NLXT361PEA2 [INTEL]

PCM Transceiver, 1-Func, PQCC28, PLASTIC, LCC-28;
NLXT361PEA2
型号: NLXT361PEA2
厂家: INTEL    INTEL
描述:

PCM Transceiver, 1-Func, PQCC28, PLASTIC, LCC-28

PC 电信 电信集成电路
文件: 总55页 (文件大小:1015K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LXT361  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Datasheet  
Applications  
ISDN PRI  
CSU/NTU interface to T1/E1 Service  
Wireless Base Station interface  
T1/E1 LAN/WAN bridge/routers  
T1/E1 Mux; Channel Banks  
Digital Loop Carrier - Subscriber Carrier  
Systems  
Product Features  
Fully integrated transceiver for Long or  
Four Line Build-Outs for T1 Long-Haul  
Short-Haul T1, or E1 interfaces  
applications from 0 dB to -22.5 dB  
Crystal-less digital jitter attenuation  
Transmit/receive performance monitors  
with Driver Fail Monitor Open and Loss Of  
Signal (lOS) outputs  
Select either transmit or receive path  
No crystal or high speed external clock  
required  
Selectable unipolar or bipolar data I/O and  
B8ZS/HDB3 encoding/decoding  
Meets or exceeds specifications in ANSI  
T1.102, T1.403 and T1.408; ITU I.431,  
G.703, G.736, G.775 and G.823; ETSI 300-  
166 and 300-233; and AT&T Pub 62411  
Supports 75 Ω (E1 coax), 100 Ω (T1  
twisted-pair) and 120 Ω (E1 twisted-pair)  
applications  
Selectable receiver sensitivity – fully  
restores the received signal after  
transmission through a cable with  
attenuation of either 0 to 26 dB, or 0 to  
36 dB @ 772 kHz and 0 to 43 dB @  
1024 kHz  
Line attenuation indication output in 2.9 dB  
steps  
QRSS generator/detector for testing or  
monitoring  
Output short circuit current limit protection  
Local, remote, and analog loopback, plus  
in-band network loopback code generation  
and detection  
Intel/Motorola compatible 8-bit parallel  
interface for microprocessor control  
Available in 28-pin PLCC, 44-pin PQFP  
and 44-pin LQFP packages  
Five Pulse Equalization Settings for T1  
Short-Haul applications  
As of January 15, 2001, this document replaces the Level One document  
Order Number: 249032-002  
known as LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications. 04-Jan-2006  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The LXT361 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current  
characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation, 2001  
*Third-party brands and names are the property of their respective owners.  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Contents  
1.0  
2.0  
General Description ..................................................................................................7  
Pin Assignments and Signal Descriptions......................................................8  
2.1  
Mode Dependent Signals......................................................................................9  
3.0  
Functional Description...........................................................................................13  
3.1  
3.2  
Initialization..........................................................................................................13  
3.1.1 Reset Operation .....................................................................................13  
Transmitter ..........................................................................................................13  
3.2.1 Transmit Digital Data Interface...............................................................13  
3.2.2 Transmit Monitoring................................................................................14  
3.2.3 Transmit Drivers.....................................................................................14  
3.2.4 Transmit Idle Mode.................................................................................14  
3.2.5 Transmit Pulse Shape ............................................................................14  
Receiver ..............................................................................................................15  
3.3.1 Receive Equalizer ..................................................................................15  
3.3.2 Receive Data Recovery..........................................................................15  
3.3.3 Receiver Monitor Mode ..........................................................................15  
Jitter Attenuation .................................................................................................16  
Diagnostic Mode Operation.................................................................................16  
3.5.1 Loopback Modes....................................................................................16  
3.5.2 Internal Pattern Generation and Detection.............................................20  
3.5.3 Error Insertion and Detection .................................................................22  
3.5.4 Alarm Condition Monitoring....................................................................23  
3.5.5 Other Diagnostic Reports.......................................................................24  
Parallel Microprocessor Interface........................................................................24  
3.6.1 Interrupt Handling...................................................................................24  
3.3  
3.4  
3.5  
3.6  
4.0  
5.0  
Register Definitions.................................................................................................26  
Application Information.........................................................................................32  
5.1  
5.2  
5.3  
Transmit Return Loss..........................................................................................32  
Transformer Data ................................................................................................32  
Application Circuit................................................................................................32  
6.0  
7.0  
Test Specifications..................................................................................................36  
Mechanical Specifications....................................................................................49  
7.1  
Top Label Markings.............................................................................................52  
8.0  
Product Ordering Information.............................................................................54  
Datasheet  
3
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Figures  
1
2
3
4
5
6
7
8
LXT361 Block Diagram .........................................................................................7  
LXT361 Pin Assignments and Markings ............................................................... 8  
50% Duty Cycle Coding ......................................................................................14  
TAOS with LLOOP ..............................................................................................18  
Local Loopback ...................................................................................................18  
Analog Loopback ................................................................................................19  
Remote Loopback...............................................................................................19  
Dual Loopback ....................................................................................................20  
TAOS Data Path .................................................................................................20  
QRSS Mode ........................................................................................................21  
Typical T1/E1 LXT361 Application ......................................................................35  
2.048 MHz E1 Pulse (See Table 27)...................................................................39  
1.544 MHz T1 Pulse (DS1 and DSX-1) (See Table 28) ......................................40  
Transmit Clock Timing ........................................................................................41  
Receive Clock Timing .........................................................................................42  
LXT361 I/O Timing Diagram for Intel Address/Data Bus ....................................44  
LXT361 I/O Timing Diagram for Motorola Address/Data Bus .............................45  
Typical T1 Jitter Tolerance at 36 dB ...................................................................45  
Typical E1 Jitter Tolerance at 43 dB ...................................................................46  
Typical E1 Jitter Attenuation ...............................................................................47  
\T1 Jitter Attenuation...........................................................................................48  
Plastic Leaded Chip Carrier (PLCC) Package Specifications .............................49  
Plastic Quad Flat Package (PQFP) Specifications .............................................50  
Low-Profile Quad Flat Package (LQFP) Specifications ......................................51  
Sample PLCC Package – Intel® DJLXT361LE Transceiver ...............................52  
Sample Pb-Free (RoHS-Compliant) LQFP Package – Intel® WJLXT361LE Trans-  
ceiver52  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Sample PLCC Package – Intel® NLXT361PE Transceiver.................................53  
Sample Pb-Free (RoHS-Compliant) PLCC Package – Intel® EELXT361PE Trans-  
ceiver53  
29  
Ordering Information Matrix – Sample ................................................................55  
4
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Tables  
1
2
3
4
5
6
7
8
9
LXT361 Clock and Data Pin Assignments by Mode1............................................9  
LXT361 Processor Interface Pins..........................................................................9  
LXT361 Signal Descriptions................................................................................10  
Diagnostic Mode Summary .................................................................................16  
Register Addresses.............................................................................................26  
Register and Bit Summary ..................................................................................26  
Control Register #1 Read/Write, Address (A7-A0) = x010000x ..........................27  
Equalizer Control Bit Settings..............................................................................27  
Control Register #2 Read/Write, Address (A7-A0) = x010001x ..........................28  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Control Register #3 Read/Write, Address (A7-A0) = x010010x ..........................28  
Interrupt Clear Register Read/Write, Address (A7-A0) = x010011x....................29  
Transition Status Register Read Only, Address (A7-A0) = x010100x.................29  
Performance Status Register Read Only, Address (A7-A0) = x010101x............30  
Equalizer Status Register Read Only, Address (A7-A0) = x010110x .................30  
Control Register #4 Read/Write, Address (A7-A0) = x010111x ..........................30  
E1 Transmit Return Loss Requirements .............................................................32  
Transmit Return Loss (2.048 Mbit/s–Short-Haul)................................................32  
Transmit Return Loss (2.048 Mbit/s–Long-Haul) High Return  
Loss Configuration ..............................................................................................33  
Transmit Return Loss (2.048 Mbit/s–Long-Haul) ................................................33  
Transmit Return Loss (1.544 Mbit/s–Long- or Short-Haul) .................................33  
Transformer Specifications for LXT361...............................................................33  
Recommended Transformers for LXT361...........................................................34  
Absolute Maximum Ratings.................................................................................36  
Recommended Operating Conditions .................................................................36  
Digital Characteristics..........................................................................................37  
