QG82910GMLE/SLA9L [INTEL]

Memory Controller, CMOS, PBGA1257;
QG82910GMLE/SLA9L
型号: QG82910GMLE/SLA9L
厂家: INTEL    INTEL
描述:

Memory Controller, CMOS, PBGA1257

文件: 总385页 (文件大小:4439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R
Mobile Intel® 915 and 910 Express  
Chipset Family of Products  
Datasheet  
April 2007  
Document Number: 305264-002  
Introduction  
R
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S  
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY  
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING  
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in  
nuclear facility applications.  
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of  
any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for  
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this  
information.  
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-  
4725, or by visiting Intel’s Web Site.  
This document contains information on products in the design phase of development.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different  
processor families. See http://www.intel.com/products/processor_number for details.  
Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by Intel that have not been made  
commercially available to the public, i.e., announced, launched or shipped. They are never to be used as “commercial” names for products. Also, they are  
not intended to function as trademarks.  
BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,  
IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel  
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus,  
OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel  
Corporation in the U.S. and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2005–2007, Intel Corporation. All rights reserved.  
This device is protected by U.S. patent numbers 5,315,448 and 6,516,132, and other intellectual property rights. The use of Macrovision's copy protection  
technology in the device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless otherwise  
authorized in writing by Macrovision. Devices incorporating Macrovision’s copy protection technology can only be sold or distributed to companies  
appearing on Macrovision’s list of “Authorized Buyers” at: www.macrovision.com. Reverse engineering or disassembly is prohibited.  
2
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
Contents  
1
Introduction ....................................................................................................................... 29  
1.1  
Overview............................................................................................................... 29  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
1.1.5  
System Memory Interface..................................................................... 30  
PCI Express* Based Graphics and Intel SDVO Interface..................... 30  
Display Interface................................................................................... 30  
SDVO Interface..................................................................................... 30  
DMI ....................................................................................................... 30  
1.2  
1.3  
Terminology.......................................................................................................... 31  
Reference Documents.......................................................................................... 34  
2
Signal Description.............................................................................................................35  
2.1  
2.2  
Host Interface....................................................................................................... 36  
2.1.1  
2.1.2  
Host Interface Signals........................................................................... 36  
Host Interface Reference and Compensation ...................................... 38  
DDR DRAM Interface........................................................................................... 39  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
DDR / DDR2 SDRAM Channel A Interface .......................................... 39  
DDR / DDR2 SDRAM Channel B Interface .......................................... 41  
DDR / DDR2 Common Signals............................................................. 43  
DDR SDRAM Reference and Compensation....................................... 44  
2.2.4.1  
PCI Express Based Graphics Interface Signals................................................... 45  
2.3.1 Serial DVO and PCI Express Based Graphics Signal Mapping........... 46  
DDR / DDR2 Common Signal Mapping .............................. 44  
2.3  
2.4  
2.5  
DMI....................................................................................................................... 47  
Integrated Graphics Interface Signals.................................................................. 47  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
2.5.5  
CRT DAC Signals................................................................................. 47  
Analog TV-out Signals.......................................................................... 48  
LVDS Signals........................................................................................ 49  
Serial DVO Interface............................................................................. 50  
Display Data Channel (DDC) and GMBUS Support............................. 51  
2.6  
2.7  
2.8  
2.9  
PLL Signals .......................................................................................................... 52  
Reset and Miscellaneous Signals ........................................................................ 53  
Power and Ground ............................................................................................... 54  
Reset States and Pull-Up / Pull-Downs................................................................ 55  
2.9.1  
2.9.2  
2.9.3  
2.9.4  
2.9.5  
2.9.6  
2.9.7  
2.9.8  
2.9.9  
Host Interface Signals........................................................................... 56  
Host Interface Reference and Compensation ...................................... 57  
DDR / DDR2 SDRAM Channel A Interface .......................................... 57  
DDR / DDR2 SDRAM Channel B Interface .......................................... 58  
DDR / DDR2 Common Signals............................................................. 58  
DDR SDRAM Reference and Compensation....................................... 59  
PCI Express Based Graphics Interface Signals................................... 59  
DMI ....................................................................................................... 60  
CRT DAC SIGNALS ............................................................................. 60  
2.9.10 Analog TV-out Signals.......................................................................... 61  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
3
Introduction  
R
2.9.11 LVDS Signals........................................................................................ 62  
2.9.12 Display Data Channel (DDC) and GMBUS Support............................. 63  
2.9.13 PLL Signals........................................................................................... 63  
2.9.14 Reset and Miscellaneous Signals......................................................... 64  
3
GMCH Register Description.............................................................................................. 65  
3.1  
Configuration Process and Registers................................................................... 66  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
3.1.6  
3.1.7  
Platform Configuration Structure .......................................................... 66  
General Routing Configuration Accesses ............................................ 67  
Standard PCI Bus Configuration Mechanism....................................... 67  
Logical PCI Bus 0 Configuration Mechanism....................................... 68  
Primary PCI and Downstream Configuration Mechanism.................... 68  
PCI Express Enhanced Configuration Mechanism .............................. 69  
GMCH Configuration Cycle Flow Chart................................................ 71  
3.2  
I/O Mapped Registers .......................................................................................... 72  
3.2.1  
3.2.2  
CONFIG_ADDRESS—Configuration Address Register ...................... 72  
CONFIG_DATA—Configuration Data Register.................................... 73  
4
Host Bridge Device 0 - Configuration Registers (D0:F0).................................................. 75  
4.1 Host Bridge Device 0 Configuration Register Space ........................................... 75  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.6  
4.1.7  
4.1.8  
4.1.9  
VID—Vendor Identification ................................................................... 76  
DID—Device Identification.................................................................... 76  
PCICMD—PCI Command .................................................................... 76  
PCISTS—PCI Status............................................................................ 77  
RID—Revision Identification................................................................. 78  
CC—Class Code .................................................................................. 79  
MLT—Master Latency Timer ................................................................ 80  
HDR—Header Type.............................................................................. 80  
SVID—Subsystem Vendor Identification.............................................. 80  
4.1.10 SID—Subsystem Identification ............................................................. 81  
4.1.11 CAPPTR—Capabilities Pointer ............................................................ 81  
4.1.12 EPBAR—Egress Port Base Address.................................................... 82  
4.1.13 MCHBAR—GMCH Register Range Base Address.............................. 83  
4.1.14 PCIEXBAR—PCI Express Register Range Base Address.................. 84  
4.1.15 DMIBAR—DMI Root Complex Register Range Base Address............ 85  
4.1.16 GGC-GMCH Graphics Control Register (Device 0) ............................. 86  
4.1.17 DEVEN—Device Enable....................................................................... 87  
4.1.18 PAM0—Programmable Attribute Map 0 ............................................... 88  
4.1.19 PAM1—Programmable Attribute Map 1 ............................................... 89  
4.1.20 PAM2—Programmable Attribute Map 2 ............................................... 90  
4.1.21 PAM3—Programmable Attribute Map 3 ............................................... 91  
4.1.22 PAM4—Programmable Attribute Map 4 ............................................... 92  
4.1.23 PAM5—Programmable Attribute Map 5 ............................................... 93  
4.1.24 PAM6—Programmable Attribute Map 6 ............................................... 94  
4.1.25 LAC—Legacy Access Control .............................................................. 95  
4.1.26 TOLUD—Top of Low Used DRAM Register ........................................ 96  
4.1.27 SMRAM—System Management RAM Control..................................... 97  
4.1.28 ESMRAMC—Extended System Management RAM Control................ 98  
4.1.29 ERRSTS—Error Status ........................................................................ 99  
4.1.30 ERRCMD—Error Command...............................................................100  
4.1.31 SKPD—Scratchpad Data (D0:F0) ......................................................101  
4.1.32 CAPID0—Capability Identifier.............................................................101  
5
4
Device #0 Memory Mapped I/O Register........................................................................102  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
5.1  
5.2  
MCHBAR Registers Device #0 ..........................................................................102  
Device #0 MCHBAR Chipset Control Register Space.......................................102  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
5.2.9  
HIC Host Interface Configuration Register.........................................104  
HIT1—Host Interface Test_1..............................................................104  
C0DRB0—Channel 0 DRAM Rank Boundary 0.................................105  
C0DRB1—Channel 0 DRAM Rank Boundary 1.................................105  
C0DRB2—Channel 0 DRAM Rank Boundary 2.................................105  
C0DRB3—Channel 0 DRAM Rank Boundary 3.................................106  
C0DRA0—Channel 0 DRAM Rank 0,1 Attribute................................106  
C0DRA2—Channel 0 DRAM Rank 2,3 Attribute................................107  
C0DCLKDIS—Channel 0 DRAM Clock Disable.................................107  
5.2.10 C0BNKARC—Channel 0 DRAM Bank Architecture...........................108  
5.2.11 C0DRT0—Channel 0 DRAM Timing Register 0.................................109  
5.2.12 C0DRT1—Channel 0 DRAM Timing Register 1.................................113  
5.2.13 C0DRT2—Channel 0 DRAM Timing Register 2.................................115  
5.2.14 C0DRC0––Channel 0 DRAM Controller Mode 0 ...............................116  
5.2.15 C0DRC1––Channel 0 DRAM Controller Mode 1 ...............................118  
5.2.16 C0DRC2––Channel 0 DRAM Controller Mode 2 ...............................119  
5.2.17 C1DRB0—Channel 1 DRAM Rank Boundary Address 0 ..................119  
5.2.18 C1DRB1—Channel 1 DRAM Rank Boundary Address 1 ..................119  
5.2.19 C1DRB2—Channel 1 DRAM Rank Boundary Address 2 ..................119  
5.2.20 C1DRB3—Channel 1 DRAM Rank Boundary Address 3 ..................120  
5.2.21 C1DRA0—Channel 1 Dram Rank 0,1 Attribute..................................120  
5.2.22 C1DRA2—Channel 1 Dram Rank 2,3 Attribute..................................120  
5.2.23 C1DCLKDIS—Channel 1 DRAM Clock Disable.................................120  
5.2.24 C1BNKARC—Channel 1 Bank Architecture ......................................120  
5.2.25 C1DRT0—Channel 1 DRAM Timing Register 0.................................121  
5.2.26 C1DRT1—Channel 1 DRAM Timing Register 1.................................121  
5.2.27 C1DRT2—Channel 1 DRAM Timing Register 2.................................121  
5.2.28 C1DRC0—Channel 1 DRAM Controller Mode 0................................121  
5.2.29 C1DRC1—Channel 1 DRAM Controller Mode 1................................121  
5.2.30 C1DRC2––Channel 1 DRAM Controller Mode 2 ...............................122  
5.2.31 DCC—DRAM Channel Control...........................................................122  
5.2.32 Device #0 MCHBAR Clock Controls...................................................123  
5.2.33 CLKCFG—Clocking Configuration .....................................................123  
5.2.34 CPCTL—CPunit Control.....................................................................123  
Device #0 MCHBAR ACPI Power Management Controls .................................124  
5.3  
5.4  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
PMSLFRFC—Dram Self Refresh Control ..........................................124  
DSDLLPDC—Dram Slave DLL Power Down Control ........................124  
DMDLLPDC—Dram Master DLL Power Down Control .....................126  
PMCFG—Power Management Configuration ....................................127  
PMSTS—Power Management Status ................................................128  
DMICC—DMI Countdown Control......................................................129  
DMI RCRB..........................................................................................................130  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
5.4.9  
DMI Register Summary ......................................................................130  
DMIVCECH—DMI Virtual Channel Enhanced Capability Header .....131  
DMIPVCCAP1—DMI Port VC Capability Register 1..........................131  
DMIPVCCAP2—DMI Port VC Capability Register 2..........................132  
DMIPVCCTL—DMI Port VC Control ..................................................132  
DMIVC0RCAP—DMI VC0 Resource Capability ................................133  
DMIVC0RCTL0—DMI VC0 Resource Control ...................................134  
DMIVC0RSTS—DMI VC0 Resource Status.......................................134  
DMIVC1RCAP—DMI VC1 Resource Capability ................................135  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
5
Introduction  
R
5.4.10 DMIVC1RCTL1—DMI VC1 Resource Control ...................................135  
5.4.11 DMIVC1RSTS—DMI VC1 Resource Status.......................................136  
5.4.12 DMILCAP—DMI Link Capabilities ......................................................136  
5.4.13 DMILCTL—DMI Link Control..............................................................137  
5.4.14 DMILSTS—DMI Link Status ...............................................................138  
5.4.15 Egress Port (EP) RCRB......................................................................138  
5.4.16 EP Register Summary ........................................................................138  
5.4.17 EPESD—EP Element Self Description...............................................140  
5.4.18 EPLE1D—EP Link Entry 1 Description ..............................................140  
5.4.19 EPLE1A—EP Link Entry 1 Address ...................................................141  
5.4.20 EPLE2D—EP Link Entry 2 Description ..............................................141  
5.4.21 E2A—EP Link Entry 2 Address ..........................................................142  
6
PCI Express Graphics Device 1 Configuration Registers (D1:F0) .................................144  
6.1  
6.2  
PEG Device 1 Configuration Register Summary ...............................................145  
PEG Device 1 Configuration Register Details....................................................147  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
6.2.8  
6.2.9  
VID1—Vendor Identification ...............................................................147  
DID1—Device Identification................................................................147  
PCICMD1—PCI Command ................................................................148  
PCISTS1—PCI Status........................................................................150  
RID1—Revision Identification.............................................................151  
CC1—Class Code ..............................................................................151  
CL1—Cache Line Size .......................................................................152  
HDR1—Header Type..........................................................................152  
PBUSN1—Primary Bus Number ........................................................152  
6.2.10 SBUSN1—Secondary Bus Number ...................................................153  
6.2.11 SUBUSN1—Subordinate Bus Number...............................................153  
6.2.12 IOBASE1—I/O Base Address.............................................................154  
6.2.13 IOLIMIT1—I/O Limit Address..............................................................154  
6.2.14 SSTS1—Secondary Status ................................................................155  
6.2.15 MBASE1—Memory Base Address.....................................................156  
6.2.16 MLIMIT1—Memory Limit Address......................................................157  
6.2.17 PMBASE1—Prefetchable Memory Base Address .............................158  
6.2.18 PMLIMIT1—Prefetchable Memory Limit Address ..............................159  
6.2.19 CAPPTR1—Capabilities Pointer ........................................................159  
6.2.20 INTRLINE1—Interrupt Line.................................................................160  
6.2.21 INTRPIN1—Interrupt Pin ....................................................................160  
6.2.22 BCTRL1—Bridge Control ...................................................................161  
6.2.23 PM_CAPID1—Power Management Capabilities................................163  
6.2.24 PM_CS1—Power Management Control/Status .................................164  
6.2.25 SS_CAPID—Subsystem ID and Vendor ID Capabilities....................165  
6.2.26 SS—Subsystem ID and Subsystem Vendor ID..................................166  
6.2.27 MSI_CAPID—Message Signaled Interrupts Capability ID .................166  
6.2.28 MC—Message Control .......................................................................167  
6.2.29 MA—Message Address......................................................................167  
6.2.30 MD—Message Data ...........................................................................168  
6.2.31 PEG_CAPL—PCI Express Based Graphics Capability List...............168  
6.2.32 PEG_CAP—PCI Express*Based Graphics Capabilities ....................169  
6.2.33 DCAP—Device Capabilities................................................................169  
6.2.34 DCTL—Device Control .......................................................................170  
6.2.35 DSTS—Device Status ........................................................................171  
6.2.36 LCAP—Link Capabilities.....................................................................172  
6.2.37 LCTL—Link Control ............................................................................173  
6
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
6.2.38 LSTS—Link Status .............................................................................174  
6.2.39 SLOTCAP—Slot Capabilities..............................................................175  
6.2.40 SLOTCTL—Slot Control .....................................................................176  
6.2.41 SLOTSTS—Slot Status ......................................................................177  
6.2.42 RCTL—Root Control...........................................................................178  
6.2.43 RSTS—Root Status............................................................................179  
6.2.44 PEGLC—PCI Express* Based Graphics Legacy Control ..................180  
6.2.45 VCECH—Virtual Channel Enhanced Capability Header....................181  
6.2.46 PVCCAP1—Port VC Capability Register 1 ........................................181  
6.2.47 PVCCAP2—Port VC Capability Register 2 ........................................182  
6.2.48 PVCCTL—Port VC Control.................................................................182  
6.2.49 VC0RCAP—VC0 Resource Capability...............................................183  
6.2.50 VC0RCTL—VC0 Resource Control....................................................183  
6.2.51 VC0RSTS—VC0 Resource Status.....................................................184  
6.2.52 VC1RCAP—VC1 Resource Capability...............................................184  
6.2.53 VC1RCTL—VC1 Resource Control....................................................185  
6.2.54 VC1RSTS—VC1 Resource Status.....................................................186  
6.2.55 RCLDECH—Root Complex Link Declaration Enhanced Capability  
Header ................................................................................................186  
6.2.56 ESD—Element Self Description .........................................................187  
6.2.57 LE1D—Link Entry 1 Description.........................................................188  
6.2.58 LE1A—Link Entry 1 Address ..............................................................188  
6.2.59 PEGSSTS—PCI Express Graphics Sequence Status.......................189  
7
Internal Graphics Device #2 Configuration Register (D2:F0).........................................190  
7.1  
7.2  
Device #2: Function 0 Register Summary..........................................................191  
Device #2: Function 0 Configuration Register Details .......................................191  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.2.8  
7.2.9  
VID2—Vendor Identification ...............................................................193  
DID2—Device Identification................................................................193  
PCICMD2—PCI Command ................................................................194  
PCISTS2—PCI Status........................................................................195  
RID2—Revision Identification.............................................................196  
CC—Class Code ................................................................................196  
CLS—Cache Line Size.......................................................................197  
MLT2—Master Latency Timer............................................................197  
HDR2—Header Type..........................................................................198  
7.2.10 MMADR—Memory Mapped Range Address .....................................198  
7.2.11 IOBAR—I/O Base Address.................................................................199  
7.2.12 GMADR—Graphics Memory Range Address ....................................200  
7.2.13 GTTADR—Graphics Translation Table Range Address....................201  
7.2.14 SVID2—Subsystem Vendor Identification..........................................201  
7.2.15 SID2—Subsystem Identification.........................................................202  
7.2.16 ROMADR—Video BIOS ROM Base Address ....................................202  
7.2.17 CAPPOINT—Capabilities Pointer.......................................................203  
7.2.18 INTRLINE—Interrupt Line...................................................................203  
7.2.19 INTRPIN—Interrupt Pin ......................................................................203  
7.2.20 MINGNT—Minimum Grant .................................................................204  
7.2.21 MAXLAT—Maximum Latency.............................................................204  
7.2.22 MCAPPTR—Mirror of Dev0 Capability Pointer (Mirrored_D0_34).....204  
7.2.23 MCAPID—Mirror of Dev0 Capability Identification (Mirrored_D0_E0)204  
7.2.24 MGGC—Mirror of Dev0 GMCH Graphics Control (Mirrored_D0_52) 205  
7.2.25 MDEVENdev0f0—Mirror of Dev0 Device Enable (Mirrored_D0_54).205  
7.2.26 BSM—Base of Stolen Memory...........................................................205  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
7
Introduction  
R
7.2.27 MSAC—Multi Size Aperture Control...................................................206  
7.2.28 GDRST—Graphics Debug Reset (D2:F0)..........................................206  
7.2.29 PMCAPID—Power Management Capabilities ID...............................207  
7.2.30 PMCAP—Power Management Capabilities .......................................207  
7.2.31 PMCS—Power Management Control/Status......................................208  
7.2.32 SWSMI—Software SMI ......................................................................208  
7.2.33 GCFGC—Graphics Clock Frequency and Gating Control.................209  
7.2.34 LBB—Legacy Backlight Brightness....................................................210  
7.2.35 ASLS—ASL Storage...........................................................................211  
7.2.36 Device #2 Function 1 Configuration Register Details.........................212  
7.2.37 VID2—Vendor Identification ...............................................................213  
7.2.38 DID2—Device Identification................................................................213  
7.2.39 PCICMD2—PCI Command ................................................................214  
7.2.40 PCISTS2—PCI Status........................................................................215  
7.2.41 RID2—Revision Identification.............................................................216  
7.2.42 CC—Class Code Register..................................................................216  
7.2.43 CLS—Cache Line Size.......................................................................216  
7.2.44 MLT2—Master Latency Timer............................................................216  
7.2.45 HDR2—Header Type Register...........................................................217  
7.2.46 MMADR—Memory Mapped Range Address .....................................217  
7.2.47 SVID2—Subsystem Vendor Identification..........................................217  
7.2.48 SID2—Subsystem Identification.........................................................218  
7.2.49 ROMADR—Video BIOS ROM Base Address ....................................218  
7.2.50 CAPPOINT—Capabilities Pointer.......................................................218  
7.2.51 MINGNT—Minimum Grant Register...................................................218  
7.2.52 MAXLAT—Maximum Latency.............................................................218  
7.2.53 MCAPPTR—Mirror of Dev0 Capability Pointer (Mirrored_D0_34).....219  
7.2.54 MCAPID—Mirror of Dev0 Capability Identification (Mirrored_D0_E0)219  
7.2.55 MGGC—Mirror of Dev0 GMCH Graphics Control (Mirrored_D0_52) 219  
7.2.56 MDEVENdev0f0—Mirror of Dev0 Device Enable (Mirrored_D0_54).219  
7.2.57 BSM—Base of Stolen Memory Register ............................................219  
7.2.58 PMCAPID—Power Management Capabilities ID...............................220  
7.2.59 PMCAP—Power Management Capabilities .......................................220  
7.2.60 PMCS—Power Management Control/Status......................................220  
7.2.61 SWSMI—Software SMI ......................................................................221  
7.2.62 LBB—Legacy Backlight Brightness....................................................221  
7.2.63 ASLS—ASL Storage...........................................................................221  
Device #2 – PCI I/O Registers ...........................................................................221  
7.3  
7.3.1  
7.3.2  
MMIO Index—MMIO Address Register..............................................222  
MMIO Data—MMIO Data Register.....................................................222  
8
System Address Map......................................................................................................224  
8.1  
Legacy Address Range......................................................................................226  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
DOS Range (0h – 9_FFFFh)..............................................................227  
Legacy Video Area (A_0000h-B_FFFFh)...........................................227  
Expansion Area (C_0000h-D_FFFFh)................................................228  
Extended System BIOS Area (E_0000h-E_FFFFh)...........................228  
System BIOS Area (F_0000h-F_FFFFh)............................................229  
Programmable Attribute Map (PAM) Memory Area Details................229  
8.2  
Main Memory Address Range (1 MB to TOLUD) ..............................................230  
8.2.1  
8.2.2  
8.2.3  
ISA Hole (15 MB-16 MB) ....................................................................230  
TSEG ..................................................................................................231  
Pre-allocated Memory.........................................................................231  
8
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
8.3  
8.4  
PCI Express Memory Address Range (TOLUD – 4GB) ....................................232  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
APIC Configuration Space (FEC0_0000h-FECF_FFFFh) .................234  
HSEG (FEDA_0000h-FEDB_FFFFh).................................................234  
FSB Interrupt Memory Space (FEE0_0000-FEEF_FFFF) .................234  
High BIOS Area ..................................................................................234  
PCI Express Configuration Address Space .......................................................235  
8.4.1  
8.4.2  
PCI Express Graphics Attach.............................................................235  
AGP DRAM Graphics Aperture ..........................................................235  
8.5  
8.6  
Graphics Memory Address Ranges (Intel Integrated Graphics Chipsets Only) 236  
System Management Mode (SMM) ...................................................................236  
8.6.1  
SMM Space Definition ........................................................................237  
8.7  
SMM Space Restrictions....................................................................................237  
8.7.1  
8.7.2  
8.7.3  
8.7.4  
SMM Space Combinations .................................................................238  
SMM Control Combinations................................................................238  
SMM Space Decode and Transaction Handling ................................238  
CPU WB Transaction to an Enabled SMM Address Space...............238  
8.8  
8.9  
Memory Shadowing............................................................................................239  
I/O Address Space .............................................................................................239  
8.9.1  
PCI Express I/O Address Mapping.....................................................240  
8.10  
GMCH Decode Rules and Cross-Bridge Address Mapping ..............................240  
8.10.1 Legacy VGA and I/O Range Decode Rules .......................................240  
9
Host Interface..................................................................................................................242  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
FSB Source Synchronous Transfers..................................................................242  
FSB IOQ Depth ..................................................................................................242  
FSB OOQ Depth ................................................................................................242  
FSB GTL+ Termination ......................................................................................242  
FSB Dynamic Bus Inversion...............................................................................243  
FSB Interrupt Overview......................................................................................243  
APIC Cluster Mode support................................................................................243  
10  
Functional Description ....................................................................................................244  
10.1  
Host Interface.....................................................................................................244  
10.1.1 FSB GTL+ Termination.......................................................................244  
10.1.2 FSB Dynamic Bus Inversion...............................................................244  
10.1.3 APIC Cluster Mode support................................................................245  
System Memory Controller.................................................................................245  
10.2.1 Memory Channel Organization Modes...............................................247  
10.2.1.1 Interleaved (Symmetric) Mode ..........................................247  
10.2.1.2 Asymmetric Mode..............................................................247  
10.2.1.3 DRAM Address Mapping...................................................248  
10.2.2 DRAM Technologies and Organization ..............................................252  
10.2.2.1 Supported SO-DIMM types ...............................................252  
10.2.2.2 Rules for Populating SO-DIMM Slots................................253  
10.2.2.3 Pin Connectivity for Single and Dual Channel Modes ......253  
10.2.3 System Memory Configuration Registers Overview...........................254  
10.2.4 DRAM Clock Generation ....................................................................254  
10.2.5 DDR2 On-Die Termination..................................................................255  
10.2.6 DDR2 Off Chip Driver Impedance Calibration....................................255  
10.2.7 DRAM Power Management................................................................255  
10.2.7.1 Dynamic Row Power Down Operation..............................255  
10.2  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
9
Introduction  
R
10.3  
10.4  
PCI Express Interface (Intel® 915GM/915GME/915PM Only) ...........................256  
10.3.1 Layering Overview..............................................................................256  
10.3.2 Transaction Layer...............................................................................256  
10.3.3 Data Link Layer...................................................................................256  
10.3.4 Physical Layer.....................................................................................257  
Intel® Serial Digital Video Output (SDVO) (Intel  
915GM/915GME/910GML/910GMLE/915GMS Only) .......................................257  
10.4.1 Intel® SDVO Capabilities ....................................................................257  
10.4.2 Intel® SDVO Modes ............................................................................258  
Integrated Graphics Controller  
10.5  
10.6  
(Intel® 915GM/915GME/910GML/915GMS Only)..............................................258  
10.5.1 Integrated Graphics Engine Overview................................................259  
3D Engine (Intel® 915GM/915GME/910GML/910GMLE/ 915GMS Only) .........259  
10.6.1 Setup Engine ......................................................................................259  
10.6.1.1 3D Primitives and Data Formats Support..........................259  
10.6.1.2 Pixel Accurate “Fast” Scissoring and Clipping Operation.260  
10.6.1.3 Depth Bias.........................................................................260  
10.6.1.4 Backface Culling................................................................260  
10.6.1.5 Scan Converter .................................................................260  
10.6.1.6 Pixel Rasterization Rules ..................................................260  
10.6.2 Texture Engine....................................................................................260  
10.6.2.1 Perspective Correct Texture Support................................261  
10.6.2.2 Texture Formats and Storage ...........................................261  
10.6.2.3 Texture Decompression ....................................................261  
10.6.2.4 Texture ChromaKey ..........................................................261  
10.6.2.5 Anti-Aliasing.......................................................................261  
10.6.2.6 Texture Map Filtering ........................................................262  
10.6.2.7 Multiple Texture Composition............................................262  
10.6.2.8 Bi-Cubic Filter (4x4 Programmable Texture Filter) ...........262  
10.6.2.9 Cubic Environment Mapping .............................................263  
10.6.3 Raster Engine.....................................................................................263  
10.6.3.1 Texture Map Blending .......................................................263  
10.6.3.2 Combining Intrinsic and Specular Color Components ......263  
10.6.3.3 Color Shading Modes........................................................264  
10.6.3.4 Color Dithering ..................................................................264  
10.6.3.5 Vertex and Per Pixel Fogging............................................264  
10.6.3.6 Alpha Blending (Frame Buffer)..........................................264  
10.6.3.7 Microsoft Direct X* API and SGI OpenGL Logic Ops .......265  
10.6.3.8 Color Buffer Formats: 8-, 16-, or 32-bits per pixel  
(Destination Alpha)............................................................265  
10.6.3.9 Depth Buffer ......................................................................265  
10.6.3.10 Stencil Buffer .....................................................................266  
10.6.3.11 Projective Textures............................................................266  
2D Engine (Intel® 915GM/915GME/910GML/910GMLE/ 915GMS Only) .........266  
10.7.1 GMCH VGA Registers........................................................................266  
10.7.2 2D Functionality..................................................................................266  
10.7.2.1 Block Level Transfer (BLT) Function................................266  
10.7.2.2 Logical 128-bit Fixed BLT and 256-bit Fill Engine ............267  
Video Engine (Intel® 915GM/915GME/910GML/ 910GMLE/915GMS Only).....268  
10.8.1 Hardware Motion Compensation........................................................268  
10.8.2 Sub-Picture Support ...........................................................................268  
10.8.3 De-interlacing Support........................................................................268  
10.8.3.1 Dynamic Bob and Weave..................................................269  
10.7  
10.8  
10  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
10.9  
Display Interfaces  
(Intel® 915GM/915GME/910GML/ 910GMLE/915GMS Only) ...........................269  
10.9.1 Display Overview................................................................................269  
10.9.2 Planes.................................................................................................270  
10.9.2.1 Display Plane.....................................................................270  
10.9.2.2 Cursor A/B Plane...............................................................270  
10.9.2.3 Cursor Color Formats........................................................270  
10.9.2.4 Popup Cursor ....................................................................271  
10.9.2.5 Overlay Plane....................................................................271  
10.9.2.6 Dynamic Bob and Weave..................................................272  
10.9.2.7 VGA Plane.........................................................................273  
10.9.3 Display Pipes ......................................................................................273  
10.9.4 Clock Generator Units (DPLL)............................................................273  
10.10 Display Ports (Intel® 915GM/915GME/910GML/ 910GMLE/915GMS Only).....274  
10.10.1 Analog Display Port Characteristics ...................................................275  
10.10.1.1 Integrated RAMDAC..........................................................275  
10.10.1.2 Sync Signals......................................................................275  
10.10.1.3 VESA/VGA Mode ..............................................................275  
10.10.1.4 DDC (Display Data Channel) ............................................276  
10.10.2 Dedicated TV Out Port........................................................................276  
10.10.2.1 Connectors ........................................................................276  
10.10.2.2 Composite Video Connector .............................................276  
10.10.2.3 S-Video Connector............................................................277  
10.10.2.4 Component Analog YUV connector ..................................277  
10.10.2.5 Content Protection.............................................................277  
10.10.3 Dedicated LFP LVDS Port..................................................................277  
10.10.4 LVDS panel support............................................................................278  
10.10.5 LVDS Interface Signals.......................................................................278  
10.10.6 LVDS Data Pairs and Clock Pairs ......................................................279  
10.10.7 LVDS Pair States................................................................................280  
10.10.8 Single Channel versus Dual Channel Mode.......................................280  
10.10.9 LVDS Channel Skew ..........................................................................280  
10.10.10 LVDS PLL ...........................................................................................280  
10.10.11 SSC Support.......................................................................................280  
10.10.12 Panel Power Sequencing ...................................................................281  
10.10.12.1Panel Power Sequence States .........................................281  
10.10.12.2Back Light Inverter Control................................................283  
10.10.13 SDVO Digital Display Port ..................................................................283  
10.10.13.1TMDS Capabilities.............................................................284  
10.10.13.2LVDS Capabilities .............................................................284  
10.10.13.3TV-Out Capabilities  
(not supported by the Intel 915GME/Intel 910GMLE).......284  
10.10.14 Control Bus .........................................................................................285  
10.10.15 Intel SDVO Modes..............................................................................285  
10.11 Multiple Display Configurations..........................................................................286  
10.12 Power Management ...........................................................................................286  
10.12.1 Power Management Overview ...........................................................286  
10.12.2 ACPI States Overview ........................................................................286  
10.12.2.1 System...............................................................................286  
10.12.2.2 CPU...................................................................................287  
10.12.2.3 Internal Graphics Display Device Control .........................287  
10.12.2.4 Internal Graphics Adapter .................................................287  
10.12.2.5 PCI Express Link States....................................................287  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
11  
Introduction  
R
10.13 Thermal Management ........................................................................................288  
10.13.1 Internal Thermal Sensor .....................................................................288  
10.13.1.1 Trip Points .........................................................................289  
10.13.1.2 Thermometer.....................................................................289  
10.13.2 Sample Programming Model ..............................................................289  
10.13.2.1 Setting the “Hot” Temperature Trip Point..........................289  
10.13.3 Trip Point Temperature Targets .........................................................290  
10.13.4 Thermal Sensor Accuracy ..................................................................290  
10.13.5 Thermal Throttling Options .................................................................291  
10.13.6 THRMTRIP Operation ........................................................................291  
10.14 Clocking..............................................................................................................291  
10.14.1 Overview.............................................................................................291  
10.14.2 GMCH Reference Clocks ...................................................................292  
10.14.3 Host/Memory/Graphics Core Clock Frequency Support....................292  
10.14.3.1 Intel 915GM Host/Memory/Graphics Clock Support.........292  
10.14.3.2 Intel 915GMS Host/Memory/Graphics Clock Support.......292  
10.14.3.3 Intel 910GML Host/Memory/Graphics Clock Support.......292  
11  
Electrical Characteristics.................................................................................................293  
11.1  
11.2  
11.3  
11.4  
Absolute Maximum Ratings................................................................................293  
Power Characteristics ........................................................................................296  
Signal Groups.....................................................................................................299  
DC Characteristics .............................................................................................303  
11.4.1 General DC Characteristics................................................................303  
11.4.2 CRT DAC DC Characteristics.............................................................307  
11.4.3 TV DAC DC Characteristics  
(not supported on the Intel 915GME/Intel 910GMLE chipsets)..........307  
12  
13  
GMCH Strap Pins............................................................................................................309  
12.1 Mobile Intel 915 and 910 Express Chipset Family Strapping Configuration......309  
Ballout and Package Information....................................................................................311  
13.1  
Intel 915GM, 915GME, 915PM, 910GML and 910GMLE  
Express Chipset GMCH Ballout List ..................................................................313  
13.2  
GMCH Signal Name Ordering Ball list ...............................................................329  
13.2.1 GMCH Numerical Order Ball List........................................................329  
Mobile Intel 915GMS Express Chipset Ballout Diagram....................................329  
Mobile Intel 915GMS Series Express Chipset Family Ballout List.....................329  
13.4.1 Mobile Intel 915GMS Express Chipset Family Ball-Out  
13.3  
13.4  
Numerical Order Ball List....................................................................329  
13.5  
13.6  
Mobile Intel 915GMS Express Chipset Family Signal Name Ordering Ball List 329  
Mobile Intel 91xM Series Express Chipset Family Package  
Mechanical Information ......................................................................................329  
13.6.1 Intel 915PM/GM/GME and 910GML/GMLE Package  
Mechanical Information.......................................................................329  
Mobile Intel 915GMS Express Chipset Package Mechanical Information.........329  
13.7  
12  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
Figures  
Figure 3-1. Conceptual Platform PCI Configuration Diagram........................................... 66  
Figure 3-2. DMI Type 0 Configuration Address Translation ............................................. 68  
Figure 3-3. DMI Type 1 Configuration Address Translation ............................................. 69  
Figure 3-4. Memory Map to PCI Express Device Configuration Space ........................... 70  
Figure 3-5. GMCH Configuration Cycle Flow Chart ......................................................... 71  
Figure 5-1. Link Declaration Topology............................................................................139  
Figure 8-1. System Address Ranges..............................................................................225  
Figure 8-2. DOS Legacy Address Range .......................................................................226  
Figure 8-3. Main Memory Address Range......................................................................230  
Figure 8-4. PCI Express Memory Address Range .........................................................233  
Figure 10-1. System Memory Styles...............................................................................248  
Figure 10-2. GMCH Graphics Controller Block Diagram................................................258  
Figure 10-3. LVDS Swing Voltage ..................................................................................279  
Figure 10-4. LVDS Clock and Data Relationship ...........................................................279  
Figure 10-5. Panel Power Sequencing...........................................................................281  
Figure 13-1. Intel 915GM, 915GME, 915PM, 910GML, 910GMLE Express  
Chipset GMCH Ballout Diagram (Top Left) .............................................................311  
Figure 13-2. Intel 915GM, 915GME, 915PM, 910GML, 910GMLE Express  
Chipset GMCH Ballout Diagram (Top Right)...........................................................312  
Figure 13-3. Intel 915GMS GMCH Ballout Diagram.......................................................329  
Figure 13-4. Intel 915GMS GMCH Ballout Diagram.......................................................329  
Figure 13-5. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express  
Chipset Package Micro-FCBGA..............................................................................329  
Figure 13-6. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express  
Chipset Package Ball Grid Array.............................................................................329  
Figure 13-7. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express  
Chipset Package Top View......................................................................................329  
Figure 13-8. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express  
Chipset Package Side View.....................................................................................329  
Figure 13-9. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express  
Chipset Package Details B & K ...............................................................................329  
Figure 13-10. Recommended Via Stack Up for Platform (Standard Chipset Package).329  
Figure 13-11. Mobile Intel 915GMS Express Chipset Package Micro-FCBGA..............329  
Figure 13-12. Mobile Intel 915GMS Express Chipset Package Ball Grid Array.............329  
Figure 13-13. Mobile Intel 915GMS Express Chipset Package Top View .....................329  
Figure 13-14. Mobile Intel 915GMS Express Chipset Package Side View ....................329  
Figure 13-15. Mobile Intel 915GMS Express Chipset Package Details B & C...............329  
Figure 13-16. Recommended Via Stack Up for Platform  
(Small Factor Chipset Package)..............................................................................329  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
13  
Introduction  
R
Tables  
Table 2-1. Single Channel Mode Signal Mapping for DDR/DDR2 ...................................44  
Table 2-2. Dual Channel Mode Signal Mapping for DDR/DDR2......................................45  
Table 2-3. SDVO and PCI Express Based Graphics Port Signal Mapping...................... 46  
Table 3-1. Register Terminology....................................................................................... 65  
Table 3-2. Device Number Assignment for Internal GMCH Devices................................ 67  
Table 5-1. Device #0 MCHBAR Clock/Thermal Sensor Controls...................................123  
Table 5-2. DMI Register Summary Table .......................................................................130  
Table 6-1. PCI Express Graphics Port Configuration Register Summary......................145  
Table 7-1. Device #2: Function 0 Configuration Register Summary Table ....................191  
Table 7-2. Device #2 Function 1 Configuration Register Summary Table .....................212  
Table 8-1. Expansion Area Memory Segments..............................................................228  
Table 8-2. Extended System BIOS Area Memory Segments.........................................228  
Table 8-3. System BIOS Area Memory Segments .........................................................229  
Table 8-4. Pre-allocated Memory Example for 64-MB Dram, 1-MB VGA,  
and 1-MB TSEG.......................................................................................................231  
Table 8-5. SMM Space Definition Summary...................................................................237  
Table 8-6. SMM Space Table .........................................................................................238  
Table 8-7. SMM Control Table........................................................................................238  
Table 10-1. System Memory Organization Support for DDR .........................................246  
Table 10-2. System Memory Organization Support for DDR2 .......................................246  
Table 10-3. DDR / DDR2 Supported Configurations......................................................246  
Table 10-4. Sample System Memory Organization with Symmetric Channels..............247  
Table 10-5. Sample System Memory Organization with Asymmetric Channels ............247  
Table 10-6. DRAM Device Configurations –Dual Channel Asymmetric Mode /  
Single Channel Mode ..............................................................................................249  
Table 10-7. DRAM Device Configurations – Dual Channel Symmetric Mode................251  
Table 10-8. Single Channel Mode Signal Mapping for DDR/DDR2 ...............................253  
Table 10-9. Dual Channel Mode Signal Mapping for DDR/DDR2..................................253  
Table 10-10. Display Port Characteristics ......................................................................274  
Table 10-11. Analog Port Characteristics.......................................................................275  
Table 10-12. LVDS Panel support..................................................................................278  
Table 10-13. LVDS Wide Panel support.........................................................................278  
Table 10-14. Panel Power Sequencing Timing Parameters...........................................282  
Table 10-15: Recommended Programming for Available Trip Points ............................290  
Table 10-16. Intel 915GM Graphics Clock Frequency Support......................................292  
Table 10-17. Intel 915GMS Graphics Clock Frequency Support ...................................292  
Table 10-18. Intel 910GML Graphics Clock Frequency Support....................................292  
Table 11-1. Absolute Maximum Ratings.........................................................................294  
Table 11-2. Non-Memory Power Characteristics............................................................296  
Table 11-3. DDR (333 MTs) Power Characteristics .......................................................297  
Table 11-4. DDR 2 (400 MTs/533 MTs) Power Characteristics.....................................298  
Table 11-5. Signal Groups..............................................................................................300  
Table 11-6. DC Characteristics.......................................................................................303  
Table 11-7. CRT DAC DC Characteristics: Functional Operating Range  
(VCCADAC = 2.5 V 5%) ........................................................................................307  
Table 11-8.  
TV DAC DC Characteristics: Functional Operating Range  
(VCCATVDAC[A,B,C] = 3.3 V 5%)........................................................................307  
Table 12-1. Mobile Intel 915 Express Chipset Family Strapping Signals  
and Configuration ....................................................................................................309  
Table 13-1. PLL Signal Group ........................................................................................313  
14  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
Table 13-2.Host Address Signal Group..........................................................................313  
Table 13-3. Host Control Signal Group...........................................................................314  
Table 13-4. Host Data Signal Group...............................................................................314  
Table 13-5. DDR / DDR2 SDRAM Common Signal Group Ball List ..............................315  
Table 13-6. DDR / DDR2 SDRAM Channel a Command Signal Group Ball List...........315  
Table 13-7. DDR / DDR2 SDRAM Channel A Data Signal Group Ball List....................316  
Table 13-8.DDR / DDR2 SDRAM Channel B Signal Group Ball List .............................317  
Table 13-9. DDR / DDR2 SDRAM Channel B Signal Group Ball List ............................317  
Table 13-10. Analog CRT Signal Group.........................................................................318  
Table 13-11. Analog TV Signal Group............................................................................318  
Table 13-12. LVDS Display Interface Signal Group .......................................................318  
Table 13-13. LVDS Power Sequencing and Backlight Control Signal Group ................318  
Table 13-14. DDC / GMBUS Signal Group.....................................................................318  
Table 13-15. DMI Serial Interface Signal Group............................................................318  
Table 13-16. PCI Express Based Graphics / Serial Digital Video Out Receive  
Signal Group............................................................................................................319  
Table 13-17. PCI Express Based Graphics / Serial Digital Video Out Transmit  
Signal Group............................................................................................................319  
Table 13-18. Thermal and Power Sequencing Signal Group.........................................319  
Table 13-19. No Connect Signal Group..........................................................................320  
Table 13-20. Configuration & Reserved Signal Group ...................................................320  
Table 13-21. Voltage Reference and Compensation Signal Groups .............................320  
Table 13-22. Power Signal Group ..................................................................................321  
Table 13-23. System Memory Analog Power Signal Group...........................................321  
Table 13-24. System Memory Power Signal Group .......................................................322  
Table 13-25. VTT Power Signal Group...........................................................................322  
Table 13-26. GMCH Core Voltage Power Signal Group ................................................323  
Table 13-27. GMCH Ground Signal Group.....................................................................324  
Table 13-28. VCC Core Non-Critical to Function Signal Group .....................................327  
Table 13-29. VTT Core Non-Critical to Function Signal Group......................................327  
Table 13-30. VCCSM Non-Critical to Function Signal Group.........................................328  
Table 13-31. VSS Non-Critical to Function Signal Group...............................................328  
Table 13-32. GMCH Signal Name Ordering Ball List .....................................................329  
Table 13-33. GMCH Numerical Order Ball List...............................................................329  
Table 13-34. PLL Signal Group ......................................................................................329  
Table 13-35.Host Address Signal Group........................................................................329  
Table 13-36. Host Control Signal Group.........................................................................329  
Table 13-37. Host Data Signal Group.............................................................................329  
Table 13-38. DDR2 SDRAM Common Signal Group Ball List .......................................329  
Table 13-39. DDR2 SDRAM Channel a Command Signal Group Ball List...................329  
Table 13-40. DDR2 SDRAM Channel A Data Signal Group Ball List ............................329  
Table 13-41. DDR2 SDRAM Channel B Signal Group Ball List .....................................329  
Table 13-42. Analog CRT Signal Group.........................................................................329  
Table 13-43. Analog TV Signal Group............................................................................329  
Table 13-44. LVDS Display Interface Signal Group .......................................................329  
Table 13-45. LVDS Power Sequencing and Backlight Control Signal Group ................329  
Table 13-46. LVDS Power Sequencing and Backlight Control Signal Group ................329  
Table 13-47. DDC / GMBUS Signal Group.....................................................................329  
Table 13-48. DMI Serial Interface Signal Group.............................................................329  
Table 13-49. Serial Digital Video Out Receive Signal Group .........................................329  
Table 13-50. Serial Digital Video Out Transmit Signal Group ........................................329  
Table 13-51. Thermal and Power Sequencing Signal Group.........................................329  
Table 13-52. No Connect Signal Group..........................................................................329  
Table 13-53. Configuration & Reserved Signal Group ...................................................329  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
15  
Introduction  
R
Table 13-54. Voltage Reference and Compensation Signal Groups .............................329  
Table 13-55. Power Signal Group ..................................................................................329  
Table 13-56. System Memory Analog Power Signal Group...........................................329  
Table 13-57. System Memory Power Signal Group .......................................................329  
Table 13-58. VTT Power Signal Group...........................................................................329  
Table 13-59. GMCH Core Voltage Power Signal Group ................................................329  
Table 13-60. GMCH Ground Signal Group.....................................................................329  
16  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
Revision History  
Document No.  
