-005  
Datasheet  
31  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
5.3.2  
Voltage Regulator Control  
The VR_ON pin on the connector allows a 3.3-V signal to control the voltage regulator. The  
system manufacturer can use this signal to turn the voltage regulator on or off. VR_ON should be  
controlled as a function of the same signal (SUSB#) used to control the systems switched 5.0-V/  
3.3-V power planes. The PIIX4E/M defines Suspend B as the Power Management state in which  
power is physically removed from the processor and the voltage regulator. In this state, the SUSB#  
pin on the PIIX4E/M controls these power planes. The mobile module provides the VR_PWRGD  
signal, which indicates that the voltage regulator power is operating at a stable voltage level. The  
system manufacturer should use this signal on the system electronics to control power inputs and to  
gate PWROK to the PIIX4E/M South Bridge. Table 23 provides the detailed definitions and  
sequences of the voltage signals.  
32  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Table 23. Voltage Signal Definitions and Sequences  
Signal  
Source  
Definition and Sequences  
V_DC is required to be between 7.5V and 21.0V DC and is driven by  
the system electronicspower supply. V_DC powers the mobile  
module DC-to-DC converter for the processor core and I/O voltages.  
V_DC  
System Electronics  
The mobile module cannot be hot inserted or removed while  
V_DC is powered on.  
V_5  
V_3  
System Electronics V_5 is supplied by the system electronics for the voltage regulator.  
V_3 is supplied by the system electronics for the 443BX and powers  
System Electronics the mobile modules linear regulators for generating the V_CLK and  
V_CPUPU voltage rails. V_3 stays on during suspend.  
V_3S is supplied by the system electronics and is shut off during  
V_3S  
System Electronics  
suspend.  
VR_ON is a 3.3-V signal that enables the voltage regulator circuit.  
When driven active high the voltage regulator circuit is activated. The  
signal driving VR_ON should be a digital signal with a rise/fall time of  
VR_ON  
System Electronics  
less than or equal to 1.0 µS. (V  
=0.4V, V  
=3.0V.)  
IL,max  
IH,min  
A result of VR_ON being asserted, V_CORE is an output of the DC-  
DC regulator on the mobile module and is driven to the core voltage of  
the processor.  
V_CORE  
Module  
Module  
Upon sampling the voltage level of V_CORE (minus tolerances for  
ripple), VR_PWRGD is driven active high. If VR_PWRGD is not  
sampled active within 1 second of the assertion of VR_ON, then the  
system electronics should deassert VR_ON. After V_CORE is  
stabilized, VR_PWRGD will assert to logic high (3.3V). This signal  
must not be pulled up by the system electronics. VR_PWRGD should  
be "logically ANDed" with V_3S to generate the PIIX4E/M input signal,  
PWROK. The system electronics should monitor VR_PWRGD to verify  
it is asserted high prior to the active high assertion of PIIX4E/M  
PWROK.  
VR_PWRGD  
V_CPUPU is 1.5V. The system electronics uses this voltage to power  
the PIIX4E/M-to-processor interface circuitry.  
V_CPUPU  
V_CLK  
Module  
Module  
V_CLK is 2.5V. The system electronics uses this voltage to power the  
HCLK[0:1] drivers for the processor clock.  
The following list includes additional specifications and clarifications of the power sequence  
timing and Figure 6 provides an illustration.  
1. The VR_ON signal may only be asserted to a logical high by a digital signal after V_DC ≥  
7.5V, V_5 4.5V, and V_3 3.0V.  
2. The Rise Time and Fall Time of VR_ON must be less than or equal to 1.0 µS.  
3. VR_ON has its VIL max = +0.4V and VIH min = +3.0V.  
4. The VR_PWRGD will get asserted to logic high (3.3V) after V_CORE is stabilized and V_DC  
reaches 7.5V. This signal should not and can not be pulled up by the system electronics.  
5. In the power-on process, Intel recommends to raise the higher voltage power plane first  
(V_DC), followed by the lower power planes (V_5, V_3), and finally assert VR_ON after  
above voltage levels are met on all rails. The power-off process should be the reverse process,  
i.e. VR_ON gets deasserted, followed by the lower power planes, and finally the higher power  
planes.  
243357-005  
Datasheet  
33  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
6. VR_ON must monotonically rise through its VIL to VIH and fall through its VIH to VIL points.  
The sign of slope can not change between VIL and VIH in rising and VIH and VIL in falling.  
7. VR_ON must provide an instantaneous in-rush current to the mobile module with the  
following values as listed in Table 24.  
Table 24. VR_ON In-rush Current  
Instantaneous  
DC Operating  
Maximum  
Typical  
41.0 mA  
0.2 mA  
0.1 µA  
0.0 µA  
8. VR_ON Valid-Low Time: This specifies how long VR_ON needs to be low for a valid off  
before VR_ON can be turned back on again. In going from a valid on to off and then back on,  
the following conditions must be met to prevent damage to the system or the mobile module:  
VR_ON must be low for 1.0 mS  
The original voltage level requirements for turn-on must be met before assertion of  