Analog Characteristics ........................................................................................37  
2.048 MHz E1 Pulse Mask Specifications...........................................................39  
1.544 MHz T1 Pulse Mask Corner Point Specifications......................................40  
Master and Transmit Clock Timing Characteristics for T1 Operation  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
(See Figure 14) ...................................................................................................40  
30  
Master and Transmit Clock Timing Characteristics for E1 Operation  
(See Figure 14) ...................................................................................................41  
Receive Timing Characteristics for T1 Operation (See Figure 15)......................42  
Receive Timing Characteristics for E1 Operation (See Figure 15) .....................42  
LXT361 20 MHz Intel Bus Parallel I/O Timing Characteristics (See Figure 16)..43  
LXT361 16.78 MHz Motorola Bus Parallel I/O Timing Characteristics  
31  
32  
33  
34  
(See Figure 17) ...................................................................................................44  
35  
Product Ordering Information..............................................................................54  
Datasheet  
5
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Revision History  
Revision  
Date  
Description  
002  
04-Jan-2006  
Modified Figure 1 “LXT351 Block Diagram” on page 7.  
Added RoHS information as follows:  
Section 6.1, “Top Label Markings” on page 47.  
Section 7.0, “Product Ordering Information” on page 48.  
001  
Jan 2001  
Initial release.  
6
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
1.0  
General Description  
The LXT361 is a fully integrated, combination transceiver for T1/E1 ISDN Primary Rate Interface  
(ISDN PRI) and general T1/E1 Long and Short Hual applications. The device operates over 0.63  
mm (22 AWG) twisted-pair cables for 0 to 2 km (6 kft) and offers Line Build Outs (LBO) and pulse  
equalization settings for all T1 and E1 Line Interface Unit (LIU) applications.  
The LXT361 features an Intel or Motorola compatible parallel port for microprocessor control. The  
LXT361 incorporates advanced crystal-less digital jitter attenuation in either the transmit or  
receive data path starting at 3 Hz. B8ZS/HDB3 encoding/decoding and unipolar or bipolar data I/O  
are available. The LIU provides loss of signal monitoring and a variety of diagnostic loopback  
modes.  
The parallel port is ideal for applications with multiple T1/E1 interfaces.  
Figure 1. LXT361 Block Diagram  
Datasheet  
7
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
2.0  
Pin Assignments and Signal Descriptions  
Figure 2. LXT361 Pin Assignments and Markings  
4
3
2
1
28 27  
26  
ALE / A S  
25  
24  
23  
22  
21  
20  
19  
A D2  
A D1  
A D0  
G ND  
5
6
R N EG / BP V  
R PO S / R D ATA  
R CLK  
7
8
LXT361PE XX  
XXXXXXXX  
RD / DS  
A D6  
9
V C C  
R R IN G  
R TIP  
10  
11  
BSMC  
A D7  
15  
12  
13  
14  
16 17 18  
43  
39  
37  
38 36 35 34  
44  
42  
41  
40  
n/c  
1
2
3
33  
n/c  
32  
31  
30  
29  
28  
27  
AD1  
AD0  
n/c  
ALE / AS  
RNEG / BPV  
RPOS / RDATA  
RCLK  
4
LXT361LE XX  
5
6
GND  
n/c  
XXXXXXXX  
BSMC  
n/c  
VCC  
n/c  
7
8
RD / DS  
n/c  
26  
25  
24  
AD6  
RRING  
RTIP  
n/c  
9
AD7  
n/c  
10  
11  
23  
12 13 14 15 16 17 18 19 20 21 22  
8
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
2.1  
Mode Dependent Signals  
As shown in Figure 2, the LXT361 has several pins that change function (and signal name)  
according to the selected mode(s) of operation. These pins, associated signal names, and operating  
modes are summarized in Table 1 and Table 2. LXT361 signals are described in Table 3.  
Table 1. LXT361 Clock and Data Pin Assignments by Mode1  
Pin #  
PLCC  
External Data Modes  
QRSS Modes  
Unipolar Mode  
QFP  
Bipolar Mode  
Unipolar Mode  
Bipolar Mode  
1
2
39  
41  
42  
43  
3
MCLK  
TCLK  
3
TPOS  
TNEG  
RNEG  
RPOS  
TDATA  
INSBPV  
BPV  
INSLER  
INSBPV  
4
6
RNEG  
RPOS  
BPV  
7
4
RDATA  
RDATA  
8
5
RCLK  
TTIP  
13  
16  
19  
20  
15  
19  
24  
25  
TRING  
RTIP  
RRING  
1. Data pins change based on whether external data or internal QRSS mode is active.  
Table 2. LXT361 Processor Interface Pins  
Pin #  
PLCC  
Address/Data Bus Type  
Pin #  
PLCC  
Address/Data Bus Type  
Intel Motorola  
QFP  
Intel  
Motorola  
QFP  
5
2
ALE  
RD  
AS  
DS  
25  
26  
27  
28  
10  
11  
-
35  
36  
37  
38  
9
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
-
9
7
12  
17  
18  
23  
24  
13  
20  
21  
31  
32  
WR  
R/W  
CS  
INT  
AD0  
AD1  
10  
-
Datasheet  
9
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Table 3. LXT361 Signal Descriptions  
Pin #  
Symbol  
I/O1  
Description  
PLCC  
QFP  
Master Clock. External, independent clock signal required to generate  
internal clocks. For T1 applications, a 1.544 MHz clock is required; for E1,  
a 2.048 MHz clock. MCLK must be jitter-free and have an accuracy better  
than ± 50 ppm with a typical duty cycle of 50%. Upon Loss of Signal (LOS),  
RCLK is derived from MCLK.  
1
39  
MCLK  
TCLK  
DI  
DI  
Transmit Clock. For T1 applications, a 1.544 MHz clock is required; for  
E1, a 2.048 MHz clock. The transceiver samples TPOS and TNEG on the  
falling edge of TCLK (or MCLK, if TCLK is not present).  
2
41  
BIPOLAR MODES:  
Transmit – Positive and Negative. TPOS and TNEG are the positive and  
negative sides of a bipolar input pair. Data to be transmitted onto the  
twisted-pair line is input at these pins. TPOS/TNEG are sampled on the  
falling edge of TCLK (or MCLK, if TCLK is not present).  
UNIPOLAR MODES:  
Transmit Data. TDATA carries unipolar data to be transmitted onto the  
3
4
42  
43  
DI  
DI  
twisted-pair line and is sampled on the falling edge of TCLK.  
TPOS/TDATA/  
INSLER  
Transmit Insert Logic Error. In QRSS mode, a Low-to-High transition on  
INSLER inserts a logic error into the transmitted QRSS data pattern. The  
error follows the data flow of the active loopback mode. The LXT361  
samples this pin on the falling edge of TCLK (or MCLK, if TCLK is not  
present).  
TNEG/INSBPV  
Transmit Insert Bipolar Violation. INSBPV is sampled on the falling edge  
of TCLK (or MCLK, if TCLK is not present) to control Bipolar Violation  
(BPV) insertions in the transmit data stream. A Low-to-High transition is  
required to insert each BPV. In QRSS mode, the BPV is inserted into the  
transmitted QRSS pattern.  
Address Latch Enable. Connect to ALE signal of Intel microprocessor  
Address Strobe Connect to AS signal of Motorola microprocessor.  
5
2
ALE/AS  
DI  
Note that leaving this pin floating forces all output pins to a high impedance  
state.  
BIPOLAR MODES:  
Receive – Negative and Positive. RPOS and RNEG are the positive and  
negative sides of a bipolar output pair. Data recovered from the line  
interface is output on these pins. A signal on RNEG corresponds to receipt  
of a negative pulse on RTIP/RRING. A signal on RPOS corresponds to  
receipt of a positive pulse on RTIP/RRING. RNEG/RPOS are Non-Return-  
to-Zero (NRZ). The PLCKE bit in register CR3 selects the RCLK clock  
edge when RPOS /RNEG are stable and valid.  
6
7
3
4
RNEG/BPV  
DO  
DO  
RPOS/RDATA  
UNIPOLAR MODES:  
Receive Bipolar Violation. BPV goes High to indicate detection of a  
bipolar violation from the line. This is an NRZ output, valid on the rising  
edge of RCLK.  
Receive Data. RDATA is the unipolar NRZ output of data recovered from  
the line interface. The PLCKE bit in register CR3 selects the RCLK clock  
edge when RDATA is stable and valid.  
Receive Recovered Clock. The clock recovered from the line input signal  
is output on this pin. Under LOS conditions, there is a smooth transition  
from the RCLK signal (derived from the recovered data) to the MCLK  
signal at the RCLK pin.  
8
5
RCLK  
DO  
1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output.  
10  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Table 3. LXT361 Signal Descriptions (Continued)  
Pin #  
Symbol  
I/O1  
Description  
PLCC  
QFP  
Read. On an Intel bus, driving RD Low commands a LXT361 register read  
operation.  
9
7
RD/DS  
DI  
Data Strobe. On a Motorola bus, DS goes Low when data is being driven  
on the address/data bus. Data is valid on the rising edge of DS.  
Address/Data Bus 6 and 7. Used with AD0 - AD5 to form the address/  
DI/O data bus. Conforms to Intel and Motorola multiplexed address/data bus  
specifications.  
10  
11  
9
AD6  
AD7  
10  
Write. On an Intel bus, driving WR Low commands a LXT361 register write  
operation.  
12  
13  
WR / R/W  
DI  
Read/Write. On a Motorola bus, driving R/W High commands a LXT361  
register read operation; driving it Low commands a write operation.  
Transmit Tip and Ring. Differential driver output pair designed to drive a  
50 - 200 Ω load. The transformer and line matching resistors should be  
selected to give the desired pulse height and return loss performance. See  
13  
16  
15  
19  
TTIP  
AO  
TRING  
“Application Information” on page 32.  
14  
15  
16  
18  
TGND  
TVCC  
-
-
Ground return for the transmit driver power supply TVCC.  
+5 VDC Power Supply for the transmit drivers. TVCC must not vary from  
VCC by more than ± 0.3 V.  
Chip Select. During a read or write operation, CS must remain Low. See  
Figure 16 and Figure 17 for timing requirements.  
17  
18  
20  
21  
CS  
DI  
In the case of a single processor controlling several chips, this line is used  
to select a specific transceiver.  
Interrupt. INT goes Low to flag the host when LOS, AIS, NLOOP, QRSS,  
DFMS or DFMO bits changes state, or when an elastic store overflow or  
underflow occurs. To identify the specific interrupt, read the Performance  
Status Register (PSR). To clear or mask an interrupt, write a one to the  
appropriate bit in the Interrupt Clear Register (ICR). To re-enable the  
interrupt, write a zero. INT is an open drain output that must be  
connected to VCC through a pull-up resistor.  
INT  
DO  
Receive Tip and Ring. The Alternate Mark Inversion (AMI) signal received  
from the line is applied at these pins. A 1:1 transformer is required. Data  
and clock recovered from RTIP/RRING are output on the RPOS/RNEG (or  
RDATA in Unipolar mode), and RCLK pins.  
19  
20  
24  
25  
RTIP  
AI  
-
RRING  
+5 VDC Power Supply for all circuits except the transmit drivers. Transmit  
drivers are supplied by TVCC.  
21  
27  
VCC  
1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output.  
Datasheet  
11  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Table 3. LXT361 Signal Descriptions (Continued)  
Pin #  
Symbol  
I/O1  
Description  
PLCC  
QFP  
22  
29  
GND  
-
Ground return for VCC.  
23  
24  
25  
26  
27  
28  
31  
32  
35  
36  
37  
38  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
Address/Data Bus 0 - 5. Used with AD6 and AD7 to form the address/  
DI/O data bus. Conforms to Intel and Motorola multiplexed address/data bus  
specifications.  
8, 11,  
12, 14,  
17, 22,  
23, 26,  
28, 30,  
33, 34,  
40, 44  
-
n/c  
-
Not Connected  
1. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output.  
12  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
3.0  
Functional Description  
The LXT361 is a fully integrated, PCM transceiver for Long- or Short-Hual, 1.544 Mbps (T1) or  
2.048 Mbps (E1) applications allowing full-duplex transmission of digital data over existing  
twisted-pair installations. The device interfaces with two twisted-pair lines (one pair each for  
transmit and receive) through standard pulse transformers and appropriate resistors.  
The figure on the front page of this data sheet shows a block diagram of the LXT361. Control of  
the chip is via the 8-bit parallel microprocessor port. Stand-alone operation is not supported.  
The LXT361 provides a high-precision, crystal-less Jitter Attenuator (JA). The user may place the  
JA in the transmit or receive path, or bypass it completely.  
The transceiver meets or exceeds FCC, ANSI, and AT&T specifications for CSU and DSX-1  
applications, as well as ITU and ETSI requirements for E1 ISDN PRI applications.  