Version.  
Description  
Date  
305264  
305264  
002  
001  
Added Intel® 915GME and 910GMLE chipsets.  
Initial Release  
April 2007  
January 2005  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
17  
Introduction  
R
Mobile Intel 915PM Express Chipset  
Product Features  
The Intel® Pentium® M Processor with 2-MB L2 Cache processor support  
ƒ
533-MHz processor system bus support  
Intel® Pentium® M Processor Low Voltage support  
ƒ
ƒ
Intel® Pentium® M Processor Ultra Low Voltage support  
400-MHz processor system bus support  
Source Synchronous Double-pumped (2×) Address  
Source Synchronous Quad-pumped (4×) Data  
Supports front side bus (FSB) interrupt delivery  
Host bus dynamic bus inversion HDVIN (DBI) support  
32-bit host bus addressing support  
12-deep in-order queue support  
AGTL+ bus driver technology with integrated termination resistors supported  
DPWR# signal to processor for FSB power management  
BSEL pins for BCLK frequency select  
Enhanced Intel SpeedStep® technology  
Intel® Celeron® M 90 nm processor support  
Intel® Celeron® M 90 nm processor ULV support  
400-MHz processor system bus support  
ƒ
ƒ
Source Synchronous Double-pumped (2×) Address  
Source Synchronous Quad-pumped (4×) Data  
Supports front side bus (FSB) interrupt delivery  
Host bus dynamic bus inversion HDVIN (DBI) support  
32-bit host bus addressing support  
12-deep in-order queue support  
AGTL+ bus driver technology with integrated termination resistors supported  
DPWR# signal to processor for FSB power management  
BSEL pins for BCLK frequency select  
System Memory Support  
ƒ
DDR or DDR2 SDRAM channels (64-bits wide) are supported.  
Supports SO-DIMM’s of the same type (i.e. all DDR or all DDR2), not mixed.  
256-Mb, 512-Mb and 1-Gb technology supported using x8 or x16 devices.  
Supports High Density memory Package for DDR or DDR2 type devices  
Minimum memory supported is 128 MB  
Maximum memory supported is 2 GB.  
Supports configurations defined in the JEDEC* DDR / DDR2 SO-DIMM specification only  
DDR feature support:  
DDR – 333 MHz memory device  
DDR2 feature support:  
DDR2 - 400 MHz memory devices  
DDR2 - 533 MHz memory devices  
Supports On Die Termination (ODT) for DDR2  
18  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
One memory channel organizations is supported for DDR  
Single Channel Mode  
Two memory channel organizations are supported for DDR2:  
Dual Channel Symmetric Mode  
Dual Channel Asymmetric Mode  
Single channel configuration supports: One, two, three or four ranks supported  
Dual channel configuration: One or two ranks supported on each channel  
Supports a max of two, double-sided unbuffered SO-DIMM’s (4 rows populated)  
Burst length of 4 or 8 (configured by BIOS at boot time)  
Supports opportunistic refresh scheme  
Supports “Fast Chip Select” mode  
Supports Partial Writes to memory using Data Mask signals (DM)  
Two memory throttling schemes supported to selectively throttle reads and/or writes per rank.  
Throttling can be triggered by on-die thermal sensor  
Throttling can be triggered by preset read/write bandwidth limits  
PCI Express* Based Graphics Interface  
ƒ
PCI Express Architecture support for external graphics devices  
PCI Express Based Graphics interface only supported at core voltage at 1.05V  
One 16-lane PCI Express port (x16 PCI Express port) intended for Graphics Attach  
Fully compliant to the PCI Express Base Specification revision 1.0a  
Base PCI Express frequency support of 2.5 GB/s only  
Raw bit-rate on the data pins of 2.5 Gb/s, resulting in a raw bandwidth per pair of 250 MB/s given  
the 8b/10b encoding used to transmit data across this interface  
Automatic discovery, negotiation, and training of link out of reset  
Supports traditional PCI style traffic (asynchronous snooped, PCI ordering)  
Supports traditional AGP style traffic (asynchronous non-snooped, PCI-X Relaxed ordering)  
Hierarchical PCI-compliant configuration mechanism for downstream devices (i.e., normal PCI 2.3  
Configuration space as a PCI-to-PCI bridge  
PCI Express Graphics Extended Configuration Space.  
The first 256 bytes of configuration space alias directly to the PCI Compatibility configuration  
space.  
The remaining portion of the fixed 4 kB block of memory-mapped space above that (starting  
at 100h) is known as extended configuration space.  
PCI Express Enhanced Addressing Mechanism.  
Accessing the device configuration space in a flat memory mapped fashion.  
Uses a 100Mhz differential reference clock  
PCI Express power management support  
Supports both Native and Legacy Hot Plug and PME functions.  
PCI Express x1 Port Support  
ƒ
One general PCI Express x1 port supported  
PCI Express Based Graphics interface and SDVO are not functional in this mode  
*
Other names and brands may be claimed as the property of others  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
19  
Introduction  
R
Direct Media Interface (DMI)  
ƒ
Chip-to-chip interface between GMCH and ICH6-M  
Configurable as x2 or x4 DMI lanes.  
2 GB/s point-to-point DMI to ICH6 (1 GB/s each direction)  
100 MHz reference clock (shared with PCI Express Graphics Attach).  
32-bit downstream addressing  
APIC and MSI interrupt messaging support.  
Message Signaled Interrupt (MSI) messages  
SMI, SCI and SERR error indication  
System Interrupts  
Supports both 8259 and Pentium M processor FSB interrupt delivery mechanisms.  
Power Management  
ƒ
ƒ
SMRAM space remapping to A0000h (128 kB)  
Supports extended SMRAM space above 256 MB, additional 1 MB TSEG from top of memory,  
cacheable (cache ability controlled by CPU)  
Supports Suspend to System Memory (S3-Hot and S3-Cold supported), Suspend to Disk (S4) and  
Soft Off (S5)  
ACPI 1.0b, 2.0 support  
Package  
ƒ
Micro – FCBGA  
Package size: 37.5mm x 40mm  
Die size: 395 x 395 mils  
Ball pitch: 42 mil  
Ball count: 1257  
20  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
Mobile Intel 915GM Express Chipset  
Features  
Note: All features for the Mobile Intel 915PM Express Chipset are supported on the Mobile Intel  
915GM. Only additional integrated graphics features will be shown here.  
Integrated Display Interface support  
ƒ
Analog CRT DAC interface support  
Supports max DAC frequency up to 400 MHz  
24-bit RAMDAC support  
DDC2B compliant  
Up to 2048 x 1536 mode support  
Digital LVDS interface support  
Compliant with ANSI/TIA/EIA -644-2001 spec  
Integrated dual channel LVDS interface supported on Display Pipe B only  
Supports 25 to 112 MHz single/dual channel LVDS interface:  
Single channel LVDS interface support: 1 x 18 bpp  
Dual channels LVDS interface support: 2 x 18 bpp  
TFT panel type supported  
Maximum Panel size supported up to UXGA  
Maximum Wide panel size supported up to WUXGA  
Ambient Light Sense support for automatic backlight brightness adjustments  
Intel Display Power Savings Technology 2.0 support  
Supports Single pipe simultaneous display with the CRT DAC and the LVDS ports under the  
following conditions:  
Timings must match for both display  
Panel Fitting. Panning, and Center mode supported  
Spatial Dithering support to emulate up to 16 million colors for 18bpp TFT panels.  
Spread spectrum clocking (SSC) supported  
Supports down and center SSC via an SSC clock from an external SSC clock chip.  
Supports down spread of – 2.5% or center spread of ± -1.25% in reference 30-50 kHz  
modulation rate  
SSC must be disabled for LVDS port and CRT DAC single pipe simultaneous display  
mode.  
Panel Power Sequencing support  
Power down state can be either zero volt or high impedance  
Integrated PWM interface for LCD Backlight Inverter Control  
Analog TV-Out Interface support  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
21  
Introduction  
R
Integrated TV-out device supported on Display pipe A and pipe B.  
Three Integrated 10 bit DAC  
NTSC/PAL encoder standard formats supported  
Up to 1024x768 resolution supported for NTSC/PAL  
HDTV graphics resolutions support  
480p/720p/1080i/1080p modes supported  
Multiplexed Output interface:  
Composite Video  
S-Video  
Component Video (YprPb)  
Combination: (Composite & S-Video)  
Macrovision support  
Overscan Scaling Support  
Serial Digital Video Output (SDVO) support  
Two SDVO ports are supported  
Supports a variety display devices such as DVI, TV Out, LVDS, etc.  
Compliant with DVO specification 1.0 when combined with a DVI compliant external device  
and connector.  
Data sourced from either display Pipe A or Pipe B  
Supports single pipe simultaneous display with the DAC or LVDS ports  
Timings must match for both display  
Single pipe not supported with SSC on LVDS port  
Each SDVO Port support display pixel rates up to 200 MP/s (600MB/s)  
Fast point-to-point GMBUS is provided for SDVO device control  
Supports Hot Plug and Display  
Support for HDCP SDVO devices  
Internal Graphics Features  
ƒ
DVMT 3.0 support  
Max memory allocation support based on total system memory  
1-MB or 8 MB of pre-allocated memory supported  
Intel® Dual-Frequency Graphics Technology  
Intel® Smart 2D Display Technology  
Asynchronous Display core and Render core clocks supported  
2D Display core frequency required to be equal or greater than 3D Render Core Frequency.  
2D Display core frequency at 133 or 190/200 MHz @ Vcc=1.05 V depending on the  
host/memory configurations  
3D Render core frequency at 133, 160/166 or 190/200 MHz @ Vcc=1.05 V depending on  
the host/memory configurations  
2D Display core frequency at 133, 200 or 333MHz @ Vcc=1.5 V depending on the  
host/memory configurations  
3D Render core frequency at 133, 160/166, 200 or 333 MHz @ Vcc=1.5 V depending on the  
host/memory configurations  
Dual Independent display pipes.  
32 bit Hardware cursor supported  
22  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
2D graphics engine  
Optimized 256-bit BLT engine  
Alpha Stretch Blitter  
Anti-aliased Lines  
32-bit Alpha Blended Cursor  
Color Space Conversion  
Programmable 3-Color Transparent Cursor  
8-, 16- and 32-bit per pixel color  
8 ROP support  
High Quality 3D Setup and Render Engine  
Setup matching processor geometry delivery rates  
Triangle lists, strips and fans  
Indexed vertex and flexible vertex formats  
Vertex cache  
Pixel accurate fast scissoring and clipping operation  
Backface culling  
Supports D3D and OGL pixelization rules  
Sprite points  
Shadow maps  
Double-sided stencil  
Zone Rendering 2.0 support  
High Quality Texture Engine  
533 MegaTexel/Sec Performance – 266 Mpixel/Sec fill rate up to 2 bilinear  
textures  
Hardware Pixel Shader 2.0  
Per-pixel perspective corrected texture mapping  
2/10/10/10 texture format  
Bi-cubic filtering  
Single-pass quad texture compositing  
Enhanced texture blending functions  
12 levels of detail mip map sizes from 1x1 to 2Kx2K  
All texture formats including 32-bit RGBA and 8-bit palettes  
Alpha and luminance maps  
Texture color-keying/chromakeying  
Bilinear, trilinear and anisotropic mip-mapped filtering  
Cubic environment reflection mapping  
Embossed and DOT3 bump-mapping  
DXTn and FXT1 texture decompression  
Non-power of 2 texture  
Render to texture  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
23  
Introduction  
R
3D Graphics Rendering Enchantments  
1.3 Dual Texture GigaPixel/Sec Fill Rate  
Flat and Gouraud Shading  
Color Alpha Blending for Transparency  
Vertex and Programmable Pixel Fog and Atmospheric Effects  
Color Specular Lighting  
Z Bias Support  
Dithering  
Anti-Aliased Lines  
16- and 24-bit Z Buffering  
8-bit Stencil Buffering  
Double and Triple Render Buffer Support  
16- and 32-bit Color  
Destination Alpha  
Maximum 3D Resolution Supported: 1600x1200x32  
Fast Clear Support  
Video DVD / PC-VCR support  
HW Motion Compensation for MPEG2  
Dynamic Bob and Weave Support for Video Streams  
Resolution up to 1920x1080 with 2 vertical taps  
Source Software DVD At 30 fps, Full Screen  
Supports 720x480 DVD Quality Encoding at low CPU Utilization for PC-VCR or home  
movie recording and editing  
Video Overlay  
Process Amplifier Color Control  
Single High Quality Scalable Overlay  
Multiple Overlay Functionality provided via Stretch Blitter (PIP, Video Conferencing, etc.)  
5-tap Horizontal, 2-tap Vertical Filtered Scaling  
Independent Gamma Correction  
Independent Brightness/Contrast/Saturation  
Independent Tint/Hue Support  
Destination Color-keying  
Source Chroma-keying  
Maximum Source Resolution: 720x480x32  
Video Mixer Render (VMR)  
24  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
Mobile Intel 915GMS Express Chipset  
Features  
Note: All features for Mobile Intel 915GM Express Chipset is supported on Mobile Intel 915GMS.  
The differences are noted in this section.  
Intel® Pentium® M Processor Low Voltage support  
ƒ
Intel® Pentium® M Processor Ultra Low Voltage support  
ƒ
Intel® Celeron® M 90 nm processor ULV support  
400 MHz processor system bus support only  
System Memory Support  
DDR2 memory channels (64-bits wide) are supported.  
No DDR support  
ƒ
ƒ
DDR2 feature support:  
DDR2 – 400 memory devices  
One memory channel organizations is supported:  
Single Channel mode  
PCI Express* Based Graphics Interface not supported  
Integrated Display Interface support  
ƒ
ƒ
Digital LVDS interface support  
Integrated single channel LVDS interface supported on Display Pipe B only  
Supports 25 to 112 MHz single channel LVDS interface:  
Single channel LVDS interface support: 1 x 18 bpp  
Maximum Panel size supported up to SXGA+ (single channel only)  
Wide panel size supported up to WXGA (single channel only)  
Serial Digital Video Output (SDVO) support  
One SDVO port is supported  
SDVO B  
Internal Graphics Features  
ƒ
ƒ
Graphics core voltage support’s 1.05 V only  
2D Display core frequency at 133 or 200 MHz @ Vcc = 1.05 V  
3D Render core frequency at 133 or 160 MHz @ Vcc = 1.05 V  
Package  
Micro – FCBGA  
Package size: 27 x 27 mm  
Die size: 395 x 395 mils  
Ball pitch: See the mechanical drawing  
Ball count: 840  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
25  
Introduction  
R
Mobile Intel 910GML Express Chipset  
Product Features  
Note: All features for the Mobile Intel 915GM Chipset are supported on the Intel 910GML unless  
otherwise noted in this section.  
Intel® Celeron® M 90 nm processor support  
ƒ
Intel® Celeron® M 90 nm processor ULV support  
ƒ
400 MHz processor system bus support only  
System Memory Support  
DDR or DDR2 SDRAM channels (64-bits wide) are supported.  
DDR - 333 MHz memory device  
ƒ
Single Channel Memory support for DDR 333  
DDR2 - 400 MHz memory devices  
Dual Channel Memory configuration support for DDR2 400  
PCI Express* Based Graphics Interface not supported  
Integrated Display Interface support  
ƒ
ƒ
Digital LVDS interface support  
Max Panel size supported is SXGA+  
Analog TV-Out Interface support  
HDTV graphics mode is not supported.  
Internal Graphics Features  
ƒ
2D Display core frequency support from 133 MHz & 190/200 MHz @ Vcc = 1.05 / 1.5 V  
depending on Host/Memory configuration  
3D Render core frequency support from 133 MHz & 160/166 MHz @ Vcc = 1.05 / 1.5 V  
depending on Host/Memory configuration  
26  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
Mobile Intel 915GME Express Chipset  
Features  
Note: All features for the Mobile Intel 915GM Express Chipset are supported on the Intel 915GME  
unless otherwise noted in this section.  
Macrovision copy protection technology has been disabled on the Intel 915GME.  
The TV-out port has been disabled on the Intel 915GME. Please ensure platform design guide  
recommendations for TV-out disabling have been followed.  
ƒ
ƒ
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
27  
Introduction  
R
Mobile Intel 910GMLE Express Chipset  
Features  
Note: All features for the Mobile Intel 910GML Express Chipset are supported on the Intel  
910GMLE unless otherwise noted in this section.  
Macrovision copy protection technology has been disabled on the Intel 910GMLE.  
The TV-out port has been disabled on the Intel 910GMLE. Please ensure platform design guide  
recommendations for TV-out disabling have been followed.  
ƒ
ƒ
§
28  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
1 Introduction  
This document is the datasheet for the Mobile Intel® 915GM/PM/GMS/GME and 910GML/GMLE  
Express chipset families.  
1.1  
Overview  
The Mobile Intel 915GM/PM/GMS/GME & 910GML/GMLE Express chipset family is a graphics  
memory controller hub (GMCH) designed for use with the Intel Pentium M Processor with 2 MB L2  
Cache and Intel® Celeron® M processor 90 nm. The family includes the following chipsets:  
Mobile Intel 915GM Express chipset supports Intel Graphics Media Accelerator 900 and PCI  
Express* based Graphics  
Mobile Intel 915PM Express chipset supports PCI Express based Graphics only  
Mobile Intel 915GMS Express chipset supports Intel Graphics Media Accelerator 900 in small  
form factor package  
Mobile Intel 910GML Express chipset supports Intel Graphics Media Accelerator 900  
Mobile Intel 915GME Express chipset supports Intel Graphics Media Accelerator 900 and  
PCIExpress* based graphics with TV-out and Macrovision copy protection technology disabled.  
Mobile Intel 910GMLE Express chipset supports Intel Graphics Media Accelerator 900 with TV-  
out and Macrovision copy protection technology disabled.  
Note: Intel 915GMS may have notes in GRAY-20% shade throughout this document. This is to  
point out differences which may be specific only for this chipset.  
The GMCH provides high-performance, integrated graphics and manages the flow of information. The  
Intel 915GM chipset adds enhancements for the following areas:  
System Memory (DDR / DDR2)  
PCI Express Based Graphics (discrete graphics devices)  
Intel Graphics enhancements:  
DVMT 3.0 support  
Zone Rendering 2.0 support  
Quad pixel pipe rendering engine  
Pixel Shader 2.0 support  
4x Faster Setup Engine  
Serial Digital Video Output (SDVO)  
TV Out Support  
HDTV resolution support  
LVDS support  
Wide panel support  
Ambient Light Sense support for automatic backlight brightness adjustments  
Intel Display Power Savings Technology 2.0 support  
Integrated PWM interface for LCD Backlight Inverter Control  
Direct Media Interface (DMI)  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
29  
Introduction  
R
1.1.1  
System Memory Interface  
The GMCH integrates a system memory DDR/DDR2 controller with two, 64-bit wide interfaces. Only  
Double Data Rate (DDR / DDR2) memory is supported; consequently, the buffers support DDR  
SSTL_2 and DDR2 SSTL_18 signaling interfaces. The memory controller interface is fully  
configurable through a set of control registers.  
Three system memory modes of operation supported are:  
Single Channel mode  
Dual Channel Asymmetric mode  
Dual Channel Symmetric mode  
1.1.2  
PCI Express* Based Graphics and Intel SDVO Interface  
The GMCH multiplexes a PCI Express Graphics interface with two Intel SDVO ports. The SDVO  
ports can each support a single-channel SDVO device. If both ports are active in single-channel mode,  
they can have different display timing and data. Alternatively the SDVO ports can combine to support  
dual channel devices, supporting higher resolutions and refresh rates.  
PCI Express Based Graphics Interface  
The GMCH contains one 16-lane (x16) PCI Express port intended for an external PCI Express Based  
graphics card. The PCI Express port is fully compliant to the PCI Express Base Specification revision  
1.0a. The x16 port operates at a data rate of 2.5 GB/s while employing 8b/10b encoding. This allows a  
maximum theoretical bandwidth of 40 GB/s each direction. Intel 915GM/ PM may also be configured  
as PCI Express x1 port.  
1.1.3  
Display Interface  
Note: Analog TV interface not supported on the Intel 915GME and Intel 910GMLE chipsets.  
The GMCH is capable of driving a CRT, LCD panel, Analog TV and/or two SDVO devices (SDVO  
ports are muxed with PCI Express).  
The display is the defining portion of a graphics controller. The display converts a set of source images  
or surfaces, combines them and sends them out at the proper timing to an output interface connected to  
a display device. Along the way, the data can be converted from one format to another, stretched or  
shrunk, and color corrected or gamma converted.  
1.1.4  
SDVO Interface  
The GMCH supports two SDVO ports multiplexed with PCI Express Graphics interface. The SDVO  
ports are capable of driving a variety of external TV-Out, TMDS, and LVDS transmitter devices.  
SDVO devices are capable of driving a standard progressive scan analog monitor with resolutions up to  
2048x1536 at 75 Hz. This interface may be configured for as PCI Express x1 port also.  
1.1.5  
DMI  
DMI is a point -to- point connection from the GMCH to the ICH6-M.  
30  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
1.2  
Terminology  
Term  
Description  
Advanced Gunning Transceiver Logic + (AGTL+) bus  
AGTL+  
AGP  
Accelerated Graphics Port refers to the AGP/PCI interface in previous generation chipset. It have  
been replaced by PCI Express * based graphics interface  
ALS  
Ambient Light Sensor  
GMCH  
Refers to the Graphics Memory Controller Hub chipset component for Intel 910GML and Intel  
915GM Chipset.  
MCH  
Refers to the Memory Controller Hub chipset component for Intel 915PM MCH Chipset. Any  
references to GMCH will also apply to MCH unless otherwise noted.  
bpp  
Bit per pixel  
Beacon  
Bit Clock  
30 kHz–500 MHz signal used by PCI Express to exit the L2 power state.  
The nominal data rate that information is passed on an Interface. Note that in the PCI Express  
interface this clock is embedded within the data and is not a separate signal.  
BLI  
Backlight Inverter  
Bridge  
A Device which virtually or actually connects a PCI/PCI Express segment or PCI Express Port  
with an internal Component interconnect or another PCI/PCI-X segment or PCI Express Port. A  
Bridge must include a software configuration interface as described in this document.  
Core  
The internal base logic in the Mobile Intel® 915 Express Chipset Family  
CPU  
Central Processing Unit  
CRT  
Cathode Ray Tube  
DBL  
Display Brightness Link  
DDC  
Display Data Channel (VESA standard)  
Double Data Rate SDRAM memory technology  
Second generation Double Data Rate SDRAM memory technology  
Dynamic Bus inversion  
DDR  
DDR2  
DINV (DBI)  
DMI  
Direct Media Interface.  
The chip-to-chip inter-connect between the Mobile Intel 915 Express Chipset Family GMCH and  
the ICH6-M, is an Intel Proprietary interface.  
DPMS  
DPST  
DVI*  
Display Power Management Signaling (standard created by VESA)  
Intel® Display Power Savings Technology  
Digital Visual Interface is the interface specified by the DDWG (Digital Display Working Group)  
DVI Spec. Rev. 1.0  
DVMT  
EDID  
EIST  
Dynamic Video Memory Technology  
Extended Display Identification Data  
Enhanced Intel SpeedStep technology  
Front Side Bus, synonymous with Host or CPU bus.  
FSB  
A Full GMCH Reset is defined in this document when RSTIN# is asserted.  
Full Reset  
GTL+  
Gunning Transceiver Logic + (GTL+) bus  
This term is used synonymously with processor  
High Definition Television  
Host  
HDTV  
I2C  
Inter-IC (a two wire serial bus created by Philips)  
Intel ICH6-M  
The Intel® I/O Controller Hub component that contains the primary PCI interface, LPC interface,  
USB2, ATA-100, and other I/O functions. It communicates with the GMCH over a proprietary  
interconnect called DMI.  
IGD  
Integrated Graphics Device  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
31  
Introduction  
R
Term  
INTx  
Description  
An interrupt request signal where X stands for interrupts A,B,C and D  
IPI  
Inter Processor Interrupt  
Liquid Crystal Display.  
LCD  
LFP  
Local Flat Panel  
Low Voltage Differential Signaling: -  
LVDS  
A high speed, low power data transmission standard used for display connections to LCD panels.  
Message Signaled Interrupt.  
MSI  
MSI allow a device to request interrupt service via a standard memory write transaction instead of  
through a hardware signal. A transaction initiated outside the host, conveying interrupt information  
to the receiving agent through the same path that normally carries read and write commands.  
Non-Critical to Function:  
NCTF  
As a function of Intel's continuous improvement goals, we have identified package level  
modifications that add to the overall solder joint strength and reliability of our component. Through  
our research and development, we have concluded that adding non-critical to function (NCTF)  
solder balls to our packages can improve the overall package-to-board solder joint strength and  
reliability.  
Ball locations/signal ID's followed with the suffix of “NCTF” have been designed into the package  
footprint to enhance the package to board solder joint strength/reliability of this product by  
absorbing some of the stress introduced by the Characteristic Thermal Expansion (CTE)  
mismatch of the Die to package interface.  
It is expected that in some cases, where board stresses are excessive, these balls may crack  
partially or completely, however, cracks in the NCTF balls will have no impact to our product  
performance or reliability. Intel has added these balls primarily to serve as stress absorbers.  
National Television Standards Committee  
NTSC  
Phase Alternate Line  
PAL  
Standard Definition Television  
SDTV  
PCI Express* Interface is based on the PCI Express Specification 1.0a  
PCI Express*  
PCI Express Based Graphics. External Graphics using PCI Express* Architecture.  
PCI Express  
Based  
Graphics  
A high-speed serial interface whose configuration is software compatible with the existing PCI  
specifications. The specific PCI Express implementation intended for connecting the GMCH to an  
external graphics controller is an x16 link and replaces AGP.  
The physical PCI bus that is driven directly by the ICH component. Communication between  
Primary PCI and the GMCH occurs over DMI. Note that the Primary PCI bus is not PCI Bus 0  
from a configuration standpoint.  
Primary PCI  
FSB  
Processor System Bus.  
Connection between Mobile Intel® 915 Express Chipset Family GMCH and the CPU. Also known  
as the Host interface  
PWM  
Rank  
Pulse Width Modulation  
A unit of DRAM corresponding 4 to 8 devices in parallel, ignoring ECC. These devices are  
usually, but not always, mounted on a single side of a SO-DIMM.  
System Control Interrupt. Used in ACPI protocol.  
SCI  
Serial Digital Video Out (SDVO).  
SDVO  
Digital display channel that serially transmits digital display data to an external SDVO device. The  
SDVO device accepts this serialized format and then translates the data into the appropriate  
display format (i.e., TMDS, LVDS, TV-Out). This interface is not electrically compatible with the  
previous digital display channel - DVO. For Mobile Intel® 915 Express Chipset Family, it will be  
multiplexed on a portion of the x16 graphics PCI Express interface.  
32  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Introduction  
R
Term  
Description  
Third party codec that utilizes SDVO as an input. May have a variety of output formats, including  
DVI, LVDS, HDMI, TV-out, etc.  
SDVO Device  
An indication that an unrecoverable system error has occurred on an I/O bus.  
SERR  
SMI  
System Management Interrupt.  
Used to indicate any of several system conditions such as thermal sensor events, throttling  
activated, access to System Management RAM, chassis open, or other system state related  
activity.  
SSC  
Spread Spectrum Clocking  
Transition Minimized Differential Signaling. Signaling interface from Silicon Image that is used in  
DVI and HDMI.  
TMDS  
Top Of Low Memory. The highest address below 4GB for which a CPU initiated memory read or  
write transaction will create a corresponding cycle to DRAM on the memory interface.  
Unified Memory Architecture. Describes Mobile Intel® 915 Express Chipset Family GMCH using  
TOLM  
UMA  
VCO  
system memory for its graphics frame buffers.  
Voltage Controlled Oscillator  
VDL  
×1  
Video Data Link  
Refers to a Link or Port with one Physical Lane.  
Refers to a Link or Port with eight Physical Lanes.  
Refers to a Link with “N” Physical Lanes.  
Video Render Mixer  
x8  
xN  
VRM  
VTT  
Processor Side Bus power supply (VCCP)  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
33  
Introduction  
R
1.3  
Reference Documents  
Document  
Location  
Intel® Pentium® M Processor with 2 MB L2 Cache and 533  
MHz Front Side Bus Datasheet  
http://developer.intel.com  
Intel® Pentium® M Processor on 90 nm Process with 2 MB  
http://developer.intel.com  
L2 Cache Datasheet  
Intel® Celeron® M Processor on 90 nm Process Datasheet  
PCI Express Base Specification 1.0a  
VESA Specifications  
http://developer.intel.com  
http://www.pcisig.org/  
http://www.vesa.org  
PCI Local Bus Specification 2.3  
http://www.pcisig.com  
Advanced Configuration and Power Management(ACPI)  
Specification 1.0b & 2.0  
http://www.teleport.com/~acpi/  
JEDEC Double Data Rate (DDR) SDRAM Specification  
JEDEC Double Data Rate 2 (DDR2) SDRAM Specification  
Intel Developer website link for DDR validation information  
Intel Developer website link for PCI Express* Architecture  
http://www.jedec.com  
http://developer.intel.com/technology/memory/  
http://www.intel.com/technology/pciexpress/devnet/  
mobile.htm  
34  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2 Signal Description  
This section describes the GMCH signals. These signals are arranged in functional groups according to  
their associated interface. The following notations are used to describe the signal type:  
I
Input pin  
O
Output pin  
I/O Bi-directional Input/Output pin  
The signal description also includes the type of buffer used for the particular signal:  
AGTL+  
Open Drain AGTL+ interface signal. Refer to the AGTL+ I/O Specification for complete  
details. (VCCP)  
PCIE  
PCI Express interface signals. These signals are compatible with PCI Express Base  
Specification 1.0a Electrical Signal Specifications. The buffers are not 3.3-V tolerant.  
Differential voltage spec = (|D+ - D-|) * 2 = 1.2 V max. Single-ended maximum = 1.5 V.  
Single-ended minimum = 0 V. Please refer to the PCIE specification.  
CMOS  
CMOS buffers. 1.5 V tolerant  
HVCMOS CMOS buffers. 2.5 V tolerant  
COD  
CMOS Open Drain buffers. 2.5 V tolerant  
DDR  
DDR system memory (2.5 V CMOS buffers)  
DDR2 system memory (1.8 V CMOS buffers)  
2.5 V Stub Series Termination Logic  
DDR2  
SSTL-2  
SSTL-1.8 1.8 V Stub Series Termination Logic  
A
Analog reference or output. May be used as a threshold voltage or for buffer  
compensation  
LVDS  
Ref  
Low Voltage Differential Signal interface  
Voltage reference signal  
Note: System Address and Data Bus signals are logically inverted signals. The actual values are  
inverted of what appears on the system bus. This must be considered and the addresses and data bus  
signals must be inverted inside the GMCH. All processor control signals follow normal convention: A  
0 indicates an active level (low voltage), and a 1 indicates an active level (high voltage).  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
35  
Signal Description  
R
2.1  
Host Interface  
Unless otherwise noted, the voltage level for all signals in this interface is tied to the termination  
voltage of the host bus (VCCP).  
Note: Host interfaces signal group is supported on the Intel 915GM, Intel 915PM, Intel 915GMS,  
Intel 915GME, Intel 910GML and Intel 910GMLE chipsets.  
2.1.1  
Host Interface Signals  
Signal Name  
Type  
Description  
HADS#  
I/O  
Host Address Strobe:  
AGTL+  
The system bus owner asserts HADS# to indicate the first of two cycles of a request  
phase. The GMCH can also assert this signal for snoop cycles and interrupt  
messages.  
HBNR#  
HBPRI#  
I/O  
AGTL+  
Host Block Next Request:  
Used to block the current request bus owner from issuing a new request. This signal  
is used to dynamically control the CPU bus pipeline depth.  
O
Host Bus Priority Request:  
AGTL+  
The GMCH is the only Priority Agent on the system bus. It asserts this signal to  
obtain the ownership of the address bus. This signal has priority over symmetric bus  
requests and will cause the current symmetric owner to stop issuing new  
transactions unless the HLOCK# signal was asserted.  
HBREQ0#  
I/O  
Host Bus Request 0#:  
AGTL+  
The GMCH pulls the processor bus HBREQ0# signal low during HCPURST#. The  
signal is sampled by the processor on the active-to-inactive transition of  
HCPURST#.  
HBREQ0# should be tri-stated after the hold time requirement has been satisfied.  
HCPURST#  
O
Host CPU Reset:  
AGTL+  
The CPURST# pin is an output from the GMCH. The GMCH asserts HCPURST#  
while RSTIN# is asserted and for approximately 1 ms after RSTIN# is deasserted.  
HCPURST# allows the processor to begin execution in a known state.  
HDBSY#  
I/O  
Host Data Bus Busy:  
AGTL+  
Used by the data bus owner to hold the data bus for transfers requiring more than  
one cycle.  
HDEFER#  
HDINV[3:0]#  
O
Host Defer:  
AGTL+  
Signals that the GMCH will terminate the transaction currently being snooped with  
either a deferred response or with a retry response.  
I/O  
Host Dynamic Bus Inversion:  
AGTL+  
Driven along with the HFD[63:0]# signals. Indicates if the associated signals are  
inverted or not. HDINVF[3:0]# are asserted such that the number of data bits driven  
electrically low (low voltage) within the corresponding 16-bit group never exceeds 8.  
HDINV#  
Data Bits  
HDINV[3]#  
HDINV[2]#  
HDINV[1]#  
HDINV[0]#  
HD[63:48]#  
HD[47:32]#  
HD[31:16]#  
HD[15:0]#  
HDRDY#  
I/O  
Host Data Ready:  
AGTL+  
Asserted for each cycle that data is transferred.  
36  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
Signal Name  
Type  
Description  
HA[31:3]#  
I/O  
Host Address Bus:  
AGTL+  
HA[31:3]# connects to the CPU address bus. During processor cycles the HA[31:3]#  
are inputs. The GMCH drives HA[31:3]# during snoop cycles on behalf of DMI.  
HA[31:3]# are transferred at 2x rate.  
2X  
Note that the address is inverted on the CPU bus.  
HADSTB[1:0]#  
I/O  
Host Address Strobe:  
AGTL+  
HA[31:3]# connects to the CPU address bus. During CPU cycles, the source  
synchronous strobes are used to transfer HA[31:3]# and HREQ[4:0]# at the 2x  
transfer rate.  
2X  
Strobe  
Address Bits  
HADSTB[0]#  
HADSTB[1]#  
Host Data:  
HA[16:3]#, HREQ[4:0]#  
HA[31:17]#  
HD[63:0]#  
I/O  
AGTL+  
These signals are connected to the CPU data bus. HD[63:0]# are transferred at 4x  
rate.  
4X  
Note that the data signals are inverted on the CPU bus depending on the  
HDINV[3:0]# signals.  
HDSTBP[3:0]#  
HDSTBN[3:0]#  
I/O  
AGTL+  
Host Differential Host Data Strobes:  
The differential source synchronous strobes are used to transfer HD[63:0]# and  
HDINV[3:0]# at the 4x transfer rate.  
4X  
Strobe  
Data Bits  
HDSTBP[3]#, HDSTBN[3]#  
HDSTBP[2]#, HDSTBN[2]#  
HDSTBP[1]#, HDSTBN[1]#  
HDSTBP[0]#, HDSTBN[0]#  
Host Hit:  
HD[63:48]#, HDINV[3]#  
HD[47:32]#, HDINV[2]#  
HD[31:16]#, HDINV[1]#  
HD[15:00]#, HDINV[0]#  
HHIT#  
I/O  
AGTL+  
Indicates that a caching agent holds an unmodified version of the requested line.  
Also, driven in conjunction with HITM# by the target to extend the snoop window.  
Host Hit Modified:  
HHITM#  
I/O  
AGTL+  
Indicates that a caching agent holds a modified version of the requested line and  
that this agent assumes responsibility for providing the line.  
Also, driven in conjunction with HIT# to extend the snoop window.  
HLOCK#  
I
Host Lock:  
AGTL+  
All CPU bus cycles sampled with the assertion of HLOCK# and HADS#, until the  
negation of HLOCK# must be atomic, i.e. PCI Express graphics access to System  
Memory is allowed when HLOCK# is asserted by the CPU.  
HREQ[4:0]#  
I/O  
Host Request Command:  
AGTL+  
Defines the attributes of the request. HREQ[4:0]# are transferred at 2x rate.  
Asserted by the requesting agent during both halves of the Request Phase. In the  
first half the signals define the transaction type to a level of detail that is sufficient to  
begin a snoop request. In the second half the signals carry additional information to  
define the complete transaction type.  
2X  
HTRDY#  
O
Host Target Ready:  
AGTL+  
Indicates that the target of the processor transaction is able to enter the data  
transfer phase.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
37  
Signal Description  
R
Signal Name  
Type  
Description  
HRS[2:0]#  
O
Host Response Status:  
Indicates the type of response according to the following the table:  
AGTL+  
HRS[2:0]#  
Response type  
Idle state  
000  
001  
Retry response  
010  
Deferred response  
011  
Reserved (not driven by GMCH)  
Hard Failure (not driven by GMCH)  
No data response  
100  
101  
110  
Implicit Write back  
111  
Normal data response  
HDPWR#  
O
Host Data Power:  
AGTL+  
Used by GMCH to indicate that a data return cycle is pending within 2 HCLK cycles  
or more. CPU use’s this signal during a read-cycle to activate the data input buffers  
in preparation for HDRDY# and the related data.  
HCPUSLP#  
O
Host CPU Sleep:  
CMOS  
When asserted in the Stop-Grant state, causes the processor to enter the Sleep  
state. During Sleep state, the processor stops providing internal clock signals to all  
units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this  
state will not recognize snoops or interrupts.  
2.1.2  
Host Interface Reference and Compensation  
Signal Name  
Type  
Description  
HVREF  
I
Host Reference Voltage:  
A
Reference voltage input for the Data, Address, and Common clock signals of the  
Host AGTL+ interface.  
HXRCOMP  
I/O  
A
Host X RCOMP:  
Used to calibrate the Host AGTL+ I/O buffers.  
This signal is powered by the Host Interface termination rail (VCCP).  
Host X SCOMP:  
HXSCOMP  
HXSWING  
HYRCOMP  
HYSCOMP  
HYSWING  
I/O  
A
Slew Rate Compensation for the Host Interface  
Host X Voltage Swing:  
I
A
These signals provide reference voltages used by the HXRCOMP circuits.  
Host Y RCOMP:  
I/O  
A
Used to calibrate the Host AGTL+ I/O buffers.  
Host Y SCOMP:  
I/O  
A
Slew Rate Compensation for the Host Interface  
Host Y Voltage Swing:  
I
A
These signals provide reference voltages used by the HYRCOMP circuitry.  
38  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.2  
DDR DRAM Interface  
1. DDR DRAM interfaces signal group is supported the Intel 915PM, Intel 915GM, Intel 915GMS  
Intel 915GME, Intel 910GML and Intel 910GMLE chipsets, unless otherwise noted.  
2. Intel 915GMS supports single channel only, therefore some signals may not be applicable.  
2.2.1  
DDR / DDR2 SDRAM Channel A Interface  
Signal Name  
Type  
Description  
SA_DQ[63:0]  
I/O  
SSTL1.8 / 2  
2x  
Data Bus:  
DDR / DDR2 Channel A data signal interface to the SDRAM data  
bus.  
Single channel mode: Route to SO-DIMM 0 & SO-DIMM1  
Dual channel mode: Route to SO-DIMM A  
Data Mask:  
SA_DM[7:0]  
O
SSTL1.8 / 2  
2X  
These signals are used to mask individual bytes of data in the case  
of a partial write, and to interrupt burst writes.  
When activated during writes, the corresponding data groups in the  
SDRAM are masked. There is one SA_DM[7:0] for every data byte  
lane.  
Single channel mode: Route to SO-DIMM 0 & SO-DIMM1  
Dual channel mode: Route to SO-DIMM A  
Data Strobes:  
SA_DQS[7:0]  
I/O  
SSTL1.8  
2x  
DDR: The rising and falling edges of SA_DQS[7:0] are used for  
capturing data during read and write transactions.  
DDR2: SA_DQS[7:0] and its complement signal group make up a  
differential strobe pair. The data is captured at the crossing point of  
SA_DQS[7:0] and its SA_DQS[7:0]# during read and write  
transactions.  
Single channel mode: Route to SO-DIMM 0 & SO-DIMM1  
Dual channel mode: Route to SO-DIMM A  
SA_DQS[7:0]#  
SA_MA[13:0]  
I/O  
SSTL1.8  
2x  
Data Strobe Complements  
DDR1: No Connect. These signals are not used for DDR devices  
DDR2 : These are the complementary DDR2 strobe signals.  
Single channel mode: Route to SO-DIMM 0 & SO-DIMM1  
Dual channel mode: Route to SO-DIMM A  
O
Memory Address:  
SSTL1.8 / 2  
These signals are used to provide the multiplexed row and column  
address to the SDRAM.  
Single channel mode: Route to SO-DIMM 0  
Dual channel mode: Route to SO-DIMM A  
Note: SA_MA13 is for support of 1 Gb devices.  
Bank Select:  
SA_BS[2:0]  
O
SSTL1.8 / 2  
These signals define which banks are selected within each SDRAM  
rank.  
Single channel mode: Route to SO-DIMM 0  
Dual channel mode: Route to SO-DIMM A  
Note: SA_BS2 is for support for DDR2 only for 8 bank devices.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
39  
Signal Description  
R
Signal Name  
SA_RAS#  
Type  
Description  
O
RAS Control signal:  
SSTL1.8 / 2  
Used with SA_CAS# and SA_WE# (along with SM_CS#) to define  
the SDRAM commands.  
Single channel mode: Route to SO-DIMM 0  
Dual channel mode: Route to SO-DIMM A  
CAS Control signal:  
SA_CAS#  
SA_WE#  
O
SSTL1.8 / 2  
Used with SA_RAS# and SA_WE# (along with SM_CS#) to define  
the SDRAM commands.  
Single channel mode: Route to SO-DIMM 0  
Dual channel mode: Route to SO-DIMM A  
Write Enable Control signal:  
O
SSTL1.8 / 2  
Used with SA_RAS# and SA_CAS# (along with SM_CS#) to define  
the SDRAM commands.  
Single channel mode: Route to SO-DIMM 0  
Dual channel mode: Route to SO-DIMM A  
Clock Input:  
SA_RCVENIN#  
I
SSTL1.8 / 2  
Used to emulate source-synch clocking for reads. Connects  
internally to SA_RCVENOUT#.  
Leave as No Connect.  
SA_RCVENOUT#  
O
Clock Output:  
SSTL1.8 / 2  
Used to emulate source-synch clocking for reads. Connects  
internally to SA_RCVENIN#.  
Leave as No Connect.  
40  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.2.2  
DDR / DDR2 SDRAM Channel B Interface  
Signal Name  
Type  
Description  
SB_DQ[63:0]  
I/O  
SSTL1.8 / 2  
2x  
Data Lines:  
DDR / DDR2 Channel B data signal interface to the SDRAM data  
bus.  
Single Channel mode: No connect.  
Dual channel mode: Route to SO-DIMM B  
NOTE: Signals do not exist in Intel 915GMS.  
Data Mask:  
SB_DM[7:0]  
O
SSTL1.8 / 2  
2X  
When activated during writes, the corresponding data groups in  
the SDRAM are masked. There is one SB_DM[7:0] for every  
data byte lane. These signals are used to mask individual bytes  
of data in the case of a partial write, and to interrupt burst writes.  
Single Channel mode: No connect.  
Dual channel mode: Route to SO-DIMM B  
NOTE: Signals do not exist in Intel 915GMS.  
Data Strobes:  
SB_DQS[7:0]  
I/O  
SSTL1.8 / 2  
2x  
DDR: The rising and falling edges of SB_DQS[7:0] are used for  
capturing data during read and write transactions.  
DDR2: SB_DQS[7:0] and its complement signal group make up  
a differential strobe pair. The data is captured at the crossing  
point of SB_DQS[7:0] and its SB_DQS[7:0]# during read and  
write transactions.  