VR_ON (i.e. V_DC 7.5V, V_5 4.5V, and V_3 3.0V)  
Figure 6. Power Sequence Timing  
V_DC  
V_5  
NOTE 3  
V_3  
0 MS MIN  
0 MS MIN  
V_3S  
VR_ON  
VR_PWRGD  
V_CPUPU  
NOTE 4  
0 MS MIN  
NOTE 5  
NOTE 6  
NOTE 6  
V_CLK  
NOTES:  
1. PWROK on I/O board should be active on when VR_PWRGD is active and V_3S is good.  
2. CPU_RST from I/O board should be active for a minimum of 6.0 mS after PWROK is active and PLL_STP# and CPU_STP# are inactive.  
Note that PLL_STP# is an AND condition of RSMRST# and SUSB# on the PIIX4E/M.  
3. This is the 5V power supplied to the MMC-2 connector. This should be the first 5.0-V plane to power up. It stays on during suspend.  
4. V_DC >= 7.5V, V_5>=4.5V, V_3S>=3.0V.  
5. VR_PWRGD is specified active by the module regulator within less than or equal to 6.0-mS maximum after the assertion of VR_ON.  
6. V_CPUPU and V_CLK are generated on the mobile module.  
34  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
5.3.3  
Power Planes: Bulk Capacitance Requirements  
The placement of sufficient bulk capacitance on the system electronics board is critical to the  
operation of the mobile module and to ensure that the system design can accommodate future high  
frequency modules. Intel has provided the maximum possible bulk capacitance on the mobile  
module. However, in order to achieve proper filtering and in-rush current protection, it is  
imperative that additional filtering be provided on the system electronics board. Table 25 details  
the bulk capacitance requirements for the system electronics.  
Note: Observe the voltage rating requirement for the capacitors on each respective voltage rail.  
Table 25. Bulk Capacitance Requirements  
Bulk Capacitance Requirements  
Power  
Plane  
High Frequency Capacitance  
Requirements  
Notes  
Total  
Capacitance  
ESR  
Max  
RMS Ripple  
Current  
V_DC  
V_5  
100.0 µF  
100.0 µF  
470.0 µF  
100.0 µF  
22.0 µF  
2.2 µF  
20.0 mΩ  
100.0 mΩ  
100.0 mΩ  
100.0 mΩ  
100.0 mΩ  
N/A  
3.0A~ 5.0A  
1.0A  
0.1 µF, 0.01 µF  
0.1 µF, 0.01 µF  
0.1 µF, 0.01 µF  
0.1 µF 0.01 µF  
0.1 µF, 0.01 µF  
8200.0 pF  
Notes 1,3,4,5,6  
Notes 1,4,5,6  
Notes 1,4,5,6  
Notes 1,4,5,6  
Notes 1,4,5,6  
Notes 1,5,6,7  
Notes 1,2,5,6,7  
V_3  
1.0A  
V_3S  
N/A  
VCC_AGP  
V_CPUPU  
V_CLK  
1.0A  
N/A  
10.0 µF  
N/A  
N/A  
8200.0 pF  
NOTES:  
1. Placement of above capacitance requirements should be located near the connector.  
2. V_CLK filtering should be located next to the system clock synthesizer.  
3. The Ripple current specification depends on the V_DC input for the module. See Figure 7 below.  
4. If Tantalum* Capacitors are used, a 50% voltage derating practice must be observed. For example, a 5.0-V  
rail requires a 10.0-V rated capacitor.  
5. In order to reduce ESR, Intel recommends the use of multiple bulk capacitors rather than a single large  
capacitor.  
6. Intel strongly recommends that system manufacturers pay close attention to capacitor design considerations.  
Specifically, the "Capacitance vs. Temperature De-rating Curve," "Capacitance vs. Applied DC Voltage De-  
rating Curve," and the "Capacitance vs. Frequency De-rating Curve." Some capacitor dielectrics are  
particularly susceptible to these conditions, for example Y5V ceramic capacitors.  
7. Specifications labeled N/A are not available.  
243357-005  
Datasheet  
35  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 7 shows the dependence of V_DC ripple current on V_DC.  
Figure 7. V_DC Ripple Current  
V_DC Input Ripple Current vs. V_DC Voltage  
6.00  
5.50  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
V_DC(V)  
5.3.4  
Surge Current Guidelines  
DC Power System Protection  
5.3.4.1  
The recommended DC Power System Protection consists of the following:  
A DC Power Supply that is capable of delivering 7.5V to 21.0V to the mobile module  
An Overcurrent Protection circuit that provides a means to limit the maximum current  
available to the system  
A Slew Rate Control circuit that provides a controlled voltage slew rate at turn on, which  
provides protection for components sensitive to fast voltage rise times  
An Undervoltage Lockout circuit that protects against potentially damaging high currents,  
which might be encountered if the DC Power Supply voltage is too low  
An Overvoltage Lockout circuit that provides protection from potentially damaging high DC  
Power Supply voltages  
Bulk Decoupling Capacitors that provide filtering and a reservoir of energy, which can  
provide a faster transient response than the power supply  
36  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 8. V_DC Power System Protection Block Diagram  
V_DC Power  
Supply  
Overcurrent  
Protection  
Slew Rate  
Control  
Bulk  
Decoupling  
Capacitors  
Module  
(See Table 19)  
(See Section 5.3.4.3)  
(See Section 5.3.4.5)  
Undervoltage  
Lockout  
(See Section 5.3.4.6)  
Overvoltage  
Lockout  
(See Section 5.3.4.7)  
5.3.4.2  
5.3.4.3  
V_DC Power Supply  
The power supply must be able to deliver 7.5V to 21.0V to the mobile module, measured at the  
mobile module.  