3.1  
Initialization  
During power up, the transceiver remains static until the power supply reaches approximately 3 V.  
Upon crossing this threshold, the device begins a 32 ms reset cycle to calibrate the Phase Lock  
Loops (PLL). The transceiver uses a reference clock to calibrate the PLLs: the transmitter reference  
is TCLK, and the receiver reference clock is MCLK. MCLK is mandatory for chip operation and  
must be independent, free running, and jitter free.  
3.1.1  
Reset Operation  
A reset operation initializes the status and state machines for the LOS, AIS, NLOOP, and QRSS  
blocks. Writing a 1 to the bit CR2.RESET commands a reset which clears all registers to 0. Allow  
32 ms for the device to settle.  
3.2  
Transmitter  
3.2.1  
Transmit Digital Data Interface  
Input data for transmission onto the line is clocked serially into the device at the TCLK rate. TPOS  
and TNEG are the bipolar data inputs. In Unipolar mode, the TDATA pin accepts unipolar data.  
Input data may pass through either the Jitter Attenuator or B8ZS/HDB3 encoder or both. Setting  
CR1.ENCENB = 1 enables B8ZS/HDB3 encoding. With zero suppression enabled, Control  
Register #1 (CR1) bits EC1 through EC4 determine the coding scheme as listed in Table 8 on  
page 27.  
TCLK supplies input synchronization. See the Figure 14 on page 41 for the transmit timing  
requirements for TCLK and the Master Clock (MCLK).  
Datasheet  
13  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
3.2.2  
Transmit Monitoring  
The transmitter includes a short circuit limiter that limits the current sourced into a low impedance  
load. The limiter automatically resets when the load current drops below the limit. The current is  
determined by the interface circuitry (total resistance on transmit side).  
The Performance Status Register (PSR) flags open circuits in bit PSR.DFMO. A transition of  
DFMO can provide an interrupt, and its transition sets bit TSR.DFMO = 1. Writing a 1 in bit  
ICR.CDFMO clears the interrupt; leaving a 1 in the bit masks that interrupt.  
3.2.3  
Transmit Drivers  
The transceiver transmits data as a 50% line code as shown in Figure 3. To reduce power  
consumption, the line driver is active only during transmission of marks, and is disabled during  
transmission of spaces. Biasing of the transmit DC level is on-chip.  
Figure 3. 50% Duty Cycle Coding  
Bit Cell  
1
0
1
3.2.4  
3.2.5  
Transmit Idle Mode  
Transmit Idle mode allows multiple transceivers to be connected to a single line for redundant  
applications. When TCLK is not present, Transmit Idle mode becomes active, and TTIP and  
TRING change to the high impedance state. Remote loopback, Dual loopback, TAOS, or detection  
of Network Loop Up code in the receive direction, temporarily disable the high impedance state.  
Transmit Pulse Shape  
As shown in Table 8 on page 27, the transmitted pulse shape is established by bits EC1 through  
EC4 of Control Register #1 (CR1).  
Shaped pulses meeting the various T1, DS1, DSX-1 and E1 specifications are applied to the AMI  
line driver for transmission onto the line at TTIP and TRING. The transceiver produces DSX-1  
pulses for Short-Hual T1 applications (settings from 0 dB to +6.0 dB of cable), DS1 pulses for  
Long-Hual T1 applications (settings from 0 dB to -22.5 dB), and a G.703 pulse for E1 applications.  
Refer to the Test Specifications section for pulse mask specifications.  
14  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
3.3  
Receiver  
A 1:1 transformer provides the interface to the twisted-pair line. Recovered data is output at RPOS/  
RNEG (RDATA in Unipolar mode), and the recovered clock is output at RCLK. Refer to Table 31  
on page 42 for receiver timing specifications.  
3.3.1  
Receive Equalizer  
The receive equalizer processes the signal received at RTIP and RRING. The equalizer gain is up to  
43 dB in E1 Long-Hual applications and up to 36 dB in T1 applications. In T1 Long-Hual  
applications, bits EC1 through EC4 in Control Register #1 determine the maximum gain applied at  
the equalizer. When EC1 = 0, up to 36 dB of gain may be applied. When EC1 = 1, 26 dB is the gain  
limit to provide an increased noise margin in shorter loop operations.  
3.3.2  
Receive Data Recovery  
The transceiver filters the equalized signal and applies it to the peak detector and data slicers. The  
peak detector samples the inputs and determines the maximum value of the received signal. The  
data slicers are set at 50% of the peak value to ensure optimum signal-to-noise performance.  
After processing through the data slicers, the received signal goes to the data and timing recovery  
section, then to the B8ZS/HDB3 decoder (if selected) and to the receive monitor. The data and  
timing recovery circuits provide input jitter tolerance significantly better than required by AT&T  
Pub 62411 and ITU G.823. See the “Test Specifications” section for details.  
Recovered data is routed to the Loss of Signal (LOS) Monitor and through the Alarm Indication  
Signal (AIS, Blue Alarm) Monitor. The jitter attenuator (JA) may be enabled or disabled in the  
receive data path or the transmit path. Received data may be routed to either the B8ZS or HDB3  
decoder or neither. Finally, the device may send the digital data to the framer as either unipolar or  
bipolar data.  
When transmitting unipolar data to the framer, the device reports reception of bipolar violations by  
driving the BPV pin High. During E1 operation, the device can report HDB3 code violations and  
Zero Substitution Violations on the BPV pin.  
3.3.3  
Receiver Monitor Mode  
The LXT361 receive equalizer can be used in Monitor mode applications. Monitor mode  
applications require 20 dB to 30 dB resistive attenuation of the signal, plus a small amount of cable  
attenuation (less than 6 dB). Setting bit CR3.EQZMON = 1 configures the device to operate in  
Monitor mode. The device must be in T1/E1 Long-Hual receiver mode (set bits CR1.EC4:1 = 0xx0  
or 1001 or 1010) for Monitor mode.  
In Monitor mode, the receive equalizer will handle signals attenuated resistively by 20 to 30 dB,  
along with 0 to 6 dB of cable attenuation for both E1 and T1 applications.  
Datasheet  
15  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
3.4  
Jitter Attenuation  
A Jitter Attenuation Loop (JAL) with an Elastic Store (ES) provides jitter attenuation as shown in  
the Test Specifications section. The JAL requires no special circuitry, such as an external quartz  
crystal or high-frequency clock (higher than the line rate). Its timing reference is MCLK.  
Bit CR1.JASEL0 enables or disables the JA circuit. With bit CR1.JASEL0 = 1, bit CR1.JASEL1  
controls the JA circuit placement (see Table 7 on page 27). The ES can be either a 32 x 2-bit or 64  
x 2-bit register depending on the value of bit CR3.ES64 (see Table 10 on page 28.)  
The device clocks data into the ES using either TCLK or RCLK depending on whether the JA  
circuitry is in the transmit or receive data path, respectively. Data is shifted out of the elastic store  
using the dejittered clock from the JAL. When the FIFO is within two bits of overflowing or  
underflowing, the ES adjusts the output clock by 1/8 of a bit period. The ES produces an average  
delay of 16 bits (or 32 bits, with the 64-bit ES option selected) in the associated data path. When  
the Jitter Attenuator is in the receive path, the output RCLK transitions smoothly to MCLK in the  
event of a LOS condition.  
The Transition Status Register bits TSR.ESOVR and TSR.ESUNF indicate an elastic store  
overflow or underflow, respectively. Note that these are sticky bits that once set to 1, remain set  
until the host reads the register. The ES can also provide a maskable interrupt on either overflow or  
underflow.  
3.5  
Diagnostic Mode Operation  
The LXT361 offers multiple diagnostic modes as listed in Table 4. The diagnostic modes are  
selected by setting the appropriate register bits as described in the following paragraphs.  
3.5.1  
Loopback Modes  
Local Loopback  
3.5.1.1  
See Figure 4 and Figure 5. Local loopback is selected by setting CR2.ELLOOP to 1. LLOOP  
inhibits the receiver circuits. The transmit clock and data inputs (TCLK and TPOS/TNEG or  
TDATA) loop back through the jitter attenuator (if enabled) and show up at RCLK and RPOS/  
RNEG or RDATA. Note that during LLOOP, the JASEL input is strictly an Enable/Disable control;  
it does not affect the placement of the JAL. If JA is enabled, it is active in the loopback circuit. If  
JA is bypassed, it is not active in the loopback circuit.  
The transmitter circuits are unaffected by LLOOP. LXT361 transmits the TPOS/TNEG or TDATA  
inputs (or a stream of 1s if TAOS is asserted) normally. When used in this mode, the transceiver  
can function as a stand-alone jitter attenuator.  
Table 4. Diagnostic Mode Summary  
Interrupt  
Maskable  
Diagnostic Mode  
Loopback Modes  
Local Loopback (LLOOP)  
Analog Loopback (ALOOP)  
No  
No  
16  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Table 4. Diagnostic Mode Summary  
Interrupt  
Maskable  
Diagnostic Mode  
Remote Loopback (RLOOP)  
No  
Yes  
No  
In-band Network Loopback (NLOOP)  
Dual Loopback (DLOOP)  
Internal Data Pattern Generation and Detection  
Transmit All Ones (TAOS)  
No  
Yes  
No  
Quasi-Random Signal Source (QRSS)  
In-band Loop Up/Down Code Generator  
Error Insertion and Detection  
Bipolar Violation Insertion (INSBPV)  
Logic Error Insertion (INSLER)  
No  
No  
No  
No  
No  
Bipolar Violation Detection (BPV)  
HDB3 Code Violation Detection (CODEV)  
HDB3 Zero violation Detection (ZEROV)  
Alarm Condition Monitoring  
Receive Loss of Signal (LOS) Monitoring  
Yes  
Yes  
Receive Alarm Indication Signal (AIS)  
Monitoring  
Transmit Driver Failure Monitoring Open  
(DFMO)  
Yes  
Yes  
Elastic Store Overflow and Underflow  
Monitoring  
Other Diagnostic Reports  
Receive Line Attenuation Indicator (LATN)  
Built-In Self Test (BIST)  
No  
Yes  
Datasheet  
17  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Figure 4. TAOS with LLOOP  
Figure 5. Local Loopback  
3.5.1.2  
Analog Loopback  
See Figure 6. Analog loopback (ALOOP) exercises the maximum number of functional blocks.  
ALOOP operation disconnects the RTIP/RRING inputs from the line and routes the transmit  
outputs back into the receive inputs. This tests the encoders/decoders, jitter attenuator, transmitter,  
receiver and timing recovery sections. Writing a 1 to bit CR2.EALOOP enables the ALOOP mode.  
Note that ALOOP will override all other loopback modes.  
18  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Figure 6. Analog Loopback  
3.5.1.3  
Remote Loopback  
See Figure 7. In Remote loopback (RLOOP) mode, the device ignores the transmit data and clock  
inputs (TCLK and TPOS/TNEG or TDATA), and bypasses the in-line encoders/decoders. The  
RPOS/RNEG or RDATA outputs loop back through the transmit circuits to TTIP and TRING at the  
RCLK frequency. The RLOOP command does not affect the receiver circuits which continue to  
output the RCLK and RPOS/RNEG or RDATA signals received from the twisted-pair line.  
RLOOP is selected by writing a 1 to bit CR2.ERLOOP.  
Figure 7. Remote Loopback  
3.5.1.4  
Network Loopback  
Network loopback (NLOOP) can be initiated only when the Network loopback detect function is  
enabled. Writing a 1 to CR2.ENLOOP enables NLOOP detection.  
Datasheet  
19  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
With NLOOP detection enabled, the receiver looks for the NLOOP data patterns (00001 = enable,  
001 = disable) in the input data stream. When the receiver detects an NLOOP enable data pattern  
repeated for a minimum of five seconds, the device enables RLOOP. The device responds to both  
framed and unframed NLOOP patterns. Once NLOOP detection is enabled at the chip and  
activated by the appropriate data pattern, it is identical to Remote loopback (RLOOP). NLOOP is  
disabled by receiving the 001 pattern for five seconds, or by activating RLOOP or ALOOP, or by  
disabling NLOOP detection. The device goes into Dual loopback mode (DLOOP) in the case  
where it detects both the NLOOP and LLOOP functions.  
3.5.1.5  
Dual Loopback  