Single Channel mode: No connect.  
Dual channel mode: Route to SO-DIMM B  
NOTE: Signals do not exist in Intel 915GMS.  
Data Strobe Complements (DDR2 only):  
DDR1: No Connect. These signals are not used for DDR devices  
DDR2 : These are the complementary DDR2 strobe signals.  
Single Channel mode: No connect.  
SB_DQS[7:0]#  
I/O  
SSTL1.8  
2x  
Dual channel mode: Route to SO-DIMM B  
NOTE: Signals do not exist in Intel 915GMS.  
Memory Address:  
SB_MA[13:0]  
SB_BS[2:0]  
SB_RAS#  
O
SSTL1.8 / 2  
These signals are used to provide the multiplexed row and  
column address to the SDRAM.  
Single channel mode: Route to SO-DIMM 1  
Dual channel mode: Route to SO-DIMM B  
NOTE: SB_MA13 is for support of 1 Gb devices.  
Bank Select:  
O
SSTL1.8 / 2  
These signals define which banks are selected within each  
SDRAM rank.  
Single channel mode: Route to SO-DIMM 1  
Dual channel mode: Route to SO-DIMM B  
NOTE: SB_BS2 is for DDR2 support only.  
RAS Control signal:  
O
SSTL1.8 / 2  
Used with SB_CAS# and SB_WE# (along with SM_CS#) to  
define the SDRAM commands.  
Single channel mode: Route to SO-DIMM 1  
Dual channel mode: Route to SO-DIMM B  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
41  
Signal Description  
R
Signal Name  
SB_CAS#  
Type  
Description  
O
CAS Control signal:  
SSTL1.8 / 2  
Used with SB_RAS# and SB_WE# (along with SM_CS#) to  
define the SDRAM commands.  
Single channel mode: Route to SO-DIMM 1  
Dual channel mode: Route to SO-DIMM B  
Write Enable Control signal:  
SB_WE#  
O
SSTL1.8 / 2  
Used with SB_RAS# and SB_CAS# (along with SM_CS#) to  
define the SDRAM commands.  
Single channel mode: Route to SO-DIMM 1  
Dual channel mode: Route to SO-DIMM B  
Clock Input:  
SB_RCVENIN#  
I
SSTL1.8 / 2  
Used to emulate source-synch clocking for reads.  
Leave as No Connect.  
NOTE: Signals do not exist in Intel 915GMS.  
Clock Output:  
SB_RCVENOUT#  
O
SSTL1.8 / 2  
Used to emulate source-synch clocking for reads.  
Leave as No Connect.  
NOTE: Signals do not exist in Intel 915GMS.  
42  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.2.3  
DDR / DDR2 Common Signals  
Signal Name  
Type  
Description  
SDRAM Differential Clock:  
The crossing of the positive edge of SM_CKx and the negative edge of its  
complement SM_CKx# are used to sample the command and control  
signals on the SDRAM.  
SM_CK[0:1] and its complement SM_CK[1:0]# signal make a differential  
clock pair output.  
SM_CK[1:0],  
SM_CK[4:3]  
O
Single channel mode: Route to SO-DIMM 0  
Dual channel mode: Route to SO-DIMM A  
SSTL1.8 / 2  
SM_CK[4:3] and its complement SM_CK[4:3]# signal make a differential  
clock pair output.  
Single channel mode: Route to SO-DIMM 1  
Dual channel mode: Route to SO-DIMM B  
NOTE: SM_CK2 and SM_CK5 are reserved and not supported.  
SDRAM Inverted Differential Clock:  
SM_CK[1:0]#,  
SM_CK[4:3]#  
O
SSTL1.8 / 2  
These are the complementary Differential DDR2 Clock signals.  
NOTE: SM_CK2# and SM_CK5# are reserved and not supported.  
SM_CS[3:0]#  
O
Chip Select: (1 per Rank):  
SSTL1.8 / 2  
These signals select particular SDRAM components during the active  
state. There is one Chip Select for each SDRAM rank  
SM_CS[1:0]# :  
Single channel mode: Route to SO-DIMM 0  
Dual channel mode: Route to SO-DIMM A  
SM_CS[3:2]# :  
Single channel mode: Route to SO-DIMM 1  
Dual channel mode: Route to SO-DIMM B  
SM_CKE[3:0]  
O
Clock Enable: (1 per Rank):  
SSTL1.8 / 2  
SM_CKE[3:0] is used:  
To initialize the SDRAMs during power-up  
To power-down SDRAM ranks  
To place all SDRAM ranks into and out of self-refresh during STR.  
SM_CKE[1:0]:  
Single channel mode: Route to SO-DIMM 0  
Dual channel mode: Route to SO-DIMM A  
SM_CKE[3:2]:  
Single channel mode: Route to SO-DIMM 1  
Dual channel mode: Route to SO-DIMM B  
On Die Termination: Active Termination Control. (DDR2 only)  
SM_ODT[1:0]:  
SM_ODT[3:0]  
O
SSTL1.8  
Single channel mode: Route to SO-DIMM 0  
Dual channel mode: Route to SO-DIMM A  
SM_ODT[3:2]:  
Single channel mode: Route to SO-DIMM 1  
Dual channel mode: Route to SO-DIMM B  
DDR: Leave as no connects. Not used for DDR devices.  
DDR2: On-die termination for DDR2 devices.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
43  
Signal Description  
R
2.2.4  
DDR SDRAM Reference and Compensation  
Signal Name  
SMRCOMPN  
Type  
Description  
I/O  
A
System Memory RCOMP N:  
Buffer compensation  
This signal is powered by the System Memory rail  
(2.5 V for DDR, 1.8 V for DDR2).  
SMRCOMPP  
I/O  
A
System Memory RCOMP P:  
Buffer compensation  
This signal is powered by the System Memory rail  
X Buffer Slew Rate Input control.  
SMXSLEWIN  
SMXSLEWOUT  
SMYSLEWIN  
SMYSLEWOUT  
SMVREF[1:0]  
I
A
O
A
I
X Buffer Slew Rate Output control.  
Y Buffer Slew Rate Input control.  
Y Buffer Slew Rate Output control.  
A
O
A
I
SDRAM Reference Voltage:  
A
Reference voltage inputs for each DQ, DQS, & RCVENIN#.  
Also used during ODT RCOMP.  
SMOCDCOMP[1:0]  
I
On-Die DRAM OCD driver compensation  
OCD compensation  
A
2.2.4.1  
DDR / DDR2 Common Signal Mapping  
Table 2-1. Single Channel Mode Signal Mapping for DDR/DDR2  
Single Channel Signal Mapping  
SO-DIMM 0  
SO-DIMM 1  
SM_CK [1:0]  
SM_CK# [1:0]  
SM_CS# [1:0]  
SM_CKE [1:0]  
SM_ODT[1:0]  
(DDR2 support only)  
SA_BS [2:0]  
SA_MA[13:0]  
SA_RAS#  
SM_CK [4:3]  
SM_CK# [4:3]  
SM_CS# [3:2]  
SM_CKE [3:2]  
SM_ODT [3:2]  
(DDR2 support only)  
SB_BS[2:0]  
SB_MA [13:0]  
SB_RAS#  
SA_CAS#  
SB_CAS#  
SA_WE#  
SB_WE#  
SA_DQ [63:0]  
SA_DQS [7:0]  
SA_DQS#[7:0]  
SA_DM[7:0]  
44  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
Table 2-2. Dual Channel Mode Signal Mapping for DDR/DDR2  
Dual Channel Mode  
Channel A  
Channel B  
SODIMM A  
SM_CK[1:0]  
SM_CK[1:0]#  
NA  
SODIMM B  
SM_CK[1:0]  
NA  
NA  
SM_CK[1:0]#  
SM_CK[4:3]  
SM_CK[4:3]  
SM_CK[4:3]#  
NA  
SM_CK[4:3]#  
SM_CS[1:0]#  
SM_CKE[1:0]  
SM_ODT[1:0]  
(DDR2 support)  
SM_CS[3:2]#  
SM_CKE[3:2]  
SM_ODT[3:2]  
(DDR2 support)  
NA  
SM_CS[1:0]#  
SM_CKE[1:0]  
SM_ODT[1:0]  
(DDR2 support)  
NA  
NA  
NA  
SM_CS[3:2]#  
SM_CKE[3:2]  
SM_ODT[3:2]  
(DDR2 support)  
NA  
NA  
2.3  
PCI Express Based Graphics Interface Signals  
Unless otherwise specified, these signals are AC coupled.  
PCI Express Based Graphics is supported for Intel 915GM, Intel 915GME and Intel 915PM chipsets.  
Signal Name  
Type  
Description  
EXP_RXN[15:0]  
EXP_RXP[15:0]  
EXP_TXN[15:0]  
EXP_TXP[15:0]  
EXP_ICOMPO  
I
PCI Express Receive Differential Pair  
PCIE  
O
PCI Express Transmit Differential Pair  
PCI Express Output Current and Resistance Compensation  
PCI Express Input Current Compensation  
PCIE  
I
A
I
EXP_COMPI  
A
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
45  
Signal Description  
R
2.3.1  
Serial DVO and PCI Express Based Graphics Signal Mapping  
SDVO and PCI Express Interface for graphics architecture are muxed together. The following table  
shows the signal mapping.  
SDVOB and SDVOC interfaces are supported for Intel 915GM, Intel 915GME, Intel 910GML and  
Intel 910GMLE chipsets.  
SDVOB interface is supported for Intel 915GMS chipset as highlighted in GREY-20%.  
Table 2-3. SDVO and PCI Express Based Graphics Port Signal Mapping  
SDVO MODE  
PCI Express MODE  
SDVOB_RED#  
SDVOB_RED  
EXP_TXN0  
EXP_TXP0  
EXP_TXN1  
EXP_TXP1  
EXP_TXN2  
EXP_TXP2  
EXP_TXN3  
EXP_TXP3  
EXP_TXN4  
EXP_TXP4  
EXP_TXN5  
EXP_TXP5  
EXP_TXN6  
EXP_TXP6  
EXP_TXN7  
EXP_TXP7  
EXP_RXN0  
EXP_RXP0  
EXP_RXN1  
EXP_RXP1  
EXP_RXN2  
EXP_RXP2  
EXP_RXN5  
EXP_RXP5  
SDVOB_GREEN#  
SDVOB_GREEN  
SDVOB_BLUE#  
SDVOB_BLUE  
SDVOB_CLKN  
SDVOB_CLKP  
SDVOC_RED#  
SDVOC_RED  
SDVOC_GREEN#  
SDVOC_GREEN  
SDVOC_BLUE#  
SDVOC_BLUE  
SDVOC_CLKN  
SDVOC_CLKP  
SDVO_TVCLKIN#  
SDVO_TVCLKIN  
SDVOB_INT#  
SDVOB_INT  
SDVO_FLDSTALL#  
SDVO_FLDSTALL  
SDVOC_INT#  
SDVOC_INT  
46  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.4  
DMI  
DMI x2 or x4 is supported for Intel 915GM, Intel 915PM, Intel 915GME, Intel 910GML and Intel  
910GMLE chipsets.  
Signal Name  
Type  
Description  
DMI_RXP[3:0]  
DMI_RXN[3:0]  
DMI_TXP[3:0]  
DMI_TXN[3:0]  
I
DMI input from ICH6-M:  
PCIE  
O
Direct Media Interface receive differential pair  
DMI output to ICH6-M:  
PCIE  
Direct Media Interface transmit differential pair  
DMI x2 is supported for Intel 915GMS chipset  
Signal Name  
Type  
Description  
DMI_RXP[1:0]  
DMI_RXN[1:0]  
DMI_TXP[1:0]  
DMI_TXN[1:0]  
I
DMI input from ICH6-M:  
PCIE  
O
Direct Media Interface receive differential pair  
DMI output to ICH6-M:  
PCIE  
Direct Media Interface transmit differential pair  
2.5  
Integrated Graphics Interface Signals  
The Integrated Graphics Interface signals in Section 2.5 are supported for the Intel 915GM, Intel  
915GMS, Intel 915GME, Intel 910GML and the Intel 910GMLE chipsets. These signals are reserved  
for the Intel 915PM chipset.  
Note: Please refer to the platform design guide for details for recommendation for these signal  
groups.  
Note: Signals in section 2.5.2 are not supported on Intel 915GME and Intel 910GMLE chipsets.  
2.5.1  
CRT DAC Signals  
Signal  
Name  
Type  
Description  
RED  
O
A
O
A
RED Analog Video Output:  
This signal is a CRT Analog video output from the internal color palette DAC.  
RED#  
RED# Analog Output:  
This signal is an analog video output from the internal color palette DAC. This  
signal is used to provide noise immunity.  
GREEN  
O
A
O
A
GREEN Analog Video Output:  
This signal is a CRT Analog video output from the internal color palette DAC.  
GREEN# Analog Output:  
GREEN#  
This signal is an analog video output from the internal color palette DAC. This  
signal is used to provide noise immunity.  
BLUE  
O
A
O
A
BLUE Analog Video Output:  
This signal is a CRT Analog video output from the internal color palette DAC.  
BLUE# Analog Output:  
BLUE#  
This signal is an analog video output from the internal color palette DAC. This  
signal is used to provide noise immunity.  
REFSET  
O
A
Resistor Set:  
Set point resistor for the internal color palette DAC. A 256-Ω 1% resistor is  
required between REFSET and motherboard ground.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
47  
Signal Description  
R
Signal  
Name  
Type  
Description  
HSYNC  
O
CRT Horizontal Synchronization:  
HVCMOS  
This signal is used as the horizontal sync (polarity is programmable) or “sync  
interval”.  
VSYNC  
O
CRT Vertical Synchronization:  
HVCMOS  
This signal is used as the vertical sync (polarity is programmable).  
2.5.2  
Analog TV-out Signals  
Note: Analog TV-out signals are not supported on the Intel 915GME and Intel 910GMLE chipsets.  
Please follow design guide recommendations to properly terminate these signals on the motherboard.  
Signal Name  
Type  
Description  
TVDAC_A  
O
A
TVDAC Channel A Output:  
TVDAC_A supports the following:  
Composite: CVBS signal  
Component: Chrominance (Pb) analog signal  
TVDAC Channel B Output:  
TVDAC_B  
TVDAC_C  
O
A
TVDAC_B supports the following:  
S-Video: Luminance analog signal  
Component: Luminance (Y) analog signal  
TVDAC Channel C Output:  
O
A
TVDAC_C supports the following:  
S-Video: Chrominance analog signal  
Component: Chrominance (Pr) analog signal  
Current Return for TVDAC Channel A:  
Connect to ground on board  
TV_IRTNA  
TV_IRTNB  
TV_IRTNC  
TV_REFSET  
O
A
O
A
O
A
O
A
Current Return for TVDAC Channel B:  
Connect to ground on board  
Current Return for TVDAC Channel C:  
Connect to ground on board  
TV Resistor set:  
TV Reference Current uses an external resistor to set internal reference voltage  
levels. A 5-kΩ 0.5% resistor is required between REFSET and motherboard  
ground.  
48  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.5.3  
LVDS Signals  
Note: LVDS Channel B interface is not supported and do not exist for Intel 915GMS.  
Signal Name  
Type  
Description  
LDVS Channel A  
LADATAP[2:0]  
LADATAN[2:0]  
LACLKP  
I/O  
LVDS  
I/O  
Channel A differential data output - positive  
Channel A differential data output –negative  
Channel A differential clock output – positive  
Channel A differential clock output – negative  
LVDS  
I/O  
LVDS  
I/O  
LACLKN  
LVDS  
LDVS Channel B  
LBDATAP[2:0]  
LBDATAN[2:0]  
LBCLKP  
I/O  
LVDS  
I/O  
Channel B differential data output – positive  
NOTE: Signals do not exist in Intel 915GMS.  
Channel B differential data output –negative  
NOTE: Signals do not exist in Intel 915GMS.  
Channel B differential clock output – positive  
NOTE: Signals do not exist in Intel 915GMS.  
Channel B differential clock output – negative  
NOTE: Signals do not exist in Intel 915GMS.  
LVDS  
I/O  
LVDS  
I/O  
LBCLKN  
LVDS  
LFP Panel power and backlight control  
LVDD_EN  
O
LVDS panel power enable: Panel power control enable control.  
HVCMOS  
This signal is also called VDD_DBL in the CPIS specification and is  
used to control the VDC source to the panel logic.  
LBKLT_EN  
LBKLT_CRTL  
O
LVDS backlight enable: Panel backlight enable control.  
HVCMOS  
This signal is also called ENA_BL in the CPIS specification and is used  
to gate power into the backlight circuitry.  
O
Panel backlight brightness control: Panel brightness control.  
HVCMOS  
This signal is also called VARY_BL in the CPIS specification and is  
used as the PWM Clock input signal.  
LVDS Reference signals  
LIBG  
I/O  
Ref  
I
LVDS Reference Current. –  
1.5 kPull down resistor needed  
Reserved. - No connect.  
LVREFH  
LVREFL  
LVBG  
Ref  
I
Reserved. - No connect.  
Reserve. - No connect  
Ref  
O
A
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
49  
Signal Description  
R
2.5.4  
Serial DVO Interface  
All of the pins in this section are multiplexed with the upper eight lanes of the PCI Express interface.  
SDVOB and SDVOC interfaces are supported for Intel 915GM, Intel 915GME, Intel 910GML and  
Intel 910GMLE chipsets. SDVOB interface is supported for Intel 915GMS chipset as highlighted in  
GREY-20%.  
Signal Name  
Type  
Description  
SDVO B Interface  
SDVOB_CLKP  
SDVOB_CLKN  
SDVOB_RED  
O
PCIE  
O
Serial Digital Video B Clock.  
Multiplexed with EXP_TXP_3.  
Serial Digital Video B Clock Complement.  
Multiplexed with EXP_TXN_3.  
PCIE  
O
Serial Digital Video B Red Data.  
Multiplexed with EXP_TXP_0.  
PCIE  
O
SDVOB_RED#  
SDVOB_GREEN  
SDVOB_GREEN#  
SDVOB_BLUE  
SDVOB_BLUE#  
Serial Digital Video B Red Data Complement.  
Multiplexed with EXP_TXN_0.  
PCIE  
O
Serial Digital Video B Green Data.  
Multiplexed with EXP_TXP_1.  
PCIE  
O
Serial Digital Video B Green Data Complement.  
Multiplexed with EXP_TXN_1.  
PCIE  
O
Serial Digital Video B Blue Data.  
Multiplexed with EXP_TXP_2.  
PCIE  
O
Serial Digital Video B Blue Data Complement.  
Multiplexed with EXP_TXN_2.  
PCIE  
SDVO C Interface  
SDVOC_RED  
O
Serial Digital Video C Red Data / SDVO B Alpha.  
Multiplexed with EXP_TXP_4.  
PCIE  
NOTE: Signals do not exist in Intel 915GMS.  
Serial Digital Video C Red Complement / Alpha Complement.  
Multiplexed with EXP_TXN_4.  
SDVOC_RED#  
SDVOC_GREEN  
O
PCIE  
NOTE: Signals do not exist in Intel 915GMS.  
Serial Digital Video C Green.  
O
PCIE  
Multiplexed with EXP_TXP_5.  
NOTE: Signals do not exist in Intel 915GMS.  
SDVOC_GREEN#  
SDVOC_BLUE  
O
Serial Digital Video C Green Complement.  
Multiplexed with EXP_TXN_5.  
PCIE  
NOTE: Signals do not exist in Intel 915GMS.  
Serial Digital Video Channel C Blue.  
Multiplexed with EXP_TXP_6.  
O
PCIE  
NOTE: Signals do not exist in Intel 915GMS.  
Serial Digital Video C Blue Complement.  
Multiplexed with EXP_TXN_6.  
SDVOC_BLUE#  
O
PCIE  
NOTE: Signals do not exist in Intel 915GMS.  
50  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
Signal Name  
Type  
Description  
SDVOC_CLKP  
O
Serial Digital Video C Clock.  
Multiplexed with EXP_TXP_7.  
PCIE  
NOTE: Signals do not exist in Intel 915GMS.  
Serial Digital Video C Clock Complement.  
Multiplexed with EXP_TXN_7.  
SDVOC_CLKN  
O
PCIE  
NOTE: Signals do not exist in Intel 915GMS.  
SDVO Common Signals  
SDVO_TVCLKIN  
SDVO_TVCLKIN#  
SDVO_FLDSTALL  
SDVO_FLDSTALL#  
SDVOB_INT  
I
Serial Digital Video TVOUT Synchronization Clock.  
Multiplexed with EXP_RXP_0.  
PCIE  
I
Serial Digital Video TV-out Synchronization Clock Complement.  
Multiplexed with EXP_RXN_0.  
PCIE  
I
Serial Digital Video Field Stall.  
PCIE  
Multiplexed with EXP_RXP_2.  
I
Serial Digital Video Field Stall Complement.  
Multiplexed with EXP_RXN_2.  
PCIE  
I
Serial Digital Video Input Interrupt.  
Multiplexed with EXP_RXP_1.  
PCIE  
I
SDVOB_INT#  
Serial Digital Video Input Interrupt Complement.  
Multiplexed with EXP_RXN_1.  
PCIE  
I
SDVOC_INT  
SDVOC_INT#  
Serial Digital Video Input Interrupt.  
Multiplexed with EXP_RXP_5.  
PCIE  
I
Serial Digital Video Input Interrupt Complement.  
Multiplexed with EXP_RXN_5.  
PCIE  
2.5.5  
Display Data Channel (DDC) and GMBUS Support  
Signal Name  
Type  
Description  
LCTLA_CLK  
I/O  
COD  
I/O  
I2C Based control signal (Clock) for External SSC clock chip  
control –  
LCTLB_DATA  
DDCCLK  
I2C Based control signal (Data) for External SSC clock chip control  
COD  
I/O  
CRT DDC clock monitor control support  
CRT DDC Data monitor control support  
EDID support for flat panel display  
COD  
I/O  
DDCDATA  
COD  
I/O  
LDDC_CLK  
COD  
I/O  
LDDC_DATA  
SDVOCTRL_CLK  
SDVOCTRL_DATA  
EDID support for flat panel display  
COD  
I/O  
I2C Based control signal (Clock) for SDVO device  
I2C Based control signal (Data) for SDVO device  
COD  
I/O  
COD  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
51  
Signal Description  
R
2.6  
PLL Signals  
Note: PLL interfaces signal group are supported on the Mobile Intel 915GM/PM/GMS/GME and  
Intel 910GML/GMLE Express chipsets, unless otherwise noted.  
Signal Name  
HCLKP  
Type  
I
Description  
Differential Host Clock In:  
Diff Clk  
Differential clock input for the Host PLL. Used for phase cancellation for FSB  
transactions. This clock is used by all of the GMCH logic that is in the Host clock  
domain. Also used to generate core and system memory internal clocks. This is  
a low voltage differential signal and runs at ¼ the FSB data rate.  
HCLKN  
GCLKP  
I
Differential Host Clock Input Complement:  
Diff Clk  
I
Differential PCI Express based Graphics / DMI Clock In:  
Diff Clk  
These pins receive a differential 100 MHz Serial Reference clock from the  
external clock synthesizer. This clock is used to generate the clocks necessary  
for the support of PCI Express.  
GCLKN  
I
Differential PCI Express based Graphics / DMI Clock In complement  
Diff Clk  
DREF_CLKP  
DREF_CLKN  
DREF_SSCLKP  
I
Display PLLA Differential Clock In –  
Diff Clk  
Display PLL Differential Clock In, no SSC support –  
I
Display PLLA Differential Clock In Complement –  
Display PLL Differential Clock In Complement - no SSC support  
Display PLLB Differential Clock In –  
Diff Clk  
I
Diff Clk  
Optional Display PLL Differential Clock In for SSC support –  
NOTE: Differential Clock input for optional SSC support for LVDS display.  
Display PLLB Differential Clock In complement –  
DREF_SSCLKN  
I
Diff Clk  
Optional Display PLL Differential Clock In Complement for SSC support  
NOTE: Differential Clock input for optional SSC support for LVDS display.  
52  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.7  
Reset and Miscellaneous Signals  
Reset and Miscellaneous interfaces signal group is supported the Mobile Intel 915GM/PM/GMS/GME  
and Intel 910GML/GMLE Express chipsets, unless otherwise noted.  
Signal Name  
Type  
Description  
RSTIN#  
I
Reset In:  
HVCMOS  
When asserted this signal will asynchronously reset the GMCH logic. This signal  
is connected to the PLT_RST# output of the ICH6-M. This input has a Schmitt  
trigger to avoid spurious resets. This input buffer is 3.3-V tolerant.  
PWROK  
I
Power OK:  
HVCMOS  
When asserted, PWROK is an indication to the GMCH that core power has been  
stable for at least 10 µs.  
This input buffer is 3.3-V tolerant.  
H_BSEL [2:0]  
(CFG[2:0])  
I
Host Bus Speed Select:  
HVCMOS  
At the deassertion of RSTIN#, the value sampled on these pins determines the  
expected frequency of the bus.  
External pull-ups are required.  
CFG[17:3]  
CFG[20:18]  
BM_BUSY#  
I
HW straps:  
AGTL+  
CFG [17:3] has internal pull up.  
NOTE: Not all CFG Balls are supported for Intel 915GMS.  
HW straps:  
I
HVCMOS  
CFG [20:18] has internal pull down  
NOTE: Not all CFG Balls are supported for Intel 915GMS.  
GMCH Integrated Graphics Busy:  
O
HVCMOS  
Indicates to the ICH that the integrated graphics engine within the MCH is busy  
and transitions to low power states should not be attempted until that is no  
longer the case.  
THRMTRIP#  
O
GMCH Thermal Trip:  
COD  
Assertion of THERMTRIP# (Thermal Trip) indicates the GMCH junction  
temperature has reached a level beyond which damage may occur. Upon  
assertion of THERMTRIP#, the GMCH will shut off its internal clocks (thus  
halting program execution) in an attempt to reduce the GMCH core junction  
temperature. To protect GMCH, its core voltage (Vcc) must be removed  
following the assertion of THERMTRIP#. Once activated, THERMTRIP# remains  
latched until RSTIN# is asserted. While the assertion of the RSTIN# signal will  
deassert THERMTRIP#, if the GMCH’s junction temperature remains at or  
above the trip level, THERMTRIP# will again be asserted.  
EXT_TS[1:0]#  
I
External Thermal Sensor Input:  
HVCMOS  
If the system temperature reaches a dangerously high value then this signal can  
be used to trigger the start of system memory throttling.  
NOTE: EXT_TS1# functionality is not supported in 915GMS. A pull up is  
required on this pin  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
53  
Signal Description  
R
2.8  
Power and Ground  
Interface  
Ball Name  
Description  
Host  
VTT (VCCP)  
VCCA_SM  
FSB power supply (1.05 V) - (VCCP)  
DRAM  
VCCASM is the Analog power supply for SM data buffers used for DLL &  
other logic (1.5 V)  
VCCSM  
System memory power supply (DDR=2.5 V; DDR2=1.8 V)  
PCI Express / DMI Analog power supply (1.5 V)  
PCI Express / DMI band gap power supply (2.5 V)  
PCI Express / DMI band gap ground  
PCI Express  
Based  
Graphics /  
VCC3G  
VCCA_3GBG  
VSSA_3GBG  
DMI  
PLL Analog  
VCCA_HPLL  
VCCA_MPLL  
VCCD_HMPLL  
VCCA_3GPLL  
Power supply for the Host VCO in the host/mem/core PLL (1.5 V)  
Power supply for the mem VCO in the host/mem/core PLL (1.5 V)  
Power Supply for the digital dividers in the HMPLL (1.5 V)  
Power supply for the 3GIO PLL (1.5 V)  
VCCA_DPLLA  
VCCA_DPLLB  
VCCHV  
Display A PLL power supply (1.5 V)  
Display B PLL power supply (1.5 V)  
Power supply for the HV buffers (2.5 V)  
High Voltage  
Interfaces  
CRT DAC  
VCCA_CRTDAC  
VSSA_CRTDAC  
VCC_SYNC  
Analog power supply for the DAC (2.5 V)  
Analog ground for the DAC  
Power supply for HSYNC/ VSYNC (2.5 V)  
Digital power supply (1.5 V)  
LVDS  
VCCD_LVDS  
VCCTX_LVDS  
VCCA_LVDS  
VSSALVDS  
Data/Clk Tx power supply (2.5 V)  
LVDS analog power supply (2.5 V)  
LVDS analog VSS  
TVDAC  
VCCA_TVBG  
VSSA_TVBG  
VCCD_TVDAC  
VCCDQ_TVDAC  
VCCA_TVDACA  
VCCA_TVDACB  
VCCA_TVDACC  
VCC  
TV DAC Band Gap Power (3.3 V)  
TV DAC Band Gap VSS  
Dedicated Power Supply for TVDAC (1.5 V)  
Power Supply for Digital Quiet TVDAC (1.5 V)  
Power Supply for TV Out Channel A (3.3 V)  
Power Supply for TV Out Channel B (3.3 V)  
Power Supply for TV Out Channel C (3.3 V)  
Core VCC – (1.05 V or 1.5 V)  
Core  
Ground  
NCTF  
VSS  
Ground  
Non-Critical To Function power signals:  
“NCTF” (Non-Critical To Function) have been designed into the package footprint to enhance the  
Solder Joint Reliability of our products by absorbing some of the stress introduced by the  
Characteristic Thermal Expansion (CTE) mismatch of the Die to package interface. It is expected  
that in some cases, these balls may crack partially or completely, however, this will have no  
impact to our product performance or reliability. Intel has added these balls primarily to serve as  
sacrificial stress absorbers.  
NOTE: Signals do not exist in Intel 915GMS.  
VTT_NCTF  
NCTF FSB power supply (1.05 V or 1.2 V)  
NTCF Core VCC – (1.05 V or 1.5 V)  
NTCF System memory power supply (DDR=2.5 V; DDR2=1.8 V)  
NTCF Ground  
VCC_NCTF  
VCCSM_NCTF  
VSS_NCTF  
54  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.9  
Reset States and Pull-Up / Pull-Downs  
This section describes the expected states of the GMCH I/O buffers during and immediately after the  
assertion of RSTIN#. This table only refers to the contributions on the interface from the GMCH and  
does not reflect any external influence (such as external pull-up/pull-down resistors or external drivers.  
Legend:  
DRIVE:  
TERM:  
LV:  
Strong drive (to normal value supplied by the core logic if not otherwise stated)  
Normal termination devices are turned on  
Low voltage  
HV:  
High voltage  
IN:  
Input buffer enabled  
ISO:  
Isolate input buffer so that it doesn’t oscillate if input left floating.  
TRI:  
PU:  
Tri-state  
Weak internal pull-up  
PD:  
Weak internal pull-down  
STRAP:  
Strap input sampled during assertion or on the deasserting edge of RSTIN#  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
55  
Signal Description  
R
2.9.1  
Host Interface Signals  
Unless otherwise noted, the voltage level for all signals in this interface is tied to the termination  
voltage of the host bus (VCCP).  
Signal Name  
Type  
State during  
RSTIN# Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
HADS#  
I/O  
AGTL+  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
DRIVE LV  
TERM HV  
TRI  
(No VTT)  
HBNR#  
I/O  
AGTL+  
TERM HV  
TRI  
(No VTT)  
HBPRI#  
O
TERM HV  
TRI  
(No VTT)  
AGTL+  
HBREQ0#  
HCPURST#  
I/O  
AGTL+  
TERM HV  
TRI  
(No VTT)  
O
TERM HV after ~ 1ms  
TRI  
(No VTT)  
CMOS  
HDBSY#  
I/O  
AGTL+  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TRI  
(No VTT)  
HDEFER#  
HDINV[3:0]#  
HDRDY#  
O
TRI  
(No VTT)  
AGTL+  
I/O  
AGTL+  
TRI  
(No VTT)  
I/O  
TRI  
(No VTT)  
AGTL+  
HA[31:3]#  
HADSTB[1:0]#  
HD[63:0]#  
HDSTBP[3:0]#  
HDSTBN[3:0]#  
HHIT#  
I/O  
AGTL+  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TERM HV  
TRI  
(No VTT)  
I/O  
AGTL+  
TRI  
(No VTT)  
I/O  
AGTL+  
TRI  
(No VTT)  
I/O  
AGTL+  
TRI  
(No VTT)  
I/O  
AGTL+  
TRI  
(No VTT)  
I/O  
AGTL+  
TRI  
(No VTT)  
HHITM#  
I/O  
AGTL+  
TRI  
(No VTT)  
HLOCK#  
I/O  
AGTL+  
TRI  
(No VTT)  
HREQ[4:0]#  
HTRDY#  
I/O  
AGTL+  
TRI  
(No VTT)  
O
TRI  
(No VTT)  
AGTL+  
HRS[2:0]#  
HDPWR#  
O
TRI  
(No VTT)  
AGTL+  
O
TRI  
(No VTT)  
AGTL+  
O
HCPUSLP#  
IN  
IN  
CMOS  
56  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.9.2  
Host Interface Reference and Compensation  
Signal  
Name  
Type  
State during  
State after RSTIN#  
Deassertion  
S3  
TRI  
TRI  
TRI  
PU/PD  
RSTIN# Assertion  
HVREF  
I
A
IN  
TRI  
TRI  
IN  
IN  
HXRCOMP  
HXSCOMP  
HXSWING  
HYRCOMP  
HYSCOMP  
HYSWING  
I/O  
A
TRI after RCOMP  
TRI after RCOMP  
IN  
I/O  
A
I
A
I/O  
A
TRI  
TRI  
IN  
TRI after RCOMP  
TRI after RCOMP  
IN  
TRI  
TRI  
I/O  
A
I
A
2.9.3  
DDR / DDR2 SDRAM Channel A Interface  
Signal Name  
SA_DQ[63:0]  
SA_DM[7:0]  
SA_DQS[7:0]  
SA_DQS[7:0]#  
SA_MA[13:0]  
SA_BS[2:0]  
Type  
State during RSTIN#  
Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
I/O  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
IN  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
IN  
SSTL1.8 / 2  
O
SSTL1.8 / 2  
I/O  
SSTL1.8  
I/O  
SSTL1.8  
O
SSTL1.8 / 2  
O
SSTL1.8 / 2  
SA_RAS#  
O
SSTL1.8 / 2  
SA_CAS#  
O
SSTL1.8 / 2  
SA_WE#  
O
SSTL1.8 / 2  
I
SA_RCVENIN#  
SA_RCVENOUT#  
SSTL1.8 / 2  
O
HV  
HV  
SSTL1.8 / 2  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
57  
Signal Description  
R
2.9.4  
DDR / DDR2 SDRAM Channel B Interface  
Signal Name  
Type  
State during  
RSTIN# Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
SB_DQ[63:0]  
I/O  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
IN  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
IN  
SSTL1.8 / 2  
SB_DM[7:0]  
SB_DQS[7:0]  
SB_DQS[7:0]#  
SB_MA[13:0]  
SB_BS[2:0]  
O
SSTL1.8 / 2  
I/O  
SSTL1.8 / 2  
I/O  
SSTL1.8  
O
SSTL1.8 / 2  
O
SSTL1.8 / 2  
SB_RAS#  
O
SSTL1.8 / 2  
SB_CAS#  
O
SSTL1.8 / 2  
SB_WE#  
O
SSTL1.8 / 2  
I
SB_RCVENIN#  
SB_RCVENOUT#  
SSTL1.8 / 2  
O
HV  
HV  
SSTL1.8 / 2  
2.9.5  
DDR / DDR2 Common Signals  
Signal Name  
Type  
State during  
RSTIN# Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
SM_CK[1:0],  
SM_CK[4:3]  
SM_CK[1:0]#,  
SM_CK[4:3]#  
SM_CS[3:0]#  
O
TRI  
TRI  
TRI  
LV  
0
TRI  
TRI  
TRI  
LV  
SSTL1.8 / 2  
O
SSTL1.8 / 2  
O
SSTL1.8 / 2  
O
SM_CKE[3:0]  
SM_ODT[3:0]  
SSTL1.8 / 2  
O
LV  
SSTL1.8  
58  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.9.6  
DDR SDRAM Reference and Compensation  
Signal Name  
Type  
State during  
RSTIN# Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
SMRCOMPN  
I/O  
A
I/O  
A
I
TRI  
TRI  
IN  
TRI after RCOMP  
SMRCOMPP  
TRI after RCOMP  
SMXSLEWIN  
IN  
A
O
A
I
SMXSLEWOUT  
SMYSLEWIN  
TRI  
IN  
TRI after RCOMP  
IN  
A
O
A
I
SMYSLEWOUT  
SMVREF[1:0]  
SMOCDCOMP[1:0]  
TRI  
IN  
TRI after RCOMP  
IN  
A
I
TRI  
TRI  
A
2.9.7  
PCI Express Based Graphics Interface Signals  
Signal Name  
EXP_RXN[15:0]  
EXP_RXP[15:0]  
EXP_TXN[15:0]  
EXP_TXP[15:0]  
EXP_ICOMPO  
EXP_COMPI  
Type  
State during  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
RSTIN# Assertion  
I
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
PCIE  
I
PCIE  
O
PCIE  
O
PCIE  
I
A
I
A
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
59  
Signal Description  
R
2.9.8  
DMI  
Signal Name  
Type  
State during  
RSTIN#  
Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
DMI_RXN[3:0]  
DMI_RXP[3:0]  
DMI_TXN[3:0]  
DMI_TXP[3:0]  
I
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
PCIE  
I
PCIE  
O
PCIE  
O
PCIE  
2.9.9  
CRT DAC SIGNALS  
Signal  
Name  
Type  
State during  
RSTIN# Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
RED  
O
A
O
A
O
A
O
A
O
A
O
A
O
A
LV  
RED#  
LV  
LV  
LV  
LV  
LV  
TRI  
GREEN  
GREEN#  
BLUE  
BLUE#  
REFSET  
0.5 x Bandgap  
255 ohm 1%  
resistor to  
ground  
HSYNC  
VSYNC  
O
LV  
LV  
HVCMOS  
O
HVCMOS  
60  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.9.10  
Analog TV-out Signals  
Note: These signals are not supported on the Intel 915GME and Intel 910GMLE chipsets.  
Signal Name  
Type  
State during  
RSTIN# Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
TVDAC_A  
TVDAC_B  
TVDAC_C  
TV_IRTNA  
TV_IRTNB  
O
A
O
A
O
A
O
A
O
A
TV_IRTNC  
O
A
O
A
TV_REFSET  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
61  
Signal Description  
R
2.9.11  
LVDS Signals  
Signal Name  
Type  
State during  
RSTIN# Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
LDVS Channel A  
LADATAP[2:0]  
I/O  
LVDS  
I/O  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
LADATAN[2:0]  
LACLKP  
LVDS  
I/O  
LVDS  
I/O  
LACLKN  
LVDS  
LDVS Channel B  
LBDATAP[2:0]  
I/O  
LVDS  
I/O  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
Drive VSS  
LBDATAN[2:0]  
LBCLKP  
LVDS  
I/O  
LVDS  
I/O  
LBCLKN  
LVDS  
LFP Panel  
control signal  
LVDD_EN  
O
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
HVCMOS  
O
LBKLT_EN  
LBKLT_CRTL  
HVCMOS  
O
HVCMOS  
LVDS Reference  
signal  
LVREFH  
LVREFL  
I
IN  
IN  
IN  
IN  
Ref  
I
Ref  
62  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Signal Description  
R
2.9.12  
Display Data Channel (DDC) and GMBUS Support  
Signal Name  
Type  
State during  
RSTIN# Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
LCTLA_CLK  
I/O  
COD  
I/O  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
LCTLB_DATA  
DDCCLK  
COD  
I/O  
PU  
COD  
I/O  
DDCDATA  
PU  
COD  
I/O  
LDDC_CLK  
PU  
COD  
I/O  
LDDC_DATA  
SDVOCTRL_CLK  
SDVOCTRL_DATA  
PU  
COD  
I/O  
PU  
COD  
I/O  
STRAP  
COD  
2.9.13  
PLL Signals  
Signal Name  
HCLKP  
Type  
State during RSTIN#  
Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
I
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Diff Clk  
HCLKN  
I
Diff Clk  
GCLKP  
I
Diff Clk  
GCLKN  
I
Diff Clk  
DREF_CLKP  
DREF_CLKN  
DREF_SSCLKP  
DREF_SSCLKN  
I
Diff Clk  
I
Diff Clk  
I
Diff Clk  
I
Diff Clk  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
63  
Signal Description  
R
2.9.14  
Reset and Miscellaneous Signals  
Signal Name  
Type  
State during RSTIN#  
Assertion  
State after RSTIN#  
Deassertion  
S3  
PU/PD  
RSTIN#  
I
IN  
IN  
HVCMOS  
PWROK  
I
HV  
HV  
HVCMOS  
H_BSEL [2:0]  
(CFG[2:0])  
CFG[17:3]  
I
HVCMOS  
I
AGTL+  
CFG[20:18]  
BM_BUSY#  
THRMTRIP#  
EXT_TS[1:0]#  
I
HVCMOS  
O
HV STRAP  
HV  
IN  
HVCMOS  
O
COD  
I
IN  
HVCMOS  
§
64  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
GMCH Register Description  
R
3 GMCH Register Description  
Table 3-1 shows the register-related terminology that is used.  
Table 3-1. Register Terminology  
RO  
Read Only bit(s). Writes to these bits have no effect.  
RS/WC  
Read Set / Write Clear bit(s). These bits are set to 1 when read and then will continue to remain set  
until written. A write of 1 clears (sets to 0) the corresponding bit(s) and a write of 0 has no effect.  
R/W  
Read / Write bit(s). These bits can be read and written.  
R/WC  
Read / Write Clear bit(s). These bits can be read. Internal events may set this bit. A write of 1 clears  
(sets to 0) the corresponding bit(s) and a write of 0 has no effect.  
R/WC/S  
Read / Write Clear / Sticky bit(s). These bits can be read. Internal events may set this bit. A write of 1  
clears (sets to 0) the corresponding bit(s) and a write of 0 has no effect. Bits are not cleared by  
"warm" reset, but will be reset with a cold/complete reset (for PCI Express* related bits a cold reset is  
“Power Good Reset” as defined in the PCI Express spec).  
R/W/L  
Read / Write / Lockable bit(s). These bits can be read and written. Additionally there is a bit (which  
may or may not be a bit marked R/W/L) that, when set, prohibits this bit field from being writeable (bit  
field becomes Read Only).  
R/W/S  
Read / Write / Sticky bit(s). These bits can be read and written. Bits are not cleared by "warm" reset,  
but will be reset with a cold/complete reset (for PCI Express related bits a cold reset is “Power Good  
Reset” as defined in the PCI Express spec).  
R/WSC  
R/WSC/L  
Read / Write Self Clear bit(s). These bits can be read and written. When the bit is 1, hardware may  
clear the bit to 0, based upon internal events, possibly sooner than any subsequent read could  
retrieve a 1.  
Read / Write Self Clear / Lockable bit(s). These bits can be read and written. When the bit is 1,  
hardware may clear the bit to 0, based upon internal events, possibly sooner than any subsequent  
read could retrieve a 1. Additionally there is a bit (which may or may not be a bit marked R/W/L) that,  
when set, prohibits this bit field from being writeable (bit field becomes Read Only).  
R/WC  
R/WO  
W
Read Write Clear bit(s). These bits can be read and written. However, a write of 1 clears (sets to 0)  
the corresponding bit(s) and a write of 0 has no effect.  
Write Once bit(s). Once written, bits with this attribute become Read Only. These bits can only be  
cleared by a Reset.  
Write Only. Whose bits may be written, but will always-return 0’s when read. They are used for write  
side effects. Any data written to these registers cannot be retrieved.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
65  
GMCH Register Description  
R
3.1  
Configuration Process and Registers  
3.1.1  
Platform Configuration Structure  
In platforms that support DMI (e.g., this GMCH) the configuration structure is significantly different  
from previous Hub architectures. The DMI physically connects the GMCH and the ICH6; so, from a  
configuration standpoint, the DMI is logically PCI bus 0. As a result, all devices internal to the GMCH  
and the ICH6 appear to be on PCI bus 0. The system’s primary PCI expansion bus is physically  
attached to the ICH6 and, from a configuration perspective, appears to be a hierarchical PCI bus behind  
a PCI-to-PCI bridge and therefore has a programmable PCI bus number. The PCI Express Graphics  
Attach appears to system software to be a real PCI bus behind a PCI-to-PCI bridge that is a device  
resident on PCI bus 0.  
Note: That a physical PCI bus 0 does not exist and that DMI and the internal devices in the GMCH  
and ICH6 logically constitute PCI Bus 0 to configuration software. This is shown in the following  
figure.  
Figure 3-1. Conceptual Platform PCI Configuration Diagram  
Processor  
Intel® 915M  
Express Chipset  
PCI Configuration in I/O  
DRAM  
Interface Bus  
0 Device 0  
PCI Express* x16 Bus  
0 Device 1 (excludes  
the Intel® 915GMS  
and 910GML)  
Bus 0 Device 2  
(excludes Intel® 915PM)  
DMI  
The GMCH contains three PCI devices within a single physical component. The configuration registers  
for the three devices are mapped as devices residing on PCI bus 0.  