Overcurrent Protection  
The Overcurrent Protection circuit provides a way to limit current drawn by the mobile module.  
Under normal operating conditions, I_DC should not exceed 3.0A at V_DC = 7.5V. To allow for  
component variations and margining issues, a reasonable I_DC Current Limit would be 6.0A.  
243357-005  
Datasheet  
37  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 9. Overcurrent Protection Circuit  
Over Current Protection  
Slew Rate Control  
Si4435DY  
M1  
V_DC  
R1  
Power Supply  
+
R4  
V_DC  
R16  
C9  
R13  
Q1  
R12  
U1B  
-
R20  
R2  
M3  
2.5V  
C18  
2N2222A  
2N7000  
LM4040  
R33  
R14  
V_DC  
R35  
U1A  
R36  
NOTE: U1B must be able to operate with inputs near the V_DC  
rail. Consider the LMC6762.  
At the other end of the V_DC input range, the current will be somewhat less. At 14.0V, for  
example, the corresponding power could be produced with only 3.0A. In this example, a  
comparator, U1A, will be used to sense when V_DC is over 14.0V and will shift the current limit  
from 6.0A to 3.0A.  
Let I_DC(limit)= 6.0A  
Let I_DC(limit2)= 3.0A  
Let b(Q1)= 100  
Let R1= 5.0 m= 0.005Ω  
Let R12= 100.0Ω  
Let R13= 100.0Ω  
Let V(R14)1.8V  
Let I(R20)100.0 µA  
Let C36= 2.0K  
38  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 10. Current Shift Model  
V_DC  
R35  
U1A +in  
R36  
5.3.4.4  
Current Limit Shift Point  
The comparator U1A should switch when the non-inverting input is equal to the 2.5-V reference on  
the inverting input, or when the voltage applied to V_DC is equal to the selected switch point and  
the voltage dropped across R36 is 2.5V. In this example, the change should occur when V_DC=  
14.0V.  
Equation 1.  
(V_DC Vref)  
Vref  
(14 2.5)  
2.5  
R35  
R35  
R36  
2000  
(The nearest standard 1% value is 9.01 k.)  
The comparator U1A will pull its output low when V_DC falls below 14.0V, which will effectively  
put R33 in parallel with R14.  
When power is initially applied to the circuit, C18 charges up to 2.5V through R20. This slowly  
rising voltage is applied to the base of the current source, Q1. The voltage on R14 is approximately  
2.5V minus the base-emitter drop of about 0.7V (at 25°C): V(R14) 1.8V. Q1 is a 2N2222A with a  
moderate β of about 100. Therefore, the current through R13 is approximately equal to the current  
through R14.  
The charging of C18 provides a small increment of delay as U1 will not allow R4 to pull up the  
Gate of M3 until Q1 has pulled the non-inverting input of U1 down slightly.  
The voltage developed across R1 is a function of the load. See Equation 2 below.  
Equation 2.  
V(R1)= I_DC*R1  
243357-005  
Datasheet  
39  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
If the maximum I_DC expected is 3.0A, consider setting the I_DC Current Limit at 6.0A. If the  
Current Sense resistor, R1, is selected to be 5.0 m(0.005), the maximum voltage developed  
across this resistor can be calculated.  
Consider now the case where V_DC is above 14.0V. See Equation 3 below.  
Equation 3.  
I_DC(limit)*Rsense= 3.0A*5E-3= 15.0 mV)  
The Offset voltage applied to the inverting input of the comparator, U1B, should then be 15.0 mV.  
If R13 is selected to be 100.0, the current can then be calculated as shown in Equation 4 below.  
Equation 4.  
Ioffset= 15.0 mV/100.0= 150.0 µA  
Note: For a successful design, the input offset of the comparator should also be considered. One option is  
that the design offset is at least ten times greater than the device offsets.  
The value of R14 can now be calculated with Equation 5.  
Equation 5.  
R14= 1.8V/150.0 µA= 12.0 kΩ  
(The nearest 1% value is 12.1K.)  
Consider now the case when V_DC drops below 14.0V, and the current limits shift to 6.0A.  
Equation 6.  
I_DC(limit)*Rsense= 6.0A*5E-3= 30.0 mV  
The Offset voltage applied to the inverting input of the comparator, U1B, should then be 30.0 mV.  
If R13 is selected to be 100.0, the current can then be calculated as shown in Equation 7 below.  
Equation 7.  
Ioffset= 30.0 mV/100.0= 300.0 µA  
The value of the parallel combination of R14 and R33 can now be calculated as shown in Equation  
8 below.  
Equation 8.  
Rcombo= 1.8V/300.0 µA= 6.0 kΩ  
R14 is a 12.0-K resistor. If R33 is also 12.0K, then the parallel combination will be 6.0K.  
In R20, the LM4040-2.5 has a very wide operating current range from 60.0 µA to 15.0 µA. In order  
to provide the current source base drive you will need Equation 9.  
Equation 9.  
IbaseIc/b=300.0 µA/100= 3.0 µA  
40  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
If 100 µA is selected for I(R20), it would be adequate for the reference and current source base  
drive. Since both of these currents must be satisfied at the low power supply margin, a V_DC of  
7.5V will be assumed.  
Equation 10.  
R20 = (V_DC-Vref)/I(R20) = (7.5-2.50)/100.0 µA=50.0 kΩ  
(To allow for component tolerances, 51.0 kis recommended.)  
5.3.4.5  
Slew Rate Control  
The Slew Rate Control regulates the rate that the power supply voltage is applied to the system.  
Let the Threshold voltage of M1, Vt = -1.0V  
Let M1 VGS(sat) = -2.4V, also denoted as Vsat  
Let R16 = 100.0 kΩ  