See Figure 8. To select Dual loopback (DLOOP) set bits CR2.ERLOOP and CR2.ELLOOP to 1. In  
DLOOP mode, the transmit clock and data inputs (TCLK and TPOS/TNEG or TDATA) loop back  
through the Jitter Attenuator (unless disabled) to RCLK and RPOS/RNEG or RDATA. The data  
and clock recovered from the twisted-pair line loop back through the transmit circuits to TTIP and  
TRING without jitter attenuation.  
Figure 8. Dual Loopback  
3.5.2  
Internal Pattern Generation and Detection  
Transmit All Ones  
3.5.2.1  
See Figure 9. In Transmit All Ones (TAOS) mode the transceiver ignores the TPOS and TNEG  
inputs and transmits a continuous stream of 1s at the TCLK frequency. (With no TCLK, the TAOS  
output clock is MCLK.) This can be used as the Alarm Indication Signal (AIS–also called the Blue  
Alarm). TAOS is commanded by writing a 1 to bit CR2.ETAOS. Both TAOS and Local loopback  
can occur simultaneously as shown in Figure 4, however, Remote loopback inhibits TAOS. When  
both TAOS and LLOOP are active, TCLK and TPOS/TNEG loop back to RCLK and RPOS/RNEG  
through the jitter attenuator (if enabled), and an all ones pattern goes to TTIP/TRING.  
Figure 9. TAOS Data Path  
20  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
3.5.2.2  
Quasi-Random Signal Source (QRSS)  
See Figure 10. For T1 operation, the Quasi-Random Signal Source (QRSS) is a 220-1 pseudo-  
random bit sequence (PRBS) with no more than 14 consecutive zeros. For E1 operation, QRSS is  
215-1 PRBS with inverted output. Setting bits CR2.EPAT0 = 0 and CR2.EPAT1 = 1 enables this  
function.  
The QRSS pattern is normally locked to TCLK; but if there is no TCLK, MCLK is the clock  
source. Bellcore Pub 62411 defines the T1 QRSS transmit format and ITU G.703 defines the E1  
format.  
Figure 10. QRSS Mode  
* If Enabled  
With QRSS transmission enabled, it is possible to insert a logic error into the transmit data stream  
by causing a Low-to-High transition on INSLER. However, if no logic or bit errors are to be  
inserted into the QRSS pattern, INSLER must remain Low. Logic Error insertion waits until the  
next bit if the current bit is “jammed”. When there are more than 14 consecutive 0s, the output is  
jammed to a 1.  
Furthermore, a bipolar violation in the QRSS pattern is possible by causing a Low-to-High  
transition on the INSBPV pin, regardless of whether the device is in Bipolar or Unipolar mode.  
Choosing QRSS mode also enables the QRSS Pattern Detection in the receive path. The QRSS  
pattern is synchronized when there are fewer than four errors in 128 bits. The PSR.QRSS bit  
provides an indication of QRSS pattern synchronization. This bit goes Low when no QRSS pattern  
detected (i.e., when there are more than four errors in 128 bits). The TQRSS bit in the Transition  
Status Register indicates that QRSS status has changed since the last QRSS Interrupt Clear  
command.  
The LXT361 can generate an interrupt to indicate that QRSS detection has occurred, or that  
synchronization is lost. The interrupt is enabled when ICR.CQRSS = 0.  
3.5.2.3  
In-Band Network Loop Up or Down Code Generator  
The LXT361 can transmit in-band Network Loop Up or Loop Down code. The Loop Up code is  
00001; Loop Down code is 001. A Loop Up code transmission occurs when Control Register #2  
bits EPAT0 = 1 and EPAT1 = 0. A Loop Down code transmission requires that both EPAT0 and  
EPAT1 = 1.  
With this mode enabled, logic errors and bipolar violations can be inserted into the transmit data  
stream. Inserting a logic error requires a Low-to-High transition in INSLER (pin 3). If no logic or  
bit errors are to be inserted, INSLER must remain Low. Inserting a bipolar violation requires a  
Low-to-High transition on the INSBPV pin, regardless of unipolar or bipolar operation.  
Datasheet  
21  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
3.5.3  
Error Insertion and Detection  
3.5.3.1  
Bipolar Violation Insertion (INSBPV)  
Bipolar violation insertion is available In Unipolar mode. Choosing Unipolar mode configures the  
INSBPV pin. To insert bipolar violation (BPV), a Low-to-High transition on the INSBPV is  
required. Sampling occurs on the falling edge of TCLK. When INSBPV goes High a BPV is  
inserted on the next available mark except in the four following situations:  
Zero suppression (HDB3 or B8ZS) is not violated  
If LLOOP and TAOS are both active, the BPV is looped back to RNEG/BPV indicator and the  
line driver transmits all ones with no violation  
BPV insertion is disabled with RLOOP active  
BPV insertion is disabled when NLOOP is active  
With the LXT361 configured to transmit internally generated data patterns (QRSS or NLOOP), a  
BPV can be inserted into the transmit pattern regardless of whether the device is in the Unipolar or  
Bipolar mode of operation.  
3.5.3.2  
Logic Error Insertion (INSLER)  
When configured to transmit internally generated data patterns (QRSS or NLOOP Up/Down  
codes), a logic error is inserted into the transmit data pattern when the INSLER pin transitions  
Low-to-High. Note that in QRSS mode, there is no logic error insertion on a jammed bit (i.e., a bit  
forced to one to suppress transmission of more than 14 consecutive zeros). The transceiver routes  
data patterns the same way it routes data applied to TPOS/TNEG. Therefore, the inserted logic  
error will follow the data flow path of the active loopback mode.  
3.5.3.3  
3.5.3.4  
Bipolar Violation Detection (BPV)  
When the internal encoders/decoders are disabled or when configured in Unipolar mode, bipolar  
violations are reported at the BPV pin. BPV goes High for a full clock cycle to indicate receipt of a  
BPV. When the encoders/decoders are enabled, the LXT361 does not report bipolar violations due  
to the line coding scheme.  
HDB3 Code Violation Detection (CODEV)  
An HDB3 code violation (CODEV) occurs when two consecutive bipolar violations of the same  
polarity are received (refer to ITU O.161). When CODEV detection is enabled, the BPV pin goes  
High for a full RCLK cycle to report a CODEV violation. Note that bipolar violations and zero  
substitution violations will also be reported on the BPV pin if these options are enabled.  
HDB3 code violation detection is enabled when the HDB3 encoders/decoders are enabled. This  
requires that CR1.ENCENB = 1, also CR1.EC4:1 = 100x or 1010, which establishes E1 operation.  
To select CODEV detection, set bit CR4.CODEV = 1.  
3.5.3.5  
HDB3 Zero Substitution Violation Detection (ZEROV)  
An HDB3 ZEROV is the receipt of four or more consecutive zeros. This does not occur with  
correctly encoded HDB3 data unless there are transmission errors. The BPV pin goes High for a  
full RCLK cycle to report a ZEROV. Note that when ZEROV detection enabled, the BPV pin will  
also indicate received BPVs and CODEVs, if these detection options are enabled.  
22  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
ZEROV detection is enabled when the HDB3 encoders/decoders are enabled. This requires  
CR1.ENCENB = 1, also CR1.EC4:1 = 100x or 1010, which establishes E1 operation. To select  
ZEROV detection, set bit CR4.ZEROV = 1.  
3.5.4  
Alarm Condition Monitoring  
Loss of Signal  
3.5.4.1  
The LXT361 Loss of Signal (LOS) monitor function is compatible with ITU G.775 and ETSI  
300233. The receiver LOS monitor loads a digital counter at the RCLK frequency. The count  
increments with each received 0 and the counter resets to 0 on receipt of a 1. When the count  
reaches “n” 0s, bit PSR.LOS is set to ‘1’, and the MCLK replaces the recovered clock at the RCLK  
output in a smooth transition. For T1 operations, the number of 0s, n = 175, and for E1 operations,  
n = 32. For both T1 and E1 operation, “n” can be set to 2048 by setting bit CR4.LOS2048 = 1.  
For T1 operation, when the received signal has 12.5% 1s (16 marks in a sliding 128-bit period, with  
fewer than 100 consecutive 0s), bit PSR.LOS = 0 and the recovered clock replaces MCLK at the  
RCLK output in another smooth transition.  
For E1 operation, the LOS condition is cleared when the received signal has 12.5% 1s density (four  
1s in a sliding 32-bit window with fewer than 16 consecutive 0s). In E1 operation, the out-of-LOS  
criterion can be modified from 12.5% marks density to 32 consecutive marks by setting bit  
CR4.COL32CM = 1.  
During LOS, the device sends received data to the RPOS/RNEG pins (or RDATA in Unipolar  
mode). Bit PSR.LOS = 1 to indicate LOS condition, and can generate an interrupt to the host  
controller if so programmed.  
3.5.4.2  
Alarm Indication Signal Detection  
The receiver detects an AIS pattern when it receives fewer than three 0s in any string of 2048 bits.  
The device clears the AIS condition when it receives three or more 0s in a string of 2048 bits.  
The AIS bit in the Performance Status Register indicates AIS detection. Whenever the AIS status  
changes, bit TSR.TAIS =1. Unless masked, a change of AIS status generates an interrupt.  
3.5.4.3  
3.5.4.4  
Driver Failure Open Mode  
The DFM Open (DFMO) bit is available in the Performance Status Register to indicate an open  
condition on the lines. DFMO can generate an INT to the host controller. The Transition Status  
Register bit TDFMO indicates a transition in the status of the bit. Writing a 1 to ICR.CDFMO will  
clear or mask the interrupt.  
Elastic Store Overflow/Underflow  
When the bit count in the Elastic Store (ES) is within two bits of overflowing or underflowing the  
ES adjusts the output clock by 1/ of a bit period. The ES provides an indication of overflow and  
8
underflow via bits TRS.ESOVR and TSR.ESUNF. These are sticky bits and will stay set to 1 until  
the host controller reads the register. These interrupts can be cleared or masked by writing a 1 to the  
bits ICR.CESO and ICR.CESU, respectively.  
Datasheet  
23  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
3.5.5  
Other Diagnostic Reports  
3.5.5.1  
Receive Line Attenuation Indication  
The Equalizer Status Register (ESR) provides an approximation of the line attenuation encountered  
by the device. The four most significant bits of the register (ESR.LATN7:4) indicate line  
attenuation in approximately 2.9 dB steps for both T1 and E1 operation of the receive equalizer.  
For instance, if ESR.LATN7:4 is 10 (decimal), then the receiver is seeing a signal attenuated by  
approximately 29 dB (2.9 dB x 10) of cable loss.  
3.5.5.2  
Built-In Self Test  
LXT361 provides a Built-In Self Test (BIST) capability. The BIST exercises the internal circuits by  
providing an internal QRSS pattern, running it through the encoders and the transmit drivers then  
looping it back through the receive equalizer, jitter attenuator and decoders to the QRSS pattern  
detection circuitry. If all the blocks in this data path function correctly, the receive pattern detector  
locks onto the pattern. It then pulls INT Low and sets the following bits:  
TSR.TQRSS = 1  
PSR.QRSS = 1  
PSR.BIST = 1  
Note that during BIST, the TPOS/TNEG inputs must remain at logic level = 0  
The most reliable test will result when a separate TCLK and MCLK are applied and the Line  
Build-Out (LBO) is set to -22.5 dB (CR1.EC4:1 = 011x).  
3.6  
Parallel Microprocessor Interface  
The LXT361 multiplexed address/data bus and timing/control signals are compatible with both the  
Intel and Motorola microprocessors. See Figure 16 and Figure 17 for the I/O timing diagram for  
each bus. The LXT361 detects and distinguishes between Intel and Motorola timing and then  
automatically selects the appropriate bus timing. The maximum recommended processor speed for  
an Intel device is 20 MHz; for a Motorola device, 16.78 MHz. See “Test Specifications” on  
page 36 for microprocessor interface timing details.  
The LXT361 contains five read/write and three read-only registers for control and status purposes.  
Table 6 on page 26 is a summary of the registers. Table 7 through Table 15 identify and explain the  
function of the register bits.  
3.6.1  
Interrupt Handling  
The LXT361 provides a latched interrupt output pin (INT). When enabled, a change in any of the  
Performance Status Register bits will generate an interrupt. An interrupt can also be generated  
when the elastic store overflows (TSR.ESOVR) or underflows (TSR.ESUNF). When an interrupt  