Device 0: Host Bridge/DRAM Controller. Logically this appears as a PCI device residing on PCI  
bus 0. Device 0 contains the standard PCI header registers, PCI Express base address register,  
DRAM control (including thermal/throttling control), and other GMCH specific registers.  
Device 1: Host-PCI Express Bridge. Logically this appears as a “virtual” PCI-to-PCI bridge  
residing on PCI bus 0 and is compliant with PCI Express Specification rev 1.0. Device 1 contains  
the standard PCI-to-PCI bridge registers and the standard PCI Express/PCI configuration registers  
(including the PCI Express memory address mapping). It also contains Isochronous and Virtual  
Channel controls in the PCI Express extended configuration space.  
Device 2: Internal Graphics Control. Logically, this appears as a PCI device residing on PCI bus 0.  
Physically, device 2 contains the configuration registers for 3D, 2D, and display functions.  
66  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
GMCH Register Description  
R
Table 3-2. Device Number Assignment for Internal GMCH Devices  
GMCH Function  
Device#  
Host Bridge / DRAM Controller  
Device 0  
Device 1  
Device 2  
Host-to-PCI Express* Bridge (virtual PCI-to-PCI)  
Internal Graphics Control  
3.1.2  
General Routing Configuration Accesses  
The GMCH supports two PCI related interfaces: DMI and PCI Express. PCI and PCI Express  
configuration cycles are selectively routed to one of these interfaces. The GMCH is responsible for  
routing configuration cycles to the proper interface. Configuration cycles to the ICH6 internal devices  
and Primary PCI (including downstream devices) are routed to the ICH6 via DMI. Configuration  
cycles to both the PCI Express Graphics PCI compatibility configuration space and the PCI Express  
Graphics extended configuration space are routed to the PCI Express Graphics port.  
A detailed description of the mechanism for translating CPU I/O bus cycles to configuration cycles is  
described below.  
3.1.3  
Standard PCI Bus Configuration Mechanism  
The PCI bus defines a slot based configuration space that allows each device to contain up to eight  
functions with each function containing up to 256, 8-bit configuration registers. The PCI specification  
defines two bus cycles to access the PCI configuration space: Configuration Read and Configuration  
Write. Memory and I/O spaces are supported directly by the CPU. Configuration space is supported by  
a mapping mechanism implemented within the GMCH.  
The configuration access mechanism makes use of the CONFIG_ADDRESS Register (at I/O address  
0CF8h though 0CFBh) and CONFIG_DATA Register (at I/O address 0CFCh though 0CFFh). To  
reference a configuration register a DW I/O write cycle is used to place a value into  
CONFIG_ADDRESS that specifies the PCI bus, the device on that bus, the function within the device  
and a specific configuration register of the device function being accessed. CONFIG_ADDRESS [31]  
must be 1 to enable a configuration cycle. CONFIG_DATA then becomes a window into the four bytes  
of configuration space specified by the contents of CONFIG_ADDRESS. Any read or write to  
CONFIG_DATA will result in the GMCH translating the CONFIG_ADDRESS into the appropriate  
configuration cycle.  
The GMCH is responsible for translating and routing the CPU’s I/O accesses to the  
CONFIG_ADDRESS and CONFIG_DATA registers to internal GMCH configuration registers, DMI  
or PCI Express.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
67  
GMCH Register Description  
R
3.1.4  
3.1.5  
Logical PCI Bus 0 Configuration Mechanism  
The GMCH decodes the Bus Number (bits 23:16) and the Device Number fields of the  
CONFIG_ADDRESS register. If the Bus Number field of CONFIG_ADDRESS is 0 the configuration  
cycle is targeting a PCI Bus 0 device. The Host-DMI Bridge entity within the GMCH is hardwired as  
Device 0 on PCI Bus 0. The Host-PCI Express Bridge entity within the GMCH is hardwired as Device  
1 on PCI Bus 0. Device 2 contains the control registers for the Integrated Graphics Controller. The  
ICH6 decodes the Type 0 access and generates a configuration access to the selected internal device.  
Primary PCI and Downstream Configuration Mechanism  
If the Bus Number in the CONFIG_ADDRESS is non-zero, and falls outside the range claimed by the  
Host-PCI Express bridge (not between lower bound in device’s SUBORDINATE BUS NUMBER  
register and upper bound in device’s SECONDARY BUS NUMBER register), the GMCH would  
generate a Type 1 DMI Configuration Cycle. This DMI configuration cycle will be sent over the DMI.  
If the cycle is forwarded to the ICH6 via the DMI, the ICH6 compares the non-zero Bus Number with  
the SECONDARY BUS NUMBER and SUBORDINATE BUS NUMBER registers of its PCI-to-PCI  
bridges to determine if the configuration cycle is meant for Primary PCI, one of the ICH’s devices, the  
DMI, or a downstream PCI bus.  
Figure 3-2. DMI Type 0 Configuration Address Translation  
Configuration_Adddress  
11 10  
8 7  
2 1  
0
31  
16 15  
30  
24 23  
Bus  
Number  
1
Reserved  
Device Number  
Double Word  
Function  
XX  
DMI Type 0 Configuration Address Extension  
0CFB  
0CF9  
0CFA  
0CF8  
24 23  
11 10  
30  
16 15  
2 1  
31  
8 7  
0
Bus  
Number  
Double Word  
1
Reserved  
Function  
00  
Device Number  
68  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
GMCH Register Description  
R
Figure 3-3. DMI Type 1 Configuration Address Translation  
Configuration_Adddress  
11 10  
8 7  
2 1  
0
31  
16 15  
30  
24 23  
Bus  
Number  
1
Reserved  
Device Number  
Double Word  
Function  
XX  
DMI Type1 Configuration Address Extension  
0CFB  
0CF9  
0CFA  
0CF8  
24 23  
11 10  
30  
16 15  
2 1  
31  
8 7  
0
Bus  
Number  
Double Word  
1
Reserved  
Function  
Device Number  
01  
3.1.6  
PCI Express Enhanced Configuration Mechanism  
PCI Express extends the configuration space to 4096 bytes per device/function as compared to  
256 bytes allowed by PCI Specification Revision 2.3. PCI Express configuration space is divided into a  
PCI 2.3 compatible region, which consists of the first 256 bytes of a logical device’s configuration  
space and a PCI Express extended region, which consists of the remaining configuration space.  
The PCI compatible region can be accessed using either the mechanism defined in the previous section  
or using the enhanced PCI Express configuration access mechanism described in this section. The  
extended configuration registers may only be accessed using the enhanced PCI Express configuration  
access mechanism. To maintain compatibility with PCI configuration addressing mechanisms, system  
software must access the extended configuration space using 32-bit operations (32-bit aligned) only.  
These 32-bit operations include byte enables allowing only appropriate bytes within the DWORD to be  
accessed. Locked transactions to the PCI Express memory mapped configuration address space are not  
supported. All changes made using either access mechanism are equivalent.  
The enhanced PCI Express configuration access mechanism utilizes a flat memory-mapped address  
space to access device configuration registers. This address space is reported by the system firmware to  
the operating system. PCIEXBAR defines the base address for the 256-MB block of addresses below  
the top of addressable memory (currently 4 GB) for the configuration space associated with all devices  
and functions that are potentially a part of the PCI Express root complex hierarchy. The PCI Express  
Configuration Transaction Header includes an additional 4 bits (Extended Register Address[3:0])  
between the Function Number and Register Address fields to provide indexing into the 4 KB of  
configuration space allocated to each potential device. For PCI Compatible Configuration Requests, the  
Extended Register Address field must be all 0’s.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
69  
GMCH Register Description  
R
Figure 3-4. Memory Map to PCI Express Device Configuration Space  
0x7FFF  
0xFFF  
0xFFFFFFF  
0xFFFFF  
Bus 255  
Device 31  
Function 7  
PCI Express  
Extended  
Conf iguration  
Space  
0xFF  
0x3F  
PCI Compatible  
Conf iguration  
Space  
0xFFFF  
0x7FFF  
0x1FFF  
0xFFF  
0x1FFFFF  
0xFFFFF  
Device 1  
Device 0  
Function 1  
Function 0  
Bus 1  
Bus 0  
PCI Compatible  
Conf iguration  
Space Header  
0
Located by  
PCI Express Base  
Address  
Just the same as with PCI devices, each device is selected based on decoded address information that is  
provided as a part of the address portion of Configuration Request packets. A PCI Express device will  
decode all address information fields (bus, device, function and extended address numbers) to provide  
access to the correct register.  
To access this space (steps 1, 2, 3 are done only once by BIOS),  
1. Use the PCI compatible configuration mechanism to enable the PCI Express enhanced  
configuration mechanism by writing 1 to bit 31 of the DEVEN register.  
2. Use the PCI compatible configuration mechanism to write an appropriate PCI Express base  
address into the PCIEXBAR register.  
3. Calculate the host address of the register you wish to set using (PCI Express base + (bus number *  
1 MB) + (device number * 32 kB) + (function number * 4 kB) + (1 B * offset within the function)  
= host address).  
4. Use a memory write or memory read cycle to the calculated host address to write to or read from  
that register.  
31  
28 27  
20 19  
15 14  
12 11  
Extended  
8
7
2
1
x
0
x
Base  
Bus  
Device  
Func.  
Register Number  
PCI Express Configuration Writes:  
Internally the host interface unit will translate writes to PCI Express extended configuration space  
to configurations on the backbone.  
Writes to extended space are posted on the FSB, but non-posted on the PEG or DMI pins (i.e.,  
translated to config writes).  
See the PCI Express specification for more information on both the PCI 2.3 compatible and PCI  
Express enhanced configuration mechanism and transaction rules.  
70  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
GMCH Register Description  
R
3.1.7  
GMCH Configuration Cycle Flow Chart  
Figure 3-5. GMCH Configuration Cycle Flow Chart  
DW I/O Write to  
CONFIG_ADDRESS  
with bit 31 = 1  
I/O Read/Write to  
CONFIG_DATA  
Yes  
Bus# = 0  
No  
GMCH Generates  
Type 1 Access  
to PCI Express  
Bus# > SEC BUS  
Bus# SUB BUS  
in GMCH Dev 1  
Device# = 0 &  
Function# = 0  
Yes  
Yes  
GMCH Claims  
GMCH Claims  
GMCH Claims  
No  
No  
Device# = 1 &  
Dev#1 Enabled &  
Function # = 0  
Bus# =  
SECONDARYBUS  
in GMCH Dev 1  
Yes  
Yes  
No  
No  
GMCH Generates  
DMI Type 1  
Configuration Cycle  
Device# = 2 &  
Dev#2 Enabled &  
Function# = 0 or 1  
Yes  
No  
GMCH Generates  
Type 0 Access  
to PCI Express  
Yes  
Device# = 0  
No  
GMCH Generates  
DMI Type 0  
Configuration Cycle  
GMCH Generates  
Master Abort  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
71  
GMCH Register Description  
R
3.2  
I/O Mapped Registers  
The GMCH contains two registers that reside in the CPU I/O address space the Configuration  
Address (CONFIG_ADDRESS) Register and the Configuration Data (CONFIG_DATA) Register. The  
Configuration Address Register enables/disables the configuration space and determines what portion  
of configuration space is visible through the Configuration Data window.  
3.2.1  
CONFIG_ADDRESS—Configuration Address Register  
I/O Address:  
Size:  
0CF8h Accessed as a DW  
32 bits  
CONFIG_ADDRESS is a 32 bit register that can be accessed only as a DW. A Byte or Word reference  
will "pass through" the Configuration Address Register and DMI onto the PCI_A bus as an I/O cycle.  
The CONFIG_ADDRESS register contains the Bus Number, Device Number, Function Number, and  
Register Number for which a subsequent configuration access is intended.  
Bit  
Access  
&
Default  
Description  
31  
R/W  
0b  
Configuration Enable (CFGE) - When this bit is set to 1, accesses to PCI configuration  
space are enabled. If this bit is reset to 0, accesses to PCI configuration space are  
disabled.  
30:24  
23:16  
RO  
00h  
R/W  
00h  
Reserved  
Bus Number - If the Bus Number is programmed to 00h the target of the Configuration  
Cycle is a PCI Bus #0 agent. If this is the case and the GMCH is not the target (i.e. the  
device number is >= 3 and not equal to 7), then a DMI Type 0 Configuration Cycle is  
generated.  
If the Bus Number is non-zero, and does not fall within the ranges enumerated by device  
#1’s SECONDARY BUS NUMBER or SUBORDINATE BUS NUMBER Register, then a  
DMI Type 1 Configuration Cycle is generated.  
If the Bus Number is non-zero and matches the value programmed into the SECONDARY  
BUS NUMBER Register of device #1, a Type 0 PCI configuration cycle will be generated  
on PCI Express Graphics.  
If the Bus Number is non-zero, greater than the value in the SECONDARY BUS NUMBER  
register of device #1 and less than or equal to the value programmed into the  
SUBORDINATE BUS NUMBER Register of device #1 a Type 1 PCI configuration cycle  
will be generated on PCI Express Graphics.  
This field is mapped to byte 8 [7:0] of the request header format during PCI Express  
Configuration cycles and A[23:16] during the DMI Type 1 configuration cycles.  
15:11  
R/W  
00h  
Device Number - This field selects one agent on the PCI bus selected by the Bus  
Number. When the Bus Number field is “00” the GMCH decodes the Device Number field.  
The GMCH is always Device Number 0 for the Host bridge entity, Device Number 1 for  
the Host-PCI Express entity. Therefore, when the Bus Number =0 and the Device Number  
equals 0,1, 2 or 7 the internal GMCH devices are selected.  
This field is mapped to byte 6 [7:3] of the request header format during PCI Express and  
DMI Configuration cycles.  
10:8  
R/W  
Function Number  
000b  
This field allows the configuration registers of a particular function in a multi-function  
device to be accessed. The GMCH ignores configuration cycles to it’s internal Devices if  
the function number is not equal to 0 or 1.  
This field is mapped to byte 6 [2:0] of the request header format during PCI Express and  
DMI Configuration cycles.  
72  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
GMCH Register Description  
R
Bit  
Access  
&
Default  
Description  
7:2  
R/W  
00h  
Register Number  
This field selects one register within a particular Bus, Device, and Function as specified  
by the other fields in the Configuration Address Register.  
This field is mapped to byte 7 [7:2] of the request header format for during PCI Express  
and DMI Configuration cycles.  
1:0  
RO  
Reserved  
00b  
3.2.2  
CONFIG_DATA—Configuration Data Register  
I/O Address:  
Size:  
0CFCh  
32 bits  
CONFIG_DATA is a 32-bit read/write window into configuration space. The portion of configuration  
space that is referenced by CONFIG_DATA is determined by the contents of CONFIG_ADDRESS.  
Bit  
Access &  
Default  
Description  
31:0  
R/W  
Configuration Data Window (CDW)  
0000 0000 h  
If bit 31 of CONFIG_ADDRESS is 1, any I/O access to the CONFIG_DATA register will  
produce a configuration transaction using the contents of CONFIG_ADDRESS to  
determine the bus, device, function, and offset of the register to be accessed.  
§
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
73  
GMCH Register Description  
R
74  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4 Host Bridge Device 0 -  
Configuration Registers (D0:F0)  
Warning: Address locations that are not listed are considered Reserved registers locations. Reads to Reserved  
registers may return non-zero values. Writes to reserved locations may cause system failures.  
4.1  
Host Bridge Device 0 Configuration Register Space  
All registers that are defined in the PCI 2.3 specification, but are not necessary or implemented in this  
component are simply not included in this document. The reserved/unimplemented space in the PCI  
configuration header space is not documented as such in this summary.  
Address  
Offset  
Register  
Symbol  
Register Name  
Default Value  
Access  
00-01h  
02-03h  
04-05h  
06-07h  
08h  
VID  
Vendor Identification  
8086h  
2590h  
0006h  
0090h  
RO  
RO  
DID  
Device Identification  
PCI Command  
PCICMD  
PCISTS  
RID  
RO, R/W  
RO, R/WC  
RO  
PCI Status  
Revision Identification  
00h See register  
description  
09-0Bh  
0Ch  
CC  
Class Code  
060000h  
RO  
Reserved  
0Dh  
MLT  
HDR  
Master Latency Timer  
Header Type  
00h  
00h  
RO  
RO  
0Eh  
0F-2Bh  
2C-2Dh  
2E-2Fh  
30-33h  
34-34h  
35-3Fh  
40-43h  
Reserved  
SVID  
SID  
Subsystem Vendor Identification  
Subsystem Identification  
Reserved  
0000h  
0000h  
R/WO  
R/WO  
CAPPTR  
EPBAR  
Capabilities Pointer  
Reserved  
E0h  
RO  
EP Root Complex MMIO Base  
Address  
00000000h  
RO, R/W  
44-47h  
48-4Bh  
4C-4Fh  
MCHBAR  
PCIEXBAR  
DMIBAR  
MCH MMIO Base Address  
00000000h  
E0000000h  
00000000h  
RO, R/W  
RO, R/W  
RO, R/W  
PCI Express MMIO Base Address  
DMI Root Complex MMIO Base  
Address  
50-51h  
52-53h  
Reserved  
GGC  
Graphics Control Register  
82915GM/GML/GMS only  
0030h  
RO, R/W  
54-57h  
58-8Fh  
90h  
DEVEN  
Device Enable  
00000019h  
RO, R/W, R/W/L  
Reserved  
PAM0  
PAM1  
PAM2  
PAM3  
Programmable Attribute Map 0  
Programmable Attribute Map 1  
Programmable Attribute Map 2  
Programmable Attribute Map 3  
00h  
00h  
00h  
00h  
RO, R/W  
RO, R/W  
RO, R/W  
RO, R/W  
91h  
92h  
93h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
75  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
94h  
PAM4  
PAM5  
PAM6  
LAC  
Programmable Attribute Map 4  
Programmable Attribute Map 5  
Programmable Attribute Map 6  
Legacy Access Control  
00h  
00h  
00h  
00h  
RO, R/W  
RO, R/W  
RO, R/W  
RO, R/W  
95h  
96h  
97h  
98-9Bh  
9Ch  
9Dh  
9Eh  
Reserved  
TOLUD  
Top of Low Used Dram  
08h  
02h  
38h  
RO, R/W  
SMRAM  
ESMRAMC  
System Management RAM Control  
RO, R/W/L  
Extended System Management RAM  
Control  
RO, R/W, R/WC,  
R/W/L  
9F-C7h  
C8-C9h  
CA-CBh  
CC-DFh  
E0-E8h  
Reserved  
ERRSTS  
ERRCMD  
Error Status  
0000h  
0000h  
RO, R/W/C  
RO, R/W  
Error Command  
Reserved  
CAPID0  
Capability Identifier  
xxxxxxxxxxxx90  
009h  
RO  
E9-FFh  
Reserved  
4.1.1  
VID—Vendor Identification  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
00h  
8086h  
RO  
Size:  
16 bits  
This register combined with the Device Identification register uniquely identifies any PCI device.  
Bit  
Access  
Description  
15:0  
Vendor Identification Number (VID):  
PCI standard identification for Intel.  
RO  
8086h  
4.1.2  
DID—Device Identification  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
02h  
2590h  
RO  
Size:  
16 bits  
This register combined with the Vendor Identification register uniquely identifies any PCI device.  
Bit  
Access  
& Default  
Description  
Device Identification Number (DID):  
Identifier assigned to the GMCH core/primary PCI device.  
15:0  
RO  
2590 h  
4.1.3  
PCICMD—PCI Command  
PCI Device:  
0
Address Offset:  
Default Value:  
04h  
0006h  
76  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
Access:  
Size:  
RO, R/W  
16 bits  
GMCH Device #0 does not physically reside on PCI_A many of the bits are not implemented.  
Bit  
Access  
&
Default  
Description  
15:10  
9
RO  
00h  
RO  
0 b  
Reserved  
Fast Back-to-Back Enable (FB2B):  
This bit controls whether or not the master can do fast back-to-back write. Since device  
0 is strictly a target this bit is not implemented and is hardwired to 0. Writes to this bit  
position have no affect.  
8
R/W  
0 b  
SERR Enable (SERRE):  
This bit is a global enable bit for Device 0 SERR messaging. The GMCH does not  
have an SERR signal. The GMCH communicates the SERR condition by sending an  
SERR message over GMCH ICH Serial Interface (DMI) to the ICH.  
If this bit is set to a 1, the GMCH is enabled to generate SERR messages over DMI for  
specific Device 0 error conditions that are individually enabled in the ERRCMD  
register. The error status is reported in the ERRSTS and PCISTS registers.  
If SERRE is clear, then the SERR message is not generated by the GMCH for Device  
0. Note that this bit only controls SERR messaging for the Device 0. Device 1 has its  
own SERRE bits to control error reporting for error conditions occurring on their  
respective devices. The control bits are used in a logical OR manner to enable the  
SERR DMI message mechanism.  
7
6
5
4
3
2
1
0
RO  
0 b  
Address/Data Stepping Enable (ADSTEP):  
Address/data stepping is not implemented in the GMCH, and this bit is hardwired to 0.  
Writes to this bit position have no effect.  
RO  
0 b  
Parity Error Enable (PERRE):  
PERRB is not implemented by the GMCH and this bit is hardwired to 0. Writes to this  
bit position have no effect.  
RO  
0 b  
VGA Palette Snoop Enable (VGASNOOP):  
The GMCH does not implement this bit and it is hardwired to a 0. Writes to this bit  
position have no effect.  
RO  
0 b  
Memory Write and Invalidate Enable (MWIE):  
The GMCH will never issue memory write and invalidate commands. This bit is  
therefore hardwired to 0. Writes to this bit position will have no effect.  
RO  
0 b  
Special Cycle Enable (SCE):  
The GMCH does not implement this bit and it is hardwired to a 0. Writes to this bit  
position have no effect.  
RO  
1 b  
Bus Master Enable (BME):  
The GMCH is always enabled as a master on DMI. This bit is hardwired to a 1. Writes  
to this bit position have no effect.  
RO  
1 b  
Memory Access Enable (MAE):  
The GMCH always allows access to main memory. This bit is not implemented and is  
hardwired to 1. Writes to this bit position have no effect.  
RO  
0 b  
I/O Access Enable (IOAE):  
This bit is not implemented in the GMCH and is hardwired to a 0. Writes to this bit  
position have no effect.  
4.1.4  
PCISTS—PCI Status  
PCI Device:  
0
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
77  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
Address Offset:  
Default Value:  
Access:  
06h  
0090h  
RO, R/WC  
16 bits  
Size:  
This status register reports the occurrence of error events on Device 0’s PCI interface. Since the  
GMCH Device 0 does not physically reside on PCI_A many of the bits are not implemented.  
Bit  
Access &  
Default  
Description  
15  
RO  
0 b  
Detected Parity Error (DPE):  
The GMCH does not implement this bit and it is hardwired to a 0. Writes to this bit  
position have no effect.  
14  
R/W/C  
0 b  
Signaled System Error (SSE):  
This bit is set to 1 when the GMCH Device 0 generates an SERR message over DMI for  
any enabled Device 0 error condition. Device 0 error conditions are enabled in the  
PCICMD and ERRCMD registers. Device 0 error flags are read/reset from the PCISTS or  
ERRSTS registers. Software clears this bit by writing a 1 to it.  
13  
12  
R/W/C  
0 b  
Received Unsupported Request (RURS):  
This bit is set when the MCH generates a DMI request that receives a Unsupported  
request completion. Software clears this bit by writing a 1 to it.  
R/W/C  
0 b  
Received Completion Abort Status (RCAS):  
This bit is set when the MCH generates a DMI request that receives a completion abort.  
Software clears this bit by writing a 1 to it. If ERRCMD bit 6 is set, an SERR special cycle  
is generated on the DMI.  
11  
RO  
0 b  
Signaled Target Abort Status (STAS):  
The GMCH will not generate a Target Abort DMI completion packet or Special Cycle.  
This bit is not implemented in the GMCH and is hardwired to a 0. Writes to this bit  
position have no effect.  
10:9  
RO  
DEVSEL Timing (DEVT):  
00 b  
These bits are hardwired to "00". Writes to these bit positions have no affect. Device 0  
does not physically connect to PCI_A. These bits are set to "00" (fast decode) so that  
optimum DEVSEL timing for PCI_A is not limited by the GMCH.  
8
7
RO  
0 b  
Master Data Parity Error Detected (DPD):  
PERR signaling and messaging are not implemented by the GMCH therefore this bit is  
hardwired to 0. Writes to this bit position have no effect.  
RO  
1 b  
Fast Back-to-Back (FB2B):  
This bit is hardwired to 1. Writes to these bit positions have no effect. Device 0 does not  
physically connect to PCI_A. This bit is set to 1 (indicating fast back-to-back capability)  
so that the optimum setting for PCI_A is not limited by the GMCH.  
6:5  
4
RO  
00 b  
RO  
1 b  
Reserved  
Capability List (CLIST):  
This bit is hardwired to 1 to indicate to the configuration software that this device/function  
implements a list of new capabilities. A list of new capabilities is accessed via register  
CAPPTR at configuration address offset 34h. Register CAPPTR contains an offset  
pointing to the start address within configuration space of this device where the  
Capability standard register resides.  
3:0  
RO  
0 h  
Reserved  
4.1.5  
RID—Revision Identification  
PCI Device:  
0
78  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
Address Offset:  
Default Value:  
Access:  
08h  
xxh  
RO  
Size:  
8 bits  
This register contains the revision number of the GMCH Device #0.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Revision Identification Number (RID):  
00 h  
This is an 8-bit value that indicates the revision identification number for the  
GMCH Device 0..  
4.1.6  
CC—Class Code  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
09h  
060000h  
RO  
Size:  
24 bits  
This register identifies the basic function of the device, a more specific sub-class, and a register-  
specific programming interface.  
Bit  
Access &  
Default  
Description  
23:16  
RO  
Base Class Code (BCC) –  
06 h  
This is an 8-bit value that indicates the base class code for the GMCH. This code has the  
value 06h, indicating a Bridge device.  
15:8  
7:0  
RO  
Sub-Class Code (SUBCC) –  
00 h  
This is an 8-bit value that indicates the category of Bridge into which the GMCH falls.  
The code is 00h indicating a Host Bridge.  
RO  
Programming Interface (PI) –  
00 h  
This is an 8-bit value that indicates the programming interface of this device. This value  
does not specify a particular register set layout and provides no practical use for this  
device.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
79  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.7  
MLT—Master Latency Timer  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
0Dh  
00h  
RO  
8 bits  
Size:  
Device #0 in the GMCH is not a PCI master. Therefore this register is not implemented.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Reserved.  
00 h  
4.1.8  
HDR—Header Type  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
0Eh  
00h  
RO  
8 bits  
Size:  
This register identifies the header layout of the configuration space. No physical register exists at this  
location.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
PCI Header (HDR):  
00 h  
This field always returns 0 to indicate that the GMCH is a single function device with  
standard header layout. Reads and writes to this location have no effect.  
4.1.9  
SVID—Subsystem Vendor Identification  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
2Ch  
0000h  
R/WO  
16 bits  
Size:  
This value is used to identify the vendor of the subsystem.  
Bit  
Access &  
Default  
Description  
15:0  
R/WO  
Subsystem Vendor ID (SUBVID):  
0000 h  
This field should be programmed during boot-up to indicate the vendor of the system  
board. After it has been written once, it becomes read only.  
80  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.10  
SID—Subsystem Identification  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
2Eh  
0000h  
R/WO  
16 bits  
Size:  
This value is used to identify a particular subsystem.  
Bit  
Access &  
Default  
Description  
15:0  
R/WO  
Subsystem ID (SUBID):  
0000 h  
This field should be programmed during BIOS initialization. After it has been written  
once, it becomes read only.  
4.1.11  
CAPPTR—Capabilities Pointer  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
34h  
E0h  
RO  
8 bits  
Size:  
The CAPPTR provides the offset that is the pointer to the location of the first device capability in the  
capability list.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Pointer to the offset of the first capability ID register block:  
E0 h  
In this case the first capability is the product-specific Capability Identifier  
(CAPID0).  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
81  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.12  
EPBAR—Egress Port Base Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
40h  
00000000h  
RO, R/W  
32 bits  
Size:  
This is the base address for the Egress Port Root Complex MMIO configuration space. This window  
of addresses contains the Egress Port Root Complex Register set for the PCI Express Hierarchy  
associated with the GMCH. There is no physical memory within this 4-kB window that can be  
addressed. The  
mapped space.  
4 kB reserved by this register does not alias to any PCI2.3 compliant memory  
On reset, this register is disabled and must be enabled by writing a 1 to RCBAREN [Dev 0, offset 54h,  
bit 27]  
Bit  
Access &  
Default  
Description  
31:12  
R/W  
Egress Port RCRB Base Address –  
0000 0 h  
This field corresponds to bits 31 to 12 of the base address Egress port RCRB  
MMIO configuration space.  
BIOS will program this register resulting in a base address for a 4KB block of  
contiguous memory address space. This register ensures that a naturally  
aligned 4KB space is allocated within total addressable memory space of 4GB.  
System Software uses this base address to program the Egress Port RCRB and  
associated registers.  
11:0  
Reserved  
82  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.13  
MCHBAR—GMCH Register Range Base Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
44h  
00000000h  
RO, R/W  
32 bits  
Size:  
This is the base address for the GMCH MMIO Configuration space. There is no physical memory  
within this 16-kB window that can be addressed. The 16KB reserved by this register does not alias to  
any PCI2.3 compliant memory mapped space.  
On reset, this register is disabled and must be enabled by writing a 1 to MCHBAREN [Dev 0, offset  
54h, bit 28].  
Bit  
Access &  
Default  
Description  
31:14  
R/W  
0000 h  
MCHBAR Base Address –  
This field corresponds to bits 31 to 14 of the base address MCHBAR  
configuration space.  
BIOS will program this register resulting in a base address for a 16-kB block of  
contiguous memory address space. This register ensures that a naturally  
aligned 16KB space is allocated within total addressable memory space of 4 GB.  
System Software uses this base address to program the GMCH register set.  
Reserved  
13:0  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
83  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.14  
PCIEXBAR—PCI Express Register Range Base Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
48h  
E0000000h  
RO, R/W  
32 bits  
Size:  
This is the base address for the PCI Express configuration space. This window of addresses contains  
the 4 kB of configuration space for each PCI Express device that can potentially be part of the PCI  
Express Hierarchy associated with the GMCH. There is no actual physical memory within this 256-  
MB window that can be addressed. Each PCI Express Hierarchies requires a PCI Express BASE  
register. The GMCH supports one PCI Express hierarchy.  
The 256 MB reserved by this register does not alias to any PCI2.3 compliant memory mapped space.  
For example, MCHBAR reserves a 16-KB space and reserves a 4-KB space both outside of  
PCIEXBAR space. They cannot be overlaid on the space reserved by PCIEXBAR for Device 0.  
On reset, this register is disabled and must be enabled by writing a 1 to PCIEXBAREN [Dev 0, offset  
54h, bit 31]  
If the PCI Express Base address [bits 31:28] were set to Fh, an overlap with the High BIOS area, APIC  
ranges would result. Software must guarantee that these ranges do not overlap. The PCI Express Base  
Address cannot be less than the maximum address written to the TOP of physical memory register  
(TOLUD).  
Bit  
Access &  
Default  
Description  
31:28  
R/W  
PCI Express Base Address –  
1110 b  
This field corresponds to bits 31 to 28 of the base address for PCI Express  
enhanced configuration space.  
BIOS will program this register resulting in a base address for a 256 MB block of  
contiguous memory address space. Having control of those particular 4 bits  
insures that this base address will be on a 256-MB boundary, above the lowest  
256 MB and still within total addressable memory space, currently 4 GB.  
Configuration software will read this register to determine where the 256 MB  
range of addresses resides for this particular host bridge.  
The address used to access the PCI Express configuration space for a specific  
device can be determined as follows:  
PCI Express Base Address + Bus Number * 1MB + Device Number * 32 kB +  
Function Number * 4 kB  
The address used to access the PCI Express configuration space for Device 1 in  
this component would be as follows.  
PCI Express Base Address + 0 * 1 MB + 1 * 32 kB + 0 * 4 kB = PCI Express  
Base Address + 32 kB.  
NOTE: This address is at the beginning of the 4 kB space that contains both the  
PCI compatible configuration space and the PCI Express extended  
configuration space.  
27:0  
Reserved  
84  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.15  
DMIBAR—DMI Root Complex Register Range Base Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
4Ch  
00000000h  
RO, R/W  
32 bits  
Size:  
This is the base address for the DMI Root Complex MMIO configuration space. This window of  
addresses contains the DMI Root Complex Register set for the PCI Express Hierarchy associated with  
the GMCH. There is no physical memory within this 4KB window that can be addressed. The 4 kB  
reserved by this register does not alias to any PCI2.3 compliant memory mapped space.  
On reset, this register is disabled and must be enabled by writing a 1 to RCBAREN [Dev 0, offset 54h,  
and bit 29].  
Bit  
Access &  
Default  
Description  
31:12  
R/W  
0000 0 h  
DMI root complex MMIO register set Base Address –  
This field corresponds to bits 31 to 12 of the base address DMI RCRB MMIO  
configuration space.  
BIOS will program this register resulting in a base address for a 4KB block of  
contiguous memory address space. This register ensures that a naturally aligned  
4KB space is allocated within total addressable memory space of 4GB.  
System Software uses this base address to program the DMI RCRB registers.  
11:0  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
85  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.16  
GGC-GMCH Graphics Control Register (Device 0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
52-53h  
0030h  
RO, R/W  
16 bits  
Size:  
Bit  
15:7  
Access & Default  
Descriptions  
Reserved  
6:4  
R/W  
Graphics Mode Select (GMS).  
011 b  
This field is used to select the amount of Main Memory that is pre-  
allocated to support the Internal Graphics device in VGA (non-linear)  
and Native (linear) modes.  
Stolen Memory Bases is located between (TOLUD – SMSize) to  
TOUD.  
000 =  
No memory pre-allocated. Device 2 (IGD) does not claim  
VGA cycles (Mem and IO), and the Sub-Class Code field within  
Device 2 function 0 Class Code register is 80.  
001 =  
DVMT (UMA) mode, 1 MB of memory pre-allocated for  
frame buffer.  
010 =  
011 =  
Reserved  
DVMT (UMA) mode, 8 MB of memory pre-allocated for  
frame buffer.  
100 : 111 = Reserved  
Note: This register is locked and becomes Read Only when the  
D_LCK bit in the SMRAM register is set. If IGD is disabled, this field  
should be set to 000b  
3:2  
1
Reserved  
R/W/L  
0 b  
IGD VGA Disable (IVD).  
0: Enable (Default). Device 2 (IGD) claims VGA memory and IO  
cycles, the Sub-Class Code within Device 2 Class Code register is 00.  
1: Disable. Device 2 (IGD) does not claim VGA cycles (Mem and IO),  
and the Sub-Class Code field within Device 2 function 0 Class Code  
register is 80.  
0
Reserved  
86  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.17  
DEVEN—Device Enable  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
54h  
00000019h  
RO, R/W, R/W/L  
32 bits  
Size:  
This register allows for enabling/disabling of PCI devices and functions that are within the GMCH.  
This table describes the behavior of all combinations of transactions to devices controlled by this  
register.  
Bit  
Access &  
Default  
Description  
31  
R/W  
0 b  
82915GM / 82915GME / 82915PM GMCH:  
PCIEXBAR Enable (PCIEXBAREN):  
0: The PCIEXBAR register is disabled. Memory read and write transactions proceed  
as if there were no PCIEXBAR register.  
1: The PCIEXBAR register is enabled. Memory read and write transactions whose  
address bits 31:28 match PCIEXBAR 31:28 will be translated to configuration reads and  
writes within the GMCH.  
82910GML / 82910GMLE / 82915GMS: Reserved  
Reserved  
DMIBAR Enable (DMIBAREN):  
0: DMIBAR is disabled and does not claim any memory.  
1: DMIBAR memory mapped accesses are claimed and decoded appropriately.  
MCHBAR Enable (MCHBAREN):  
0: MCHBAR is disabled and does not claim any memory.  
1: MCHBAR memory mapped accesses are claimed and decoded appropriately.  
EPBAR Enable (EPBAREN):  
0: EPBAR is disabled and does not claim any memory.  
1: EPBAR memory mapped accesses are claimed and decoded appropriately.  
Reserved.  
82915GM / 82915GME / 82910GML / 82910GMLE / 82915GMS :  
Internal Graphics Engine Function 1 (D2F1EN):  
0: Bus 0 Device 2 Function 1 is disabled and hidden  
1: Bus 0 Device 2 Function 1 is enabled and visible  
NOTE: If Device 2 Function 0 is disabled and hidden, then Device 2 Function 1 is also  
disabled and hidden independent of the state of this bit.  
82915PM:  
30  
29  
R/W/L  
0 b  
28  
27  
R/W/L  
0 b  
R/W/L  
0 b  
26:5  
4
R/W/L  
1 b  
Reserved.  
3
R/W/L  
1 b  
82915GM / 82915GME / 82910GML / 82910GMLE / 82915GMS :  
Internal Graphics Engine Function 0 (D2F0EN):  
0: Bus 0 Device 2 Function 0 is disabled and hidden  
1: Bus 0 Device 2 Function 0 is enabled and visible  
NOTE: If this GMCH does not have internal graphics capability (CAPID0[38] = 1) then  
Device 2 Function 0 is disabled and hidden independent of the state of this bit.  
82915PM:  
Reserved.  
2
1
Reserved  
R/W/L  
1 b  
82915GM / 82915GME / 82915PM:  
PCI Express Graphics Attach (D1EN):  
0: Bus 0 Device 1 Function 0 is disabled and hidden  
1: Bus 0 Device 1 Function 0 is enabled and visible  
The SDVO Presence HW strap determines default value. Device 1 is Disabled on Reset  
when the SDVO Presence strap is sampled high, and is enabled otherwise.  
82915GMS / 82910GML / 82910GMLE:  
Reserved.  
0
RO  
1 b  
Host Bridge: Bus 0 Device 0 Function 0 may not be disabled and is therefore hardwired  
to 1.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
87  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.18  
PAM0—Programmable Attribute Map 0  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
90h  
00h  
RO, R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS area from 0F0000h-  
0FFFFFh  
The GMCH allows programmable memory attributes on 13 Legacy memory segments of various sizes  
in the 640 kB to 1 MB address range. Seven Programmable Attribute Map (PAM) Registers are used to  
support these features. Cacheability of these areas is controlled via the MTRR registers in the  
processor. Two bits are used to specify memory attributes for each memory segment. These bits apply  
to both host accesses and PCI initiator accesses to the PAM areas. These attributes are:  
RE - Read Enable. When RE = 1, the CPU read accesses to the corresponding memory segment are  
claimed by the GMCH and directed to main memory. Conversely, when RE = 0, the host read accesses  
are directed to PCI_A.  
WE - Write Enable. When WE = 1, the host write accesses to the corresponding memory segment are  
claimed by the GMCH and directed to main memory. Conversely, when WE = 0, the host write  
accesses are directed to PCI_A.  
The RE and WE attributes permit a memory segment to be Read Only, Write Only, Read/Write, or  
disabled. For example, if a memory segment has RE = 1 and WE = 0, the segment is Read Only.  
Each PAM Register controls two regions, typically 16 kB in size.  
Bit  
Access &  
Default  
Description  
7:6  
5:4  
Reserved.  
R/W  
00 b  
0F0000-0FFFFF Attribute (HIENABLE):  
This field controls the steering of read and write cycles that address the BIOS area from  
0F0000 to 0FFFFF.  
00 = DRAM Disabled: All accesses are directed to DMI.  
01 = Read Only: All reads are sent to DRAM. All writes are forwarded to DMI.  
10 = Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11 = Normal DRAM Operation: All reads and writes are serviced by DRAM.  
3:0  
Reserved  
Warning: The GMCH may hang if a PCI Express Graphics Attach or DMI originated access to Read Disabled or  
Write Disabled PAM segments occur (due to a possible IWB to non-DRAM). For these reasons the  
following critical restriction is placed on the programming of the PAM regions:  
At the time that a DMI or PCI Express Graphics Attach accesses to the PAM region may occur, the  
targeted PAM segment must be programmed to be both readable and writeable.  
88  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.19  
PAM1—Programmable Attribute Map 1  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
91h  
00h  
RO, R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0C0000h-  
0C7FFFh.  
Bit  
Access &  
Default  
Description  
7:6  
Reserved.  
5:4  
R/W  
00 b  
0C4000-0C7FFF Attribute (HIENABLE):  
This field controls the steering of read and write cycles that address the BIOS area from  
0C4000 to 0C7FFF.  
00:DRAM Disabled:  
01:Read Only:  
Accesses are directed to DMI.  
All reads are serviced by DRAM. All writes are forwarded to DMI.  
All writes are sent to DRAM. Reads are serviced by DMI.  
10:Write Only:  
11:Normal DRAM Operation: All reads and writes are serviced by DRAM.  
3:2  
1:0  
Reserved.  
R/W  
00 b  
0C0000-0C3FFF Attribute (LOENABLE):  
This field controls the steering of read and write cycles that address the BIOS area from  
0C0000 to 0C3FFF.  
00:DRAM Disabled:  
Accesses are directed to DMI.  
01:Read Only:  
DMI.  
All reads are serviced by DRAM. All writes are forwarded to  
10:Write Only:  
All writes are sent to DRAM. Reads are serviced by DMI.  
11:Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
89  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.20  
PAM2—Programmable Attribute Map 2  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
92h  
00h  
RO, R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0C8000h-  
0CFFFFh.  
Bit  
Access &  
Default  
Description  
Reserved.  
7:6  
5:4  
0CC000-0CCFFF Attribute (HIENABLE):  
R/W  
00 b  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
0C8000-0CBFFF Attribute (LOENABLE):  
R/W  
00 b  
This field controls the steering of read and write cycles that address the BIOS area from  
0C8000 to 0CBFFF.  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
90  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.21  
PAM3—Programmable Attribute Map 3  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
93h  
00h  
RO, R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0D0000h-  
0D7FFFh.  
Bit  
Access &  
Default  
Description  
Reserved  
7:6  
5:4  
0D4000-0D7FFF Attribute (HIENABLE):  
R/W  
00 b  
This field controls the steering of read and write cycles that address the BIOS area  
from 0D4000 to 0D7FFF.  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
0D0000-0D3FFF Attribute (LOENABLE):  
R/W  
00 b  
This field controls the steering of read and write cycles that address the BIOS area  
from 0D0000 to 0D3FFF.  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
91  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.22  
PAM4—Programmable Attribute Map 4  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
94h  
00h  
RO, R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0D8000h-  
0DFFFFh.  
Bit  
Access &  
Default  
Description  
7:6  
Reserved  
5:4  
R/W  
00 b  
0DC000-0DFFFF Attribute (HIENABLE):  
This field controls the steering of read and write cycles that address the BIOS area from  
0DC000 to 0DFFFF.  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
R/W  
00 b  
0D8000-0DBFFF Attribute (LOENABLE):  
This field controls the steering of read and write cycles that address the BIOS area from  
0D8000 to 0DBFFF.  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
92  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.23  
PAM5—Programmable Attribute Map 5  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
95h  
00h  
RO, R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0E0000h-  
0E7FFFh.  
Bit  
Access &  
Default  
Description  
Reserved  
7:6  
5:4  
0E4000-0E7FFF Attribute (HIENABLE):  
R/W  
00 b  
This field controls the steering of read and write cycles that address the BIOS area from  
0E4000 to 0E7FFF.  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
0E0000-0E3FFF Attribute (LOENABLE):  
R/W  
00 b  
This field controls the steering of read and write cycles that address the BIOS area from  
0E0000 to 0E3FFF.  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
93  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.24  
PAM6—Programmable Attribute Map 6  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
96h  
00h  
RO, R/W  
8 bits  
Size:  
This register controls the read, write, and shadowing attributes of the BIOS areas from 0E8000h-  
0EFFFFh.  
Access &  
Default  
Description  
Bit  
7:6  
Reserved  
5:4  
R/W  
00 b  
0EC000-0EFFFF Attribute (HIENABLE):  
This field controls the steering of read and write cycles that address the BIOS area from  
0E4000 to 0E7FFF.  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
Reserved  
3:2  
1:0  
R/W  
00 b  
0E8000-0EBFFF Attribute (LOENABLE):  
This field controls the steering of read and write cycles that address the BIOS area from  
0E0000 to 0E3FFF.  
00: DRAM Disabled: Accesses are directed to DMI.  
01: Read Only: All reads are serviced by DRAM. All writes are forwarded to DMI.  
10: Write Only: All writes are sent to DRAM. Reads are serviced by DMI.  
11: Normal DRAM Operation: All reads and writes are serviced by DRAM.  
94  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.25  
LAC—Legacy Access Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
97h  
00h  
RO, R/W  
8 bits  
Size:  
This 8-bit register controls a fixed DRAM hole from 15-16 MB.  
Bit  
Access  
&
Default  
Description  
Hole Enable (HEN):  
7
R/W  
0 b  
This field enables a memory hole in DRAM space. The DRAM that lies "behind" this  
space is not remapped.  
0: No memory hole.  
1: Memory hole from 15 MB to 16 MB.  
Reserved.  