Let t_delay = 500.0 µS  
Let Ctotal = The sum or the Bulk capacitors + the sum of the module capacitors = 5 X 22.0 µF  
+ 2 X 4.7 µF=119.4 µF  
M1 is a low RDS(on) P-Channel MOSFET, such as the Siliconix* Si4435DY. When the power  
supply voltage is applied and increased to a value that exceeds the Lockout value, (7.5V will be  
used in this example), the Undervoltage Lockout circuit allows R4 to pull up the gate of M3 to start  
a turn-on sequence. M3 pulls its drain toward ground, forcing current to flow through R2. M1 will  
not start to source any current until after t_delay, with t_delay defined as shown in Equation 11 and  
Equation 12 below.  
Equation 11.  
Vt  
.
.
t_delay  
R2 C9 ln 1  
V_DC Vg  
Equation 12.  
R16  
Vgs  
V_DC  
R16 R2  
The published minimum threshold of the Si4435DY is a VGS of -1.0V, i.e. C9 must charge to 1.0V  
before M1 starts to turn on. The delay, t_delay, is the time required to charge C9 to 1.0V.  
Assuming a negligible voltage drop across M3, when M3 is on, the voltage on the Gate of M1, VG,  
with respect to ground, is the voltage developed across R2: VGV(R2). If a minimum steady-state  
bias on M1 should be -4.5V, then this will be the voltage dropped across R16. At the low end of the  
V_DC margin, i.e. 7.5V, VG can be derived from Equation 13 below.  
Equation 13.  
VG = V_DC+VGS = 7.5V- 4.5V = 3.0V (with respect to ground)  
243357-005  
Datasheet  
41  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Equation 14.  
.
Vg R16  
,
R2  
R2 = 66.67 k Ω  
V_DC Vg  
(The nearest standard 1% value is 66.5 k. The example will continue with R2= 66.5 k.)  
Rearranging Equation 8 to solve for C9 yields Equation 15.  
Equation 15.  
t_delay  
Vt  
V_DC Vg  
C9  
.
R2 ln 1  
Now a value for C9 can be calculated as shown in the Equation 16 below.  
Equation 16.  
C 9= 0.354 µF  
(A close standard value of 0.33 µF will yield a t_delay of 466.0 µS.)  
The ramp-up time, t_ramp, is defined as shown in Equation 17.  
Equation 17.  
Vsat  
Vgs  
.
.
t_ramp  
R2 C9 ln 1  
t_delay  
If M1 has a VGS(sat) of -2.4V, then Equation 18 applies.  
Equation 18.  
t_ramp = 948.8 µS  
The maximum current during the power-up ramp is shown in Equation 19 below.  
Equation 19.  
V_DC  
d
dt  
.
Ctotal  
Imax Cto tal  
v
t_ramp  
If the total capacitance, Ctotal on the V_DC bus, is 119.4 µF, then see Equation 20 below.  
Equation 20.  
Imax = 0.944A  
From the values assumed and calculated, t_delay = 466.0 µS, t_ramp = 949.0 µS, and Imax = 944  
mA.  
42  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
5.3.4.6  
Undervoltage Lockout  
The circuit below shows the Undervoltage Lockout portion of the V_DC Supply circuit. This  
circuit protects and locks out the applied voltage to the mobile module to prevent an accidental  
turn-on at low V_DC supply voltages.  
Warning: A low voltage applied to the mobile module could result in destructive current levels.  
Figure 11. Undervoltage Lockout  
V_DC_A  
Let V_DC_UVlock=7.5V  
Let R17=10 kΩ  
Let R25=1 mΩ  
Let VCEsat= 0.3V  
Let Vref=2.5V  
R4  
M3 Gate  
V_DC  
Vref  
2.5V  
R25  
V_DC  
R17  
R18  
LM339  
Undervoltage Lockout  
The output of the LM339 comparator is an open-collector and is low when the applied voltage at  
V_DC is less than 7.5V, which holds the Gate of M3 low. Consequently, the Slew Rate Controller  
is not allowed to turn on. The 2.5-V reference, Vref, voltage is derived from D7 in Figure 9. When  
non-inverting input of the comparator exceeds Vref, 2.5V, the comparator trips and allows its output  
to go to a High Z state. The gate of M3 can then be pulled up by R4, starting the controlled Power-  
up Slew.  
The model in Figure 12 will be used to calculate the Undervoltage Lockout trip point.  
243357-005  
Datasheet  
43  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 12. Undervoltage Lockout Model  
V_DC  
R17  
2.5V  
R25  
R18  
+
VCEsat  
Undervoltage Lockout Model  
VCEsat is the saturation voltage of the comparator output transistor. The comparator trip point  
voltage can be calculated with Equation 21.  
Equation 21.  
Vref Vref VCEsat  
V_DC_UVlock Vref  
R17  
R18  
R25  
If power to the mobile module is to be held off until V_DC exceeds 7.5V, Equation 21 can be  
rearranged to solve for R18.  
Equation 22.  
.
.
Vref R17 R25  
R18  
.
.
R25 (V_DC_UVlock Vref) R17 (Vref VCEsat)  
A value for R18 can be determined by plugging these values into Equation 23.  
Equation 23.  
R18 = 5.022 kΩ  
(4.99 kis a standard 1% resistor value, which would provide lockout below 7.532V.)  
5.3.4.7  
Overvoltage Lockout  
The mobile module operates with a maximum input voltage of 21.0V. This circuit can be set to lock  
out the input voltage if it exceeds the desired input.  
44  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 13. Overvoltage Lockout  
V_DC_A  
Let R4=100 kΩ  
Let R24=100K  
Let R26=1 mΩ  
Let R27=1 kΩ  
R4  
Vref  
2.5V  
M3 Gate  
V_DC  
R27  
R26  
V_DC  
R24  
R23  
LM339  
Overvoltage Lockout  
The LM339 comparator is an open-collector output and is pulled low when the applied voltage at  
V_DC is too high, thus disabling the Slew-rate circuit.  