occurs, the INT output pin is pulled Low. Note that the output stage of the INT pin has internal  
pull-down only. Therefore, each device that shares the INT line requires an external pull-up  
resistor.  
24  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
The interrupt is cleared when the interrupt condition no longer exists, and the host processor writes  
a 1 to the respective interrupt causing bit(s) in the Interrupt Clear Register (ICR). Leaving a 1 in  
any of the ICR bits masks that interrupt. To re-enable an interrupt bit, write a 0.  
Datasheet  
25  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
4.0  
Register Definitions  
The LXT361 contains five read/write and three read-only registers. Table 5 lists the LXT361  
register addresses. Note that only bits A6 through A1 of the address byte are valid; the address  
decoder ignores bits A7 and A0. Table 6 identifies the name of each register bit. Table 7 through  
Table 15 describe the function of the bits in each register.  
Note: upon power-up or reset, all registers are cleared to 0.  
Table 5. Register Addresses  
Register  
Name  
Address1  
A7 - A0  
Abbr  
Control #1  
Control #2  
CR1  
CR2  
CR3  
ICR  
x010000x  
x010001x  
x010010x  
x010011x  
x010100x  
x010101x  
x010110x  
x010111x  
Control #3  
Interrupt Clear  
Transition Status  
Performance Status  
Equalizer Status  
Control #4  
TSR  
PSR  
ESR  
CR4  
1. x = don’t care.  
Table 6. Register and Bit Summary  
Register  
Bit  
Name  
Type  
7
6
5
4
3
2
1
0
Control #1  
Control #2  
Control #3  
CR1 R/W  
CR2 R/W  
CR3 R/W  
JASEL1  
RESET  
JA6HZ  
CESU  
JASEL0  
EPAT1  
PCLKE  
CESO  
ENCENB  
EPAT0  
UNIENB  
ETAOS  
EC4  
EC3  
EC2  
EC1  
ENLOOP EALOOP ELLOOP ERLOOP  
SBIST  
EQZMON reserved1  
ES64  
CAIS  
ESCEN  
ESJAM  
CLOS  
Interrupt Clear ICR R/W  
CDFMO  
reserved2  
CQRSS  
TQRSS  
CNLOOP  
Transition  
Status  
TSR  
PSR  
ESR  
R
R
R
ESUNF  
reserved1  
LATN7  
ESOVR  
BIST  
TDFMO  
DFMO  
LATN5  
reserved1  
TAIS  
AIS  
TNLOOP  
NLOOP  
TLOS  
LOS  
Performance  
Status  
reserved1  
QRSS  
Equalizer  
Status  
LATN6  
LATN4  
reserved1 reserved1 reserved1 reserved1  
ZEROV CODEV  
Control #4  
CR4 R/W reserved1 reserved1 reserved1 reserved1 COL32CM LOS2048  
1. In writable registers, bits labeled reserved should be set to 0 (except as in note 2 below) for normal operation and ignored in  
read only registers.  
2. Write a 1 to this bit for normal operation.  
26  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Table 7. Control Register #1 Read/Write, Address (A7-A0) = x010000x  
Jitter Attenuator  
Bit  
Name  
Function  
JASEL0 JASEL1 Position  
0
1
2
3
EC1  
EC2  
EC3  
EC4  
1
1
0
0
1
Transmit  
Receive  
Disabled  
Sets mode (T1 or E1) and equalizer  
(see Table 8 below for control codes).  
X
1 = Enable Unipolar I/O mode and allow insertion/detection of BPVs.  
0 = Enable Bipolar I/O mode  
4
5
UNIENB  
1 = Enable B8ZS/HDB3 encoders/decoders and force Unipolar I/O  
mode.  
ENCENB  
0 = Disable B8ZS/HDB3 encoders/decoders  
6
7
JASEL0  
JASEL1  
Select jitter attenuation circuitry position in data path or disables the JA.  
See right hand section of table for codes.  
Table 8. Equalizer Control Bit Settings  
Control Register #1  
Function  
Pulse  
Cable  
Gain  
Coding2  
EC4  
EC3  
EC2  
EC11  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
E1 Short Haul  
E1 Long Haul  
E1 Long Haul  
T1 Short Haul  
T1 Short Haul  
T1 Short Haul  
T1 Short Haul  
T1 Short Haul  
0.0 dB pulse  
-7.5 dB pulse  
-15.0 dB pulse  
-22.5 dB pulse  
0.0 dB pulse  
100 Ω TP  
100 Ω TP  
100 Ω TP  
100 Ω TP  
100 Ω TP  
100 Ω TP  
100 Ω TP  
100 Ω TP  
36 dB  
36 dB  
36 dB  
36 dB  
26 dB  
26 dB  
26 dB  
26 dB  
12 dB  
43 dB  
43 dB  
12 dB  
12 dB  
12 dB  
12 dB  
12 dB  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
HDB3  
HDB3  
HDB3  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
B8ZS  
-7.5 dB pulse  
-15.0 dB pulse  
-22.5 dB pulse  
ITU G.703  
120 Ω TP/75 Ω Coax  
120 Ω TP  
ITU G.703  
ITU G.703  
120 Ω TP/75 Ω Coax  
100 Ω TP  
0-133 ft / 0.6 dB  
133-266 ft / 1.2 dB  
266-399 ft / 1.8 dB  
399-533 ft / 2.4 dB  
533-655 ft / 3.0 dB  
100 Ω TP  
100 Ω TP  
100 Ω TP  
100 Ω TP  
1. EC1 sets the receive equalizer gain (EGL) during T1 Long-Hual operation.  
2. When enabled.  
Datasheet  
27  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Table 9. Control Register #2 Read/Write, Address (A7-A0) = x010001x  
Pattern  
Bit  
Name  
Function  
EPAT0  
EPAT1  
Selected  
1 = Enable Remote loopback mode  
0 = Disable Remote loopback mode  
0
1
2
3
4
ERLOOP1  
ELLOOP1  
EALOOP  
ENLOOP  
ETAOS  
0
0
Transmit TPOS/TNEG  
1 = Enable Local loopback mode  
0 = Disable Local loopback mode  
0
1
1
1
0
1
Detect and transmit QRSS  
1 = Enable Analog loopback mode  
0 = Disable Analog loopback mode  
In-band Loop Up Code  
00001  
1 = Enable Network loopback detection  
0 = Disable Network loopback detection  
In-band Loop Down Code  
001  
1 = Enable Transmit All Ones  
0 = Disable Transmit All Ones  
5
6
EPAT0  
EPAT1  
Selects internal data pattern transmission. See right  
hand section of table for codes.  
1 = Reset device states and clear all registers.  
0 = Reset complete.  
7
RESET  
1. To enable Dual loopback (DLOOP), set both ERLOOP = 1 and ELLOOP = 1.  
Table 10. Control Register #3 Read/Write, Address (A7-A0) = x010010x  
Bit  
Name  
Description  
1 = Disable jamming of Elastic Store read out clock (1/8 bit-time adjustment for over/underflow).  
0 = Enable jamming of Elastic Store read out clock  
0
ESJAM  
1 = Center ES pointer for a difference of 16 or 32, depending on depth (clears automatically).  
0 = Centering completed  
1
ESCEN  
1 = Set elastic store depth to 64 bits.  
0 = Set elastic store depth to 32 bits.  
2
3
4
ES64  
-
reserved–set to 0 for normal operation.  
1 = Configure receiver equalizer for monitor mode application (DSX-1 monitor).  
0 = Configure receiver equalizer for normal mode application  
EQZMON  
1 = Start Built-In Self Test.  
5
6
7
SBIST  
PLCKE  
JA6HZ  
0 = Built-In Self Test complete.  
0 = RPOS/RNEG valid on the rising edge of RCLK.  
1 = RPOS/RNEG valid on the falling edge of RCLK.  
1 = Set bandwidth of jitter attenuation loop to 6 Hz.  
0 = Set bandwidth of jitter attenuation loop to 3 Hz.  
28  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Table 11. Interrupt Clear Register Read/Write, Address (A7-A0) = x010011x  
Bit  
Name  
Function1  
1 = Clear/Mask Loss of Signal interrupt.  
0 = Enable Loss of Signal interrupt.  
0
CLOS  
1 = Clear/Mask Network loopback interrupt.  
0 = Enable Network loopback interrupt.  
1
2
CNLOOP  
CAIS  
1 = Clear/Mask Alarm Indication Signal interrupt.  
0 = Enable Alarm Indication Signal interrupt.  
1 = Clear/Mask Quasi-Random Signal Source interrupt.  
0 = Enable Quasi-Random Signal Source interrupt.  
3
4
5
CQRSS  
-
reserved–set to 1 for normal operation.  
1 = Clear/Mask Driver Failure Monitor Open interrupt.  
0 = Enable Driver Failure Monitor Open interrupt.  
CDFMO  
1 = Clear/Mask Elastic Store Overflow interrupt.  
0 = Enable Elastic Store Overflow interrupt.  
6
7
CESO  
CESU  
1 = Clear/Mask Elastic Store Underflow interrupt.  
0 = Enable Elastic Store Underflow interrupt.  
1. Leaving a 1 of in any of these bits masks the associated interrupt.  
Table 12. Transition Status Register Read Only, Address (A7-A0) = x010100x  
Bit  
Name  
Function  
1 = Loss of Signal (LOS) has changed since last clear LOS interrupt occurred.  
0 = No change in status.  
0
TLOS  
1 = NLOOP has changed since last clear NLOOP interrupt occurred.  
0 = No change in status.  
1
2
TNLOOP  
TAIS  
1 = AIS has changed since last clear AIS interrupt occurred.  
0 = No change in status.  
1 = QRSS has changed since last clear QRSS interrupt occurred1.  
0 = No change in status.  
3
4
5
TQRSS  
-
reserved-ignore.  
1 = DFMO has changed since last clear DFMS interrupt occurred.  
0 = No change in status.  
TDFMO  
1 = ES overflow status sticky bit2.  
0 = No change in status.  
6
7
ESOVR  
ESUNF  
1 = ES underflow status sticky bit2.  
0 = No change in status.  
1. A QRSS transition indicates receive QRSS pattern sync or loss. A simple error in QRSS pattern is not reported as a  
transition.  
2. Tripping the overflow or underflow indicator in the ES sets the ESOVR/ESUNF status bit(s). Reading the Transition Status  
Register clears these bits. Setting CESO and CESU in the Interrupt Clear Register masks these interrupts.  
Datasheet  
29  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Table 13. Performance Status Register Read Only, Address (A7-A0) = x010101x  
Bit  
Name  
Function  
1 = Loss of Signal occurred.  
0
LOS  
0 = Loss of Signal did not occur.  
1 = Network loopback active.  
1
2
NLOOP  
AIS  
0 = Network loopback not active.  
1 = Alarm Indicator Signal detected.  
0 = Alarm Indicator Signal not detected.  
1 = Quasi-Random Signal Source pattern detected.  
0 = Quasi-Random Signal Source pattern not detected.  
3
4
5
QRSS  
-
reserved–ignore.  
1 = Driver Failure Monitor Open detected.  
0 = Driver Failure Monitor Open not detected.  
DFMO  
1 = Built-In Self Test passed.  
6
7
BIST  
-
0 = Built-In Self Test did not pass (or was not run).  
reserved–ignore.  
Table 14. Equalizer Status Register Read Only, Address (A7-A0) = x010110x  
Bit  
Name  
Function  
0
1
2
3
4
5
6
7
-
reserved–ignore (Least Significant Bit)  
reserved–ignore  
-
-
reserved–ignore  
-
reserved–ignore  
LATN4  
LATN5  
LATN6  
LATN7  
Receive Line Attenuation Indicators. Convert this binary output to a decimal number and multiply  
by 2.9 dB to determine the approximate cable attenuation as seen by the receiver.  
For example, if LATN7-4 = 1010 BIN (= 10 DEC), then the receiver is seeing a signal attenuated by  
approximately 29 dB (2.9 dB x 10) of cable. This approximation assumes that a 3 V pulse was  
transmitted.  
Table 15. Control Register #4 Read/Write, Address (A7-A0) = x010111x  
Bit  
Name  
Function  
1 = Enable detection of HDB3 code violations at the BPV pin along with bipolar violations and Zero  
Substitution Violations (if enabled).  
0
CODEV  
0 = Disable detection of HDB3 code violations  
1 = Enable detection of HDB3 Zero Substitution Violations (four consecutive zeros). Note that Zero  
Substitution Violations are reported at the BPV pin.  
1
ZEROV  
0 = Disable detection of HDB3 Zero Substitution Violations.  
1 = Set LOS detection threshold to 2048 consecutive zeros.  
2
3
LOS2048  
0 = Set LOS detection threshold to 32 consecutive zeros (for E1 operation) or to 175 consecutive  
zeros (for T1 operation).  
1 = Set LOS clear condition criterion to receipt of 32 consecutive marks (E1 operation).  
0 = Set LOS clear condition criterion to 12.5% mark density (E1 operation).  
COL32CM  
30  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Table 15. Control Register #4 Read/Write, Address (A7-A0) = x010111x  
Bit  
Name  
Function  
4
5
6
7
-
-
-
-
reserved–set to 0 for normal operation; ignore when reading.  
reserved–set to 0 for normal operation; ignore when reading.  
reserved–set to 0 for normal operation; ignore when reading.  
reserved–set to 0 for normal operation; ignore when reading.  
Datasheet  
31  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
5.0  
Application Information  
5.1  
Transmit Return Loss  
Table 16 shows the specification for transmit return loss in E1 applications. The G.703/CH PTT  
specification is a Swiss Telecommunications Ministry specification.  
Table 17 through Table 20 show the transmit return loss values for E1 Short- and Long-Hual and  
T1 applications. Table 26 shows the receive return loss values.  
5.2  
5.3  
Transformer Data  
Specifications for transformers are listed in Table 21. A list of transformers recommended for use  
with the LXT361 are specified in Table 22.  
Application Circuit  
Figure 11 shows a typical LXT361 application circuit.  
Table 16. E1 Transmit Return Loss Requirements  
Return Loss  
Frequency  
Band  
ETS 300 166  
G.703/CH PTT  
51-102 kHz  
6 dB  
8 dB  
8 dB  
8 dB  
14 dB  
10 dB  
102-2048 kHz  
2048 - 3072 kHz  
Table 17. Transmit Return Loss (2.048 Mbit/s–Short-Haul)  
EC4-1  
Xfrmr/Rt  
RL (Ω)  
CL (pF) Return Loss (dB)  
0
470  
0
14  
16  
12  
13  
13  
16  
75  
1:2/  