6:1  
0
MDA Present (MDAP):  
R/W  
0 b  
This bit works with the VGA Enable bits in the BCTRL register of device 1 to control the  
routing of CPU initiated transactions targeting MDA compatible I/O and memory address  
ranges.  
This bit should not be set if device 1's VGA Enable bit is not set. If device 1's VGA enable  
bit is not set, then accesses to IO address range x3BCh-x3BFh are forwarded to DMI.  
If the VGA enable bit is set and MDA is not present, then accesses to IO address range  
x3BCh-x3BFh are forwarded to PCI Express Graphics if the address is within the  
corresponding IOBASE and IOLIMIT, otherwise they are forwarded to DMI.  
MDA resources are defined as the following:  
Memory:  
I/O:  
0B0000h - 0B7FFFh  
3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh,  
(including ISA address aliases, A[15:10] are not used in decode)  
Any I/O reference that includes the I/O locations listed above, or their aliases, will be  
forwarded to DMI even if the reference includes I/O locations not listed above.  
The following table shows the behavior for all combinations of MDA and VGA:  
VGAEN  
MDAP  
Description  
0
0
All References to MDA and VGA space are routed to  
HI  
0
1
1
0
Illegal combination  
All VGA and MDA references are routed to PCI  
Express Graphics Attach.  
1
1
All VGA references are routed to PCI Express  
Graphics Attach. MDA references are routed to HI  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
95  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.26  
TOLUD—Top of Low Used DRAM Register  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
9Ch  
08h  
RO, R/W  
8 bits  
Size:  
This 8-bit register defines the Top of Usable DRAM (TOLUD). Graphics Stolen Memory and TSEG  
are within dram space defined under TOLUD. From the top of low used DRAM, GMCH claims 1 to 64  
MB of dram for internal graphics if enabled and 1, 2 or 8 MB of DRAM for TSEG if enabled.  
Bit  
Access  
&
Default  
Description  
Top of Low Usable Dram (TOUD)-R/W  
7:3  
R/W  
01 h  
This register contains bits 31 to 27 of an address one byte above the maximum  
DRAM memory that is usable by the operating system. Address bits 31 to 27  
programmed to a “01h” implies a minimum memory size of 128 MB.  
Configuration software must set this value to the smaller of the following two  
choices:  
- Maximum amount of memory in the system plus one byte  
- Minimum address allocated for PCI memory  
Address bits 26:0 are assumed to be 000_0000h for the purposes of address  
comparison. The Host interface positively decodes an address towards dram if the  
incoming address is less than that value programmed in this register.  
This register must not be set to 0000 0 b.  
Note that the Top of Usable Dram is the lowest address above both Graphics Stolen  
memory and TSEG. The host interface determines the base of Graphics Stolen  
memory by subtracting the graphics stolen memory size from TOLUD and further  
decrements by TSEG size to determine base of TSEG.  
Reserved.  
2:0  
Programming Example (for 82915GM, 82915GMS, 82915GME, 82910GML, 82910GMLE  
GMCH only):  
C1DRB7 is set to 4 GB  
TSEG is enabled and TSEG size is set to 1 MB  
Internal Graphics is enabled and Graphics Mode Select is set to 32 MB  
BIOS knows the OS requires 1G of PCI space  
The BIOS also knows the range from FEC0_0000h to FFFF_FFFFh is not usable by the system. This  
20-MB range at the very top of addressable memory space is lost to APIC.  
According to the above equation, TOLUD is originally calculated to: 4 GB = 1_0000_0000h  
The system memory requirements are:  
4 GB (max addressable space) – 1 GB (PCI space) - 20 MB (lost memory) = 3 GB - 128 MB  
(minimum granularity) = B800_0000h  
Since B800_0000h (PCI and other system requirements) is less than 1_0000_0000h; TOLUD should  
be programmed to B8h.  
96  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.27  
SMRAM—System Management RAM Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
9Dh  
02h  
RO, R/W/L  
8 bits  
Size:  
The SMRAMC register controls how accesses to Compatible and Extended SMRAM spaces are  
treated. The Open, Close, and Lock bits function only when G_SMRAME bit is set to a 1. Also, the  
OPEN bit must be reset before the LOCK bit is set.  
Bit  
Access &  
Default  
Description  
7
6
Reserved.  
R/W/L  
0 b  
SMM Space Open (D_OPEN):  
(When D_OPEN=1 and D_LCK=0, the SMM space DRAM is made visible even  
when SMM decode is not active.  
This is intended to help BIOS initialize SMM space. Software should ensure that  
D_OPEN=1 and D_CLS=1 are not set at the same time.  
5
R/W/L  
0 b  
SMM Space Closed (D_CLS):  
When D_CLS = 1 SMM space DRAM is not accessible to data references, even if  
SMM decode is active. Code references may still access SMM space DRAM.  
This will allow SMM software to reference through SMM space to update the  
display even when SMM is mapped over the VGA range. Software should ensure  
that D_OPEN=1 and D_CLS=1 are not set at the same time. Note that the D_CLS  
bit only applies to Compatible SMM space.  
4
R/W/L  
0 b  
SMM Space Locked (D_LCK):  
When D_LCK is set to 1 then D_OPEN is reset to 0 and D_LCK, D_OPEN,  
C_BASE_SEG, H_SMRAM_EN, TSEG_SZ and TSEG_EN become read only.  
D_LCK can be set to 1 via a normal configuration space write but can only be  
cleared by a Full Reset. The combination of D_LCK and D_OPEN provide  
convenience with security. The BIOS can use the D_OPEN function to initialize  
SMM space and then use D_LCK to "lock down" SMM space in the future so that  
no application software (or BIOS itself) can violate the integrity of SMM space,  
even if the program has knowledge of the D_OPEN function.  
3
R/W  
0 b  
Global SMRAM Enable (G_SMRARE):  
If set to a 1, then Compatible SMRAM functions are enabled, providing 128 KB of  
DRAM accessible at the A0000h address while in SMM (ADSB with SMM decode).  
To enable Extended SMRAM function this bit has be set to 1. Refer to the section  
on SMM for more details. Once D_LCK is set, this bit becomes read only.  
2:0  
RO  
Compatible SMM Space Base Segment (C_BASE_SEG):  
010 b  
This field indicates the location of SMM space. SMM DRAM is not remapped. It is  
simply made visible if the conditions are right to access SMM space, otherwise the  
access is forwarded to DMI. Since the GMCH supports only the SMM space  
between A0000 and BFFFF, this field is hardwired to 010.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
97  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.28  
ESMRAMC—Extended System Management RAM Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
9Eh  
38h  
RO, R/W, R/WC, R/W/L  
8 bits  
Size:  
The Extended SMRAM register controls the configuration of Extended SMRAM space. The Extended  
SMRAM (E_SMRAM) memory provides a write-back cacheable SMRAM memory space that is above  
1 MB.  
Bit  
Access  
&
Default  
Description  
7
R/W  
0 b  
Enable High SMRAM (H_SMRAME):  
Controls the SMM memory space location (i.e. above 1 MB or below 1 MB) when  
G_SMRAME is 1 and H_SMRAME this bit is set to 1, the high SMRAM memory space is  
enabled.  
SMRAM accesses within the range 0FEDA0000h to 0FEDBFFFFh are remapped to  
DRAM addresses within the range 000A0000h to 000BFFFFh.  
Once D_LCK has been set, this bit becomes read only.  
Invalid SMRAM Access (E_SMERR):  
This bit is set when CPU has accessed the defined memory ranges in Extended SMRAM  
(High Memory and T-segment) while not in SMM space and with the D-OPEN bit = 0. It is  
software’s responsibility to clear this bit.  
6
R/W/C  
0 b  
The software must write a 1 to this bit to clear it.  
SMRAM Cacheable (SM_CACHE):  
This bit is forced to 1 by the GMCH .  
L1 Cache Enable for SMRAM (SM_L1):  
This bit is forced to 1 by the GMCH.  
5
4
RO  
1 b  
RO  
1 b  
3
RO  
1 b  
L2 Cache Enable for SMRAM (SM_L2):  
This bit is forced to 1 by the GMCH.  
2:1  
R/W  
00 b  
TSEG Size (TSEG_SZ):  
Selects the size of the TSEG memory block if enabled. Memory from the top of DRAM  
space is partitioned away so that it may only be accessed by the processor interface and  
only then when the SMM bit is set in the request packet. Non-SMM accesses to this  
memory region are sent to DMI when the TSEG memory block is enabled.  
00 - 1MB TSEG.  
(TOLUD – Graphics Stolen Memory Size – 1M) to (TOLUD – Graphics Stolen Memory  
Size).  
01 - 2MB TSEG  
(TOLUD – Graphics Stolen Memory Size – 2M) to (TOLUD – Graphics Stolen Memory  
Size).  
10 - 8 MB TSEG  
(TOLUD – Graphics Stolen Memory Size – 8M) to (TOLUD – Graphics Stolen Memory  
Size).  
11 - Reserved.  
Once D_LCK has been set, these bits becomes read only.  
0
R/W/L  
0 b  
TSEG Enable (T_EN):  
Enabling of SMRAM memory for Extended SMRAM space only.  
When G_SMRAME =1 and TSEG_EN = 1, the TSEG is enabled to appear in the  
appropriate physical address space.  
Note that once D_LCK is set, this bit becomes read only.  
98  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.29  
ERRSTS—Error Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
C8h  
0000h  
RO, R/WC  
16 bits  
Size:  
This register is used to report various error conditions via the SERR messaging mechanism. An SERR  
message is generated on a zero to one transition of any of these flags (if enabled by the ERRCMD and  
PCICMD registers). These bits are set regardless of whether or not the SERR is enabled and generated.  
After the error processing is complete, the error logging mechanism can be unlocked by clearing the  
appropriate status bit by software writing a 1 to it.  
Bit  
Access  
&
Default  
Description  
Reserved  
15:13  
12  
GMCH Software Generated Event for SMI:  
R/WC  
0 b  
This indicates the source of the SMI was a Device 2 Software Event.  
GMCH Thermal Sensor Event for SMI/SCI/SERR:  
11  
R/WC  
0 b  
Indicates that a GMCH Thermal Sensor trip has occurred and an SMI, SCI, or SERR  
has been generated. The status bit is set only if a message is sent based on Thermal  
event enables in Error command, SMI command and Sci command registers. A trip  
point can generate one of SMI, SCI, or SERR interrupts (two or more per event is  
illegal). Multiple trip points can generate the same interrupt, if software chooses this  
mode, subsequent trips may be lost. If this bit is already set, then an interrupt message  
will not be sent on a new thermal sensor event.  
Reserved  
10  
9
LOCK to non-DRAM Memory Flag (LCKF):  
R/WC  
0 b  
When this bit is set to 1, the GMCH has detected a lock operation to memory space  
that did not map into DRAM.  
Received Refresh Timeout Flag(RRTOF):  
8
7
R/WC  
0 b  
This bit is set when 1024 memory core refreshes are enqueued.  
DRAM Throttle Flag (DTF):  
R/WC  
0 b  
1: Indicates that a DRAM Throttling condition occurred.  
0: Software has cleared this flag since the most recent throttling event  
Reserved.  
6:0  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
99  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.30  
ERRCMD—Error Command  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
CAh  
0000h  
RO, R/W  
16 bits  
Size:  
This register controls the GMCH responses to various system errors. Since the GMCH does not have  
an SERRB signal, SERR messages are passed from the GMCH to the ICH over DMI. When a bit in  
this register is set, a SERR message will be generated on DMI whenever the corresponding flag is set  
in the ERRSTS register. The actual generation of the SERR message is globally enabled for Device #0  
via the PCI Command register.  
Bit  
Access  
&
Default  
Description  
15:12  
11  
Reserved  
R/W  
0 b  
SERR on GMCH Thermal Sensor Event (TSESERR):  
1: The GMCH generates a SERR when bit 11 of the ERRSTS is set. The SERR  
must not be enabled at the same time as the SMI for the same thermal sensor event.  
0: Reporting of this condition via SERR messaging is disabled.  
10  
9
R/W  
0 b  
Reserved  
R/W  
0 b  
SERR on LOCK to non-DRAM Memory (LCKERR):  
1: The GMCH will generate a SERR special cycle whenever a CPU lock cycle is  
detected that does not hit DRAM.  
0: Reporting of this condition via SERR messaging is disabled.  
8
7
R/W  
0 b  
SERR on DRAM Refresh Timeout (DRTOERR):  
1: The GMCH generates an SERR special cycle when a DRAM Refresh timeout  
occurs.  
0: Reporting of this condition via SERR messaging is disabled.  
R/W  
0 b  
SERR on DRAM Throttle Condition (DTCERR):  
1: The GMCH generates an SERR DMI special cycle when a DRAM Read or Write  
Throttle condition occurs.  
0: Reporting of this condition via SERR messaging is disabled.  
6:0  
Reserved.  
100  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Bridge Device 0 - Configuration Registers (D0:F0)  
R
4.1.31  
SKPD—Scratchpad Data (D0:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
DCh  
00000000h  
R/W  
Size:  
32 bits  
This register holds 32 writable bits with no functionality behind them. It is for the convenience of  
BIOS and graphics drivers.  
Bit  
Access &  
Default  
Description  
Scratchpad Data: 1 DWORD of data storage.  
31:0  
R/W  
00000000 h  
4.1.32  
CAPID0—Capability Identifier  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
0
E0h  
xxxxxxxxxxxx90009h  
RO  
Size:  
72 bits  
Bit  
Access  
Description  
&
Default  
71:24  
23:16  
RO  
Intel Reserved  
CAPID Length:  
RO  
09 h  
RO  
This field has the value 09h to indicate the structure length (9 bytes).  
Next Capability Pointer:  
15:8  
7:0  
00 h  
RO  
This field is hardwired to 00h indicating the end of the capabilities linked list.  
CAP_ID:  
09 h  
This field has the value 1001b to identify the CAP_ID assigned by the PCI SIG for  
vendor dependent capability pointers.  
§
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
101  
Device #0 Memory Mapped I/O Register  
R
5 Device #0 Memory Mapped I/O  
Register  
Note: All accesses to the Memory Mapped registers must be made as a single DWORD (4 bytes) or  
less. Access must be aligned on a natural boundary.  
5.1  
MCHBAR Registers Device #0  
A variety of timing & control registers have been moved to MMR space of Device 0 due to space  
constraints.  
To simplify the read/write logic to the SRAM, BIOS is required to write and read 32-b aligned Double  
Words. The SRAM includes a separate Write Enable for every Double Word.  
The BIOS read/write cycles are performed in a memory mapped IO range that is setup for this purpose  
in the PCI configuration space, via std. PCI range scheme.  
5.2  
Device #0 MCHBAR Chipset Control Register Space  
Address  
Offset (h)  
Register  
Symbol  
Default  
Value  
Access  
Register Name  
000-039h  
040h  
Reserved  
HIC  
Host Interface Configuration  
Reserved  
041-0FFh  
100h  
C0DRB0  
C0DRB1  
C0DRB2  
C0DRB3  
Ch0 DRAM Rank Boundary Address 0  
Ch0 DRAM Rank Boundary Address 1  
Ch0 DRAM Rank Boundary Address 2  
Ch0 DRAM Rank Boundary Address 3  
Reserved  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
101h  
102h  
103h  
104-107h  
108h  
C0DRA0  
C0DRA2  
Ch0 DRAM Rank 0,1 Attribute  
Ch0 DRAM Rank 2,3 Attribute  
Reserved  
00h  
00h  
RO, R/W  
RO, R/W  
109h  
10A-10Bh  
10Ch  
C0DCLKDIS  
Ch0 DRAM Clock Disable  
Reserved  
00h  
RO, R/W  
10Dh  
10E-10Fh  
110-113h  
114-117h  
118-11Bh  
11C-11Fh  
120-123h  
124-127h  
138-13Bh  
C0BNKARC  
C0DRT0  
Ch0 Bank Architecture  
0000h  
RO, R/W  
RO, R/W  
RO, R/W  
RO, R/W  
Ch0 DRAM Timing Register 0  
Ch0 DRAM Timing Register 1  
Ch0 DRAM Timing Register2  
Reserved  
A96000E8h  
00006111h  
000003FFh  
C0DRT1  
C0DRT2  
C0DRC0  
C0DRC1  
C0DRC2  
Ch0 DRAM Controller Mode Register 0  
Ch0 DRAM Controller Mode Register 1  
Ch0 DRAM Controller Mode Register 2  
00000000h  
00000000h  
00000000h  
RO, R/W  
RO, R/W  
RO, R/W  
102  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
Address  
Offset (h)  
Register  
Symbol  
Default  
Value  
Access  
Register Name  
13C-157h  
158-15Bh  
15C-17Fh  
180h  
Reserved  
C0DTC  
Ch0 DRAM Throttling Control  
00000000h  
RO, R/L, R/W/L  
Reserved  
C1DRB0  
C1DRB1  
C1DRB2  
C1DRB3  
Channel 1 DRAM Rank Boundary Address  
0
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
181h  
182h  
183h  
Channel 1 DRAM Rank Boundary Address  
1
Channel 1 DRAM Rank Boundary Address  
2
Channel 1 DRAM Rank Boundary Address  
3
184-187h  
188h  
Reserved  
C1DRA0  
C1DRA2  
Channel 1 Dram Rank 0,1 Attribute  
Channel 1 Dram Rank 2,3 Attribute  
Reserved  
00h  
00h  
RO, R/W  
RO, R/W  
189h  
18A-18Bh  
18Ch  
C1DCLKDIS  
Channel 1 DRAM Clock Disable  
Reserved  
00h  
RO, R/W  
18Dh  
18E-18Fh  
190-193h  
194-197h  
198-19Bh  
19C-19Fh  
1A0-1A3h  
1A4-1A5h  
1A6-1A7h  
1A8-1AFh  
1B0-1D7h  
1D8-1DBh  
1DC-1FFh  
C1BNKARC  
C1DRT0  
Channel 1 Bank Architecture  
Channel 1 DRAM Timing Register 0  
Channel 1 DRAM Timing Register 1  
Channel 1 DRAM Timing Register 2  
Reserved  
0000h  
RO, R/W  
RO, R/W  
RO, R/W  
RO, R/W  
A96000E8h  
00006111h  
000003FFh  
C1DRT1  
C1DRT2  
C1DRC0  
C1DRC1  
Channel 1 DRAM Controller Mode 0  
Channel 1 DRAM Controller Mode 1  
Reserved  
40002801h  
00000000h  
RO, R/W  
RO, R/W  
C1DRC2  
C1DTC  
DCC  
Channel 1 DRAM Controller Mode 2  
Reserved  
00000000h  
RO, R/W  
Channel 1 DRAM Throttling Control  
Reserved  
00000000h  
00000000h  
RO, R/L, R/W/L  
RO, R/W  
200-203h  
204-27Fh  
DRAM Channel Control  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
103  
Device #0 Memory Mapped I/O Register  
R
5.2.1  
HIC Host Interface Configuration Register  
PCI Device:  
Address Offset:  
Size:  
MCHBAR  
040h  
32 bits  
Bit  
Access &  
Default  
Description  
Reserved  
31:9  
8
PCI Express Graphics / SDVO strap bit –  
Specifies the use of the PCI Express bus for external graphics muxed with DVO.  
0: SDVO disabled. PCI Express is available.  
1: SDVO enabled. PCI Express is disabled.  
Reserved  
RO  
0b  
7:2  
1
Dispatch Disable:  
RW  
0b  
0: Enables dispatch of qualified CPU-to-DRAM read requests in FSB.  
1: Dispatch occurs no sooner than T3.  
Note: BIOS must set this bit to a 1 before starting DRAM initialization. BIOS  
can set this bit to 0 after DRAM initialization is complete.  
Reserved  
0
5.2.2  
HIT1—Host Interface Test_1  
PCI Device:  
Address Offset:  
Size:  
MCHBAR  
044h  
32 bits  
Bit  
Access &  
Default  
Description  
31:6  
5
Reserved  
R/W  
0 b  
Front Side Bus Power Management Enable.  
0 = FSB Power Management Disabled (Default).  
1 = FSB Power Management Enabled.  
C2 FSB Power Management Enable  
4
R/W  
0 b  
0 = C2 FSB Power Management Disabled.  
1 = C2 FSB Power Management Enabled.  
Reserved  
3:0  
104  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.2.3  
C0DRB0—Channel 0 DRAM Rank Boundary 0  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
100h  
00h  
R/W  
Size:  
8 bits  
The DRAM Rank Boundary Register defines the upper boundary address of each DRAM rank with a  
granularity of 128 MB (256 Mbit, X16 devices). Each rank has its own single-byte DRB register.  
These registers are used to determine which chip select will be active for a given address.  
Channel and rank map:  
ch0 rank0:  
ch0 rank1:  
ch0 rank2:  
ch0 rank3:  
Reserved:  
100h  
101h  
102h  
103h  
104h to 107h  
In all modes, if a SO-DIMM is single-sided it appears as a populated rank and an empty rank. A DRB  
must be programmed appropriately for each.  
Each Rank is represented by a byte. Each byte has the following format.  
Bit  
Access &  
Default  
Description  
7:0  
Channel 0 DRAM Rank Boundary Address:  
This 8 bit value defines the upper and lower addresses for each DRAM rank. Bits 6:2 are  
compared against Address 31:27 to determine the upper address limit of a particular rank.  
Bits 1:0 must be 0s. Bit 7 may be programmed to a 1 in the highest DRB (DRB3) if 4 GB of  
memory is present.  
R/W  
00 h  
5.2.4  
5.2.5  
C0DRB1—Channel 0 DRAM Rank Boundary 1  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
101h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C0DRB2—Channel 0 DRAM Rank Boundary 2  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
102h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
105  
Device #0 Memory Mapped I/O Register  
R
5.2.6  
5.2.7  
C0DRB3—Channel 0 DRAM Rank Boundary 3  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
103h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C0DRA0—Channel 0 DRAM Rank 0,1 Attribute  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
108h  
00h  
RO, R/W  
8 bits  
Size:  
The DRAM Rank Attribute Registers define the page sizes to be used when accessing different  
ranks. These registers should be left with their default value (all zeros) for any rank that is  
unpopulated, as determined by the corresponding CxDRB registers. Each byte of information in the  
CxDRA registers describes the page size of a pair of ranks.  
Channel and rank map:  
Ch0 Rank0, 1: 108h  
Ch0 Rank2, 3: 109h  
Reserved. 10Ah, 10Bh:  
Bit  
Access &  
Default  
Description  
7
Reserved  
6:4  
Channel 0 DRAM odd Rank Attribute:  
This 3-bit field defines the page size of the corresponding rank.  
000: Unpopulated.  
001: Reserved  
010: 4 kB  
R/W  
000 b  
011: 8 kB  
100: 16 kB  
Others: Reserved  
Reserved  
3
2:0  
Channel 0 DRAM even Rank Attribute: This 3-bit field defines the page size of the  
corresponding rank.  
000: Unpopulated.  
001: Reserved  
010: 4 kB  
R/W  
000 b  
011: 8 kB  
100: 16 kB  
Others: Reserved  
106  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.2.8  
5.2.9  
C0DRA2—Channel 0 DRAM Rank 2,3 Attribute  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
109h  
00h  
RO, R/W  
8 bits  
Size:  
The operation of this register is detailed in the description for register C0DRA0.  
C0DCLKDIS—Channel 0 DRAM Clock Disable  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
10Ch  
00h  
RO, R/W  
8 bits  
Size:  
This register can be used to disable the System Memory Clock signals to each SO-DIMM slot, which  
can significantly reduce EMI and Power concerns for clocks that go to unpopulated SO-DIMM s.  
Clocks should be enabled based on whether a slot is populated.  
Bit  
Access &  
Default  
Description  
Reserved  
RO  
00 b  
R/W  
0 b  
7:3  
DIMM clock gate enable pair 2 - (Reserved)  
0: Tri-state the corresponding clock pair.  
1: Reserved  
2
1
0
DIMM clock gate enable pair 1  
R/W  
0 b  
0: Tri-state the corresponding clock pair.  
1: Enable the corresponding clock pair.  
DIMM clock gate enable pair 0  
R/W  
0 b  
0: Tri-state the corresponding clock pair.  
1: Enable the corresponding clock pair.  
Note: Since there are multiple clock signals assigned to each rank of a SO-DIMM , it is important to  
clarify exactly which rank width field affects which clock signal:  
Channel  
Rank  
Clocks Affected  
0
1
0 or 1  
2 or 3  
SM_CK[2:0] / SM_CK#[1:0]  
SM_CK[4:3] / SM_CK#[4:3]  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
107  
Device #0 Memory Mapped I/O Register  
R
5.2.10  
C0BNKARC—Channel 0 DRAM Bank Architecture  
PCI Device:  
Function:  
MCHBAR  
0
Address Offset:  
Default Value:  
Access:  
10Eh  
0000h  
RO, R/W  
16 bits  
Size:  
This register is used to program the bank architecture for each Rank  
Bit  
Access &  
Default  
Description  
Reserved  
RO  
00 h  
R/W  
00 b  
15:8  
Rank 3 Bank Architecture  
00: 4 Banks.  
7:6  
5:4  
3:2  
1:0  
01: 8 Banks.  
1X: Reserved  
Rank 2 Bank Architecture  
00: 4 Banks.  
R/W  
00 b  
01: 8 Banks.  
1X: Reserved  
Rank 1 Bank Architecture  
00: 4 Banks.  
R/W  
00 b  
01: 8 Banks.  
1X: Reserved  
Rank 0 Bank Architecture  
00: 4 Banks.  
R/W  
00 b  
01: 8 Banks.  
1X: Reserved  
108  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.2.11  
C0DRT0—Channel 0 DRAM Timing Register 0  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
110h  
A96000E8  
RO, R/W  
32 bits  
Size:  
This 32-bit register defines the timing parameters for all devices in this channel. The BIOS programs  
this register with the "least common denominator" values for each channel after reading configuration  
registers of each device in each channel.  
Access  
Bit  
&
Description  
Default  
Back To Back Write To Precharge Command Spacing (Same bank):  
This field determines the number of clocks between write command and a subsequent  
pre-charge command to the same bank.  
The minimum number of clocks is calculated based on this formula:  
DDR 2 :- CL – 1 + BL/2 + tWR  
DDR :- 1 + BL/2 + tWR  
0000 – 0100: Reserved  
R/W  
A h  
1110 – 1111 Reserved  
31:28  
NOTE: Write Recovery time (tWR).  
Write recovery time is a standard DDR/DDR 2 timing parameter that determines  
minimum time between a write command and a subsequent precharge command to  
the same bank. This parameter is programmable on DDR 2 SO-DIMM s and the value  
used above must match the largest delay programmed in any SO-DIMM in the  
system. Minimum recommended values are documented below.  
tWR (on CK)  
3 Clocks – DDR 333 or DDR 2 400  
4 Clocks – DDR 2 533  
Back To Back Write To Read Command Spacing (Same rank):  
This field determines the number of clocks between write command and a subsequent  
read command to the same rank.  
The minimum number of clocks is calculated based on this formula  
DDR 2 :- CL – 1 + BL/2 + tWTR  
DDR :- 1 + BL/2 + tWTR  
R/W  
9 h  
0000 – 0011 Reserved  
27:24  
1100 – 1111 Reserved  
NOTE: Write to Read Command delay (tWTR).  
The tWTR is a standard DDR timing parameter with a value of 1 clock for DDR CL=2  
or CL=2.5 and a value of 2 clocks for DDR CL=1.5 or any CL for DDR 2 400/533.  
The tWTR is used to time a RD command after a WR command to the same row.  
1 Clocks – CL = 2 or CL = 2.5 for DDR 333  
2 Clocks – CL = 1.5 or DDR2 400, DDR2 533  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
109  
Device #0 Memory Mapped I/O Register  
R
Access  
Bit  
&
Description  
Default  
Back To Back Write-Read Command Spacing (Different Rank):  
This field determines the number of turn-around clocks on the data bus needs to be  
inserted between write command and a subsequent read command.  
The minimum spacing of commands is calculated based on the formula  
DDR 2 = BL/2 + TA –1  
(Derived from: DDR 2 = BL/2 + TA (wr-rd) + WL – CL  
DDR 2 = BL/2 + TA + CL –1 – CL)  
DDR = Ceiling( DQSS + BL/2 + TA (wr-rd) - CL);  
DQSS: is the time from the write command to the associated data  
and is always 1 CK in DDR  
R/W  
01 b  
23:22  
BL: is the burst length 8  
TA: is the required write to read DQ turn-around on the bus  
can be set to 1, 2, or 3 CK using this register.  
CL: is CAS latency  
Encoding  
00:  
BL8 CMD Spacing  
6
01:  
5
10:  
4
11:  
3 (DDR only)  
Back To Back Read-Write Command Spacing:  
This field determines the # of turn-around clocks between the read command and a  
subsequent write command  
The minimum spacing of commands is calculated based on the formula  
DDR 2 :- BL/2 + TA +1  
(DDR 2 :- CL + BL/2 + TA (wr-rd) – WL  
DDR 2 :- CL + BL/2 + TA – CL +1)  
DDR :- Ceiling (CL + BL/2 + TA – 1)  
BL: is the burst length 8  
R/W  
10 b  
TA: is the required read to write DQ turn-around on the bus  
can be set to 1, 2, 3, 4 CK for DDR 2  
and can be set to 1, 2, 3 CK for DDR  
CL: is CAS latency  
21:20  
Encoding BL8 CMD Spacing  
00:  
01:  
10:  
11:  
9
8
7
6
The bigger turn-around are used in large configurations, where the difference in total  
channel delay between the fastest and slowest SO-DIMM is large.  
Back To Back Write Command Spacing:  
This field controls the turnaround time on the DQ bus for WR-WR sequence to  
different ranks in one channel.  
The minimum spacing of commands is calculated based on the formula  
R/W  
00 b  
19:18  
DDR 2 and DDR = BL/2 + TA  
Encoding Turn-Around  
BL8 CMD Spacing  
00:  
01:  
2 turnaround clocks on DQ  
1 turnaround clocks on DQ  
6
5
110  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
Access  
&
Default  
Bit  
Description  
10:  
11:  
0 turnaround clocks on DQ  
Reserved  
4
The bigger turn-around are used in large configurations, where the difference in total  
channel delay between the fastest and slowest SO-DIMM is large.  
RO  
0 b  
Reserved  
17  
Back To Back Read Command Spacing:  
This field controls the turnaround time on the DQ bus for RD-RD sequence to  
different ranks in one channel.  
The minimum spacing of commands is calculated based on the formula  
DDR 2 and DDR = BL/2 + TA  
R/W  
0 b  
16  
Encoding Turn-Around  
BL8 CMD Spacing  
0:  
1:  
2 turnaround clocks on DQ  
1 turnaround clocks on DQ  
6
5
The bigger turn-around are used in large configurations, where the difference in total  
channel delay between the fastest and slowest SO-DIMM is large.  
Read Delay (tRD).  
tRD is the number of memory clocks from CS# assert to HDRDY# assertion on the  
FSB.  
The following tRD values are supported:  
00000 – 00010:  
Reserved.  
3 mclks  
4 mclks  
00011:  
00100:  
00101:  
00110:  
00111:  
01000:  
01001:  
01010:  
...  
5 mclks  
6 mclks  
7 mclks  
8 mclks  
9 mclks  
10 mclks  
R/W  
00 h  
15:11  
11110:  
11111:  
30 mclks  
31 mclks  
Reserved  
RO  
10:9  
00 b  
Write Auto pre-charge to Activate (Same bank)  
This field determines the clock spacing between write command with Auto pre-charge  
and a subsequent Activate command to the same bank.  
The minimum spacing is calculated based on this formula:  
DDR 2 = CL -1 + BL/2 + tWR + tRP  
R/W  
8:4  
3:0  
01111 b  
DDR = 1 + BL/2 + tWR + tRP  
00000 - 00011: Reserved  
00100 – 10011: Allowed  
10100 – 11111: Reserved.  
Note: tWR is a Dram Parameter.  
R/W  
Read Auto pre-charge to Activate (Same bank)  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
111  
Device #0 Memory Mapped I/O Register  
R
Access  
Bit  
&
Description  
Default  
8 h  
This field determines the clock spacing between read command with Auto pre-charge  
and a subsequent Activate command to the same bank.  
The minimum spacing is calculated based on this formula:  
DDR 2 = tRTPC + tRP  
DDR = tRTPC + tRP  
Note tRTPC is defined in XXDRT1 bits 29:28.  
112  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.2.12  
C0DRT1—Channel 0 DRAM Timing Register 1  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
114h  
00006111h  
RO, R/W  
32 bits  
Size:  
Bit  
Access &  
Default  
Description  
31:30  
Reserved  
Read to Pre-charge (tRTPC).  
These bits control the number of clocks that are inserted between a read command  
to a row pre-charge command to the same rank.  
R/W  
00 b  
29:28  
27:24  
Encoding  
00:  
tRP  
BL/2  
01 - 11:  
Reserved  
Reserved  
Activate to Precharge delay (tRAS).  
This bit controls the number of DRAM clocks for tRAS. Minimum recommendations  
are beside their corresponding encodings.  
Recommended values:  
7h DDR 333  
R/W  
6 h  
23:20  
9h DDR 2 400  
Ch DDR 2 533  
19:18  
17  
Reserved  
Activate to Activate delay:  
Control Act to Act delay between the different banks of the same rank. Trr is  
specified in “ns”. 10ns for 2KB page size and 7.5 ns for 1KB page  
0 = 2 Clock  
R/W  
0 b  
1 = 3 Clock  
Pre-All to Activate Delay (tRPALL).  
This is applicable only to 8 bank architectures.  
Must be set to 1 if any Rank is populated with 8 bank device technology.  
0: tRPALL = tRP  
R/W  
0 b  
16  
1: tRPALL = tRP + 1  
Refresh Cycle Time (tRFC).  
Refresh cycle time is measured from a Refresh command (REF) until the first  
Activate command (ACT) to the same rank, required to perform a read or write.  
DDR 2 tRFC spec  
tRFC  
256Mb  
512Mb  
1Gb  
DDR2 400  
(5ns)  
75 ns = 15  
clks  
75 ns = 20  
clks  
105 ns = 21 clks 127.5 ns = 26 clks  
105 ns = 28 clks 127.5 ns = 34clks  
DDR2 533  
(3.75ns)  
R/W  
01100 b  
15:11  
DDR 1 tRFC spec  
tRFC  
64Mb -512Mb  
1Gb  
DDR 333  
(6ns)  
75 ns = 13 clks  
120 ns = 20 clks  
00000b – 11111b Zero Clocks to Thirty-one Clocks respectively  
Actual clocks period depends on DDR clock frequency.  
Bios should round up. If the required clock count exceeds as allowed by this  
register, the bios should set this register to the max value and set  
corresponding bits in SDBUP.  
10  
RO  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
113  
Device #0 Memory Mapped I/O Register  
R
Bit  
Access &  
Default  
Description  
CASB Latency (tCL).  
This value is programmable on DDR 2 SO-DIMM’s. The value programmed here  
must match the CAS Latency of every DDR 2 SO-DIMM in the system.  
R/W  
01 b  
Encoding  
00:  
01:  
10:  
11:  
DDR CL  
3
2.5  
Reserved  
Reserved  
DDR 2 CL  
9:8  
7
5
4
3
Reserved  
RO  
Reserved  
DRAM RASB to CASB Delay (tRCD).  
This bit controls the number of clocks inserted between a row activate command and  
a read or write command to that row.  
Encoding  
000:  
001:  
010:  
011:  
100 - 111:  
Reserved  
tRCD  
R/W  
001 b  
6:4  
3
2 DRAM Clocks  
3 DRAM Clocks  
4 DRAM Clocks  
5 DRAM Clocks  
Reserved  
RO  
DRAM RASB Precharge (tRP).  
This bit controls the number of clocks that are inserted between a row precharge  
command and an activate command to the same rank.  
Encoding  
000:  
tRP  
2 DRAM Clocks  
R/W  
2:0  
001 b  
001:  
3 DRAM Clocks  
4 DRAM Clocks  
5 DRAM Clocks  
010:  
011:  
100 - 111:  
Reserved  
114  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.2.13  
C0DRT2—Channel 0 DRAM Timing Register 2  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
118h  
0000003FFh  
RO, R/W  
32 bits  
Size:  
Bit  
Access &  
Default  
Description  
CKE Deassert Duration  
00 = 1 clk (DDR)  
01 = Reserved  
10 = 3 clk (DDR2)  
11 = Reserved  
Must be set to 10 for DDR2  
Reserved  
R/W  
00 b  
31:30  
29:18  
17:16  
RW  
00 b  
RO  
Reserved  
Reserved  
15:10  
00 h  
Power Down Exit to CS# active time (tXPDN).  
Power down exit time is tracked from the clock in which we sample CKE active,  
after exit from dynamic power down, until the clock which we drive a command  
(ACT/PRE/RD/WR).  
R/W  
11 b  
Exit time must be set to 1 clock for DDR and 2 for DDR2.  
Option to set exit time to 2 clocks for DDR is provided.  
00 = Reserved.  
9:8  
01 = Reserved  
10 = Power Down Exit time is set to 2 clocks  
11 = Power Down Exit time is set to 1 clock  
DRAM Page Close Idle Timer:  
This field determines the number of clocks a bank needs to remain unaccessed  
before dram controller considers it for pre-charge.  
001 8 DRAM clocks  
R/W  
111 b  
7:5  
111 Infinite, Pages are left open.  
Other  
Reserved  
DRAM Power down Idle Timer:  
This field determines the number of clocks a rank remains unaccessed before the  
controller powers down that rank (CKE de-asserted).  
R/W  
01000b Recommended setting when using DDR2-533 MHz memory.  
10000b Recommended setting when using DDR2-400 MHz memory.  
11111b Infinite, CKE is not de-asserted based on the timer.  
4:0  
11111 b  
Other  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
115  
Device #0 Memory Mapped I/O Register  
R
5.2.14  
C0DRC0––Channel 0 DRAM Controller Mode 0  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
120h  
40002801h  
RO, R/W  
32 bits  
Size:  
Access  
Bit  
&
Description  
Default  
31:30  
Reserved.  
Initialization Complete (IC):  
R/W  
0 b  
This bit is used for communication of software state between the memory controller  
and the BIOS. BIOS sets this bit to 1 after initialization of the DRAM memory array is  
complete.  
29  
28  
Reserved  
Active SDRAM Ranks: Implementations may use this field to limit the maximum  
number of SDRAM ranks that may be active at once.  
0000: All ranks allowed to be in the active state  
0001: One Rank  
R/W  
0 h  
27:24  
0010: Two Ranks  
0011: Three Ranks  
Others: Reserved.  
If this field is set to a non-zero value, then bits CXDRT2(4:0) should be set to the  
minimum value as described by the formula, else the system hangs.  
23:16  
Reserved  
CMD copy enable (Single channel only)  
In a single channel mode, the CMD pins (MA, BS, RAS, CAS, WE) on both channels  
are driven and are physical copies of each other.  
Setting this bit disables the CMD pins on channel B. Having the additional copy of  
CMD pins helps reduce loading on these pins, since in a two SO-DIMM system, each  
copy can be routed up to separate SO-DIMM. In a single DIMM system, the second  
copy can be disabled to eliminate unnecessary toggling of these pins.  
R/W  
0 b  
15  
If this bit needs to be set, BIOS should do that before memory init sequence.  
This bit should not be set in a dual channel system  
Reserved  
14:11  
10:8  
Refresh Mode Select (RMS):  
This field determines whether refresh is enabled and, if so, at what rate refreshes will  
be executed.  
R/W  
000: Refresh disabled  
000 b  
001: Refresh enabled. Refresh interval 15.6 µs  
010: Refresh enabled. Refresh interval 7.8 µs  
Other: Reserved  
RO  
0 b  
Reserved  
7
Mode Select (SMS).  
6:4  
R/W  
These bits select the special operational mode of the DRAM interface. The special  
modes are intended for initialization at power up.  
000 b  
000:  
Post Reset state – When the GMCH exits reset (power-up or otherwise), the  
mode select field is cleared to 000.  
During any reset sequence, while power is applied and reset is active, the GMCH de-  
asserts all CKE signals. After internal reset is de-asserted, CKE signals  
116  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
Access  
&
Default  
Bit  
Description  
remain de-asserted until this field is written to a value different than “000”.  
On this event, all CKE signals are asserted.  
During suspend, GMCH internal signal triggers DRAM controller to flush pending  
commands and enter all ranks into Self-Refresh mode. As part of resume  
sequence, GMCH will be reset – which will clear this bit field to “000” and  
maintain CKE signals de-asserted. After internal reset is de-asserted, CKE  
signals remain de-asserted until this field is written to a value different than  
“000”. On this event, all CKE signals are asserted.  
During entry to other low power states (C3, S1), GMCH internal signal triggers DRAM  
controller to flush pending commands and enter all ranks into Self-Refresh  
mode. During exit to normal mode, GMCH signal triggers DRAM controller  
to exit Self-Refresh and resume normal operation without S/W involvement.  
001:  
010:  
011:  
NOP Command Enable – All CPU cycles to DRAM result in a NOP  
command on the DRAM interface.  
All Banks Pre-charge Enable – All CPU cycles to DRAM result in an “all  
banks precharge” command on the DRAM interface.  
Mode Register Set Enable – All CPU cycles to DRAM result in a “mode  
register” set command on the DRAM interface. Host address lines are  
mapped to DRAM address lines in order to specify the command sent.  
Host address lines [12:3] are mapped to MA[9:0], and HA[13] is mapped to  
MA[11].  
101:  
Reserved  
110:  
CBR Refresh Enable – In this mode all CPU cycles to DRAM result in a  
CBR  
cycle on the DRAM interface  
Normal operation  
111:  
3
2
Reserved  
Burst Length (BL):  
The burst length is the number of QWORDS returned by a SO-DIMM per read  
command, when not interrupted. This bit is used to select the DRAM controller’s Burst  
Length operation mode. It must be set to match to the behavior of the SO-DIMM.  
R/W  
0 b  
0: Burst Length of 4  
1: Burst Length of 8  
DRAM Type (DT)  
Used to select between supported SDRAM types.  
RO  
00:  
01:  
10:  
11:  
Reserved  
1:0  
01 b  
Dual Data Rate (DDR)  
SDRAM  
Dual Data Rate 2 (DDR 2) SDRAM  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
117  
Device #0 Memory Mapped I/O Register  
R
5.2.15  
C0DRC1––Channel 0 DRAM Controller Mode 1  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
124h  
00000000h  
RO, R/W  
32 bits  
Size:  
Bit  
Access  
& Default  
Description  
31:20  
Reserved  
CKE Tri-state Enable Per Rank.  
Bit 16 corresponds to rank 0  
Bit 17 corresponds to rank 1  
Bit 18 corresponds to rank 2  
Bit 19 corresponds to rank3  
0 = CKE is not tri-stated.  
R/W  
0 h  
19:16  
1 = CKE is tri-stated. This is set only if the Rank is physically not populated.  
15:13  
12  
Reserved  
CS# Tri-state enable (CSBTRIEN):-  
When set to a 1, the DRAM controller will tri-state CS# when the corresponding CKE  
is deasserted.  
R/W  
0 b  
0:  
1:  
Address Tri-state Disabled  
Address Tri-state Enabled  
Address Tri-state enable (ADRTRIEN):-  
When set to a 1, the DRAM controller will tri-state the MA, CMD, and CSB (CSB if  
lines only when all CKEs are deasserted. CKEs deassert based on Idle timer or max  
rank count control.  
R/W  
0 b  
11  
0:  
1:  
Address Tri-state Disabled  
Address Tri-state Enabled  
10:9  
Reserved  
DRAM Channel IO-Buffers Activate:  
This bit is cleared to 0 during reset and remains inactive until it is set to 1 by BIOS. In  
addition, this bit can be cleared and set during debug procedures.  
While 0, the DRAM controller core logic forces the state of the IO-buffers in this  
channel to “reset” or “preset”,  
While 1, the DRAM controller core logic enables the DRAM IO-buffers in this  
channel to operate normally.  
BIOS initialization Procedure:  
This bit is cleared (0) during reset. It remains 0 after reset. BIOS is expected to use  
to following sequence:  
During and after platform reset, the DRAM controller core logic drives CKE to 0 and  
toggles clock output (drive strength and slew rate are set based on default values).  
After reset, BIOS detects DRAM configuration, through Serial Presence Detect.  
BIOS sets appropriate RCOMP values, then it performs initial RCOMP.  
BIOS enables the RCVEN, DQS and optionally CK DLL’s  
BIOS sets this bit (1), to enable normal operations. MA/BA/command are driven to  
default, CSB I driven inactive (data related outputs remain tri-stated, CKE remain 0  
while clocks are toggled).  
R/W  
0 b  
8
Perform DRAM initialization, through SMS bit field (CKE is activated).  
Enable refresh.  
Enable periodic RCOMP.  
Both this bit must be 1 and SMS must be different than 000 for CKE to be activated.  
It is sufficient to clear this bit to 0 for CKE to go inactive.  