The model in Figure 14 below will be used for component calculations.  
Figure 14. Overvoltage Lockout Model  
V_DC  
V_DC_A  
R4  
R24  
Vinv  
R26  
R23  
Vnoninv  
R27  
Overvoltage Lockout Model  
Vref  
Assume that the desired V_DC Overvoltage Lockout is 21.0V. Using Equation 24, the input to the  
non-inverting input of the OV Lockout comparator can be calculated using the following  
equations.  
243357-005  
Datasheet  
45  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Equation 24.  
.
R27 (V_DC_OVlock Vref)  
Vnoninv Vref  
R4 R26 R27  
Equation 25.  
Equation 26.  
Vnoninv= 2.517V  
.
(V_DC_OVlockR23)  
Vinv  
R23 R24  
The output of the OV Lockout comparator will become active and pull down when the inverting  
input becomes greater than the 2.517V input on the non-inverting input. Equation 26 can be  
rearranged to solve for R23.  
Equation 27.  
.
R24 Vinv  
R23  
V_DC_OVlock Vinv  
The OV Lockout comparator trip point is defined by Vinv = Vnoninv = 2.517V. Equation 28  
provides a solution for R23.  
Equation 28.  
R23= 13.618 kΩ  
(The nearest standard 1% value is 13.7 kΩ.)  
If V_DC exceeds 6.0V, the voltage on the OV Lockout comparator inverting input will exceed  
2.517V causing the comparator to trip.When the comparator trips, its output is low. Consequently,  
the Power Skew Control circuit is disabled, which will disconnect V_DC from the mobile module.  
46  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 15. Recommended Power Supply Protection Circuit for the System Electronics  
Slew Rate Control  
Over Current Protection  
V_DC  
Input Bulk Decoupling Capacitors  
MMO Processor Module  
Si4435DY  
R1  
AC Adaptor  
+
0.3  
1M  
R4  
V_DC  
0.3  
0.3  
0.3  
0.3  
R16  
0.3  
C9  
0.3  
R13  
-
R12  
R20  
27uF  
27uF  
27uF  
27uF  
27uF  
4.7uF  
R2  
M3  
4.7uF  
2.5V  
LM339  
2N2222A  
2N7000  
C18  
LM4040  
V_DC  
R14  
V_DC  
Components values assumed and calculated  
V_DC  
R33  
R25  
2.5V  
R35  
R17  
R18  
V_DC  
R1  
R2  
R4  
5 m  
5.62 k, ± 1%  
100 k, ± 1%  
R20 20 k  
,
Ω ±  
5%  
R23 71.5 k, ± 1%  
R24 100 k, ± 1%  
R25 1M, ± 5%  
LM339  
LM339  
R36  
Under  
Voltage Lockout  
R12 100, ± 1%  
R13 100 1%  
R14 12.1 k, ± 1%  
R16 100 k, ± 1%  
R17 10 k, ± 1%  
R18 11 k, ± 1%  
,
R26 1M, 5%  
Ω ±  
±
V_DC  
R27 1 k, ± 1%  
R33 12.1 k, ± 1%  
R35 9.1 k, ± 1%  
R36 2 k, ± 1%  
R27  
R26  
V_DC  
R24  
LM339  
C9  
0.33 µF  
R23  
C18 0.1 µF  
Over Voltage Lockout  
Figure 16. Simulation of V_DC Voltage Skew  
243357-005  
Datasheet  
47  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
5.4  
Active Thermal Feedback  
Table 26. Thermal Sensor SMBus Address  
Function  
SMBus Address  
Thermal Sensor  
1001 110  
5.5  
Thermal Sensor Configuration Register  
The configuration register of the thermal sensor controls the operating mode (Auto Convert vs.  
Standby) of the device. Since the processor temperature varies dynamically during normal  
operation, Auto Convert mode should be used exclusively to monitor processor temperature.  
Table 27 shows the format of the configuration register. If the RUN/STOP bit is low, then the  
thermal sensor enters Auto Convert mode. If the RUN/STOP bit is set high, then the thermal sensor  
immediately stops converting and enters the Standby mode. The thermal sensor will still perform  
temperature conversions in Standby mode when it receives a one-shot command. However, the  
result of a one-shot command during Auto Convert mode is not guaranteed. Intel does not  
recommend using the one-shot command to monitor temperature when the processor is active, only  
Auto Convert mode should be used. The thermal sensor can be configured in various interface  
modes for temperature sampling. Intel recommends interfacing the thermal sensor using Interrupt  
mode. For more detailed information regarding interface methods, please see the Intel Mobile  
Module Thermal Diode Temperature Sensor Application Note available through your Intel Field  
Representative.  
Table 27. Thermal Sensor Configuration Register  
Bit  
Name  
Reset State  
Function  
Masks SMBALERT# when high  
7 MSB MASK  
0
Standby mode control bit. If low, the device enters Auto Convert  
mode. If high, the device immediately stops converting and enters  
Standby mode where the one-shot command can be performed.  
6
RUN/STOP  
RFU  
0
0
5-0  
Reserved for future use  
NOTE: All RFU bits should be written as 0and read as dont carefor programming purposes.  
48  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
6.0  
Mechanical Specification  
This section provides the physical dimensions of the Celeron processor mobile module.  
6.1  
Mobile Module Dimensions  
Figure 17 shows the board dimensions and the connector orientation.  
Figure 17. Board Dimensions and MMC-2 Connector Orientation  
Module Mechanical X-Y-Z Dimensions and Thermal  
Attach Points  
Unless otherwise specified:  
Tolerances  
Angles  
.X  
± 0.5°  
± 0.2  
.XX  
.XXX  
± 0.15  
± 0.075  
* All Dimensions are in mm  
6.1.1  
Pin 1 Location of the MMC-2 Connector  
Figure 18 shows the location of pin 1 of the 400-pin connector.  