9.1 Ω  
1000  
120  
120  
470  
0
1:2.3/9.1 Ω  
470  
32  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Table 18. Transmit Return Loss (2.048 Mbit/s–Long-Haul) High Return  
Loss Configuration  
EC4-1  
Xfrmr/Rt  
RL (Ω)  
CL (pF)  
Return Loss (dB)  
0
19  
28  
18  
28  
1:2/  
120  
15 Ω  
470  
0
1001  
1:1.53/15  
75  
Ω
470  
Table 19. Transmit Return Loss (2.048 Mbit/s–Long-Haul)  
EC4-1  
Xfrmr/Rt  
RL (Ω)  
CL (pF)  
Return Loss (dB)  
0
12  
13  
16  
18  
120  
470  
0
1:2/  
1010  
9.1 Ω  
75  
470  
Table 20. Transmit Return Loss (1.544 Mbit/s–Long- or Short-Haul)  
EC4-1  
Xfrmr/Rt  
RL (Ω)  
CL (pF) Return Loss (dB)  
0
16  
17  
2
1:2/9.1 Ω  
100  
470  
0
Refer to  
Table 8  
1:1.151/  
0 Ω  
100  
470  
2
1. A 1:1.15 transmit transformer keeps the total transceiver power  
dissipation at a low level, a 0.47 μF DC blocking capacitor must  
be placed on TTIP or TRING.  
Table 21. Transformer Specifications for LXT361  
Leakage  
Inductance  
μH  
Interwinding  
Capacitance  
Dielectric1  
Breakdown  
V
Primary  
Inductance  
μH (minimum)  
DCR  
Ω
(maximum)  
Frequency  
MHz  
Turns  
Ratio  
Tx/Rx  
pF  
(max)  
(max)  
(minimum)  
1.544  
2.048  
1:1.15  
1:2.3  
1:2  
600  
600  
600  
600  
0.80  
0.80  
0.80  
1.10  
60  
60  
60  
60  
0.90 pri, 1.70 sec  
0.70 pri, 1.20 sec  
0.70 pri, 1.20 sec  
1.10 pri, 1.10 sec  
1500 VRMS  
2
Tx  
1500 VRMS  
2
1.544/2.048  
1.544/2.048  
1500 VRMS  
2
Rx  
1:1  
1500 VRMS  
1. Some ETSI applications may require a 2.3 kV dielectric breakdown voltage.  
2. Some applications require transformers with center tap (Long-Haul applications with DC current in the E1/T1 loop).  
Datasheet  
33  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Table 22. Recommended Transformers for LXT361  
Tx/Rx  
Turns Ratio  
Part Number  
Manufacturer  
1:1.53  
PE-68663  
PE-65388  
PE-65770  
16Z5952  
Pulse Engineering  
1:1.15  
Vitec  
PE-65351  
PE-65771  
0553-5006-IC  
66Z-1308  
671-5832  
Pulse Engineering  
Bell-Fuse  
Fil-Mag  
Tx  
Midcom  
67127370  
67130850  
TD61-1205D  
1:2  
Schott Corp  
HALO (combination Tx/Rx set)  
HALO (surface mount dual transformer 1CT:2CT &  
1CT:2CT)  
TG26-1205NI  
TG48-1205NI  
16Z5946  
HALO (surface mount dual transformer 1CT:2CT & 1:1)  
Vitec  
1:2.3  
PE-65558  
FE 8006-155  
671-5792  
Pulse Engineering  
Fil-Mag  
Midcom  
PE-64936  
PE-65778  
67130840  
67109510  
TD61-1205D  
16Z5936  
Pulse Engineering  
Rx  
1:1  
Schott Corp  
HALO (combination Tx/Rx set)  
Vitec  
16Z5934  
Figure 11 shows a typical LXT361 application in either a T1 or E1 environment. See Table 17  
through Table 22 to select the transformers (T1 and T2), resistors (Rt and RL) and capacitor (CL)  
needed for this application.  
Note that if the application includes surge protection, such as a varistor or sidactor on the TTIP/  
TRING lines, it may be necessary to reduce the value of the capacitor CL or eliminate it  
completely. Excessive capacitance at CL will distort the transmitted signals.  
34  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Figure 11. Typical T1/E1 LXT361 Application  
VCC  
22 kΩ  
2.048 MHz/  
1.544 MHz  
MCLK  
INT  
ALE/AS  
RD/DS  
WR/R/W  
CS  
μP  
TCLK  
TPOS  
TNEG  
TCLK  
TPOS  
TNEG  
(Intel or  
Motorola)  
T1/E1  
AD0-7  
Framer  
RCLK  
RPOS  
RNEG  
RCLK  
RPOS  
RNEG  
0.47 μF3  
T11  
LXT361  
TTIP  
Rt1  
1
CL  
Rt1  
TVCC  
VCC  
TRING  
RTIP  
68 μF  
0.1 μF  
TGND  
GND  
2
RL  
RRING  
1:1  
NOTES:  
1. See Table 17 through Table 22 for CL & Rt/Transformer selection.  
2. RL =100 Ω for T-1  
RL = 120 Ω forE-1 / 120 Ω twisted pair  
RL = 75 Ω for E-1 / 75 Ω coax  
3. Optional for power savings.  
Datasheet  
35  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
6.0  
Test Specifications  
Note: Table 23 through Table 34 and Figure 12 through Figure 21 represent the performance  
specifications of the LXT361 and are guaranteed by test except, where noted, by design. The  
minimum and maximum values listed in Table 25 through Table 34 are guaranteed over the  
recommended operating conditions specified in Table 24.  
Table 23. Absolute Maximum Ratings  
Parameter  
Sym  
Min  
Max  
Unit  
DC supply (reference to GND)  
Input voltage, any pin 1  
Input current, any pin 2  
Storage Temperature  
VCC, TVCC  
VIN  
GND - 0.3 V  
- 10  
6.0  
VCC + 0.3 V  
10  
V
V
IIN  
mA  
° C  
TSTG  
-65  
150  
Caution: Exceeding these values may cause permanent damage.  
Caution: Functional operation under these conditions is not implied.  
Caution: Exposure to maximum rating conditions for extended periods may affect device reliability.  
1. TVCC and VCC must not differ by more than 0.3 V during operation. TGND and GND must not differ by more than 0.3 V  
during operation.  
2. Transient currents of up to 100 mA will not cause SCR latch-up. TTIP, TRING, TVCC, and TGND can withstand continuous  
currents of up to 100 mA.  
Table 24. Recommended Operating Conditions  
Parameter  
Sym  
Min  
Typ1  
Max  
Unit  
Test Conditions  
DC supply 2  
Ambient operating temperature  
VCC, TVCC  
TA  
4.75  
-40  
5.0  
5.25  
85  
V
° C  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. TVCC and VCC must not differ by more than 0.3 V.  
3. Power dissipation while driving 100 Ω load coupled through 1:1.15 transformer and 0 Ω resistor on TTIP/TRING. Includes  
power dissipation on device and load. Digital levels are within 10% of the supply rails and digital outputs driving a 50 pF  
capacity load.  
4. Power dissipation while driving 100 Ω load coupled through 1:2 transformer and 9.1 Ω resistor on TTIP/TRING. Includes  
power dissipation on device and load. Digital levels are within 10% of the supply rails and digital outputs driving a 50 pF  
capacity load. This implementation has better return loss performance and is less sensitive to changes in impedances  
variations.  
5. Power dissipation while driving 120 Ω load coupled through 1:2 transformer and 9.1 Ω resistor on TTIP/TRING. Includes  
power dissipation on device and load. Digital levels are within 10% of the supply rails and digital outputs driving a 50 pF  
capacity load.  
36  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Table 24. Recommended Operating Conditions (Continued)  
Parameter  
Sym  
Min  
Typ1  
Max  
Unit  
Test Conditions  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
310  
225  
245  
195  
470  
320  
350  
260  
275  
215  
380  
295  
325  
265  
560  
380  
420  
310  
330  
270  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
100% mark density  
50% mark density  
100% mark density  
50% mark density  
100% mark density  
50% mark density  
100% mark density  
50% mark density  
100% mark density  
50% mark density  
Short Haul  
Long Haul  
Short Haul  
Long Haul  
T13  
low power  
Total  
power  
dissipation  
T14  
standard  
power  
Short Haul/  
Long Haul  
E15  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. TVCC and VCC must not differ by more than 0.3 V.  
3. Power dissipation while driving 100 Ω load coupled through 1:1.15 transformer and 0 Ω resistor on TTIP/TRING. Includes  
power dissipation on device and load. Digital levels are within 10% of the supply rails and digital outputs driving a 50 pF  
capacity load.  
4. Power dissipation while driving 100 Ω load coupled through 1:2 transformer and 9.1 Ω resistor on TTIP/TRING. Includes  
power dissipation on device and load. Digital levels are within 10% of the supply rails and digital outputs driving a 50 pF  
capacity load. This implementation has better return loss performance and is less sensitive to changes in impedances  
variations.  
5. Power dissipation while driving 120 Ω load coupled through 1:2 transformer and 9.1 Ω resistor on TTIP/TRING. Includes  
power dissipation on device and load. Digital levels are within 10% of the supply rails and digital outputs driving a 50 pF  
capacity load.  
Table 25. Digital Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Unit  
Test Conditions  
High level input voltage (pins 1-5, 9-12, 17, 23-28)2  
Low level input voltage (pins 1-5, 9-12, 17, 23-28)2  
High level output voltage1 (pins 6-8, 10, 11,23, 28)2  
Low level output voltage1 (pins 6-8, 10, 11,23, 28)2  
Input leakage current  
VIH  
VIL  
2.0  
V
V
0.8  
VOH  
VOL  
ILL  
2.4  
V
IOUT = 400 μA  
0.4  
±50  
V
IOUT = 1.6 mA  
μA  
1. Output drivers will output CMOS logic levels into CMOS loads.  
2. Referenced pin numbers are for the PLCC package. Refer to Figure 2 on page 8 for the corresponding QFP pins.  
Table 26. Analog Characteristics  
Parameter  
Min  
Typ1  
Max  
Unit  
Test Conditions  
Recommended output load on TTIP/TRING  
50  
2.4  
2.7  
200  
3.6  
3.3  
Ω
V
V
DSX-1, DS1  
CEPT (ITU)  
3.0  
3.0  
RL = 100 Ω  
RL = 120 Ω  
AMI Output Pulse Amplitudes  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Input signal to TCLK is jitter-free. The Jitter Attenuator is in the receive path or disabled.  
3. Guaranteed by characterization; not subject to production testing.  
4. Circuit attenuates jitter at 20 dB/decade above the corner frequency.  
Datasheet  
37  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Table 26. Analog Characteristics (Continued)  
Parameter  
10 Hz - 8 kHz 3  
Min  
Typ1  
Max  
Unit  
Test Conditions  
0.02  
0.025  
0.025  
0.05  
UI  
UI  
UI  
UI  
8 kHz - 40 kHz 3  
10 Hz - 40 kHz3  
Broad Band  
Jitter added by the transmitter2  
Mode 1 (EC1 = 1)  
(T1 Long-Haul)  
See Table 8 for  
Gain Setting  
0
0
0
0
26  
36  
dB  
dB  
dB  
dB  
Mode 2 (EC1 = 0)  
(T1 Long-Haul)  
Receiver sensitivity  
@ 772 kHz (T1)  
Mode 3 (EC4 = 1)  
(T1 Short-Haul)  
13.6  
13.6  
Mode 1 (EC4-1 = 1000)  
(E1 Short-Haul/12 dB)  
Receiver sensitivity  
@ 1024 kHz (E1 line loss)  
Mode 2 (EC4-1 = 1001 or  
EC4-1 = 1010)  
0
43  
dB  
(E1 Long-Haul/43 dB)  
Allowable consecutive zeros before LOS (T1)  
Allowable consecutive zeros before LOS (E1)  
160  
175  
32  
190  
10 kHz - 100 kHz  
0.4  
138  
0.2  
37  
UI  
UI  
UI  
UI  
0 dB line  
AT&T Pub 62411  
Input jitter tolerance (T1)  
Input jitter tolerance (E1)  
1 Hz 3  
10 kHz - 100 kHz  
1 Hz 3  
0 dB line  
ITU (G.823)  
selectable in data  
port  
Jitter attenuation curve corner frequency 4  
51 kHz - 102 kHz  
3
Hz  
22  
28  
30  
dB  
dB  
dB  
Receive Return Loss (E1)  
102 kHz - 2.048 MHz  
2.048 MHz - 3.072 MHz  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Input signal to TCLK is jitter-free. The Jitter Attenuator is in the receive path or disabled.  
3. Guaranteed by characterization; not subject to production testing.  
4. Circuit attenuates jitter at 20 dB/decade above the corner frequency.  
38  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Figure 12. 2.048 MHz E1 Pulse (See Table 27)  
269 ns  
(244+25)  
V = 100%  
194 ns  
(244- 50)  
NOMINAL PULSE  
50%  
244 ns  
219 ns  
(244-25)  
0%  
20%  
488 ns  
(244+244)  
Table 27. 2.048 MHz E1 Pulse Mask Specifications  
Parameter  
TWP  
Coax  
Unit  
Test load impedance  
120  
3.0  
75  
2.37  
Ω
V
Nominal peak mark voltage  
Nominal peak space voltage  
0 ±0.30  
244  
0 ±0.237  
244  
V
Nominal pulse width  
ns  
%
%
Ratio of positive and negative pulse amplitudes at center of pulse  
Ratio of positive and negative pulse amplitudes at nominal half amplitude  
95-105  
95-105  
95-105  
95-105  
Datasheet  
39  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Figure 13. 1.544 MHz T1 Pulse (DS1 and DSX-1) (See Table 28)  
1.5  
1.0  
0.5  
0.0  
-0.5  
1.5  
Normalized Amplitude  
Normalized Amplitude  
1.0  
0.5  
0.5  
1.0  
1.5  
-0.5  
0.5  
1.0  
1.5  
-0.5  
0.0  
Time  
(in Unit Intervals)  
Time  
(in Unit Intervals)  
-0.5  
Table 28. 1.544 MHz T1 Pulse Mask Corner Point Specifications  
DS1 Template (per ANSI T1. 403-1995)  
Minimum Curve Maximum Curve  
DSX-1 Template (per ANSI T1. 102-1993)  
Minimum Curve Maximum Curve  
Time (UI) Amplitude  
Time (UI)  
Amplitude  
Time (UI)  
Amplitude  
Time (UI)  
Amplitude  
-0.77  
-0.23  
-0.23  
-0.15  
0.0  
-0.05  
-0.05  
0.50  
0.90  
0.95  
0.90  
0.50  
-0.77  
-0.39  
-0.27  
-0.27  
-0.12  
0.0  
0.05  
0.05  
0.80  
1.20  
1.20  
1.05  
1.05  
-0.05  
0.05  
0.05  
-0.77  
-0.23  
-0.23  
-0.15  
0.0  
-0.05  
-0.05  
0.50  
-0.77  
-0.39  
-0.27  
-0.27  
-0.12  
0.0  
0.05  
0.05  
0.80  