Reserved  
7:0  
118  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.2.16  
C0DRC2––Channel 0 DRAM Controller Mode 2  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
128h  
00000000h  
RO, R/W  
32 bits  
Size:  
Bit  
Access  
& Default  
Description  
Reserved  
31:28  
Dram ODT Tristate Enable Per Rank: DDR 2  
Bit 24 corresponds to rank 0  
Bit 25 corresponds to rank 1  
R/W  
0 h  
27:24  
23:0  
Bit 26 corresponds to rank 2  
Bit 27 corresponds to rank 3  
0 = ODT is not tri-stated.  
1 = ODT is tri-stated. This is set only if the Rank is physically not populated.  
Reserved  
5.2.17  
5.2.18  
5.2.19  
C1DRB0—Channel 1 DRAM Rank Boundary Address 0  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
180h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C1DRB1—Channel 1 DRAM Rank Boundary Address 1  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
181h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C1DRB2—Channel 1 DRAM Rank Boundary Address 2  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
182h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
119  
Device #0 Memory Mapped I/O Register  
R
5.2.20  
5.2.21  
C1DRB3—Channel 1 DRAM Rank Boundary Address 3  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
183h  
00h  
R/W  
Size:  
8 bits  
The operation of this register is detailed in the description for register C0DRB0.  
C1DRA0—Channel 1 Dram Rank 0,1 Attribute  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
188h  
00h  
RO, R/W  
8 bits  
Size:  
The operation of this register is detailed in the description for register C0DRA0.  
5.2.22  
5.2.23  
C1DRA2—Channel 1 Dram Rank 2,3 Attribute  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
189h  
00h  
RO, R/W  
8 bits  
Size:  
The operation of this register is detailed in the description for register C0DRA0.  
C1DCLKDIS—Channel 1 DRAM Clock Disable  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
18Ch  
00h  
RO, R/W  
8 bits  
Size:  
The operation of this register is detailed in the description for register C0DCLKDIS.  
5.2.24  
C1BNKARC—Channel 1 Bank Architecture  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
18Eh  
0000h  
RO, R/W  
16 bits  
Size:  
The operation of this register is detailed in the description for register C0BNKARC.  
120  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.2.25  
C1DRT0—Channel 1 DRAM Timing Register 0  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
190h  
A96000E8h  
RO, R/W  
32 bits  
Size:  
The operation of this register is detailed in the description for register C0DRT0.  
5.2.26  
5.2.27  
5.2.28  
5.2.29  
C1DRT1—Channel 1 DRAM Timing Register 1  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
194h  
00006111h  
RO, R/W  
32 bits  
Size:  
The operation of this register is detailed in the description for register C0DRT1.  
C1DRT2—Channel 1 DRAM Timing Register 2  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
198h  
000003FFh  
RO, R/W  
32 bits  
Size:  
The operation of this register is detailed in the description for register C0DRT2.  
C1DRC0—Channel 1 DRAM Controller Mode 0  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
1A0h  
40002801h  
RO, R/W  
32 bits  
Size:  
The operation of this register is detailed in the description for register C0DRC0.  
C1DRC1—Channel 1 DRAM Controller Mode 1  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
1A4h  
00000000h  
RO, R/W  
16 bits  
Size:  
The operation of this register is detailed in the description for register C0DRC1.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
121  
Device #0 Memory Mapped I/O Register  
R
5.2.30  
5.2.31  
C1DRC2––Channel 1 DRAM Controller Mode 2  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
1A8h  
00000000h  
RO, R/W  
32 bits  
Size:  
The operation of this register is detailed in the description for register C0DRC2.  
DCC—DRAM Channel Control  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
200h  
00000000h  
RO, R/W  
32 bits  
Size:  
This register controls how the DRAM channels work together. It affects how the CxDRB registers are  
interpreted and allows them to steer transactions to the correct channel.  
Bit  
Access  
&
Default  
Description  
31:20  
19  
Reserved  
R/W  
0 b  
Initialization Complete (IC): See register description in C0DRC0[29]  
18:16  
15:3  
R/W  
000 b  
Mode Select (SMS): See register description in C0DRC0[6:4]  
Reserved  
Single Channel Selector (SCS):  
When in Single Channel mode, this is the populated channel.  
R/W  
0 b  
2
0:  
1:  
Channel 0 (Default)  
Channel 1 (Reserved)  
DRAM Addressing Mode Control (DAMC):  
00:  
01:  
10:  
11:  
Single Channel  
R/W  
00 b  
1:0  
Dual Channel Asymmetric  
Dual Channel Symmetric  
Reserved  
122  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.2.32  
Device #0 MCHBAR Clock Controls  
Table 5-1. Device #0 MCHBAR Clock/Thermal Sensor Controls  
Address  
Offset (h)  
Register  
Symbol  
Access  
Register Name  
Default Value  
C00-C03h  
C04-CEAh  
CLKCFG  
GMCH Clock Configuration  
00000000h  
RO, R/W  
Reserved  
5.2.33  
CLKCFG—Clocking Configuration  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
C00h  
00000000h  
RO, R/W  
32 bits  
Size:  
These register bits are used for setting and changing DDR frequency, initializing GMCH memory  
clocks.  
Bit  
Access &  
Default  
Description  
R/W  
0 b  
R/W  
0000h  
Reserved  
31:29  
29:17  
Reserved.  
Memory Core Clock control  
0 = DDR333, DDR400 (Default) (DDR533 @ Vcc = 1.5 V)  
1 = DDR533 (for Intel® Pentium® M processor 90 nm, 2 MB L2 Cache,  
533 MHz FSB support at Vcc =1.05 V)  
R/W  
0 b  
16  
Please refer to the Mobile Intel® 915 Express Chipset Family BIOS Spec  
for details on programming the DDR PLL VCO Change Sequence.  
Reserved  
R/W  
0 b  
RW  
15:7  
6:4  
Memory Frequency Select.  
strap  
dependent  
RO  
Reserved  
Reserved  
3
0 b  
2:0  
RO  
5.2.34  
CPCTL—CPunit Control  
PCI Device:  
Address Offset:  
Size:  
MCHBAR  
C16h  
16 bits  
Bit  
Access &  
Default  
Descriptions  
15  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
123  
Device #0 Memory Mapped I/O Register  
R
Bit  
14  
Access &  
Default  
Descriptions  
R/W/S  
0 b  
MCHBAR register warm reset control  
0: All MCHBAR registers in the GMCH are reset to their default values upon  
RSTIN# assertion initiated by a “warm reset”  
1: MCHBAR registers in the GMCH are NOT reset to defaults on a warm reset  
assertion; .  
Reserved.  
13:0  
5.3  
Device #0 MCHBAR ACPI Power Management  
Controls  
5.3.1  
PMSLFRFC—Dram Self Refresh Control  
PCI Device:  
Address Offset:  
Size:  
MCHBAR  
F08h  
16 bits  
Bit  
15  
Access &  
Description  
Default  
RO  
0 b  
Reserved  
Reserved  
Reserved  
14:13  
12:7  
6:4  
R/W  
00 b  
RO  
000000 b  
R/W  
Self-refresh CPU State Dependency  
000 b  
Defines when self-refresh is allowed based on the CPU’s ACPI C state. This field  
only defines the CPU state conditions that must be met to use dynamic self-  
refresh.  
000 = Not allowed in C0, C1, C2, C3, or C4  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = Reserved  
101 = Reserved  
110 = Allowed in C3 and C4 only  
111 = Reserved  
3:0  
R/W  
0 h  
Reserved  
5.3.2  
DSDLLPDC—Dram Slave DLL Power Down Control  
PCI Device:  
Address Offset:  
Size:  
MCHBAR  
F0Ah  
16 bits  
124  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
Bit  
15  
Access &  
Default  
Description  
RO  
0 b  
Reserved  
Reserved  
Reserved  
14:13  
12:7  
6:4  
R/W  
00 b  
RO  
000000 b  
R/W  
Slave DLL Power-down CPU State Dependency  
000 b  
Defines when slave DLL power down is allowed based on the CPU’s ACPI C  
state. This field only defines the CPU state conditions that must be met to use  
dynamic slave DLL power down.  
000 = Not allowed in C0, C1, C2, C3, or C4  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = Reserved  
101 = Reserved  
110 = Allowed in C3 and C4 only  
111 = Reserved  
3:0  
R/W  
0 h  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
125  
Device #0 Memory Mapped I/O Register  
R
5.3.3  
DMDLLPDC—Dram Master DLL Power Down Control  
PCI Device:  
Address Offset:  
Size:  
MCHBAR  
F0Ch  
16 bits  
Bit  
15  
Access &  
Description  
Default  
RO  
0 b  
Reserved  
Reserved  
Reserved  
14:13  
12:7  
6:4  
R/W  
00 b  
RO  
000000 b  
R/W  
Master DLL Power-down CPU State Dependency  
000 b  
Defines when master DLL power-down is allowed based on the CPU’s ACPI C  
state. This field only defines the CPU state conditions that must be met to use  
dynamic master DLL power-down.  
000 = Not allowed in C0, C1, C2, C3, or C4  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = Reserved  
101 = Reserved  
110 = Allowed in C3 and C4 only  
111 = Reserved  
3:0  
R/W  
0 h  
Reserved  
126  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.3.4  
PMCFG—Power Management Configuration  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
F10h  
00000000h  
RO, R/W  
32 bits  
Size:  
Bit  
Access &  
Default  
Description  
Reserved  
Reserved  
Reserved  
31  
R/W  
0 b  
30  
29:5  
4
R/W  
0 b  
RO  
0000000 h  
R/W  
Enhanced Power Management Features Enable  
0 = Legacy power management mode  
1 = Enhanced power management  
0 b  
Enhanced Power Management Snoop-detect Behavior  
0 = Snoop detection causes a request to the ICH6 for C2  
1 = Snoop detection causes a request to the ICH6 for C0  
Recommended setting = 0  
3
R/W  
0 b  
Reserved  
2
R/W  
0 b  
Enhanced Power Management Mode  
1:0  
R/W  
00 b  
00 = All enhanced power management functions allowed (Default)  
01 = Disable the C2 to C3 transition. Never go past C2.  
10 = Disable the C3 to C4 transition. Never go past C3.  
11 = Reserved  
Recommended Setting = 00  
Field is ignored if the Enhanced Power Management Feature Enable bit = 0  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
127  
Device #0 Memory Mapped I/O Register  
R
5.3.5  
PMSTS—Power Management Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
MCHBAR  
F14h  
00000000h  
RO, R/WC  
32 bits  
Size:  
This register is Reset by PWROK only.  
Bit  
Access &  
Default  
Description  
Reserved  
31:2  
RO  
00000000 h  
R/WC  
Channel 1 (B) in Self-refresh  
1
Set by power management hardware after Channel 1 is placed in self refresh as a  
result of a Power State or a Reset Warn sequence,  
0 b  
Cleared by Power management hardware before starting Channel 1 self refresh  
exit sequence initiated by a power management exit.  
Cleared by the Bios by writing a 1 in a warm reset (Reset# asserted while pwrok is  
asserted) exit sequence.  
0 = Channel 1 not guaranteed to be in self-refresh.  
1 = Channel 1 in Self-Refresh.  
Channel 0 (A)in Self-refresh  
0
R/WC  
0 b  
Set by power management hardware after Channel 0 is placed in self refresh as a  
result of a Power State or a Reset Warn sequence,  
Cleared by Power management hardware before starting Channel 0 self refresh  
exit sequence initiated by a power management exit.  
Cleared by the Bios by writing a 1 in a warm reset (Reset# asserted while pwrok is  
asserted) exit sequence.  
0 = Channel 0 not guaranteed to be in self refresh.  
1 = Channel 0 in Self Refresh.  
128  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.3.6  
DMICC—DMI Countdown Control  
MMIO Range:  
Address Offset:  
Size:  
DMIBAR  
208h  
32 bits  
PCI Express configuration and control of various time related parameters that are not required by the  
PCI Express spec.  
Bit  
31:24  
23:22  
21  
Access &  
Default  
Description  
R/W  
00 h  
RO  
Reserved  
Reserved  
0 h  
R/W  
0 b  
Aggressive L0s Entry Enable  
Once this bit is set, PCI Express Initialization unit will use aggressive L0s entry  
policy where 1/4th of the normally waited IDLE time is required  
0 : Initialization Unit waits for “#FTS_required *4ns“ of IDLE time to initiate the  
transition from L0 to L0s  
1: Initialization Unit waits for “#FTS_required *4ns / 4“ of IDLE time to initiate  
the transition from L0 to L0s  
Note : These bits can be updated by BIOS during run time  
20:19  
18:11  
10:0  
RO  
00 b  
R/W  
0F h  
R/W  
4B0 h  
Reserved  
Reserved  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
129  
Device #0 Memory Mapped I/O Register  
R
5.4  
DMI RCRB  
This section describes the mapped registers for the DMI. The DMIBAR register, described in Section  
4.1.15 provides the base address for these registers.  
This Root Complex Register Block (RCRB) controls the GMCH-ICH6-M serial interconnect that is  
based on the PCI Express 1.0 specification. An RCRB is required for configuration and control of  
elements that are located internal to a root complex that are not directly associated with a PCI Express  
device. The base address of this space is programmed in DMIBAR in device #0 config space.  
Note: All RCRB register spaces needs to remain organized as they are here. The VC capabilities (or  
at least the first PCI Express Extended Capability) must begin at the 0h offset of the 4K area pointed to  
by the associated BAR. This is a PCI Express 1.0 specification requirement.  
5.4.1  
DMI Register Summary  
Table 5-2. DMI Register Summary Table  
Address  
Offset (h)  
Register  
Symbol  
Default  
Value:  
Access:  
Register Name  
000-003h  
DMIVCECH  
DMI Virtual Channel Enhanced  
Capability Header  
04010002h  
RO  
004-007h  
008-00Bh  
00C-00Dh  
00E-00Fh  
010-013h  
014-017h  
018-019h  
01A-01Bh  
01C-01Fh  
020-023h  
024-025h  
026-027h  
028-03Fh  
040-083h  
084-087h  
088-089h  
08A-08Bh  
08C-FFFh  
DMIPVCCAP1  
DMIPVCCAP2  
DMIPVCCTL  
DMI Port VC Capability Register 1  
DMI Port VC Capability Register 2  
DMI Port VC Control  
Reserved  
00000001h  
00000001h  
0000h  
RO, R/WO  
RO  
RO, R/W  
DMIVC0RCAP  
DMIVC0RCTL0  
DMI VC0 Resource Capability  
DMI VC0 Resource Control  
Reserved  
00000001h  
800000FFh  
RO  
RO, R/W  
DMIVC0RSTS  
DMIVC1RCAP  
DMIVC1RCTL1  
DMI VC0 Resource Status  
DMI VC1 Resource Capability  
DMI VC1 Resource Control  
Reserved  
0002h  
RO  
RO  
00010001h  
01000000h  
RO, R/W  
DMIVC1RSTS  
DMI VC1 Resource Status  
Reserved  
0002h  
RO  
Reserved  
DMILCAP  
DMILCTL  
DMILSTS  
DMI Link Capabilities  
DMI Link Control  
00002689h  
0000h  
RO  
RO, R/W  
RO  
DMI Link Status  
0001h  
Reserved  
130  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.4.2  
DMIVCECH—DMI Virtual Channel Enhanced Capability Header  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
000h  
04010002h  
RO  
Size:  
32 bits  
Indicates DMI Virtual Channel capabilities.  
Bit  
Access &  
Default  
Description  
31:20  
19:16  
RO  
040 h  
RO  
Pointer to Next Capability This field contains the offset to the next item in the list.  
PCI Express Virtual Channel Capability Version  
This field indicate compliances with the version 1 capability.  
Extended Capability ID  
1 h  
15:0  
RO  
Value of 0002 h indicates this is the Virtual Channel capability item.  
0002 h  
5.4.3  
DMIPVCCAP1—DMI Port VC Capability Register 1  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
004h  
00000001h  
RO, R/WO  
32 bits  
Size:  
Describes the configuration of PCI Express Virtual Channels associated with this port.  
Bit  
Access &  
Default  
Description  
31:7  
Reserved  
11:10  
RO  
00 b  
RO  
Port Arbitration Table Entry Size (PATS): This field indicates the size of the port  
arbitration table is 4 bits (to allow up to 8 ports)  
9:8  
Reference Clock (RC)  
00 b  
Fixed at 10ns.  
7
Reserved  
6:4  
RO  
000 b  
RO  
Low Priority Extended VC Count  
Indicates that there are no additional VCs of low priority with extended capabilities.  
3
Reserved  
0 b  
2:0  
R/WO  
001 b  
Extended VC Count  
Indicates the number of (extended) Virtual Channels in addition to the default VC  
supported by the device.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
131  
Device #0 Memory Mapped I/O Register  
R
5.4.4  
DMIPVCCAP2—DMI Port VC Capability Register 2  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
008h  
00000001h  
RO  
Size:  
32 bits  
Describes the configuration of PCI Express Virtual Channels associated with this port.  
Bit  
Access &  
Default  
Description  
31:24  
RO  
VC Arbitration Table Offset (ATO)  
00 h  
Indicates that no table is present for VC arbitration since it is fixed.  
Reserved  
23:8  
7:0  
VC Arbitration Capability  
RO  
Indicates that the VC arbitration is fixed in the root complex.  
VC1 is the highest priority and VC0 is the lowest priority.  
01 h  
5.4.5  
DMIPVCCTL—DMI Port VC Control  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
00Ch  
0000h  
RO, R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
Reserved  
VC Arbitration Select  
15:4  
3:1  
R/W  
Indicates which VC should be programmed in the VC arbitration table. The root  
complex takes no action on the setting of this field since there is no arbitration table.  
000 b  
0
RO  
0 b  
Load VC Arbitration Table (LAT)  
Indicates that the table programmed should be loaded into the VC arbitration table.  
This bit is defined as read/write with always returning 0 on reads.  
132  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.4.6  
DMIVC0RCAP—DMI VC0 Resource Capability  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
010h  
00000001h  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
31:24  
RO  
Port Arbitration Table Offset (AT)  
00 h  
This VC implements no port arbitration table since the arbitration is fixed.  
23  
Reserved  
22:16  
RO  
Maximum Time Slots (MTS)  
This VC implements fixed arbitration, and therefore this field is not used.  
00 h  
Reject Snoop Transactions  
15  
14  
RO  
This VC must be able to take snoopable transactions.  
0 b  
RO  
0 h  
Advanced Packet Switching (APS):  
This VC is capable of all transactions, not just advanced packet switching  
transactions.  
Reserved  
13:8  
7:0  
Port Arbitration Capability  
RO  
Having only bit 0 set indicates that the only supported arbitration scheme for this VC is  
non-configurable hardware-fixed.  
01 h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
133  
Device #0 Memory Mapped I/O Register  
R
5.4.7  
DMIVC0RCTL0—DMI VC0 Resource Control  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
014h  
800000FFh  
RO, R/W  
32 bits  
Size:  
Controls the resources associated with PCI Express Virtual Channel 0.  
Bit  
Access &  
Default  
Description  
31  
RO  
1 b  
Virtual Channel 0 Enable  
Enables the VC when set. Disables the VC when cleared.  
Reserved  
30:27  
26:24  
RO  
Virtual Channel 0 ID  
000 b  
Indicates the ID used for this virtual channel  
Reserved  
23:20  
19:17  
R/W  
0 h  
Port Arbitration Select  
Indicates which port table is being programmed. The root complex takes no action  
on this setting since the arbitration is fixed and there is no arbitration for this virtual  
channel  
16  
RO  
0 b  
Load Port Arbitration Table (LAT):  
The root complex does not implement an arbitration table for this virtual channel.  
Reserved  
15:8  
7:1  
R/W  
Transaction Class / Virtual Channel Map (TVM)  
1111111  
b
This field indicates which transaction classes are mapped to this virtual channel.  
When a bit is set, this transaction class is mapped to the virtual channel.  
0
Reserved  
5.4.8  
DMIVC0RSTS—DMI VC0 Resource Status  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
01Ah  
0002h  
RO  
Size:  
16 bits  
Reports the Virtual Channel specific status.  
Bit  
Access &  
Default  
Description  
Reserved  
15:2  
1
VC Negotiation Pending:  
RO  
1 b  
0: The VC negotiation is complete.  
1: The VC resource is still in the process of negotiation (initialization or disabling).  
Port Arbitration Tables Status (ATS):  
0
RO  
0 b  
There is no port arbitration table for this VC, so this bit is reserved at 0.  
134  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.4.9  
DMIVC1RCAP—DMI VC1 Resource Capability  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
01Ch  
00010001h  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
31:24  
RO  
Port Arbitration Table Offset (AT)  
00 h  
Indicates the location of the port arbitration table in the root complex. A value of 3h  
indicates the table is at offset 30h.  
23  
Reserved  
22:16  
RO  
Maximum Time Slots (MTS)  
00 h  
This value is updated by platform BIOS based upon the determination of the  
number of time slots available in the platform.  
15  
14  
RO  
Reject Snoop Transactions (RTS):  
1 b  
All snoopable transactions on VC1 are rejected. This VC is for isochronous  
transfers only.  
RO  
0 b  
Advanced Packet Switching (APS)  
This VC is capable of all transactions, not just advanced packet switching  
transactions.  
13:8  
7:0  
Reserved  
RO  
Port Arbitration Capability  
01 h  
This field indicates the port arbitration capability is time-based WRR of 128 phases.  
5.4.10  
DMIVC1RCTL1—DMI VC1 Resource Control  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
020h  
01000000h  
RO, R/W  
32 bits  
Size:  
Controls the resources associated with PCI Express Virtual Channel 1.  
Bit  
Access &  
Default  
Description  
31  
R/W  
0 b  
Virtual Channel 1 Enable  
0: Virtual Channel is disabled.  
1: Virtual Channel is enabled.  
Reserved  
30:27  
26:24  
R/W  
Virtual Channel 1 ID  
001 b  
Assigns a VC ID to the VC resource. This field can not be modified when the  
VC is already enabled.  
Reserved  
23:20  
19:17  
Port Arbitration Select  
R/W  
This field indicates which port table is being programmed. The only permissible  
value of this field is 4h for the time-based WRR entries.  
000 b  
Reserved  
16:8  
7:1  
Transaction Class / Virtual Channel Map (TVM)  
The Field indicates which transaction classes are mapped to this virtual channel.  
When a bit is set, this transaction class is mapped to the virtual channel.  
R/W  
00h  
Reserved  
0
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
135  
Device #0 Memory Mapped I/O Register  
R
5.4.11  
DMIVC1RSTS—DMI VC1 Resource Status  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
026h  
0002h  
RO  
Size:  
16 bits  
Reports the Virtual Channel specific status  
Bit  
Access &  
Default  
Description  
15:2  
1
Reserved  
RO  
1 b  
VC1 Negotiation Pending  
0: The VC negotiation is complete.  
1: The VC resource is still in the process of negotiation (initialization or disabling).  
0
Reserved  
5.4.12  
DMILCAP—DMI Link Capabilities  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
084h  
00012C41h  
RO, R/WO  
32 bits  
Size:  
Indicates DMI specific capabilities.  
Bit  
Access &  
Default  
Description  
31:18  
17:15  
Reserved  
R/WO  
010 b  
R/WO  
010 b  
L1 Exit Latency  
L1 not supported on DMI  
14:12  
11:10  
L0s Exit Latency  
Indicates the length of time this Port requires to complete the transition from L0s to  
L0. The value 010 b indicates the range of 128 ns to less than 256 ns.  
RO  
Active State Link PM Support (APMS)  
11 b  
This field indicates that L0s is supported on DMI.  
Note: ICH6 does not support L1 entry on DMI interface  
Max Link Width (MLW)  
9:4  
3:0  
RO  
000100 b  
RO  
This field indicates the maximum link width is either x2 (2h) or X4. (4h)  
Maximum Link Speed (MLS)  
0001 b  
This field indicates the link speed is 2.5 Gb/s.  
136  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.4.13  
DMILCTL—DMI Link Control  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
088h  
0000h  
RO, R/W  
16 bits  
Size:  
Allows control of DMI.  
Bit  
Access &  
Default  
Description  
Reserved  
15:8  
RO  
00 h  
R/W  
0 h  
Extended Synch  
7
0: Standard Fast Training Sequence (FTS).  
1 = Forces extended transmission of FTS ordered sets when exiting L0s prior to  
entering L0 and extra TS1 sequences at exit from L1 to entering L0.  
Reserved  
6:2  
1:0  
00000 b  
R/W  
Active State PM  
Controls the level of active state power management supported on the given link.  
00 b  
00: Disabled  
01: L0s Entry Enabled  
10: Reserved  
11: Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
137  
Device #0 Memory Mapped I/O Register  
R
5.4.14  
DMILSTS—DMI Link Status  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
DMIBAR  
08Ah  
0001h  
RO  
Size:  
16 bits  
Indicates DMI status.  
Bit  
Access &  
Default  
Description  
Reserved  
15:10  
RO  
000000 b  
RO  
Negotiated Width  
9:4  
3:0  
Indicates negotiated link width  
00 h  
00h: Reserved  
01h: Reserved  
02h: X2  
04h: X4  
All other encodings are reserved.  
Negotiated Speed  
RO  
1 h  
Indicates negotiated link speed.  
1h: 2.5 Gb/s  
All other encodings are reserved.  
5.4.15  
5.4.16  
Egress Port (EP) RCRB  
This Root Complex Register Block (RCRB) controls the port arbitration that is based on the PCI  
Express 1.0 specification. Port arbitration is done for all PCI Express based isochronous requests  
(always on Virtual Channel 1) before being submitted to the main memory arbiter. The base address of  
this space is programmed in EPBAR in device #0 config space.  
EP Register Summary  
Address  
Offset (h)  
Register  
Symbol  
Access  
Register Name  
Reserved  
Default Value  
000-043h  
044-047h  
048-04Fh  
050-053h  
054-057h  
058-05Fh  
060-063h  
064-067h  
068-06Fh  
070-FFFh  
EPESD  
EP Element Self Description  
Reserved  
00000201h  
01000000h  
RO, RWO  
RO, R/WO  
EPLE1D  
EP Link Entry 1 Description  
Reserved  
EPLE1A  
EPLE2D  
EP Link Entry 1 Address  
EP Link Entry 2 Description  
Reserved  
000…  
RO, R/WO  
RO, R/WO  
02000002h  
EPLE2A  
EP Link Entry 2 Address  
Reserved  
000…  
RO  
138  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
Figure 5-1. Link Declaration Topology  
GMCH  
PEG  
x16  
Port #2  
Egress Port  
Port #0  
DMI  
Port #1  
x4  
ICH6-M  
Egress Port  
Port #0  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
139  
Device #0 Memory Mapped I/O Register  
R
5.4.17  
EPESD—EP Element Self Description  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
044h  
00000201h  
RO, R/WO  
32 bits  
Size:  
Provides information about the root complex element containing this Link Declaration Capability.  
Bit  
Access &  
Default  
Description  
31:24  
RO  
Port Number. –  
00 h  
This field specifies the port number associated with this element with respect to the  
component that contains this element.  
Value of 00 h indicates to configuration software that this is the default egress port.  
Component ID –  
Identifies the physical component that contains this Root Complex Element.  
Component IDs start at 1.  
23:16  
R/WO  
00 h  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it  
will be reflected everywhere that it is mirrored.  
15:8  
7:0  
RO  
02 h  
Number of Link Entries –  
Indicates the number of link entries following the Element Self Description. This  
field reports 2 (one each for PCI Express* Based Graphics and DMI).  
Reserved  
5.4.18  
EPLE1D—EP Link Entry 1 Description  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
050h  
01000000h  
RO, R/WO  
32 bits  
Size:  
First part of a Link Entry which declares an internal link to another Root Complex Element.  
Bit  
Access &  
Default  
Description  
Target Port Number –  
31:24  
RO  
Specifies the port number associated with the element targeted by this link entry  
(DMI). The target port number is with respect to the component that contains this  
element as specified by the target component ID.  
01 h  
Target Component ID –  
23:16  
R/WO  
00 h  
Identifies the physical or logical component that is targeted by this link entry. A  
value of 0 is reserved; Component IDs start at 1.  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it  
will be reflected everywhere that it is mirrored.  
Reserved  
15:2  
1
Link Type –  
RO  
0 b  
Indicates that the link points to memory-mapped space (for RCRB). The link  
address specifies the 64-bit base address of the target RCRB.  
Link Valid  
0
R/WO  
0 b  
0: Link Entry is not valid and will be ignored.  
1: Link Entry specifies a valid link.  
140  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
5.4.19  
EPLE1A—EP Link Entry 1 Address  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
058h  
0000000000000000h  
RO, R/WO  
Size:  
64 bits  
Second part of a Link Entry which declares an internal link to another Root Complex Element.  
Bit  
Access &  
Default  
Description  
Reserved  
63:32  
31:12  
Link Address  
R/WO  
Memory mapped base address of the RCRB that is the target element (DMI) for  
this link entry.  
0 0000 h  
Reserved  
11:0  
5.4.20  
EPLE2D—EP Link Entry 2 Description  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
060h  
0200002h  
RO, R/WO  
32 bits  
Size:  
First part of a Link Entry which declares an internal link to another Root Complex Element.  
Bit  
Access &  
Default  
Description  
31:24  
RO  
Target Port Number  
02 h  
Specifies the port number associated with the element targeted by this link entry (PEG). The  
target port number is with respect to the component that contains this element as specified  
by the target component ID.  
23:16  
R/WO  
00 h  
Target Component ID  
Identifies the physical or logical component that is targeted by this link entry. A value of 0 is  
reserved; Component IDs start at 1.  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it will be  
reflected everywhere that it is mirrored.  
15:2  
1
Reserved  
Link Type  
RO  
1 b  
Indicates that the link points to configuration space of the integrated device which controls  
the x16 root port. The link address specifies the configuration address (segment, bus,  
device, function) of the target root port.  
0
R/WO  
0 b  
Link Valid  
0: Link Entry is not valid and will be ignored.  
1: Link Entry specifies a valid link.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
141  
Device #0 Memory Mapped I/O Register  
R
5.4.21  
E2A—EP Link Entry 2 Address  
MMIO Range:  
Address Offset:  
Default Value:  
Access:  
EPBAR  
068h  
0000000000008000h  
RO  
Size:  
64 bits  
Second part of a Link Entry which declares an internal link to another Root Complex Element.  
Bit  
Access &  
Default  
Description  
Reserved  
63:28  
27:20  
Bus Number  
RO  
00 h  
Device Number  
19:15  
14:12  
11:0  
RO  
Target for this link is PCI Express x16 port (Device 1).  
0 0001 b  
RO  
Function Number  
000 b  
Reserved  
§
142  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Device #0 Memory Mapped I/O Register  
R
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
143  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6 PCI Express Graphics Device 1  
Configuration Registers (D1:F0)  
Note: Excludes Mobile Intel® 915GMS, 910GML and 910GMLE Express Chipsets.  
Device #1 contains the controls associated with the x16 root port that is the intended attach point for  
external graphics. It is typically referred to as PEG (PCI Express Graphics) port. It also functions as  
the virtual PCI-to-PCI Bridge that was previously associated with AGP.  
Warning: When reading the PCI Express "conceptual" registers such as this, you may not get a valid value unless  
the register value is stable.  
The PCI Express Specification defines two types of reserved bits:  
Reserved and Preserved: Reserved for future RW implementations; software must preserve value  
read for writes to bits.  
Reserved and Zero: Reserved for future R/WC/S implementations; software must use 0 for writes  
to bits.  
Unless explicitly documented as Reserved and Zero, all bits marked as Reserved are part of the  
Reserved and Preserved type which has historically been the typical definition for Reserved.  
Most (if not all) control bits in this device cannot be modified unless the link is down. Software is  
required to first disable the link, then program the registers, then re-enable the link (which will cause a  
full-retrain with the new settings).  
Note: Register information for the PCI Express Based x16 Graphics Port is NOT relative to the  
Mobile Intel® 82915GMS, 82910GML and 82910GMLE Express Chipsets.  
Note: Register information for the Integrated Graphics Device is NOT relative to the Mobile Intel  
82915PM Express Chipset.  
144  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.1  
PEG Device 1 Configuration Register Summary  
Table 6-1. PCI Express Graphics Port Configuration Register Summary  
Register  
Register  
Symbol  
Access  
Register Name  
Vendor Identification  
Default Value  
8086h  
Offset (h)  
00-01h  
02-03h  
04-05h  
06-07h  
08h  
VID1  
RO  
RO  
DID1  
Device Identification  
PCI Command  
2591h  
0000h  
0010h  
00h  
PCICMD1  
PCISTS1  
RID1  
RO, R/W  
RO, R/WC  
RO  
PCI Status  
Revision Identification  
Class Code  
09-0Bh  
0Ch  
CC1  
060400h  
00h  
RO  
CL1  
Cache Line Size  
Reserved  
R/W  
0Dh  
0Eh  
HDR1  
Header Type  
01h  
RO  
0F-17h  
18h  
Reserved  
PBUSN1  
SBUSN1  
SUBUSN1  
Primary Bus Number  
Secondary Bus Number  
Subordinate Bus Number  
Reserved  
00h  
00h  
00h  
RO  
19h  
R/W  
R/W  
1Ah  
1Bh  
1Ch  
IOBASE1  
IOLIMIT1  
SSTS1  
I/O Base Address  
I/O Limit Address  
Secondary Status  
Memory Base Address  
Memory Limit Address  
F0h  
RO,R/W  
RO, R/W  
RO, R/WC  
RO, R/W  
RO, R/W  
RO, R/W  
1Dh  
00h  
1E-1Fh  
20-21h  
22-23h  
24-25h  
0000h  
FFF0h  
0000h  
FFF0h  
MBASE1  
MLIMIT1  
PMBASE1  
Prefetchable Memory Base  
Address  
26-27h  
PMLIMIT1  
CAPPTR1  
Prefetchable Memory Limit  
Address  
0000h  
88h  
RO, R/W  
RO  
28-33h  
34h  
Reserved  
Capabilities Pointer  
Reserved  
35-3Bh  
3Ch  
INTRLINE1  
INTRPIN1  
BCTRL1  
Interrupt Line  
00h  
R/W  
3Dh  
Interrupt Pin  
01h  
RO  
3E-3Fh  
40-7Fh  
80-83h  
84-87h  
Bridge Control  
Reserved  
0000h  
RO, R/W  
PM_CAP1  
PM_CS1  
Power Management Capabilities  
1902 / A001h  
00000000h  
RO  
Power Management  
Control/Status  
RO, R/W/S  
88-8Bh  
8C-8Fh  
90-91h  
SS_CAPID  
SS  
Subsystem ID and Vendor ID  
Capabilities  
0000800Dh  
00008086h  
A005h  
RO  
Subsystem ID and Subsystem  
Vendor ID  
R/WO  
RO  
MSI_CAPID  
Message Signaled Interrupts  
Capability ID  
92-93h  
94-97h  
98-99h  
MC  
MA  
MD  
Message Control  
Message Address  
Message Data  
0000h  
RO, R/W  
RO, R/W  
R/W  
0000000h  
0000h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
145  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
Register  
Offset (h)  
Register  
Symbol  
Access  
Register Name  
Reserved  
Default Value  
9A-9Fh  
A0-A1h  
A2-A3h  
A4-A7h  
A8-A9h  
AA-ABh  
AC-AFh  
B0-B1h  
B2-B3h  
B4-B7H  
B8-B9h  
BA-BBh  
BC-BDh  
BE-BFh  
C0-C3h  
C4-FFh  
100-103h  
PEG_CAPL  
PEG_CAP  
DCAP  
PCI Express Capability List  
PCI Express Capabilities  
Device Capabilities  
Device Control  
Device Status  
Link Capabilities  
Link Control  
0010h  
RO  
RO  
RO  
0141h  
00000000h  
0000h  
DCTL  
RO, R/W  
RO, R/WC  
RO, R/WO  
RO, R/W  
RO  
DSTS  
0000h  
LCAP  
02012801h  
0000h  
LCTL  
LSTS  
Link Status  
1001h  
SLOTCAP  
SLOTCTL  
SLOTSTS  
RCTL  
Slot Capabilities  
Slot Control  
00000000h  
01C0h  
RO, R/WO  
RO, R/W  
RO, R/WC  
RO, R/W  
Slot Status  
0000h  
Root Control  
0000h  
Reserved  
RSTS  
Root Status  
00000000h  
14010002h  
RO, R/W/C  
RO  
Reserved  
VCECH  
Virtual Channel Enhanced  
Capability Header  
104-107h  
108-10Bh  
10C-10Dh  
10E-10Fh  
110-113h  
114-117h  
118-119h  
11A-11Bh  
11C-11Fh  
120-123h  
124-125h  
126-127h  
128-13Fh  
140-143h  
PVCCAP1  
PVCCAP2  
PVCCTL  
Port VC Capability Register 1  
Port VC Capability Register 2  
Port VC Control  
00000001h  
00000000h  
0000h  
RO, R/WO  
RO  
RO, R/W  
Reserved  
VC0RCAP  
VC0RCTL  
VC0 Resource Capability  
VC0 Resource Control  
Reserved  
00000000h  
800000FFh  
RO  
FO, R/W  
VC0RSTS  
VC1RCAP  
VC1RCTL  
VC0 Resource Status  
VC1 Resource Capability  
VC1 Resource Control  
Reserved  
0000h  
RO  
00008000h  
01000000h  
RO  
RO, R/W  
VC1RSTS  
VC1 Resource Status  
Reserved  
0000h  
RO  
RCLDECH  
ESD  
Root Complex Link Declaration  
Enhanced Capability Header  
00010005h  
02000100h  
RO  
144-147h  
148-14Fh  
150-153h  
154-157h  
Element Self Description  
Reserved  
RO, R/WO  
LE1D  
Link Entry 1 Description  
Reserved  
00000000h  
RO, R/WO  
158-15Fh  
LE1A  
Link Entry 1 Address  
00000000000000  
00h  
RO, R/WO  
RO  
160-217h  
218-21Fh  
Reserved  
PEGSSTS  
PCI Express Graphics Sequence  
Status  
0000000000000F  
FFh  
220-2FFh  
Reserved  
146  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2  
PEG Device 1 Configuration Register Details  
6.2.1  
VID1—Vendor Identification  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
00h  
8086h  
RO  
Size:  
16 bits  
This register combined with the Device Identification register uniquely identifies any PCI device.  
Bit  
Access &  
Default  
Description  
Vendor Identification (VID1)  
15:0  
RO  
PCI standard identification for Intel.  
8086 h  
6.2.2  
DID1—Device Identification  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
02h  
2591h  
RO  
Size:  
16 bits  
This register combined with the Vendor Identification register uniquely identifies any PCI device.  
Bit  
Access &  
Default  
Description  
Device Identification Number (DID1)  
Identifier assigned to the GMCH device #1 (virtual PCI-to-PCI bridge, PCI Express  
Graphics port).  
15:0  
RO  
2591h  
.
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
147  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.3  
PCICMD1—PCI Command  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
04h  
0000h  
RO, R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
Reserved.  
INTA Assertion Disable  
15:11  
10  
R/W  
0 b  
0: This device is permitted to generate INTA interrupt messages.  
1: This device is prevented from generating interrupt messages.  
Any INTA emulation interrupts already asserted must be deasserted when this bit  
is set.  
Only affects interrupts generated by the device (PCI INTA from a PME or Hot  
Plug event) controlled by this command register. It does not affect upstream  
MSI’s, upstream PCI INTA-INTD assert and deassert messages.  
Fast Back-to-Back Enable (FB2B)  
9
8
RO  
0 b  
Not Applicable or Implemented. Hardwired to 0.  
SERR Message Enable (SERRE1)  
R/W  
0 b  
This bit is an enable bit for Device #1 SERR messaging. The GMCH  
communicates the SERRB condition by sending an SERR message to the ICH.  
This bit, when set, enables reporting of non-fatal and fatal errors to the Root  
Complex. Note that errors are reported if enabled either through this bit or  
through the PCI-Express specific bits in the Device Control Register  
0: The SERR message is generated by the GMCH for Device #1 only under  
conditions enabled individually through the Device Control Register.  
1: The GMCH is enabled to generate SERR messages which will be sent to the  
ICH for specific Device #1 error conditions that are individually enabled in the  
BCTRL1 register and for all non-fatal and fatal errors generated on the primary  
side of the virtual PCI to PCI-Express bridge (not those received by the  
secondary side). The error status is reported in the PCISTS1 register.  
Reserved.  
7
6
Parity Error Enable (PERRE)  
R/WO  
0 b  
Controls whether or not the Master Data Parity Error bit in the PCI Status register  
can bet set.  
0: Master Data Parity Error bit in PCI Status register cannot be set.  
1: Master Data Parity Error bit in PCI Status register can be set.  
VGA Palette Snoop  
5
4
3
RO  
0 b  
RO  
0 b  
RO  
0 b  
Not Applicable or Implemented. Hardwired to 0.  
Memory Write and Invalidate Enable (MWIE)  
Not Applicable or Implemented. Hardwired to 0.  
Special Cycle Enable (SCE)  
Not Applicable or Implemented. Hardwired to 0.  
148  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
Bit  
Access &  
Default  
Description  
Bus Master Enable (BME)  
2
R/W  
0 b  
0: This device is prevented from making memory or IO requests to its primary  
bus.  
Note that according to PCI Specification, as MSI interrupt messages are in-band  
memory writes, disabling the bus master enable bit prevents this device from  
generating MSI interrupt messages or passing them from its secondary bus to its  
primary bus. Upstream memory writes/reads, IO writes/reads, peer writes/reads,  
and MSI's will all be treated as illegal cycles. Writes are forwarded to memory  
address 0 with byte enables deasserted. Reads will be forwarded to memory  
address 0 and will return Unsupported Request status (or Master abort) in its  
completion packet.  
1: This device is allowed to issue requests to its primary bus. Completions for  
previously issued memory read requests on the primary bus will be issued when  
the data is available.  
This bit does not affect forwarding of Completions from the primary interface to  
the secondary interface.  
Memory Access Enable (MAE)  
1
0
R/W  
0 b  
0: All of device #1’s memory space is disabled.  
1: Enable the Memory and Pre-fetchable memory address ranges defined in the  
MBASE1, MLIMIT1, PMBASE1, and PMLIMIT1 registers.  
IO Access Enable (IOAE)  
R/W  
0 b  
0: All of device #1’s I/O space is disabled.  
1: Enable the I/O address range defined in the IOBASE1, and IOLIMIT1  
registers.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
149  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.4  
PCISTS1—PCI Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
06h  
0010h  
RO, R/WC  
16 bits  
Size:  
This register reports the occurrence of error conditions associated with primary side of the “virtual”  
Host-PCI Express bridge embedded within the GMCH.  
Bit  
Access &  
Default  
Description  
15  
RO  
0 b  
Detected Parity Error (DPE)  
Hardwired to 0. Parity (generating poisoned TLPs) is not supported on the  
primary side of this device.  
14  
R/WC  
0 b  
Signaled System Error (SSE)  
This bit is set when this Device sends an SERR due to detecting an ERR_FATAL  
or ERR_NONFATAL condition and the SERR Enable bit in the Command  
register is 1. Both received (if enabled by BCTRL1[1]) and internally detected  
error messages do not affect this field.  
13  
12  
RO  
0 b  
Received Master Abort Status (RMAS)  
Not Applicable or Implemented. Hardwired to 0. The concept of a master abort  
does not exist on primary side of this device.  
Received Target Abort Status (RTAS)  
Not Applicable or Implemented. Hardwired to 0. The concept of a target abort  
does not exist on primary side of this device.  
RO  
0 b  
11  
RO  
0 b  
Signaled Target Abort Status (STAS)  
Not Applicable or Implemented. Hardwired to 0. The concept of a target abort  
does not exist on primary side of this device.  
10:9  
RO  
DEVSELB Timing (DEVT)  
00 b  
This device is not the subtractively decoded device on bus 0. This bit field is  
therefore hardwired to 00 to indicate that the device uses the fastest possible  
decode.  
8
RO  
0 b  
Master Data Parity Error (PMDPE)  
Because the primary side of the PCI Express* x16 Graphics Interface’s virtual  
P2P bridge is integrated with the MCH functionality there is no scenario where  
this bit will get set. Because hardware will never set this bit, it is impossible for  
software to have an opportunity to clear this bit or otherwise test that it is  
implemented. The PCI specification defines it as a R/WC, but for our  
implementation an RO definition behaves the same way and will meet all  
Microsoft testing requirements.  
This bit can only be set when the Parity Error Enable bit in the PCI Command  
register is set.  
7
RO  
0 b  
Fast Back-to-Back (FB2B)  
Not Applicable or Implemented. Hardwired to 0.  
Reserved.  
66/60 MHz capability (CAP66)  
Not Applicable or Implemented. Hardwired to 0.  
Capabilities List  
Indicates that a capabilities list is present. Hardwired to 1.  
INTA Status  
Indicates that an interrupt message is pending internally to the device. Only  
PME and Hot Plug sources feed into this status bit (not PCI INTA-INTD assert  
and deassert messages). The INTA Assertion Disable bit, PCICMD1[10], has no  
effect on this bit.  
6
5
RO  
0 b  
RO  
1 b  
RO  
0 b  
4
3
Reserved.  