243357-005  
Datasheet  
49  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 18. Board Dimensions and MMC-2 Connector—Pin 1 Orientation  
6.1.2  
Printed Circuit Board  
Figure 19 shows the minimum and maximum thickness of the printed circuit board (PCB). The  
range of PCB thickness allows for different PCB technologies to be used with current and future  
Intel mobile modules.  
Note: The system manufacturer must ensure that the mechanical restraining method and/or system-level  
EMI contacts are able to support this range of PCB for compatibility with future Intel mobile  
modules.  
Figure 19. Printed Circuit Board Thickness  
Min: 0.90 mm  
Max: 1.10 mm  
Printed Circuit Board  
50  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
6.1.3  
Height Restrictions  
Figure 20 shows the mechanical stack-up and the associated component clearance requirements.  
This is the module keep-out zone and should not be entered. The system manufacturer establishes  
board-to-board clearance between the mobile module and the system electronics by selecting one  
of three mating connectors available in heights of approximately 4 mm, 6 mm, and 8 mm. The  
three sizes provide flexibility in choosing the system electronics components between the two  
boards. Information on these connectors can be obtained from your Intel Field Representative.  
Figure 20. Keep-out Zone  
Note 3  
Note 3  
NOTES:  
1.  
2.  
All values are nominal unless otherwise specified.  
3D CAD model (PRO/E Native) Available upon  
request.  
3.  
These dimensions have changed.  
6.2  
Thermal Transfer Plate  
A thermal transfer plates (TTP) provide heat dissipation on the processor and the 82443BX. The  
TTP may vary on different generations of Intel mobile modules. The TTP provides the thermal  
attach point where a system manufacturer can transfer heat through the notebook system using a  
heat pipe, a heat spreader plate, or a thermal solution. Attachment dimensions for the thermal  
interface block to the TTP are provided in Figure 21, Figure 22, and Figure 23. The TTP on the  
mobile module is designed to be a high efficiency spreader. To fully take advantage of the mobile  
module thermal design and optimize the system thermal performance, the contact area (Ac) needs  
to be a minimum of 30 mm x 30 mm. While it crucial to maximize the contact area, it is equally  
important to ensure that the contact area and/or the mobile module is free from warpage in an  
assembled configuration.  
Warning: If warpage occurs, the thermal resistance of the mobile module could be adversely affected.  
When attaching the mating block to either TTP, Intel recommends that a thermal elastomer be used  
as an interface material. This material reduces the thermal resistance. The system thermal interface  
block should be secured with M2 screws using a maximum torque of 1.5 Kg*cm to 2.0 Kg*cm  
(equivalent to 0.147 N*m to.197 N*m). The thread length of the M2 screws should be 2.25-mm  
243357-005  
Datasheet  
51  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
gageable thread (2.25-mm minimum to 2.80-mm maximum). The mobile module is designed to  
ensure that the thermal resistance between the processor die center and a point directly above on  
the TTP surface is to 1.0° C/W, under the following set of conditions.  
RTTP-a = TTP (center point) to ambient = ~2.4° C/W  
Ac = Contact area centered between the two TTP attach points = 30 mm x 30 mm.  
Figure 21. 82443BX Thermal Transfer Plate (Reference Only)  
BX TTP  
Rivets for PCB Mounting  
Figure 22. 82443BX Thermal Transfer Plate Detail  
3.150  
1.000 ± 0.89  
3.569  
6.280  
1.050  
NOTE: All tolerances are ± 0.015 mm unless otherwise noted.  
52  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 23. CPU Thermal Transfer Plate (Reference Only)  
6.3  
Mobile Module Physical Support  
6.3.1  
Mobile Module Mounting Requirements  
Three mounting holes are available for securing the mobile module to the system base or the  
system electronics. See Figure 17 for mounting hole locations. These hole locations and board edge  
clearances will remain fixed for all Intel mobile modules. All three mounting holes should be used  
to ensure long term mechanical reliability and EMI integrity of the system. The board edge  
clearance includes a 0.762-mm (0.030 inches) wide EMI containment ring around the perimeter of  
the module. This ring is on each layer of the module PCB and is grounded. The hole patterns also  
have a plated surrounding ring to use a metal standoff for EMI shielding purposes. Standoffs  
should be used to provide support for the installed mobile module. However, the warpage of the  
baseboard can vary and should be calculated into the final dimensions of the standoffs used. All  
calculations can be made with the Intel MMC-2 Standoff/Receptacle Height Spreadsheet.  
Information on this spreadsheet can be obtained from your local Intel representative.  
Figure 24 shows the standoff support hole details, the board edge clearance, and the dimensions of  
the EMI containment ring. No components are placed on the board in the keep-out area.  