1.15  
1.15  
1.05  
1.05  
-0.07  
0.05  
0.05  
0.95  
0.95  
0.15  
0.23  
0.23  
0.46  
0.61  
0.93  
1.16  
0.15  
0.23  
0.23  
0.46  
0.66  
0.93  
1.16  
0.90  
0.27  
0.34  
0.77  
1.16  
0.50  
0.27  
0.35  
0.93  
1.16  
-0.45  
-0.45  
-0.26  
-0.05  
-0.05  
-0.45  
-0.45  
-0.20  
-0.05  
-0.05  
Table 29. Master and Transmit Clock Timing Characteristics for T1 Operation  
(See Figure 14)  
Parameter  
Sym  
Min  
Typ1  
Max  
Unit  
Notes  
must be supplied  
Master clock frequency  
Master clock tolerance  
Master clock duty cycle  
Transmit clock frequency  
MCLK  
MCLKt  
MCLKd  
TCLK  
1.544  
±50  
MHz  
ppm  
%
40  
60  
1.544  
MHz  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
40  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Table 29. Master and Transmit Clock Timing Characteristics for T1 Operation  
(See Figure 14)  
Parameter  
Sym  
Min  
Typ1  
Max  
Unit  
Notes  
Transmit clock tolerance  
TCLKt  
TCLKd  
tSUT  
±100  
90  
ppm  
%
Transmit clock duty cycle  
10  
50  
50  
TPOS/TNEG to TCLK setup time  
TCLK to TPOS/TNEG hold time  
ns  
tHT  
ns  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 30. Master and Transmit Clock Timing Characteristics for E1 Operation  
(See Figure 14)  
Parameter  
Sym  
Min  
Typ1  
Max  
Unit  
Notes  
Master clock frequency  
MCLK  
MCLKt  
MCLKd  
TCLK  
TCLKt  
TCLKd  
tSUT  
2.048  
MHz  
ppm  
%
must be supplied  
Master clock tolerance  
±50  
Master clock duty cycle  
40  
60  
Transmit clock frequency  
Transmit clock tolerance  
Transmit clock duty cycle  
TPOS/TNEG to TCLK setup time  
TCLK to TPOS/TNEG hold time  
2.048  
MHz  
ppm  
%
±100  
90  
10  
50  
50  
ns  
tHT  
ns  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Figure 14. Transmit Clock Timing  
Datasheet  
41  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Table 31. Receive Timing Characteristics for T1 Operation (See Figure 15)  
Parameter  
Receive clock duty cycle 2, 3  
Sym  
Min  
Typ1  
Max  
Unit  
RLCKd  
tPW  
40  
50  
60  
%
ns  
ns  
ns  
ns  
ns  
Receive clock pulse width 2, 3  
648  
324  
324  
274  
274  
Receive clock pulse width high  
Receive clock pulse width low1,3  
RPOS/RNEG to RCLK rising time  
RCLK rising to RPOS/RNEG hold time  
tPWH  
tPWL  
tSUR  
tHR  
260  
388  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. RCLK duty cycle widths will vary according to extent of received pulse jitter displacement. Max and Min RCLK duty cycles are  
for worst case jitter conditions.  
3. Worst case conditions guaranteed by design only.  
Table 32. Receive Timing Characteristics for E1 Operation (See Figure 15)  
Parameter  
Receive clock duty cycle 2, 3  
Sym  
Min  
Typ1  
Max  
Unit  
RLCKd  
tPW  
40  
50  
60  
%
ns  
ns  
ns  
ns  
ns  
Receive clock pulse width 2, 3  
488  
244  
244  
194  
194  
Receive clock pulse width high  
Receive clock pulse width low1,3  
RPOS/RNEG to RCLK rising time  
RCLK rising to RPOS/RNEG hold time  
tPWH  
tPWL  
tSUR  
tHR  
195  
293  
1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. RCLK duty cycle widths will vary according to extent of received pulse jitter displacement. Max and Min RCLK duty cycles  
are for worst case jitter conditions (0.4 UI clock displacement for 1.544 MHz.)  
3. Worst case conditions guaranteed by design only.  
Figure 15. Receive Clock Timing  
42  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Table 33. LXT361 20 MHz Intel Bus Parallel I/O Timing Characteristics (See Figure 16)  
Parameter  
Sym  
Min  
Max  
Unit  
Test Conditions  
ALE pulse width  
TLHLL  
TAVLL  
35  
10  
10  
10  
10  
10  
10  
95  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address valid to ALE falling edge  
ALE falling edge to address hold time  
ALE falling edge to RD falling edge  
ALE falling edge to WR falling edge  
CS falling edge to RD falling edge  
CS falling edge to WR falling edge  
RD low pulse width  
TLLAX  
TLLRL  
TLLWL  
TCLRL  
TCLWL  
TRLRH  
TRLDV  
TRHDX  
TRHLH  
TRHAV  
TRHCH  
TWLWH  
TDVWH  
TWHDX  
TWHLH  
TWHCH  
RD falling edge to data valid  
55  
35  
Data hold time after RD rising edge  
RD rising edge to ALE rising edge  
RD rising edge to address valid  
CS low hold time after RD rising edge  
WR low pulse width  
15  
35  
0
95  
40  
30  
15  
15  
Data setup time before WR rising edge  
Data hold time after WR rising edge  
WR rising edge to ALE rising edge  
CS low hold time after WR rising edge  
Datasheet  
43  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Figure 16. LXT361 I/O Timing Diagram for Intel Address/Data Bus  
TCLWL  
TCLRL  
TWHCH  
TRHCH  
CS  
TLLRL  
TLLWL  
TLHLL  
TLLAX  
TRHLH  
TWHLH  
ALE  
RD  
TAVLL  
TRLRH  
TRHAV  
TRHDX  
TRLDV  
AD0-7_R  
TWLWH  
TDVWH  
TWHDX  
WR  
AD0-7_W  
Table 34. LXT361 16.78 MHz Motorola Bus Parallel I/O Timing Characteristics  
(See Figure 17)  
Parameter  
Symbol  
Min  
Max  
Units  
Test Conditions  
DS rising edge to AS rising edge  
AS high pulse width  
TDSHASH  
TASHASL  
TAVASL  
15  
35  
10  
10  
20  
10  
95  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address valid setup time at AS falling edge  
AS falling edge to Address valid hold time  
AS falling edge to DS falling edge  
CS falling edge to DS falling edge  
DS low pulse width  
Taslax  
TASLDSL  
TCSLDSL  
TDSLDSH  
TDSLDV  
TDSHDX  
TRWLDSL  
TDVDSH  
Tdxdsh  
TDSHRWH  
TDSHCSH  
DS falling edge to data valid  
55  
35  
Data hold time after DS rising edge  
R/W falling edge to DS falling edge  
Data setup time before DS rising edge  
Data hold time after DS rising edge  
R/W low hold time after DS rising edge  
CS low hold time after DS rising edge  
10  
40  
30  
15  
15  
44  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Figure 17. LXT361 I/O Timing Diagram for Motorola Address/Data Bus  
TCSLDSL  
TDSHCSH  
TDSHASH  
CS  
AS  
TASHASL  
TAVASL  
TASLDSL  
TASLAX  
TDXDSH  
TDSHRWH  
TDSLDSH  
TRWLDSL  
TDVDSH  
DS  
R/W_Read  
TDSHDX  
TDSLDV  
AD0-7_Read  
R/W_Write  
AD0-7_Write  
Figure 18. Typical T1 Jitter Tolerance at 36 dB  
1000 UI  
500 UI  
@ 10 Hz  
Jitter  
LXT361 Device  
Typical Jitter Tolerance  
Loop Mode  
138 UI  
100 UI  
Pub 62411  
28 UI  
Dec 1990  
10 UI  
0.6 UI  
@ 10 kHz  
1 UI  
0.4 UI  
.1 UI  
1 Hz  
10 Hz  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
Frequency  
Datasheet  
45  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Figure 19. Typical E1 Jitter Tolerance at 43 dB  
46  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Figure 20. Typical E1 Jitter Attenuation  
Datasheet  
47  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Figure 21. \T1 Jitter Attenuation  
48  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
7.0  
Mechanical Specifications  
Figure 22. Plastic Leaded Chip Carrier (PLCC) Package Specifications  
28-Pin PLCC  
Part Number LXT361PE  
Extended Temperature Range (-40 °C to 85 °C)  
C
L
C
B
D1  
D
D
A2  
A
A1  
F
Inches  
Millimeters  
Dim  
Min  
Max  
Min  
Max  
A
A1  
A2  
B
0.165  
0.090  
0.062  
0.180  
0.120  
0.083  
4.191  
2.286  
1.575  
4.572  
3.048  
2.108  
1
1
.050 BSC (nominal)  
1.27 BSC (nominal)  
C
0.026  
0.485  
0.450  
0.013  
0.032  
0.495  
0.456  
0.021  
0.660  
12.319  
11.430  
0.330  
0.813  
12.573  
11.582  
0.533  
D
D1  
F
1. BSC—Basic Spacing between Centers.  
Datasheet  
49  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
Figure 23. Plastic Quad Flat Package (PQFP) Specifications  
44-Pin PQFP  
Part Number LXT361QE  
Extended Temperature Range (-40 °C to 85 °C)  
D
D1  
D3  
e
E1  
E
E3  
θ
3
L1  
A2  
A
θ
A1  
θ
3
B
L
Inches  
Millimeters  
Dim  
Min  
Max  
Min  
Max  
A
A1  
A2  
B
0.096  
2.45  
0.010  
0.077  
0.012  
0.510  
0.390  
0.25  
1.95  
0.30  
12.95  
9.90  
0.083  
0.018  
0.530  
0.398  
2.10  
0.45  
13.45  
10.10  
D
D1  
D3  
E
0.315 BSC1 (nominal)  
8.00 BSC1 (nominal)  
0.510  
0.530  
12.95  
13.45  
E1  
E3  
e
0.390  
0.398  
9.90  
10.10  
0.315 BSC1 (nominal)  
0.031 BSC1 (nominal)  
8.00 BSC1 (nominal)  
0.80 BSC1 (nominal)  
L
0.029  
0.041  
0.73  
1.03  
L1  
q3  
q
0.063 BSC1 (nominal)  
1.60 BSC1 (nominal)  
5°  
0°  
16°  
7°  
5°  
0°  
16°  
7°  
1. BSC—Basic Spacing between Centers.  
50  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Figure 24. Low-Profile Quad Flat Package (LQFP) Specifications  
44-Pin LQFP  
Part Number LXT361LE  
Extended Temperature Range (-40 °C to 85 °C)  
D
NOTE: All dimensions in millimeters.  
D/2  
b
E/2  
e
E1/2  
e/2  
M
E1  
E
0 DEG. MIN.  
A2  
0.08 / 0.20 R.  
D1/2  
A1  
D1  
0.08 R. MIN.  
L
A
0 - 7 DEG.  
0.20 MIN.  
1.00  
REF.  
Millimeters  
Nominal  
Dimension1  
Minimum  
Maximum  
A
A1  
A2  
b
-
-
1.60  
0.15  
1.45  
0.45  
0.05  
1.35  
0.30  
0.10  
1.40  
0.37  
D
12.00 (basic spacing between centers)  
10.00 (basic spacing between centers)  
12.00 (basic spacing between centers)  
10.00 (basic spacing between centers)  
0.80 (basic spacing between centers)  
0.60  
D1  
E
E1  
e
L
0.45  
0.15  
0.75  
-
M
-
1. See JEDEC Publication for additional specifications.  
Datasheet  
51  
7.1  
Top Label Markings  
Figure 25 shows a sample LQFP package for the LXT361 Transceiver.  
Notes:  
1. In contrast to the Pb-Free (RoHS-compliant) LQFP package, the non-RoHS-compliant  
package does not have the “e3” symbol in the last line of the package label.  
2. Further information regarding RoHS and lead-free components can be obtained from your  
local Intel representative.  
For general information, see http://www.intel.com/technology/silicon/leadfree.htm.  
Figure 25.  
Sample PLCC Package – Intel® DJLXT361LE Transceiver  
Pin 1  
LXT361LE A2  
XXXXXXXX  
Revision #  
Part #  
FPO#  
BSMC  
B5572-01  
Figure 26 shows a sample Pb-Free (RoHS-compliant) LQFP package for the LXT361 Transceiver.  
Figure 26.  
Sample Pb-Free (RoHS-Compliant) LQFP Package – Intel® WJLXT361LE  
Transceiver  
Pin 1  
WJLXT361E A2  
XXXXXXXX  
Revision #  
Part #  
FPO#  
Pb-Free  
Designation  
e3  
BSMC  
B5574-01  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Figure 25 shows a sample PLCC package for the LXT361 Transceiver.  
Notes:  
1. In contrast to the Pb-Free (RoHS-compliant) PLCC package, the non-RoHS-compliant  
package does not have the “e3” symbol in the last line of the package label.  
Figure 27.  
Sample PLCC Package – Intel® NLXT361PE Transceiver  
Pin 1  
LXT361PE A2  
XXXXXXXX  
Revision #  
Part #  
FPO#  
BSMC  
B5573-01  
Figure 26 shows a sample Pb-Free (RoHS-compliant) PLCC package for the LXT361 Transceiver.  
Figure 28.  
Sample Pb-Free (RoHS-Compliant) PLCC Package – Intel® EELXT361PE  
Transceiver  
Pin 1  
EELXT361E A2  
XXXXXXXX  
Revision #  
Part #  
FPO#  
Pb-Free  
Designation  
e3  
BSMC  
B5575-01  
Datasheet  
53  
LXT361 — Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications  
8.0  
Product Ordering Information  
Table 35 provides LXT361 Transceiver product ordering information.  
Table 35.  
Product Ordering Information  
Product Number  
Revision  
Package Type  
Pin Count  
RoHS Compliant  
DJLXT361LE.A2  
WJLXT361LE.A2  
NLXT361PE.A2  
EELXT361PE.A2  
A2  
A2  
A2  
A2  
LQFP  
LQFP  
PLCC  
PLCC  
44  
44  
28  
28  
No  
Yes  
No  
Yes  
54  
Datasheet  
Integrated T1/E1 LH/SH Transceiver for DS1/DSX-1 or PRI Applications — LXT361  
Figure 29.  
Ordering Information Matrix – Sample  
DJ  
LXT  
361  
L
E
A2  
Product Revision  
xn = 2 Alphanumeric characters  
Temperature Range  
A = Ambient (0 – 550 C)  
C = Commercial (0 – 700 C)  
E = Extended (-40 – 850 C)  
Internal Package Designator  
L = LQFP  
P = PLCC  
N = DIP  
Q = PQFP  
H = QFP  
T = TQFP  
B = BGA  
C = CBGA  
E = TBGA  
K = HSBGA (BGA with heat slug  
Product Code  
xxxxx = 3-5 Digit alphanumeric  
IXA Product Prefix  
LXT = PHY layer device  
IXE = Switching engine  
IXF = Formatting device (MAC/Framer)  
IXP = Network processor  
Intel Package Designator  
Pb-Free  
Package  
Leaded  
WB  
WJ  
HQFP  
LQFP  
TQFP  
HB  
DJ  
FA  
BJ  
JA  
TQFP  
FA  
WD  
QU  
EG  
PQFP  
PQFP  
PQFP  
QFN  
HD  
KU  
S
WG  
HG  
LB  
PD  
PA  
N
UB  
UC  
EP  
EE  
RU  
PC  
EL  
PR  
QFN  
PDIP  
SSOP  
PLCC  
MMAP  
MMAP  
PBGA  
PBGA  
PBGA  
PBGA  
CBGA  
FCBGA  
TBGA  
HZ  
RC  
FL  
FW  
GD  
GW  
HF  
HL  
TL  
LU  
EW  
WF  
JP  
SC  
B5571-01  
Datasheet  
55  