2:0  
150  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.5  
RID1—Revision Identification  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
08h  
00h  
RO  
8 bits  
Size:  
This register contains the revision number of the GMCH device #1. These bits are read only and writes  
to this register have no effect.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Revision Identification Number (RID1)  
00 h  
Indicates the number of times that this device in this component has been  
“stepped” through the manufacturing process. It is always the same as the RID  
values in all other devices in this component.  
6.2.6  
CC1—Class Code  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
09h  
060400h  
RO  
Size:  
24 bits  
This register identifies the basic function of the device, a more specific sub-class, and a register-  
specific programming interface.  
Bit  
Access &  
Default  
Description  
23:16  
RO  
Base Class Code (BCC)  
06 h  
Indicates the base class code for this device. This code has the value 06h,  
indicating a Bridge device.  
15:8  
7:0  
RO  
Sub-Class Code (SUBCC)  
04 h  
Indicates the sub-class code for this device. The code is 04h indicating a PCI to  
PCI Bridge.  
RO  
Programming Interface (PI)  
00 h  
Indicates the programming interface of this device. This value does not specify a  
particular register set layout and provides no practical use for this device.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
151  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.7  
CL1—Cache Line Size  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
0Ch  
00h  
R/W  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
Cache Line Size (Scratch pad)  
7:0  
R/W  
00 h  
Implemented by PCI Express devices as a read-write field for legacy compatibility  
purposes but has no impact on any PCI Express device functionality.  
6.2.8  
HDR1—Header Type  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
0Eh  
01h  
RO  
8 bits  
Size:  
This register identifies the header layout of the configuration space. No physical register exists at this  
location.  
Bit  
Access &  
Default  
Description  
Header Type Register (HDR)  
Returns 01 to indicate that this is a single function device with bridge header layout.  
7:0  
RO  
01 h  
6.2.9  
PBUSN1—Primary Bus Number  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
18h  
00h  
RO  
8 bits  
Size:  
This register identifies that this “virtual” Host-PCI Express bridge is connected to PCI bus #0.  
Bit  
Access &  
Default  
Description  
Primary Bus Number (BUSN)  
7:0  
RO  
Configuration software typically programs this field with the number of the bus on  
the primary side of the bridge. Since device #1 is an internal device and its primary  
bus is always 0, these bits are read only and are hardwired to 0.  
00 h  
152  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.10  
SBUSN1—Secondary Bus Number  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
19h  
00h  
R/W  
8 bits  
Size:  
This register identifies the bus number assigned to the second bus side of the “virtual” bridge i.e. to  
PCI Express Graphics. This number is programmed by the PCI configuration software to allow  
mapping of configuration cycles to PCI Express Graphics.  
Bit  
Access &  
Default  
Description  
Secondary Bus Number (BUSN)  
7:0  
R/W  
00 h  
This field is programmed by configuration software with the bus number assigned to  
PCI Express Graphics.  
6.2.11  
SUBUSN1—Subordinate Bus Number  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
1Ah  
00h  
R/W  
8 bits  
Size:  
This register identifies the subordinate bus (if any) that resides at the level below PCI Express  
Graphics. This number is programmed by the PCI configuration software to allow mapping of  
configuration cycles to PCI Express Graphics.  
Bit  
Access &  
Default  
Description  
Subordinate Bus Number (BUSN)  
7:0  
R/W  
00 h  
This register is programmed by configuration software with the number of the  
highest subordinate bus that lies behind the device #1 bridge. When only a single  
PCI device resides on the PCI Express Graphics segment, this register will contain  
the same value as the SBUSN1 register.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
153  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.12  
IOBASE1—I/O Base Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
1Ch  
F0h  
RO, R/W  
8 bits  
Size:  
This register controls the CPU to PCI Express Graphics I/O access routing based on the following  
formula:  
IO_BASE=< address =<IO_LIMIT  
Only upper 4 bits are programmable. For the purpose of address decode address bits A[11:0] are treated  
as 0. Thus the bottom of the defined I/O address range will be aligned to a 4-kB boundary.  
Bit  
Access &  
Default  
Description  
I/O Address Base (IOBASE)  
7:4  
R/W  
F h  
Corresponds to A[15:12] of the I/O addresses passed by bridge 1 to PCI  
Express-Graphics interface. BIOS must not set this register to 00h otherwise  
0CF8h/0CFCh accesses will be forwarded to the PCI Express hierarchy  
associated with this device.  
Reserved.  
3:0  
RO  
0 h  
6.2.13  
IOLIMIT1—I/O Limit Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
1Dh  
00h  
RO, R/W  
8 bits  
Size:  
This register controls the CPU to PCI Express Graphics I/O access routing based on the following  
formula:  
IO_BASE=< address =<IO_LIMIT  
Only upper 4 bits are programmable. For the purpose of address decode address bits A[11:0] are  
assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4-kB aligned  
address block.  
Bit  
Access &  
Default  
Description  
I/O Address Limit (IOLIMIT)  
7:4  
R/W  
0 h  
Corresponds to A[15:12] of the I/O address limit of device #1. Devices between this  
upper limit and IOBASE1 will be passed to the PCI Express hierarchy associated  
with this device.  
Reserved.  
3:0  
RO  
0 h  
154  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.14  
SSTS1—Secondary Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
1Eh  
0000h  
RO, R/WC  
16 bits  
Size:  
SSTS1 is a 16-bit status register that reports the occurrence of error conditions associated with  
secondary side (i.e. PCI Express Graphics side) of the “virtual” PCI-PCI Bridge embedded within  
GMCH.  
Bit  
Access &  
Default  
Description  
Reserved.  
15  
14  
Received System Error (RSE)  
R/WC  
0 b  
This bit is set when the secondary side sends an ERR_FATAL or ERR_NONFATAL  
message due to an error detected by the secondary side, and the SERR Enable bit  
in the Bridge Control register is 1.  
Received Master Abort (RMA)  
13  
12  
R/WC  
0 b  
This bit is set when the Secondary Side for Type 1 Configuration Space Header  
Device (for requests initiated by the Type 1 Header Device itself) receives a  
Completion with Unsupported Request Completion Status.  
Received Target Abort (RTA)  
R/WC  
0 b  
This bit is set when the Secondary Side for Type 1 Configuration Space Header  
Device (for requests initiated by the Type 1 Header Device itself) receives a  
Completion with Completer Abort Completion Status.  
Signaled Target Abort (STA)  
11  
RO  
0 b  
Not Applicable or Implemented. Hardwired to 0. The GMCH does not generate  
Target Aborts (the GMCH will never complete a request using the Completer Abort  
Completion status).  
DEVSELB Timing (DEVT)  
10:9  
RO  
Not Applicable or Implemented. Hardwired to 0.  
00 b  
Reserved  
8
7
Fast Back-to-Back (FB2B) Hardwired to 0.  
RO  
0 b  
Reserved.  
6
5
66/60 MHz capability (CAP66) Hardwired to 0.  
RO  
0 b  
Reserved.  
4:0  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
155  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.15  
MBASE1—Memory Base Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
20h  
FFF0h  
RO, R/W  
16 bits  
Size:  
This register controls the CPU to PCI Express Graphics non-prefetchable memory access routing based  
on the following formula:  
MEMORY_BASE=< address =<MEMORY_LIMIT  
The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of  
the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This  
register must be initialized by the configuration software. For the purpose of address decode address  
bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be  
aligned to a 1-MB boundary.  
Bit  
Access &  
Default  
Description  
Memory Address Base (MBASE)  
15:4  
R/W  
Corresponds to A[31:20] of the lower limit of the memory range that will be passed  
to PCI Express Graphics.  
FFF h  
Reserved.  
3:0  
RO  
0 h  
156  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.16  
MLIMIT1—Memory Limit Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
22h  
0000h  
RO, R/W  
16 bits  
Size:  
This register controls the CPU to PCI Express Graphics non-prefetchable memory access routing based  
on the following formula:  
MEMORY_BASE=< address =<MEMORY_LIMIT  
The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of  
the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This  
register must be initialized by the configuration software. For the purpose of address decode address  
bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at  
the top of a 1MB aligned memory block.  
Note: Memory range covered by MBASE and MLIMIT registers are used to map non-prefetchable  
PCI Express Graphics address ranges (typically where control/status memory-mapped I/O data  
structures of the graphics controller will reside) and PMBASE and PMLIMIT are used to map  
prefetchable address ranges (typically graphics local memory). This segregation allows application of  
USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address  
range for improved CPU-PCI Express memory access performance.  
Note also that configuration software is responsible for programming all address range registers  
(prefetchable, non-prefetchable) with the values that provide exclusive address ranges i.e. prevent  
overlap with each other and/or with the ranges covered with the main memory. There is no provision in  
the GMCH hardware to enforce prevention of overlap and operations of the system in the case of  
overlap are not guaranteed.  
Bit  
Access &  
Default  
Description  
15:4  
R/W  
Memory Address Limit (MLIMIT)  
000 h  
Corresponds to A[31:20] of the upper limit of the address range passed to PCI  
Express Graphics.  
3:0  
RO  
0 h  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
157  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.17  
PMBASE1—Prefetchable Memory Base Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
24h  
FFF0h  
RO, R/W  
16 bits  
Size:  
This register in conjunction with the corresponding Upper Base Address register controls the CPU to  
PCI Express Graphics prefetchable memory access routing based on the following formula:  
PREFETCHABLE_MEMORY_BASE =< address =< PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit  
address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address  
bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For  
the purpose of address decode address bits A[19:0] are assumed to be 0. Thus, the bottom of the  
defined memory address range will be aligned to a 1-MB boundary.  
Bit  
Access &  
Default  
Description  
15:4  
R/W  
Prefetchable Memory Base Address (MBASE)  
FFF h  
Corresponds to A[31:20] of the lower limit of the memory range that will be passed  
to PCI Express Graphics.  
3:0  
RO  
0 h  
64-bit Address Support  
Indicates the bridge supports only 32 bit addresses.  
158  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.18  
PMLIMIT1—Prefetchable Memory Limit Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
26h  
0000h  
RO, R/W  
16 bits  
Size:  
This register in conjunction with the corresponding Upper Limit Address register controls the CPU to  
PCI Express Graphics prefetchable memory access routing based on the following formula:  
PREFETCHABLE_MEMORY_BASE =< address =< PREFETCHABLE_MEMORY_LIMIT  
The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit  
address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address  
bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For  
the purpose of address decode address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the  
defined memory address range will be at the top of a 1-MB aligned memory block. Note that  
prefetchable memory range is supported to allow segregation by the configuration software between  
the memory ranges that must be defined as UC and the ones that can be designated as a USWC (i.e.  
prefetchable) from the CPU perspective.  
Bit  
Access &  
Default  
Description  
15:4  
R/W  
Prefetchable Memory Address Limit (PMLIMIT)  
000 h  
Corresponds to A[31:20] of the upper limit of the address range passed to PCI  
Express Graphics.  
3:0  
RO  
0 h  
64-bit Address Support  
Indicates the bridge supports only 32 bit addresses.  
6.2.19  
CAPPTR1—Capabilities Pointer  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
34h  
88h  
RO  
8 bits  
Size:  
The capabilities pointer provides the address offset to the location of the first entry in this device’s  
linked list of capabilities.  
Bit  
Access &  
Default  
Description  
First Capability (CAPPTR1)  
The first capability in the list is the Subsystem ID and Subsystem Vendor ID Capability.  
7:0  
RO  
88h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
159  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.20  
INTRLINE1—Interrupt Line  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
3Ch  
00h  
R/W  
8 bits  
Size:  
This register contains interrupt line routing information. The device itself does not use this value, rather  
it is used by device drivers and operating systems to determine priority and vector information.  
Bit  
Access &  
Default  
Description  
7:0  
R/W  
00 h  
Interrupt Connection.  
Used to communicate interrupt line routing information. POST software writes the  
routing information into this register as it initializes and configures the system. The  
value in this register indicates which input of the system interrupt controller this  
device’s interrupt pin is connected to.  
6.2.21  
INTRPIN1—Interrupt Pin  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
3Dh  
01h  
RO  
8 bits  
Size:  
This register specifies which interrupt pin this device uses.  
Bit  
Access &  
Default  
Description  
7:0  
RO  
Interrupt Pin.  
01 h  
As a single function device, the PCI Express device specifies INTA as its interrupt  
pin.  
01h=INTA.  
160  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.22  
BCTRL1—Bridge Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
3Eh  
0000h  
RO, R/W  
16 bits  
Size:  
This register provides extensions to the PCICMD1 register that are specific to PCI-PCI bridges. The  
BCTRL provides additional control for the secondary interface (i.e. PCI Express Graphics) as well as  
some bits that affect the overall behavior of the “virtual” Host-PCI Express bridge embedded within  
GMCH, e.g. VGA compatible address ranges mapping.  
Bit  
Access &  
Default  
Description  
15:12  
RO  
0 h  
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
0 b  
R/W  
0 b  
Reserved  
11  
10  
9
Discard Timer SERR Enable  
Not Applicable or Implemented. Hardwired to 0.  
Discard Timer Status  
Not Applicable or Implemented. Hardwired to 0.  
Secondary Discard Timer  
Not Applicable or Implemented. Hardwired to 0.  
Primary Discard Timer  
Not Applicable or Implemented. Hardwired to 0.  
Fast Back-to-Back Enable (FB2BEN)  
Not Applicable or Implemented. Hardwired to 0.  
Secondary Bus Reset (SRESET)  
Setting this bit triggers a hot reset on the corresponding PCI Express Port. This  
will force the LTSSM to transition to the Hot Reset state (via Recovery) from L0,  
L0s, or L1 states  
8
7
6
5
4
RO  
0 b  
Master Abort Mode (MAMODE)  
When acting as a master, unclaimed reads that experience a master abort  
returns all 1’s and any writes that experience a master abort completes normally  
and the data is thrown away. Hardwired to 0.  
VGA 16-bit Decode  
Enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA I/O address  
precluding the decoding of alias addresses every 1 KB. This bit only has  
meaning if bit 3 (VGA Enable) of this register is also set to 1, enabling VGA I/O  
decoding and forwarding by the bridge.  
R/W  
0 b  
0 : Execute 10-bit address decodes on VGA I/O accesses.  
1 : Execute 16-bit address decodes on VGA I/O accesses.  
VGA Enable (VGAEN)  
Controls the routing of CPU initiated transactions targeting VGA compatible I/O  
and memory address ranges. See the VGAEN/MDAP table in device 0, offset  
97h[0].  
3
R/W  
0 b  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
161  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
Bit  
Access &  
Default  
Description  
2
R/W  
0 b  
ISA Enable (ISAEN)  
Needed to exclude legacy resource decode to route ISA resources to legacy  
decode path. Modifies the response by the GMCH to an I/O access issued by  
the CPU that target ISA I/O addresses. This applies only to I/O addresses that  
are enabled by the IOBASE and IOLIMIT registers.  
0: All addresses defined by the IOBASE and IOLIMIT for CPU I/O transactions  
will be mapped to PCI Express Graphics.  
1: GMCH will not forward to PCI Express Graphics any I/O transactions  
addressing the last 768 bytes in each 1KB block even if the addresses are within  
the range defined by the IOBASE and IOLIMIT registers. Instead of going to PCI  
Express Graphics these cycles will be forwarded to DMI where they can be  
subtractively or positively claimed by the ISA bridge.  
1
0
R/W  
0 b  
SERR Enable (SERREN)  
0: No forwarding of error messages from secondary side to primary side that  
could result in an SERR.  
1: ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR  
message when individually enabled by the Root Control register.  
Parity Error Response Enable (PEREN)  
RO  
0 b  
Controls whether or not the Master Data Parity Error bit in the Secondary Status  
register is set when the MCH receives across the link (upstream) a Read Data  
Completion Poisoned TLP  
0: Master Data Parity Error bit in Secondary Status register cannot be set.  
1: Master Data Parity Error bit in Secondary Status register can be set..  
162  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.23  
PM_CAPID1—Power Management Capabilities  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
80h  
1902A001  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
PME Support  
31:27  
RO  
This field indicates the power states in which this device may indicate PME wake  
via PCI Express messaging. D0, D3hot & D3cold. This device is not required to do  
anything to support D3hot & D3cold, it simply must report that those states are  
supported.  
19 h  
Refer to the PCI Power Management 1.1 specification for encoding explanation and  
other power management details.  
D2 - Hardwired to 0 to indicate that the D2 power management state is NOT  
supported.  
26  
25  
RO  
0 b  
D1 - Hardwired to 0 to indicate that the D1 power management state is NOT  
supported.  
RO  
0 b  
Auxiliary Current  
24:22  
21  
RO  
000 b  
RO  
0 b  
Hardwired to 0 to indicate that there are no 3.3Vaux auxiliary current requirements.  
Device Specific Initialization (DSI)  
Hardwired to 0 to indicate that special initialization of this device is NOT required  
before generic class device driver is to use it.  
Auxiliary Power Source (APS)  
20  
19  
RO  
0 b  
Hardwired to 0.  
PME Clock  
RO  
Hardwired to 0 to indicate this device does NOT support PME# generation.  
0 b  
PCI PM CAP Version  
18:16  
RO  
Hardwired to 02h to indicate there are 4 bytes of power management registers  
implemented and that this device complies with revision 1.1 of the PCI Power  
Management Interface Specification.  
010 b  
Pointer to Next Capability  
15:8  
7:0  
RO  
This contains a pointer to the next item in the capabilities list.  
90h / A0h  
This contains a pointer to the next item in the capabilities list. If MSICH (CAPL[0]  
@ 7Fh) is 0, then the next item in the capabilities list is the Message Signaled  
Interrupts (MSI) capability at 90h. If MSICH (CAPL[0] @ 7Fh) is 1, then the next  
item in the capabilities list is the PCI Express capability at A0h.  
Capability ID  
RO  
Value of 01h identifies this linked list item (capability structure) as being for PCI  
Power Management registers.  
01 h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
163  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.24  
PM_CS1—Power Management Control/Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
84h  
00000000h  
RO, R/W/S  
32 bits  
Size:  
Bit  
Access &  
Default  
Description  
Reserved -  
PME Status  
31:16  
RO  
0000 h  
RO  
15  
14:13  
12:9  
8
Indicates that this device does not support PME# generation from D3-cold.  
0 b  
Data Scale  
RO  
Indicates that this device does not support the power management data register.  
00 b  
RO  
Data Select  
Indicates that this device does not support the power management data register.  
0 h  
PME Enable  
R/W/S  
0 b  
Indicates that this device does not generate PME# assertion from any D-state.  
0: PME# generation not possible from any D State  
1: PME# generation enabled from any D State  
The setting of this bit has no effect on hardware.  
See PM_CAP[15:11]  
Reserved  
7:2  
1:0  
Power State  
R/W  
00 b  
Indicates the current power state of this device and can be used to set the device  
into a new power state. If software attempts to write an unsupported state to this  
field, write operation must complete normally on the bus, but the data is discarded  
and no state change occurs.  
00: D0  
01: D1 (Not supported in this device.)  
10: D2 (Not supported in this device.)  
11: D3  
Support of D3cold does not require any special action.  
While in the D3hot state, this device can only act as the target of PCI  
configuration transactions (for power management control). This device also  
cannot generate interrupts or respond to MMR cycles in the D3 state. The  
device must return to the D0 state in order to be fully-functional.  
There is no hardware functionality required to support these Power States.  
164  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.25  
SS_CAPID—Subsystem ID and Vendor ID Capabilities  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
88h  
0000800Dh  
RO  
Size:  
32 bits  
This capability is used to uniquely identify the subsystem where the PCI device resides. Because this  
device is an integrated part of the system and not an add-in device, it is anticipated that this capability  
will never be used. However, it is necessary because Microsoft will test for its presence.  
Bit  
Access &  
Default  
Description  
Reserved  
31:16  
15:8  
Pointer to Next Capability  
RO  
This contains a pointer to the next item in the capabilities list which is the PCI  
Power Management capability.  
80h  
Capability ID  
7:0  
RO  
Value of 0Dh identifies this linked list item (capability structure) as being for  
SSID/SSVID registers in a PCI-to-PCI Bridge.  
0D h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
165  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.26  
SS—Subsystem ID and Subsystem Vendor ID  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
8Ch  
00008086h  
R/WO  
32 bits  
Size:  
System BIOS can be used as the mechanism for loading the SSID/SVID values. These values must be  
preserved through power management transitions and a hardware reset.  
Bit  
Access &  
Default  
Description  
Subsystem ID (SSID)  
31:16  
R/WO  
0000 h  
R/WO  
8086 h  
Identifies the particular subsystem and is assigned by the vendor.  
Subsystem Vendor ID (SSVID)  
15:0  
Identifies the manufacturer of the subsystem and is the same as the vendor ID  
which is assigned by the PCI Special Interest Group.  
6.2.27  
MSI_CAPID—Message Signaled Interrupts Capability ID  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
90h  
A005h  
RO  
Size:  
16 bits  
When a device supports MSI it can generate an interrupt request to the processor by writing a  
predefined data item (a message) to a predefined memory address.  
In that case walking this linked list will skip this capability and instead go directly from the PCI PM  
capability to the PCI Express capability.  
Bit  
Access &  
Default  
Description  
15:8  
RO  
Pointer to Next Capability  
A0 h  
This contains a pointer to the next item in the capabilities list which is the PCI  
Express capability.  
7:0  
RO  
Capability ID  
05 h  
05h = identifies this linked list item (capability structure) as being for MSI  
registers.  
166  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.28  
MC—Message Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
92h  
0000h  
RO, R/W  
16 bits  
Size:  
System software can modify bits in this register, but the device is prohibited from doing so.  
If the device writes the same message multiple times, only one of those messages is guaranteed to be  
serviced. If all of them must be serviced, the device must not generate the same message again until  
the driver services the earlier one.  
Bit  
Access &  
Default  
Description  
15:8  
7
Reserved  
64-bit Address Capable  
Hardwired to 0 to indicate that the function does not implement the upper 32 bits  
of the Message Address register and is incapable of generating a 64-bit memory  
address.  
RO  
0 b  
6:4  
R/W  
Multiple Message Enable (MME)  
000 b  
System software programs this field to indicate the actual number of messages  
allocated to this device. This number will be equal to or less than the number  
actually requested.  
000: 1 Messages allocated  
001 - 111:  
Reserved  
3:1  
RO  
000 b  
Multiple Message Capable (MMC)  
System software reads this field to determine the number of messages being  
requested by this device.  
000: 1 Messages Requested  
001 - 111: Reserved  
0
R/W  
0 b  
MSI Enable (MSIEN) Controls the ability of this device to generate MSI's.  
0: MSI will not be generated.  
1: MSI will be generated when we receive PME or HotPlug messages. INTA will  
not be generated and INTA Status (PCISTS1[3]) will not be set.  
6.2.29  
MA—Message Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
94h  
00000000h  
RO, R/W  
32 bits  
Size:  
A read from this register produces undefined results.  
Bit  
Access &  
Default  
Description  
31:2  
R/W  
Message Address  
00000000 h  
Used by system software to assign an MSI address to the device.  
The device handles an MSI by writing the padded contents of the MD register to  
this address.  
1:0  
RO  
Force DWORD Align  
00 b  
Hardwired to 0 so that addresses assigned by system software are always  
aligned on a DWORD address boundary.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
167  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.30  
MD—Message Data  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
98h  
0000h  
R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
Message Data  
15:0  
R/W  
Base message data pattern assigned by system software and used to handle an  
MSI from the device.  
0000 h  
When the device must generate an interrupt request, it writes a 32-bit value to the  
memory address specified in the MA register. The upper 16 bits are always set to  
0. The lower 16 bits are supplied by this register.  
6.2.31  
PEG_CAPL—PCI Express Based Graphics Capability List  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
A0h  
0010h  
RO  
Size:  
16 bits  
Enumerates the PCI Express capability structure.  
Bit  
Access &  
Default  
Description  
Pointer to Next Capability  
15:8  
RO  
This value terminates the capabilities list. The Virtual Channel capability and any  
other PCI Express specific capabilities that are reported via this mechanism are in  
a separate capabilities list located entirely within PCI Express Extended  
Configuration Space.  
00 h  
Capability ID  
7:0  
RO  
Identifies this linked list item (capability structure) as being for PCI Express  
registers.  
10 h  
168  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.32  
PEG_CAP—PCI Express*Based Graphics Capabilities  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
A2h  
0141h  
RO  
Size:  
16 bits  
Indicates PCI Express device capabilities.  
Bit  
Access &  
Default  
Description  
Reserved  
15:14  
13:9  
Interrupt Message Number Hardwired to 0.  
RO  
00000 b  
R/WO  
1 b  
Slot Implemented  
8
0: The PCI Express Link associated with this port is connected to an integrated  
component or is disabled.  
1: The PCI Express Link associated with this port is connected to a slot.  
BIOS must initialize this field appropriately if a slot connection is not implemented.  
Device/Port Type  
7:4  
3:0  
RO  
4 h  
RO  
1 h  
Hardwired to 0100 to indicate root port of PCI Express Root Complex.  
PCI Express Capability Version  
Hardwired to 1 as it is the first version.  
6.2.33  
DCAP—Device Capabilities  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
A4h  
00000000h  
RO  
Size:  
32 bits  
This register indicates PCI Express link capabilities.  
Bit  
Access &  
Default  
Description  
Reserved Hardwired to 0.  
31:6  
5
Extended Tag Field Supported  
RO  
0 b  
Hardwired to indicate support for 5-bit Tags as a Requestor.  
Phantom Functions Supported. Hardwired to 0.  
4:3  
2:0  
RO  
00 b  
RO  
Max Payload Size  
Hardwired to indicate 128B max supported payload for Transaction Layer Packets  
(TLP).  
000 b  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
169  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.34  
DCTL—Device Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
A8h  
0000h  
RO, R/W  
16 bits  
Size:  
Provides control for PCI Express device specific capabilities.  
The error reporting enable bits are in reference to errors detected by this device, not errors messages  
received across the link. The reporting of error messages (ERR_CORR, ERR_NONFATAL,  
ERR_FATAL) received by Root Port is controlled exclusively by Root Port Command Register.  
Bit  
Access &  
Default  
Description  
Reserved  
15:8  
7:5  
Max Payload Size  
R/W  
000: 128B max supported payload for Transaction Layer Packets (TLP). As a  
receiver, the Device must handle TLPs as large as the set value; as transmitter,  
the Device must not generate TLPs exceeding the set value.  
000 b  
Note: All other encodings are reserved.  
Reserved  
4
3
Unsupported Request Reporting Enable  
0 = Disabled.  
R/W  
0 b  
1 = Enabled. Unsupported Requests will be reported.  
Note that reporting of error messages received by Root Port is controlled  
exclusively by Root Control register.  
Fatal Error Reporting Enable  
2
1
R/W  
0 b  
0 = Disabled  
1 = Enabled. Fatal errors will be reported. For a Root Port, the reporting of fatal  
errors is internal to the root. No external ERR_FATAL message is generated.  
Non-Fatal Error Reporting Enable  
R/W  
0 b  
0 = Disabled.  
1 = Enabled. Non-fatal errors will be reported. For a Root Port, the reporting of  
non-fatal errors is internal to the root. No external ERR_NONFATAL message is  
generated. Uncorrectable errors can result in degraded performance.  
Correctable Error Reporting Enable  
0
R/W  
0 b  
0 = Disabled.  
1 = Enabled. Correctable errors will be reported. For a Root Port, the reporting  
of correctable errors is internal to the root. No external ERR_CORR message is  
generated.  
170  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.35  
DSTS—Device Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
AAh  
0000h  
RO, R/WC  
16 bits  
Size:  
Reflects status corresponding to controls in the Device Control register.  
The error reporting bits are in reference to errors detected by this device, not errors messages received  
across the link.  
Bit  
Access &  
Default  
Description  
Reserved  
15:6  
5
Transactions Pending  
RO  
0 b  
0: All pending transactions (including completions for any outstanding non-posted  
requests on any used virtual channel) have been completed.  
1: Indicates that the device has transaction(s) pending (including completions for  
any outstanding non-posted requests for all used Traffic Classes).  
Reserved  
4
3
Unsupported Request Detected  
R/WC  
0 b  
When set this bit indicates that the Device received an Unsupported Request.  
Errors are logged in this register regardless of whether error reporting is enabled  
or not in the Device Control Register.  
Fatal Error Detected  
2
1
0
R/WC  
0 b  
When set this bit indicates that fatal error(s) were detected. Errors are logged in  
this register regardless of whether error reporting is enabled or not in the Device  
Control register.  
Non-Fatal Error Detected  
R/WC  
0 b  
When set this bit indicates that non-fatal error(s) were detected. Errors are logged  
in this register regardless of whether error reporting is enabled or not in the Device  
Control register.  
Correctable Error Detected  
R/WC  
0 b  
When set this bit indicates that correctable error(s) were detected.  
Errors are logged in this register regardless of whether error reporting is enabled  
or not in the Device Control register.  
Note: The GMCH may report a false 8B/10B Receiver Error when exiting L0s. This  
is reported thru the Correctable Error Detected bit CESTS device 1, offset 1D0h,  
Bit [0]. This will reduce the value of Receiver Error detection when L0s is enabled.  
Disable L0s for accurate Receiver Error reporting.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
171  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.36  
LCAP—Link Capabilities  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
ACh  
02012801h  
RO, R/WO  
32 bits  
Size:  
Indicate PCI Express device specific capabilities.  
Bit  
Access &  
Default  
Description  
Port Number  
31:24  
RO  
Indicates the PCI Express port number for the given PCI Express link. Matches  
the value in Element Self Description [31:24].  
02 h  
Reserved  
23:18  
17:15  
L1 Exit Latency  
R/WO  
010 b  
Indicates the length of time this Port requires to complete the transition from L1 to  
L0.  
The value 010 b indicates the range of 2 µs to less than 4 µs. If this field is  
required to be any value other than the default, BIOS must initialize it accordingly.  
Both bytes of this register that contain a portion of this field must be written  
simultaneously in order to prevent an intermediate (and undesired) value from  
ever existing.  
L0s Exit Latency  
14:12  
R/WO  
010 b  
Indicates the length of time this Port requires to complete the transition from L0s  
to L0.  
The value 010 b indicates the range of 128 ns to less than 256 ns.  
Note: The default value for this field assumes a Common Clock Configuration. If  
the link is not in Common Clock, then System BIOS will need to program 100b  
(652 ns, which falls into the "512 ns to less than 1 us" range) in this field.  
Active State Link PM Support  
11:10  
9:4  
W/RO  
11 b  
L0s & L1 entry supported.  
Max Link Width  
RO  
Hardwired to indicate X16.  
010000 b  
When X1 mode is enabled on this PCI Express x16 Graphics interface device, this  
field reflects X1 (01h).  
Max Link Speed  
3:0  
RO  
1 h  
Hardwired to indicate 2.5 Gb/s.  
172  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.37  
LCTL—Link Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
B0h  
0000h  
RO, R/W  
16 bits  
Size:  
Allows control of PCI Express link.  
Bit  
Access &  
Default  
Description  
15:8  
7
Reserved  
R/W  
0 h  
Extended Synch  
0: Standard Fast Training Sequence (FTS).  
1: Reserved  
6
R/W  
0 b  
Common Clock Configuration  
0: Indicates that this component and the component at the opposite end of this  
Link are operating with asynchronous reference clock.  
1: Indicates that this component and the component at the opposite end of this  
Link are operating with a distributed common reference clock.  
Components utilize this common clock configuration information to report the  
correct L0s and L1 Exit Latencies.  
Retrain Link  
5
4
R/W  
0 b  
0: Normal operation  
1: Full Link retraining is initiated by directing the Physical Layer LTSSM from L0,  
L0s, or L1 states to the Recovery state.  
This bit always returns 0 when read. This bit is cleared automatically (no need to  
write a 0).  
R/W  
0 b  
Link Disable  
0: Normal operation  
1: Link is disabled  
Link retraining happens automatically on 1 to 0 transition, just like when coming  
out of reset. Writes to this bit are immediately reflected in the value read from the  
bit, regardless of actual Link state.  
3
2
RO  
0 b  
Read Completion Boundary (RCB)  
Hardwired to 0 to indicate 64 byte.  
Reserved  
RO  
0 b  
1:0  
R/W  
00 b  
Active State PM  
Controls the level of active state power management supported on the given link.  
00: Disabled  
01: L0s Entry Supported  
10: L1 Entry Supported (Only)  
11: L0s and L1 Entry Supported  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
173  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.38  
LSTS—Link Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
B2h  
1001h  
RO  
Size:  
16 bits  
Indicates PCI Express link status.  
Bit  
Access &  
Default  
Description  
Reserved  
15:13  
12  
RO  
1 b  
Slot Clock Configuration  
0: The device uses an independent clock irrespective of the presence of a  
reference on the connector.  
1: The device uses the same physical reference clock that the platform provides  
on the connector.  
11  
RO  
0 b  
Link Training  
Indicates that the Physical Layer LTSSM is in the Configuration or Recovery state,  
or that 1b was written to the Retrain Link bit but Link training has not yet begun.  
Hardware clears this bit when the LTSSM exits the Configuration/Recovery state  
once Link training is complete.  
10  
RO  
0 b  
Training Error  
This bit is set by hardware upon detection of unsuccessful training of the Link to  
the L0 Link state.  
9:4  
RO  
Negotiated Width  
000000 b  
Indicates negotiated link width. This field is valid only when the link is in the L0,  
L0s, or L1 states (after link width negotiation is successfully completed).  
00h: Reserved  
01h: X1  
04h: Reserved  
08h: Reserved  
10h: X16  
All other encodings are reserved.  
Negotiated Speed  
3:0  
RO  
1 h  
Indicates negotiated link speed.  
1h: 2.5 Gb/s  
All other encodings are reserved.  
174  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.39  
SLOTCAP—Slot Capabilities  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
B4h  
00000000h  
RO, R/WO  
32 bits  
Size:  
PCI Express Slot related registers allow for the support of Hot Plug.  
Bit  
Access &  
Default  
Description  
31:19  
R/WO  
Physical Slot Number  
0000 h  
Indicates the physical slot number attached to this Port.  
This field must be initialized by BIOS to a value that assigns a slot number that  
is globally unique within the chassis.  
18:17  
16:15  
Reserved  
R/WO  
00 b  
Slot Power Limit Scale  
Specifies the scale used for the Slot Power Limit Value.  
00 = 1.0x  
01 = 0.1x  
10 = 0.01x  
11 = 0.001x  
If this field is written, the link sends a Set_Slot_Power_Limit message.  
14:7  
R/WO  
00 h  
Slot Power Limit Value  
In combination with the Slot Power Limit Scale value, specifies the upper limit  
on power supplied by slot. Power limit (in Watts) is calculated by multiplying  
the value in this field by the value in the Slot Power Limit Scale field.  
If this field is written, the link sends a Set_Slot_Power_Limit message.  
Hot-plug Capable  
6
5
R/WO  
0 b  
Indicates that this slot is capable of supporting Hot-plug operations.  
Hot-plug Surprise  
R/WO  
0 b  
Indicates that a device present in this slot might be removed from the system  
without any prior notification.  
Power Indicator Present  
4
3
R/WO  
0 b  
Indicates that a Power Indicator is implemented on the chassis for this slot.  
Attention Indicator Present  
R/WO  
0 b  
Indicates that an Attention Indicator is implemented on the chassis for this slot.  
Reserved  
2:1  
0
Attention Button Present  
R/WO  
0 b  
Indicates that an Attention Button is implemented on the chassis for this slot.  
The Attention Button allows the user to request hot-plug operations.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
175  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.40  
SLOTCTL—Slot Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
B8h  
01C0  
RO, R/W  
16 bits  
Size:  
PCI Express Slot related registers allow for the support of Hot Plug.  
Bit  
Access &  
Default  
Description  
15:10  
9:8  
Reserved  
R/W  
01 b  
Power Indicator Control  
Reads to this register return the current state of the Power Indicator.  
Writes to this register set the Power Indicator and cause the Port to send the  
appropriate POWER_INDICATOR_* messages.  
00: Reserved  
01: On  
10: Blink  
11: Off  
7:6  
R/W  
11 b  
Attention Indicator Control  
Reads to this register return the current state of the Attention Indicator.  
Writes to this register set the Attention Indicator and cause the Port to send the  
appropriate ATTENTION_INDICATOR_* messages.  
00: Reserved  
01: On  
10: Blink  
11: Off  
5
4
R/W  
0 b  
Hot plug Interrupt Enable  
When set enables generation of hot plug interrupt on enabled hot plug events.  
Command Completed Interrupt Enable  
R/W  
0 b  
When set enables the generation of hot plug interrupt when a command is  
completed by the Hot plug controller.  
3
R/W  
0 b  
Presence Detect Changed Enable  
When set enables the generation of hot plug interrupt or wake message on a  
presence detect changed event.  
Reserved  
2:1  
0
Attention Button Pressed Enable  
R/W  
0 b  
When set enables the generation of hot plug interrupt or wake message on an  
attention button pressed event.  
176  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.41  
SLOTSTS—Slot Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
BAh  
0000h  
RO, R/WC  
16 bits  
Size:  
PCI Express Slot related registers allow for the support of Hot Plug.  
Bit  
Access &  
Default  
Description  
Reserved  
15:7  
RO  
000 h  
RO  
Presence Detect State  
6
Indicates the presence of a card in the slot.  
X b  
0 : Slot Empty  
1 : Card Present in slot.  
Reserved  
5
4
Command Completed  
R/WC  
0 b  
Set when the hot plug controller completes an issued command.  
Presence Detect Changed  
3
R/WC  
0 b  
Set when a Presence Detect change is detected.  
This corresponds to an edge on the signal that corresponds to bit 6 of this  
register (Presence Detect State).  
Reserved  
2:1  
0
Attention Button Pressed  
R/WC  
0 b  
Set when the Attention Button is pressed.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
177  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.42  
RCTL—Root Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
BCh  
0000h  
RO, R/W  
16 bits  
Size:  
Allows control of PCI Express Root Complex specific parameters. The system error control bits in this  
register determine if corresponding SERRs are generated when our device detects an error (reported in  
this device’s Device Status register) or when an error message is received across the link. Reporting of  
SERR as controlled by these bits takes precedence over the SERR Enable in the PCI Command  
Register.  
Bit  
Access &  
Default  
Description  
Reserved  
15:4  
3
PME Interrupt Enable  
R/W  
0 b  
0: No interrupts are generated as a result of receiving PME messages.  
1: Enables interrupt generation upon receipt of a PME message as reflected in  
the PME Status bit of the Root Status Register. A PME interrupt is also  
generated if the PME Status bit of the Root Status Register is set when this bit is  
set from a cleared state.  
System Error on Fatal Error Enable  
2
1
0
R/W  
0 b  
Controls the Root Complex’s response to fatal errors.  
0: No SERR generated on receipt of fatal error.  
1: Indicates that an SERR should be generated if a fatal error is reported by any  
of the devices in the hierarchy associated with this Root Port, or by the Root Port  
itself.  
System Error on Non-Fatal Uncorrectable Error Enable  
Controls the Root Complex’s response to non-fatal errors.  
0: No SERR generated on receipt of non-fatal error.  
R/W  
0 b  
1: Indicates that an SERR should be generated if a non-fatal error is reported by  
any of the devices in the hierarchy associated with this Root Port, or by the Root  
Port itself.  
System Error on Correctable Error Enable  
R/W  
0 b  
Controls the Root Complex’s response to correctable errors.  
0: No SERR generated on receipt of correctable error.  
1: Indicates that an SERR should be generated if a correctable error is reported  
by any of the devices in the hierarchy associated with this Root Port, or by the  
Root Port itself.  
178  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.43  
RSTS—Root Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
C0h  
00000000h  
RO, R/W/C  
32 bits  
Size:  
Provides information about PCI Express Root Complex specific parameters.  
Bit  
Access &  
Default  
Description  
Reserved  
31:18  
17  
PME Pending  
RO  
0 b  
Indicates that another PME is pending when the PME Status bit is set.  
When the PME Status bit is cleared by software; the PME is delivered by hardware  
by setting the PME Status bit again and updating the Requestor ID appropriately.  
The PME pending bit is cleared by hardware if no more PME's are pending.  
PME Status  
16  
R/W/C  
0 b  
Indicates that PME was asserted by the requestor ID indicated in the PME  
Requestor ID field. Subsequent PME’s are kept pending until the status register is  
cleared by writing a 1 to this field.  
PME Requestor ID  
15:0  
RO  
Indicates the PCI requestor ID of the last PME requestor.  
0000 h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
179  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.44  
PEGLC—PCI Express* Based Graphics Legacy Control  
PCI Device:  
Address Offset:  
Default Value  
Access:  
1
ECh  
00000000h  
RO, R/W  
32 bits  
Size:  
Controls functionality that is needed by Legacy (non-PCI Express aware) OS’s during run time.  
Bit  
31:3  
2
Access &  
Default  
Description  
RO  
0000 0000h  
R/W  
Reserved  
PME GPE Enable (PMEGPE)  
0 b  
0: Do not generate GPE PME message when PME is received.  
1: Generate a GPE PME message when PME is received (Assert_PMEGPE  
and Deassert_PMEGPE messages on DMI). This enables the MCH to support  
PMEs on the PEG port under legacy OSs.  
1
0
R/W  
0 b  
Hot-Plug GPE Enable (HPGPE)  
0: Do not generate GPE Hot-Plug message when Hot-Plug event is received.  
1: Generate a GPE Hot-Plug message when Hot-Plug Event is received  
(Assert_HPGPE and Deassert_HPGPE messages on DMI). This enables the  
MCH to support Hot-Plug on the PEG port under legacy OSs.  
R/W  
0 b  
General Message GPE Enable (GENGPE)  
0: Do not forward received GPE assert/deassert messages.  
1: Forward received GPE assert/deassert messages. These general GPE  
message can be received via the PEG port from an external Intel device (i.e.  
PxH) and will be subsequently forwarded to the ICH (via Assert_GPE and  
Deassert_GPE messages on DMI). For example, a PxH might send this  
message if a PCI Express device is hot plugged into a PxH downstream port.  
180  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.45  
VCECH—Virtual Channel Enhanced Capability Header  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
100h  
14010002h  
RO  
Size:  
32 bits  
Indicates PCI Express device Virtual Channel capabilities.  
Note that extended capability structures for PCI Express devices are located in PCI Express extended  
configuration space and have different field definitions than standard PCI capability structures.  
Bit  
Access &  
Default  
Description  
Pointer to Next Capability  
31:20  
RO  
The Link Declaration Capability is the next in the PCI Express extended capabilities  
list.  
140 h  
PCI Express Virtual Channel Capability Version  
19:16  
15:0  
RO  
1 h  
Hardwired to 1 to indicate compliances with the 1.0 version of the PCI Express  
specification.  
Extended Capability ID  
RO  
Value of 0002 h identifies this linked list item (capability structure) as being for PCI  
Express Virtual Channel registers.  
0002 h  
6.2.46  
PVCCAP1—Port VC Capability Register 1  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
104h  
00000001h  
RO, R/WO  
32 bits  
Size:  
Describes the configuration of PCI Express Virtual Channels associated with this port.  
Bit  
Access &  
Default  
Description  
Reserved  
31:7  
6:4  
Low Priority Extended VC Count  
RO  
Indicates the number of (extended) Virtual Channels in addition to the default VC  
belonging to the low-priority VC (LPVC) group that has the lowest priority with  
respect to other VC resources in a strict-priority VC Arbitration.  
000 b  
The value of 0 in this field implies strict VC arbitration.  
Reserved  
3
Extended VC Count  
2:0  
R/WO  
001 b  
Indicates the number of (extended) Virtual Channels in addition to the default VC  
supported by the device.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
181  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.47  
PVCCAP2—Port VC Capability Register 2  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
108h  
00000000h  
RO  
Size:  
32 bits  
Describes the configuration of PCI Express Virtual Channels associated with this port.  
Bit  
Access &  
Default  
Description  
VC Arbitration Table Offset  
31:24  
RO  
Indicates the location of the VC Arbitration Table.  
00 h  
This field contains the zero-based offset of the table in DQWORDS (16 bytes) from  
the base address of the Virtual Channel Capability Structure. A value of 0 indicates  
that the table is not present (due to fixed VC priority).  
Reserved  
23:8  
7:0  
VC Arbitration Capability  
RO  
Indicates that the only possible VC arbitration scheme is hardware fixed (in the root  
complex).  
01 h  
VC1 is the highest priority, VC0 is the lowest priority.  
6.2.48  
PVCCTL—Port VC Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
10Ch  
0000h  
RO, R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
Reserved  
VC Arbitration Select  
15:4  
3:1  
R/W  
This field will be programmed by software to the only possible value as indicated in  
the VC Arbitration Capability field.  
000 b  
This field can not be modified when more than one VC in the LPVC group is  
enabled.  
Reserved  
0
182  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.49  
VC0RCAP—VC0 Resource Capability  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
110h  
00000000h  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
Reserved  
Reject Snoop Transactions  
31:16  
15  
RO  
0 b  
0: Transactions with or without the No Snoop bit set within the TLP header are  
allowed on this VC.  
1: Any transaction without the No Snoop bit set within the TLP header will be  
rejected as an Unsupported Request.  
Reserved  
14:0  
6.2.50  
VC0RCTL—VC0 Resource Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
114h  
800000FF  
RO, R/W  
32 bits  
Size:  
Controls the resources associated with PCI Express Virtual Channel 0.  