243357-005  
Datasheet  
53  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 24. Standoff Holes, Board Edge Clearance, and EMI Containment Ring  
Hole detail, 3 places  
3.81+/-0.19 mm  
+ 0.050 mm  
2.413 mm  
- 0.025 mm  
hole diameter  
4.45 mm diameter grounded ring  
1.27+/- 0.19 mm board edge to EMI ring  
0.762 mm width of EMI containment ring  
2.54+/-0.19 mm keep-out area  
3.81+/-0.19 mm board edge to hole centerline  
6.3.2  
Mobile Module Weight  
The Celeron processor mobile module weighs approximately 56 grams.  
54  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
7.0  
Thermal Specification  
7.1  
Thermal Design Power  
The power handling capability of the system thermal solution may be reduced to less than the  
recommended typical Thermal Design Power (TDP) as shown in Table 28 with the implementation  
of firmware/software control or "throttlingthat reduces the CPU power consumption and  
dissipation. The typical TDP is the typical power dissipation under normal operating conditions at  
nominal V_CORE (CPU power supply) while executing the worst case power instruction mix. This  
includes the power dissipated by all of the relevant components. During all operating  
environments, the processor junction temperature, TJ, must be within the specified range of 0° C to  
100 ° C.  
Table 28. Thermal Design Power (TDP MODULE ) Specification  
Typical  
700 MHz  
Typical  
650 MHz  
Typical  
600 MHz  
Typical  
450 MHz  
Typical  
500 MHz  
Typical  
550 MHz  
Symbol  
TDP  
19.1W  
17.8W  
16.6W  
14.1W  
15.0W  
15.4W  
Module  
NOTES:  
1. During all operating environments, the processor temperature, T , must be within the special range of 0 °C to  
j
100°C.  
2. TDP  
is a thermal solution design reference point for thermal solution readiness for total module power.  
Module  
3. Module equals core + 82443BX + VR.  
243357-005  
Datasheet  
55  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
8.0  
Labeling Information  
Intel mobile modules are tracked in two ways. The first is by the product tracking code (PTC). Intel  
uses the PTC label to determine the assembly level of the mobile module. Figure 25 shows where  
PTC can be found on the module. The PTC contains 13 characters and provides the following  
information.  
Example: PMN700001201AA  
Key:  
Definition:  
AA-  
B-  
AABCCCDDEEEFF  
Processor Module = PM  
Celeron Processor (.18µ) Mobile Module = N  
CCC- Speed Identity = 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450  
MHz  
DD-  
EEE- Notifiable Design Revision (Start at 001)  
FF- Notifiable Processor Revision (Start at AA)  
Cache Size = 01 (128K)  
Note: For other Celeron processor mobile modules, the second field (B) is defined as:  
Celeron Processor Mobile Module (MMC-1) = H  
Celeron Processor Mobile Module (MMC-2) = I  
Pentium II Processor Mobile Module (MMC-1) = D  
Pentium II Processor Mobile Module (MMC-2) = E  
Pentium II Processor Mobile Module With On-die Cache (MMC-1) = F  
Pentium II Processor Mobile Module With On-die Cache (MMC-2) = G  
Pentium III Processor Mobile Module (MMC-2) = L  
Pentium III Processor Mobile Module Featuring Intel SpeedStep Technology (MMC-2) = M  
56  
Datasheet  
243357-005  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
Figure 25. Product Tracking Code  
Intel Assembly Identification  
Intel Serial Number  
ISYWW6666  
PBA XXXXXX-XXX  
XXXXXXXXXXXXX  
Product Tracking Code  
Secondary Side of the Module  
The second tracking method is by a generated software utility. Four strapping resistors located on  
module determine its production level. If connected and terminated properly, up to 16 module-  
revision levels can be determined. A generated software utility can then read these ID bits with  
CPU IDs and stepping IDs to provide a complete module manufacturing revision level. For current  
PTC and module ID bit information, please refer to the latest Intel mobile module product change  
notification (PCN) letter, which can be obtained from your local Intel Field Representative.  
243357-005  
Datasheet  
57  
Celeron Processor Mobile Module MMC-2  
at 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, and 450 MHz  
9.0  
Environmental Standards  
The environmental standards are defined in Table 29.  
Table 29. Environmental Standards  
Parameter  
Condition  
Specification  
Non-operating  
Operating  
-40 °C to 85 °C  
0 °C to 55 °C  
Temperature Cycle  
Humidity  
Unbiased  
85% relative humidity at 55°C  
V_5  
V_3  
5.0V ± 5%  
3.3V ± 5%  
Voltage  
Non-operating  
Unpackaged  
Packaged  
Half Sine, 2G, 11 mS  
Trapezoidal, 50G, 11 mS  
Shock  
Inclined impact at 5.7 feet/S  
Half Sine, 2 msec at 36 inches simulated free fall  
Packaged  
Unpackaged  
Packaged  
Packaged  
5 Hz to 500 Hz, 2.2-gRMS random  
10 Hz to 500 Hz, 1.0 gRMS  
Vibration  
11,800 impacts 2 Hz to 5 Hz (low frequency)  
Non-powered test of the mobile module only for non-  
ESD Damage  
Human Body Model catastrophic failure. The mobile module is tested at 2 kV and  
then inserted in a system for functional test.  
58  
Datasheet  
243357-005  