相关型号:

NLXT901APC.A4

Ethernet Transceiver, 1-Trnsvr, CMOS, PQCC44,
INTEL

NLXT901APC.A4SE001

Ethernet Transceiver, 1-Trnsvr, CMOS, PQCC44,
INTEL

NLXT901APCE2

Ethernet Transceiver, PQCC44, PLASTIC, LCC-44
INTEL

NLXT901PC

Ethernet Transceiver, PQCC44, PLASTIC, LCC-44
INTEL

NLXT901PC.E2

Ethernet Transceiver, 1-Trnsvr, PQCC44,
INTEL

NLXT901PC.E2SE000

Ethernet Transceiver, 1-Trnsvr, PQCC44,
INTEL

NLXT901PC.E2SE001

Ethernet Transceiver, 1-Trnsvr, PQCC44, JLCC-44
INTEL

NLXT905PC.C2

Ethernet Transceiver, 1-Trnsvr, CMOS, PQCC28, PLASTIC, LCC-28
INTEL

NLXT905PC.C2SE000

Ethernet Transceiver, 1-Trnsvr, CMOS, PQCC28, PLASTIC, LCC-28
INTEL

NLXT905PC.C2SE001

Ethernet Transceiver, 1-Trnsvr, CMOS, PQCC28, PLASTIC, LCC-28
INTEL

NLXT905PE.C2

Ethernet Transceiver, 1-Trnsvr, CMOS, PQCC28, PLASTIC, LCC-28
INTEL

NLXT905PE.C2E001

Ethernet Transceiver, 1-Trnsvr, CMOS, PQCC28,
INTEL