相关型号:

MPM21PDA300A

Microprocessor, 32-Bit, 300MHz, CMOS, MMC-2
INTEL

MPM21PDA300B

Microprocessor, 32-Bit, 300MHz, CMOS, MMC-2
INTEL

MPM22CGA800B

Microprocessor, 32-Bit, 800MHz, CMOS, MMC-2
INTEL

MPM22CGA850B

Microprocessor, 32-Bit, 850MHz, CMOS, MMC-2
INTEL

MPM22CGB700A

Microprocessor, 32-Bit, 700MHz, CMOS, MMC-2
INTEL

MPM22CGB700B

Microprocessor, 32-Bit, 700MHz, CMOS, MMC-2
INTEL

MPM22CGB750A

Microprocessor, 32-Bit, 750MHz, CMOS, MMC-2
INTEL

MPM22CGB750B

Microprocessor, 32-Bit, 750MHz, CMOS, MMC-2
INTEL

MPM22CGC600A

Microprocessor, 32-Bit, 600MHz, CMOS, MMC-2
INTEL

MPM22CUC450A

Microprocessor, 32-Bit, 450MHz, CMOS, MMC-2
INTEL

MPM22CUC450B

Microprocessor, 32-Bit, 450MHz, CMOS, MMC-2
INTEL

MPM22CUC500A

Microprocessor, 32-Bit, 500MHz, CMOS, MMC-2
INTEL