Bit  
Access &  
Default  
Description  
31  
RO  
1 b  
VC0 Enable  
For VC0 this is hardwired to 1 and read only as VC0 can never be disabled.  
30:27  
26:24  
Reserved  
RO  
VC0 ID  
000 b  
Assigns a VC ID to the VC resource. For VC0 this is hardwired to 0 and read only.  
23:8  
7:1  
Reserved  
R/W  
TC/VC0 Map  
1111111  
b
Indicates the TCs (Traffic Classes) that are mapped to the VC resource.  
Bit locations within this field correspond to TC values. For example, when bit 7 is  
set in this field, TC7 is mapped to this VC resource. When more than one bit in this  
field is set, it indicates that multiple TCs are mapped to the VC resource. In order to  
remove one or more TCs from the TC/VC Map of an enabled VC, software must  
ensure that no new or outstanding transactions with the TC labels are targeted at  
the given Link.  
0
RO  
1 b  
TC0/VC0 Map  
Traffic Class 0 is always routed to VC0.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
183  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.51  
VC0RSTS—VC0 Resource Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
11Ah  
0000h  
RO  
Size:  
16 bits  
Reports the Virtual Channel specific status.  
Bit  
Access &  
Default  
Description  
Reserved  
15:2  
1
VC0 Negotiation Pending  
RO  
1 b  
0: The VC negotiation is complete.  
1: The VC resource is still in the process of negotiation (initialization or disabling).  
This bit indicates the status of the process of Flow Control initialization. It is set by  
default on Reset, as well as whenever the corresponding Virtual Channel is  
Disabled or the Link is in the DL_Down state. It is cleared when the link successfully  
exits the FC_INIT2 state  
Before using a Virtual Channel, software must check whether the VC Negotiation  
Pending fields for that Virtual Channel are cleared in both Components on a Link.  
Reserved  
0
6.2.52  
VC1RCAP—VC1 Resource Capability  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
11Ch  
00008000h  
RO  
Size:  
32 bits  
Bit  
Access &  
Default  
Description  
Reserved  
Reject Snoop Transactions  
31:16  
15  
RO  
1 b  
0: Transactions with or without the No Snoop bit set within the TLP header are  
allowed on this VC.  
1: Any transaction without the No Snoop bit set within the TLP header will be  
rejected as an Unsupported Request.  
Reserved  
14:0  
184  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.53  
VC1RCTL—VC1 Resource Control  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
120h  
01000000h  
RO, R/W  
32 bits  
Size:  
Controls the resources associated with PCI Express Virtual Channel 1.  
Bit  
Access &  
Default  
Description  
VC1 Enable  
31  
R/W  
0 b  
0: Virtual Channel is disabled.  
1: Virtual Channel is enabled.  
See exceptions in note below.  
Software must use the VC Negotiation Pending bit to check whether the VC  
negotiation is complete. When VC Negotiation Pending bit is cleared, a 1 read from  
this VC Enable bit indicates that the VC is enabled (Flow Control Initialization is  
completed for the PCI Express port); a 0 read from this bit indicates that the Virtual  
Channel is currently disabled.  
NOTES:  
1. To enable a Virtual Channel, the VC Enable bits for that Virtual Channel must  
be set in both Components on a Link.  
2. To disable a Virtual Channel, the VC Enable bits for that Virtual Channel must  
be cleared in both Components on a Link.  
3. Software must ensure that no traffic is using a Virtual Channel at the time it is  
disabled.  
4. Software must fully disable a Virtual Channel in both Components on a Link  
before re-enabling the Virtual Channel.  
Reserved  
30:27  
26:24  
VC1 ID  
R/W  
Assigns a VC ID to the VC resource. Assigned value must be non-zero.  
This field can not be modified when the VC is already enabled.  
Reserved  
001 b  
23:8  
7:1  
TC/VC1 Map  
R/W  
Indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit  
locations within this field correspond to TC values. For example, when bit 7 is set in  
this field, TC7 is mapped to this VC resource. When more than one bit in this field  
is set, it indicates that multiple TCs are mapped to the VC resource. In order to  
remove one or more TCs from the TC/VC Map of an enabled VC, software must  
ensure that no new or outstanding transactions with the TC labels are targeted at  
the given Link.  
0000000  
b
TC0/VC1 Map  
0
RO  
0 b  
Traffic Class 0 is always routed to VC0.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
185  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.54  
VC1RSTS—VC1 Resource Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
126h  
0000h  
RO  
Size:  
16 bits  
Reports the Virtual Channel specific status.  
Bit  
Access &  
Default  
Description  
Reserved  
15:2  
1
VC1 Negotiation Pending  
RO  
1 b  
0: The VC negotiation is complete.  
1: The VC resource is still in the process of negotiation (initialization or disabling).  
Software may use this bit when enabling or disabling the VC. This bit indicates the  
status of the process of Flow Control initialization. It is set by default on Reset, as  
well as whenever the corresponding Virtual Channel is Disabled or the Link is in the  
DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state  
Before using a Virtual Channel, software must check whether the VC Negotiation  
Pending fields for that Virtual Channel are cleared in both Components on a Link.  
Reserved  
0
6.2.55  
RCLDECH—Root Complex Link Declaration Enhanced  
Capability Header  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
140h  
00010005h  
RO  
Size:  
32 bits  
This capability declares links from this element (PEG) to other elements of the root complex  
component to which it belongs. See PCI Express specification for link/topology declaration  
requirements.  
Bit  
Access &  
Default  
Description  
Pointer to Next Capability  
31:20  
RO  
000 h  
RO  
This is the last capability in the PCI Express extended capabilities  
Link Declaration Capability Version  
19:16  
15:0  
Hardwired to 1 to indicate compliances with the 1.0 version of the PCI Express  
specification.  
1 h  
Extended Capability ID  
RO  
Value of 0005 h identifies this linked list item (capability structure) as being for PCI  
Express Link Declaration Capability.  
0005 h  
186  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.56  
ESD—Element Self Description  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
144h  
02000100h  
RO, R/WO  
32 bits  
Size:  
Provides information about the root complex element containing this Link Declaration Capability.  
Bit  
Access &  
Default  
Description  
Port Number  
31:24  
RO  
Specifies the port number associated with this element with respect to the  
component that contains this element. This port number value is utilized by the  
egress port of the component to provide arbitration to this Root Complex Element.  
02 h  
Component ID  
23:16  
15:8  
R/WO  
00 h  
Identifies the physical component that contains this Root Complex Element.  
Component IDs start at 1.  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it  
will be reflected everywhere that it is mirrored.  
Number of Link Entries  
RO  
Indicates the number of link entries following the Element Self Description. This  
field reports 1 (to Egress port only as we don’t report any peer-to-peer capabilities in  
our topology).  
01 h  
Reserved  
7:4  
3:0  
Element Type  
RO  
0 h  
Indicates the type of the Root Complex Element.  
Value of 0 h represents a root port.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
187  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.57  
LE1D—Link Entry 1 Description  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
150h  
00000000h  
RO, R/WO  
32 bits  
Size:  
First part of a Link Entry which declares an internal link to another Root Complex Element.  
Bit  
Access &  
Default  
Description  
Target Port Number  
31:24  
RO  
Specifies the port number associated with the element targeted by this link entry  
(Egress Port). The target port number is with respect to the component that  
contains this element as specified by the target component ID.  
00 h  
Target Component ID  
23:16  
R/WO  
00 h  
Identifies the physical or logical component that is targeted by this link entry. A  
value of 0 is reserved; Component IDs start at 1.  
This value is a mirror of the value in the Component ID field of all elements in this  
component. The value only needs to be written in one of the mirrored fields and it  
will be reflected everywhere that it is mirrored.  
Reserved  
15:2  
1
Link Type  
RO  
0 b  
Indicates that the link points to memory-mapped space (for RCRB). The link  
address specifies the 64-bit base address of the target RCRB.  
Link Valid  
0
R/WO  
0 b  
0: Link Entry is not valid and will be ignored.  
1: Link Entry specifies a valid link.  
6.2.58  
LE1A—Link Entry 1 Address  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
158h  
0000000000000000h  
RO, R/WO  
64 bits  
Size:  
Second part of a Link Entry which declares an internal link to another Root Complex Element.  
Bit  
Access &  
Default  
Description  
Reserved  
63:32  
31:12  
Link Address  
R/WO  
Memory mapped base address of the RCRB that is the target element (Egress  
Port) for this link entry.  
0 0000 h  
Reserved  
11:0  
188  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
PCI Express Graphics Device 1 Configuration Registers (D1:F0)  
R
6.2.59  
PEGSSTS—PCI Express Graphics Sequence Status  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
1
218h  
0000000000000FFFh  
RO  
Size:  
64 bits  
PCI Express status reporting that is required by the PCI Express spec.  
Bit  
Access &  
Default  
Description  
Reserved  
63:60  
59:48  
Next Retry Buffer Entry Sequence Number  
RO  
This is the sequence number to be applied to and pre-pended to the next TLP being  
placed into the Retry Buffer at the Transaction Layer/Data Link Layer interface.  
000 h  
Reserved  
47:44  
43:32  
Next Transmitted Sequence Number  
RO  
This is the sequence number to be applied to and pre-pended to the next outgoing  
TLP. This value is taken from the outlet of the Retry Buffer (the current sequence  
number being transmitted on the PCI Express Link).  
000 h  
Reserved  
31:28  
27:16  
Next Receive Sequence Number  
RO  
This is the sequence number associated with the TLP that is expected to be  
received next.  
000 h  
Reserved  
15:12  
11:0  
Last Acknowledged Sequence Number  
RO  
This is the sequence number associated with the last acknowledged TLP.  
FFF h  
§
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
189  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7 Internal Graphics Device #2  
Configuration Register (D2:F0)  
Note: Excludes Mobile Intel® 915PM Express Chipset.  
Device #2 contains registers for the internal graphics functions. The table below lists the PCI  
configuration registers in order of ascending offset address.  
Function #0 can be VGA compatible or not, this is selected through bit 1 of GGC register (Device #0,  
offset 52h)  
The following sections describe Device 2 PCI configuration registers only.  
Note: Register information for the PCI Express* Based Graphics Port is NOT relative to the Intel®  
915GMS , 910GML and 910GMLE Express Chipsets.  
Note: Register information for the Integrated Graphics Device is NOT relative to the Mobile Intel®  
915PM Express Chipset.  
190  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.1  
7.2  
Device #2: Function 0 Register Summary  
Device #2: Function 0 Configuration Register Details  
Table 7-1. Device #2: Function 0 Configuration Register Summary Table  
Address Start  
(h)  
Register Symbol  
Register Name  
Default Value  
Access  
00-01h  
02-03h  
04-05h  
06-07h  
08h  
VID2  
Vendor Identification  
Device Identification  
PCI Command  
PCI Status  
8086h  
2592h  
00h  
RO  
RO  
DID2  
PCICMD2  
PCISTS2  
RID2  
RO, R/W  
RO, R/WC  
RO  
0090h  
00h  
Revision Identification  
Class Code  
09-0Bh  
0Ch  
CC  
030000h  
00h  
RO  
CLS  
Cache Line Size  
Master Latency Timer  
Header Type  
RO  
0Dh  
MLT2  
HDR2  
00h  
RO  
0Eh  
80h  
RO  
0Fh  
Reserved  
10-13h  
MMADR  
Memory Mapped Range  
Address  
00000000h  
RO, R/W  
RO, R/W  
14-17h  
18-1Bh  
IOBAR  
I/O Base Address  
00000001h  
00000000h  
GMADR  
Graphics Memory Range  
Address  
RO, R/W,  
R/W/L  
1C-1Fh  
GTTADR  
Graphics Translation Table  
Range Address  
00000000h  
RO, R/W  
20-2Bh  
2C-2Dh  
Reserved  
SVID2  
Subsystem Vendor  
Identification  
0000h  
R/WO  
2E-2Fh  
30-33h  
SID2  
Subsystem Identification  
0000h  
R/WO  
RO  
ROMADR  
Video BIOS ROM Base  
Address  
00000000h  
34h  
CAPPOINT  
Capabilities Pointer  
D0h  
RO  
35-3Bh  
3Ch  
Reserved  
INTRLINE  
INTRPIN  
MINGNT  
MAXLAT  
Interrupt Line  
Interrupt Pin  
00h  
01h  
00h  
00h  
R/W  
RO  
RO  
RO  
3Dh  
3Eh  
Minimum Grant  
Maximum Latency  
Reserved  
3Fh  
40-43h  
44h  
MCAPPTR  
Mirror of Dev0 Capability  
Pointer  
45-47h  
Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
191  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
Address Start  
(h)  
Register Symbol  
Register Name  
Default Value  
Access  
48-50h  
MCAPID  
Mirror of Dev0 Capability  
Identification  
51h  
Reserved  
52-53h  
MGGC  
Mirror of Dev0 GMCH  
Graphics Control  
54-57h  
58-5Bh  
5C-5Fh  
60-61h  
62h  
MDEVENdev0f0  
Mirror of Dev0 Device Enable  
Reserved  
BSM  
Base of Stolen Memory  
Reserved  
07800000h  
00h  
RO  
MSAC  
Multi Size Aperture Control  
Reserved  
RO, R/W  
63-CFh  
D0-D1h  
PMCAPID  
PMCAP  
PMCS  
Power Management  
Capabilities ID  
0001h  
0022h  
0000h  
RO  
RO  
D2-D3h  
D4-D5h  
Power Management  
Capabilities  
Power Management  
Control/Status  
RO, R/W  
D6-DFh  
E0-E1h  
E2-E3h  
Reserved  
SWSMI  
Software SMI  
Reserved  
0000h  
00000000h  
0000h  
R/W  
R/W  
System Display Event  
Reserved  
E4-E7  
ASLE  
E9-EFh  
F0-F1h  
GCFGC  
Graphics Clock Frequency  
and Gating Control  
RO, R/W  
F2-F3h  
F4-FBh  
GCPLLC  
ASLE  
Graphics Clock PLL Control  
3464h  
RO, R/W  
R/W  
ASL Event /Legacy Backlight  
Brightness  
00000000h  
FC-FFh  
ASLS  
ASL Storage  
00000000h  
R/W  
192  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.1  
VID2—Vendor Identification  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
00h  
8086h  
RO  
Size:  
16 bits  
This register combined with the Device Identification register uniquely identifies any PCI device.  
Bit  
Access &  
Default  
Description  
Vendor Identification Number (VID): PCI standard identification for Intel.  
15:0  
RO  
8086 h  
7.2.2  
DID2—Device Identification  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
02h  
2592h  
RO  
Size:  
16 bits  
This register combined with the Vendor Identification register uniquely identifies any PCI device.  
Bit  
Access  
& Default  
Description  
Device Identification Number (DID): Identifier assigned to the GMCH core/primary  
PCI device.  
15:0  
RO  
2592 h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
193  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.3  
PCICMD2—PCI Command  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
04h  
00h  
RO, R/W  
16 bits  
Size:  
This 16-bit register provides basic control over the IGD’s ability to respond to PCI cycles. The  
PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory.  
Bit  
Access &  
Default  
Description  
15:11  
10  
Reserved.  
R/W  
0 b  
Interrupt Disable:  
This bit disables the device from asserting INTx#.  
0: Enable the assertion of this device’s INTx# signal.  
1: Disable the assertion of this device’s INTx# signal. DO_INTx messages  
will not be sent to DMI.  
9
8
7
6
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
0 b  
Fast Back-to-Back (FB2B):  
Not Implemented. Hardwired to 0.  
SERR Enable (SERRE):  
Not Implemented. Hardwired to 0.  
Address/Data Stepping Enable (ADSTEP):  
Not Implemented. Hardwired to 0.  
Parity Error Enable (PERRE):  
Not Implemented. Hardwired to 0.  
Since the IGD belongs to the category of devices that does not corrupt programs or  
data in system memory or hard drives, the IGD ignores any parity error that it  
detects and continues with normal operation.  
5
4
3
2
RO  
0 b  
RO  
0 b  
RO  
0 b  
R/W  
0 b  
Video Palette Snooping (VPS):  
This bit is hardwired to 0 to disable snooping.  
Memory Write and Invalidate Enable (MWIE):  
Hardwired to 0. The IGD does not support memory write and invalidate commands.  
Special Cycle Enable (SCE):  
This bit is hardwired to 0. The IGD ignores Special cycles.  
Bus Master Enable (BME):  
0: Disable IGD bus mastering.  
1: Enable the IGD to function as a PCI compliant master.  
Memory Access Enable (MAE):  
1
0
R/W  
0 b  
This bit controls the IGD’s response to memory space accesses.  
0: Disable.  
1: Enable.  
I/O Access Enable (IOAE):  
R/W  
0 b  
This bit controls the IGD’s response to I/O space accesses.  
0: Disable.  
1: Enable.  
194  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.4  
PCISTS2—PCI Status  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
06h  
0090h  
RO, R/WC  
16 bits  
Size:  
PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and PCI  
compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the IGD.  
Bit  
Access &  
Default  
Description  
Detected Parity Error (DPE):  
15  
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
00 b  
RO  
0 b  
Since the IGD does not detect parity, this bit is always hardwired to 0.  
Signaled System Error (SSE):  
14  
13  
The IGD never asserts SERR#, therefore this bit is hardwired to 0.  
Received Master Abort Status (RMAS):  
The IGD never gets a Master Abort, therefore this bit is hardwired to 0.  
Received Target Abort Status (RTAS):  
12  
The IGD never gets a Target Abort, therefore this bit is hardwired to 0.  
Signaled Target Abort Status (STAS):  
11  
Hardwired to 0. The IGD does not use target abort semantics.  
DEVSEL Timing (DEVT):  
10:9  
8
N/A. These bits are hardwired to 00.  
Master Data Parity Error Detected (DPD):  
Since Parity Error Response is hardwired to disabled (and the IGD does not do any  
parity detection), this bit is hardwired to 0.  
Fast Back-to-Back (FB2B):  
7
RO  
1 b  
Hardwired to 1. The IGD accepts fast back-to-back when the transactions are not  
to the same agent.  
User Defined Format (UDF).  
6
5
4
RO  
0 b  
RO  
0 b  
RO  
1 b  
Hardwired to 0.  
66 MHz PCI Capable (66C).  
N/A - Hardwired to 0.  
Capability List (CLIST):  
This bit is set to 1 to indicate that the register at 34h provides an offset into the  
function’s PCI Configuration Space containing a pointer to the location of the first  
item in the list.  
Interrupt Status:  
3
R/WC  
0 b  
This bit reflects the state of the interrupt in the device. Only when the Interrupt  
Disable bit in the command register is a 0 and this Interrupt Status bit is a 1, will the  
devices INTx# signal be asserted. Setting the Interrupt Disable bit to a 1 has no  
effect on the state of this bit.  
Reserved  
2:0  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
195  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.5  
RID2—Revision Identification  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
08h  
00h  
RO  
8 bits  
Size:  
This register contains the revision number for Device #2 Functions 0 and 1  
Bit  
Access &  
Default  
Description  
Revision Identification Number (RID):  
7:0  
RO  
This is an 8-bit value that indicates the revision identification number for the  
GMCH.  
00 h  
7.2.6  
CC—Class Code  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
09h  
030000h  
RO  
Size:  
24 bits  
This register contains the device programming interface information related to the Sub-Class Code and  
Base Class Code definition for the IGD. This register also contains the Base Class Code and the  
function sub-class in relation to the Base Class Code.  
Bit  
Access &  
Default  
Description  
Base Class Code (BCC)  
23:16  
RO  
This is an 8-bit value that indicates the base class code for the GMCH. This code  
has the value 03h, indicating a Display Controller.  
03 h  
Sub-Class Code (SUBCC):  
15:8  
7:0  
RO  
Based on Device #0 DAFC[VGA Disable], which is also mirrored in device #2  
MDAFCdev0f0[VGA Disable]  
00 h  
00h: VGA compatible  
80h: Non VGA  
Programming Interface (PI)  
00h: Hardwired as a Display controller.  
RO  
00 h  
196  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.7  
CLS—Cache Line Size  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
0Ch  
00h  
RO  
8 bits  
Size:  
The IGD does not support this register as a PCI slave.  
Bit  
Access &  
Default  
Description  
Cache Line Size (CLS)  
7:0  
RO  
This field is hardwired to 0s. The IGD as a PCI compliant master does not use the  
Memory Write and Invalidate command and, in general, does not perform  
operations based on cache line size.  
00 h  
7.2.8  
MLT2—Master Latency Timer  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
0Dh  
00h  
RO  
8 bits  
Size:  
The IGD does not support the programmability of the master latency timer because it does not perform  
bursts.  
Bit  
Access &  
Default  
Description  
Master Latency Timer Count Value  
Hardwired to 0s.  
7:0  
RO  
00 h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
197  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.9  
HDR2—Header Type  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
0Eh  
80h  
RO  
8 bits  
Size:  
This register contains the Header Type of the IGD.  
Bit  
Access &  
Default  
Description  
Multi Function Status (MFunc)  
7
RO  
1 b  
Indicates if the device is a Multi-Function Device. The Value of this register is  
determined by Device #0, offset 54h, DEVEN[4].. If Device #0 DEVEN[4] is set,  
the MFunc bit is also set.  
Header Code (H)  
6:0  
RO  
This is an 7-bit value that indicates the Header Code for the IGD. This code has the  
value 00h, indicating a type 0 configuration space format.  
0000000 b  
7.2.10  
MMADR—Memory Mapped Range Address  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
10h  
00000000h  
RO, R/W  
32 bits  
Size:  
This register requests allocation for the IGD registers and instruction ports. The allocation is for 512 kB  
and the base address is defined by bits [31:19].  
Bit  
Access &  
Default  
Description  
Memory Base Address:  
31:19  
R/W  
0000 h  
RO  
Set by the OS, these bits correspond to address signals [31:19].  
Address Mask:  
18:4  
3
Hardwired to 0s to indicate 512 KB address range.  
0000 h  
RO  
Prefetchable Memory:  
Hardwired to 0 to prevent pre-fetching.  
0 b  
Memory Type:  
2:1  
0
RO  
Hardwired to 0s to indicate 32-bit address.  
00 b  
RO  
Memory / IO Space:  
Hardwired to 0 to indicate memory space.  
0 b  
198  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.11  
IOBAR—I/O Base Address  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
14h  
00000001h  
RO, R/W  
32 bits  
Size:  
This register provides the Base offset of the I/O registers within Device #2. Bits 15:3 are programmable  
allowing the I/O Base to be located anywhere in 16bit I/O Address Space. Bits 2:1 are fixed and return  
zero, bit 0 is hardwired to a one indicating that 8 bytes of I/O space are decoded.  
Access to the 8Bs of IO space is allowed in PM state D0 when IO Enable (PCICMD bit 0) set. Access  
is disallowed in PM states D1-D3 or if IO Enable is clear or if Device #2 is turned off or if Internal  
graphics is disabled. Note that access to this IO BAR is independent of VGA functionality within  
Device #2. Also note that this mechanism in available only through function 0 of Device#2 and is not  
duplicated in function #1.  
If accesses to this IO bar are allowed then the GMCH claims all 8, 16 or 32 bit IO cycles from the CPU  
that falls within the 8B claimed.  
Bit  
Access &  
Default  
Description  
Reserved.  
31:16  
15:3  
IO Base Address:  
R/W  
0000 h  
RO  
Set by the OS, these bits correspond to address signals [15:3].  
Memory Type:  
2:1  
0
Hardwired to 0s to indicate 32-bit address.  
00 b  
RO  
Memory / IO Space:  
Hardwired to 1 to indicate I/O space.  
1 b  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
199  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.12  
GMADR—Graphics Memory Range Address  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
18h  
00000000h  
RO, R/W, R/W/L  
32 bits  
Size:  
IGD graphics memory base address is specified in this register.  
Bit  
Access &  
Default  
Description  
Memory Base Address:  
31:28  
R/W  
0 h  
Set by the OS, these bits correspond to address signals [31:28].  
256 MB Address Mask:  
27  
R/W/L  
0 b  
This bit is either part of the Memory Base Address (R/W) or part of the Address  
Mask (RO), depending on the value of MSAC[1]. See MSAC (Dev 2, Func 0, offset  
62) for details.  
Address Mask:  
26:4  
3
RO  
000000 h  
RO  
Hardwired to 0s to indicate at least 128 B address range  
Prefetchable Memory:  
Hardwired to 1 to enable prefetching  
1 b  
Memory Type:  
2:1  
0
RO  
Hardwired to 0 to indicate 32-bit address.  
00 b  
RO  
Memory/IO Space:  
Hardwired to 0 to indicate memory space.  
0 b  
200  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.13  
GTTADR—Graphics Translation Table Range Address  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
1Ch  
00000000h  
RO, R/W  
32 bits  
Size:  
This register requests allocation for Graphics Translation Table Range. The allocation is for 256 kB  
and the base address is defined by bits [31:18].  
Bit  
Access &  
Default  
Description  
Memory Base Address:  
31:18  
R/W  
0000 h  
RO  
Set by the OS, these bits correspond to address signals [31:18].  
Address Mask:  
17:4  
3
Hardwired to 0s to indicate 256 kB address range.  
0000 h  
RO  
Prefetchable Memory:  
Hardwired to 0 to prevent prefetching.  
0 b  
Memory Type:  
2:1  
0
RO  
Hardwired to 0s to indicate 32-bit address.  
00 b  
RO  
Memory/IO Space:  
Hardwired to 0 to indicate memory space.  
0 b  
7.2.14  
SVID2—Subsystem Vendor Identification  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
2Ch  
0000h  
R/WO  
16 bits  
Size:  
Bit  
Access  
Description  
&
Default  
Subsystem Vendor ID.  
15:0  
R/WO  
This value is used to identify the vendor of the subsystem. This register should  
be programmed by BIOS during boot-up. Once written, this register becomes  
Read Only. This register can only be cleared by a Reset.  
0000 h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
201  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.15  
SID2—Subsystem Identification  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
2Eh  
0000h  
R/WO  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
Subsystem Identification.  
15:0  
R/WO  
This value is used to identify a particular subsystem. This field should be  
programmed by BIOS during boot-up. Once written, this register becomes Read  
Only. This register can only be cleared by a Reset.  
0000 h  
7.2.16  
ROMADR—Video BIOS ROM Base Address  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
30h  
00000000h  
RO  
Size:  
32 bits  
The IGD does not use a separate BIOS ROM, therefore this register is hardwired to 0s.  
Bit  
Access &  
Default  
Description  
ROM Base Address: Hardwired to 0’s.  
31:18  
RO  
0000 h  
RO  
Address Mask: Hardwired to 0s to indicate 256 KB address range.  
17:11  
00 h  
Reserved.  
10:1  
0
ROM BIOS Enable: 0 = ROM not accessible.  
RO  
0 b  
202  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.17  
CAPPOINT—Capabilities Pointer  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
34h  
D0h  
RO  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
Capabilities Pointer Value.  
7:0  
RO  
This field contains an offset into the function’s PCI Configuration Space for the first  
item in the New Capabilities Linked List, the Power Management Capabilities ID  
registers at address D0h.  
D0 h  
7.2.18  
INTRLINE—Interrupt Line  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
3Ch  
00h  
R/W  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
Interrupt Connection.  
7:0  
R/W  
00 h  
Used to communicate interrupt line routing information. POST software writes the  
routing information into this register as it initializes and configures the system. The  
value in this register indicates which input of the system interrupt controller that the  
device’s interrupt pin is connected to.  
7.2.19  
INTRPIN—Interrupt Pin  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
3Dh  
01h  
RO  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
Interrupt Pin.  
7:0  
RO  
As a single function device, the IGD specifies INTA# as its interrupt pin.  
01h: INTA#.  
01 h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
203  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.20  
MINGNT—Minimum Grant  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
3Eh  
00h  
RO  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
Minimum Grant Value.  
7:0  
RO  
The IGD does not burst as a PCI compliant master.  
00 h  
7.2.21  
MAXLAT—Maximum Latency  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
3Fh  
00h  
RO  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
Maximum Latency Value.  
7:0  
RO  
The IGD has no specific requirements for how often it needs to access the PCI  
bus.  
00 h  
7.2.22  
7.2.23  
MCAPPTR—Mirror of Dev0 Capability Pointer  
(Mirrored_D0_34)  
PCI Device:  
Function:  
2
0
Address Offset:  
Size:  
44h  
8 bits  
This register is a Read-Only copy of Device 0, Offset 34h register.  
MCAPID—Mirror of Dev0 Capability Identification  
(Mirrored_D0_E0)  
PCI Device:  
Function:  
2
0
Address Offset:  
Size:  
48h  
72 bits  
This register is a Read-Only copy of Device 0, Offset E0h register.  
204  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.24  
7.2.25  
7.2.26  
MGGC—Mirror of Dev0 GMCH Graphics Control  
(Mirrored_D0_52)  
PCI Device:  
Function:  
2
0
Address Offset:  
Size:  
52h  
16 bits  
This register is a Read-Only copy of Device 0, Offset 52h register.  
MDEVENdev0f0—Mirror of Dev0 Device Enable  
(Mirrored_D0_54)  
PCI Device:  
Function:  
2
0
Address Offset:  
Size:  
54h  
32 bits  
This register is a Read-Only copy of Device 0, Offset 54h register.  
BSM—Base of Stolen Memory  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
5Ch  
07800000h  
RO  
Size:  
32 bits  
Graphics Stolen Memory and TSEG are within DRAM space defined under TOLUD. From the top of  
low used DRAM, GMCH claims 1 to 64MBs of DRAM for internal graphics if enabled.  
Bit  
Access &  
Default  
Description  
Base of Stolen Memory (BSM):  
31:20  
RO  
This register contains bits 31 to 20 of the base address of stolen DRAM memory.  
The host interface determines the base of Graphics Stolen memory by subtracting  
the graphics stolen memory size from TOLUD. See Device 0 TOLUD for more  
explanation.  
078 h  
Reserved  
19:0  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
205  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.27  
MSAC—Multi Size Aperture Control  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Address:  
Access:  
62h  
00h  
RO, R/W  
8 bits  
Size:  
This register determines the size of the graphics memory aperture in function 0 and in the trusted space.  
By default, the aperture size is 256 MB (bit 27 read only). If bit 1 is set to a 1, then the aperture size is  
limited to 128 MB. Only the system BIOS will write this register based on pre-boot address allocation  
efforts, but the graphics may read this register to determine the correct aperture size. System BIOS  
needs to save this value on boot so that it can reset it correctly during S3 resume.  
Bit  
Access &  
Default  
Description  
7:4  
R/W  
0 h  
Scratch Bits Only -- Have no physical effect on hardware  
3:2  
1
Reserved  
256MB Aperture Disable  
R/W  
0 b  
0: Bit 27 of GMADR and the equivalent trusted memory aperture is read-only,  
allowing 256 MB of address space to be mapped.  
1: Bit 27 of GMADR and the equivalent trusted memory aperture is read-  
write, limiting the address space to 128 MB.  
Reserved  
0
7.2.28  
GDRST—Graphics Debug Reset (D2:F0)  
PCI Device:  
Address Offset:  
Default Value:  
Access:  
2
C0h  
00h  
RO, R/W  
8 bits  
Size:  
Bit  
Access &  
Default  
Description  
Reserved  
Graphics Reset Status  
7:2  
1
RO  
0 b  
0: Graphics subsystem not in Reset.  
1: Graphics Subsystem in Reset as a result of Graphics Debug Reset.  
This bit gets is set to a ‘1’ when Graphics debug reset bit is set to a ‘1’ and the  
Graphics hardware has completed the debug reset sequence and all Graphics assets  
are in reset. This bit is cleared when Graphics Debug Reset bit is set to a ‘0’.  
Graphics Debug Reset:  
0
R/W  
0 b  
1 = assert display and render domain reset  
0 = de-assert display and render domain reset  
Render and Display clock domain resets should be asserted for at least 20 μsecs.  
Once this bit is set to a “1” all GFX core MMIO registers are returned to power on  
default state. Device 2 IO registers are not available.  
Device 2 Config registers are available when Graphics debug reset is asserted.  
206  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.29  
PMCAPID—Power Management Capabilities ID  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
D0h  
0001h  
RO  
Size:  
16 bits  
Bit  
Access &  
Default  
Description  
15:8  
RO  
NEXT_PTR.  
00 h  
This contains a pointer to next item in capabilities list. This is the final capability in  
the list and must be set to 00h.  
7:0  
RO  
CAP_ID.  
01 h  
SIG defines this ID is 01h for power management.  
7.2.30  
PMCAP—Power Management Capabilities  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
D2h  
0022h  
RO  
Size:  
16 bits  
Bit  
Access &  
Default  
Description  
15:11  
RO  
PME Support.  
00000 b  
This field indicates the power states in which the IGD may assert PME#. Hardwired  
to 0 to indicate that the IGD does not assert the PME# signal.  
10  
9
RO  
0 b  
RO  
0 b  
D2.  
The D2 power management state is not supported. This bit is hardwired to 0.  
D1.  
Hardwired to 0 to indicate that the D1 power management state is not supported.  
8:6  
5
Reserved  
RO  
1 b  
Device Specific Initialization (DSI).  
Hardwired to 1 to indicate that special initialization of the IGD is required before  
generic class device driver is to use it.  
4
3
RO  
0 b  
Auxiliary Power Source.  
Hardwired to 0.  
PME Clock.  
RO  
0 b  
Hardwired to 0 to indicate IGD does not support PME# generation.  
Version.  
2:0  
RO  
Hardwired to 010b to indicate that there are 4 bytes of power management  
registers implemented and that this device complies with revision 1.1 of the PCI  
Power Management Interface Specification  
010 b  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
207  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.31  
PMCS—Power Management Control/Status  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
D4h  
0000h  
RO, R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
15  
RO  
0 b  
PME_Status:  
This bit is 0 to indicate that IGD does not support PME# generation from D3 (cold).  
14:9  
8
Reserved  
RO  
0 b  
PME_En:  
This bit is 0 to indicate that PME# assertion from D3 (cold) is disabled.  
7:2  
1:0  
Reserved  
R/W  
00 b  
PowerState:  
This field indicates the current power state of the IGD and can be used to set the  
IGD into a new power state. If software attempts to write an unsupported state to  
this field, write operation must complete normally on the bus, but the data is  
discarded and no state change occurs.  
On a transition from D3 to D0 the graphics controller is optionally reset to initial  
values. Behavior of the graphics controller in supported states is detailed in the  
power management section.  
Bits[1:0] Power state  
00 D0 Default  
01 D1 Not Supported  
10 D2 Not Supported  
11 D3  
7.2.32  
SWSMI—Software SMI  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
E0h  
0000h  
R/W  
16 bits  
Size:  
As long as there is the potential that DVO port legacy drivers exist which expect this register at this  
address, Dev#2F0address E0h-E1h must be reserved for this register.  
Bit  
Access &  
Default  
Description  
15:8  
7:1  
0
R/W  
00 h  
R/W  
00 h  
R/W  
0 b  
SW scratch bits  
Software Flag  
Used to indicate caller and SMI function desired, as well as return result  
GMCH Software SMI Event  
When Set this bit will trigger an SMI.  
Software must write a 0 to clear this bit  
208  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.33  
GCFGC—Graphics Clock Frequency and Gating Control  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
F0h  
0000h  
RO, R/W  
16 bits  
Size:  
Bit  
15:14  
13  
Access &  
Description  
Default  
R/W  
0 b  
Reserved  
GFX GVL low frequency Enable.  
R/W  
0 b  
0 = Do not Use GFX GVL low frequency target for Render Clock.  
1 = Use GFX GVL low frequency target for Render Clock.  
GFX GVL low frequency target.  
12  
11  
R/W  
0 b  
0 = 133 MHz (Default Value).  
1 = Reserved.  
R/W  
0 b  
Gate Core Render Clock (GCRC):  
0: Core render clock (crclk) is running  
1: Core render clock (crclk) is gated  
Asynchronously Change Core Render Clock (ACCRC):  
10  
9
R/W  
0 b  
A 0 to 1 transition on this bit will immediately load new pre- and post-divider values  
for the crclk and crx2clk. Writing 1 to 1, 1 to 0, and 0 to 0 have no effect.  
R/W  
0 b  
Gate Core Display Clock (GCRC):  
0: Core display clock (cdclk) is running  
1: Core display clock (cdclk) is gated  
8
7
R/W  
0 b  
Asynchronously Change Core Display Clock (ACCDC):  
A 0 to 1 transition on this bit will immediately load new pre- and post-divider values  
for the cdclk. Writing 1 to 1, 1 to 0, and 0 to 0 have no effect.  
R/W  
0 b  
Core Display Low Frequency Enable  
0 = Do not Use low frequency target (133 MHz) for Display Clock.  
1 = Use low frequency target (133 MHz) for Display Clock.  
NOTE: If using 133 MHz cdclk,, Please refer to the PRD for max display resolution  
Graphics Core Display Clock Select.  
6:4  
R/W  
000 b  
000 = 190/200 MHz (Intel 915GM / 915GME / 915GMS & Intel 910GML /  
910GMLE)  
001 - 011 = Reserved  
100 = 333 MHz (Intel 915GM / 915GME @ 1.5 V only)  
101 - 111 = Reserved  
3
Reserved  
2:0  
R/W  
Graphics Core Render Clock Select.  
000 b  
000 = 160/166 MHz (Intel 915GM / 915GME / 915GMS & Intel 910GML /  
910GMLE)  
001 = 190/200 MHz (Intel 915GM)  
010 – 011 = Reserved  
100 = 333 MHz (Intel 915GM / 915GME @ 1.5 V only)  
101 - 111 = Reserved  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
209  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.34  
LBB—Legacy Backlight Brightness  
PCI Device:  
Function:  
2
0
Address Offset:  
Size:  
F4h  
32 bits  
This register can be accessed by either Byte, Word, or Dword PCI config cycles. A write to this register  
will cause the Backlight Event (Display B Interrupt) if enabled.  
Bit  
Description  
31:24  
23-16  
15-8  
7:0  
LBPC Scratch Trigger 3 –  
When written, this scratch byte triggers an interrupt when LBEE is enabled in the  
Pipe B Status register and the Display B Event is enabled in IER and unmasked in  
IMR etc. If written as part of a 16-bit or 32-bit write, only one interrupt is generated  
in common.  
LBPC Scratch Trigger 2 –  
When written, this scratch byte triggers an interrupt when LBEE is enabled in the  
Pipe B Status register and the Display B Event is enabled in IER and unmasked in  
IMR etc. If written as part of a 16-bit or 32-bit write, only one interrupt is generated  
in common.  
LBPC Scratch Trigger 1 –  
When written, this scratch byte triggers an interrupt when LBEE is enabled in the  
Pipe B Status register and the Display B Event is enabled in IER and unmasked in  
IMR etc. If written as part of a 16-bit or 32-bit write, only one interrupt is generated  
in common.  
Legacy Backlight Brightness  
The value of zero is the lowest brightness setting and 255 is the brightest.  
210  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.35  
ASLS—ASL Storage  
PCI Device:  
Function:  
2
0
Address Offset:  
Default Value:  
Access:  
FCh  
00000000h  
R/W  
Size:  
32 bits  
This software scratch register only needs to be read/write accessible. The exact bit register usage must  
be worked out in common between System BIOS and driver software, but storage for  
switching/indicating up to 6 devices is possible with this amount. For each device, the ASL control  
method with require two bits for _DOD (BIOS detectable yes or no, VGA/NonVGA), one bit for  
_DGS (enable/disable requested), and two bits for _DCS (enabled now/disabled now, connected or  
not).  
Bit  
Access &  
Default  
Description  
RW according to a software controlled usage to support device switching  
31:0  
R/W  
00000000 h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
211  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.36  
Device #2 Function 1 Configuration Register Details  
Table 7-2. Device #2 Function 1 Configuration Register Summary Table  
Address  
offset (h)  
Register  
Symbol  
Register Name  
Default  
Value  
Access  
00-01h  
VID2  
Vendor Identification  
02-03h  
04-05h  
06-07h  
08h  
DID2  
Device Identification  
PCICMD2  
PCISTS2  
RID2  
PCI Command  
0000h  
0090h  
RO, R/W  
RO  
PCI Status  
Revision Identification  
Class Code Register  
Cache Line Size  
09-0Bh  
0Ch  
CC  
038000h  
RO  
CLS  
0Dh  
MLT2  
HDR2  
Master Latency Timer  
Header Type Register  
Reserved (1 B)  
0Eh  
0Fh  
10-13h  
14-2Bh  
2C-2Dh  
2E-2Fh  
30-33h  
34h  
MMADR  
Memory Mapped Range Address  
Reserved (24 B)  
00000000h  
RO, R/W  
SVID2  
Subsystem Vendor Identification  
Subsystem Identification  
Video BIOS ROM Base Address  
Capabilities Pointer  
SID2  
ROMADR  
CAPPOINT  
35-3Dh  
3Eh  
Reserved (9 B)  
MINGNT  
MAXLAT  
Minimum Grant Register  
Maximum Latency  
3Fh  
40-43h  
44h  
Reserved (4 B)  
MCAPPTR  
MCAPID  
MGGC  
Mirror of Dev0 Capability Pointer  
Reserved  
45-47h  
48-50h  
51h  
Mirror of Dev0 Capability Identification  
Reserved  
52-53h  
54-57h  
Mirror of Dev0 GMCH Graphics Control  
Mirror of Dev0 Device Enable  
MDEVENdev  
0f0  
58-5Bh  
5C-5Fh  
60-C0h  
C1-C2h  
C3-CFh  
Reserved  
BSM  
Base of Stolen Memory Register  
Reserved  
Reserved  
Reserved  
212  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
Address  
offset (h)  
Register  
Symbol  
Register Name  
Default  
Value  
Access  
D0-D1h  
PMCAPID  
PMCAP  
PMCS  
Power Management Capabilities ID  
Power Management Capabilities  
Power Management Control/Status  
Reserved  
D2-D3h  
D4-D5h  
D6-DFh  
E0-E1h  
E2-F3h  
F4-F7h  
FC-FFh  
0000h  
RO, R/W  
SWSMI  
Software SMI  
Reserved  
LBB  
Legacy Backlight Brightness  
ASL Storage  
ASLS  
00000000h  
R/W  
7.2.37  
7.2.38  
VID2—Vendor Identification  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
00h  
16 bits  
This register is a Read Only copy of Function 0. Write attributes as D2:F0. It is implemented as  
common hardware with two access addresses.  
DID2—Device Identification  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
02h  
16 bits  
This register is unique in Function 1 (the Function 0 DID is separate). This difference in Device ID is  
necessary for allowing distinct Plug and Play enumeration of function 1 when both function 0 and  
function 1 have the same class code.  
Bit  
Access  
&
Default  
Description  
15:0  
RO  
Device Identification Number (DID): This is a 16 bit value assigned to the GMCH  
Graphic device Function 1  
2790h  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
213  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.39  
PCICMD2—PCI Command  
PCI Device:  
Function:  
2
1
Address Offset:  
Default Value:  
Access:  
04h  
0000h  
RO, R/W  
16 bits  
Size:  
This 16-bit register provides basic control over the IGD’s ability to respond to PCI cycles. The  
PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory.  
Bit  
Access &  
Default  
Description  
Reserved.  
15:10  
9
Fast Back-to-Back (FB2B):  
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
0 b  
Not Implemented. Hardwired to 0.  
SERR Enable (SERRE):  
8
7
6
Not Implemented. Hardwired to 0.  
Address/Data Stepping Enable (ADSTEP):  
Not Implemented. Hardwired to 0.  
Parity Error Enable (PERRE):  
Not Implemented. Hardwired to 0.  
Since the IGD belongs to the category of devices that does not corrupt programs or  
data in system memory or hard drives, the IGD ignores any parity error that it  
detects and continues with normal operation.  
VGA Palette Snoop Enable (VGASNOOP):  
5
4
3
2
RO  
0 b  
RO  
0 b  
RO  
0 b  
R/W  
0 b  
This bit is hardwired to 0 to disable snooping.  
Memory Write and Invalidate Enable (MWIE):  
Hardwired to 0. The IGD does not support memory write and invalidate commands.  
Special Cycle Enable (SCE):  
This bit is hardwired to 0. The IGD ignores Special cycles.  
Bus Master Enable (BME):  
Set to 1 to enable the IGD to function as a PCI compliant master.  
Set to 0 to disable IGD bus mastering.  
Memory Access Enable (MAE):  
This bit controls the IGD’s response to memory space accesses.  
0: Disable.  
1
0
R/W  
0 b  
1: Enable.  
I/O Access Enable (IOAE):  
R/W  
0 b  
This bit controls the IGD’s response to I/O space accesses.  
0: Disable.  
1: Enable.  
214  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.40  
PCISTS2—PCI Status  
PCI Device:  
Function:  
2
1
Address Offset:  
Default Value:  
Access:  
06h  
0090h  
RO  
Size:  
16 bits  
PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and PCI  
compliant target abort. PCISTS also indicates the DEVSEL# timing that has been set by the IGD.  
Bit  
Access &  
Default  
Description  
Detected Parity Error (DPE):  
15  
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
0 b  
RO  
00 b  
RO  
0 b  
Since the IGD does not detect parity, this bit is always hardwired to 0.  
Signaled System Error (SSE):  
14  
13  
The IGD never asserts SERR#, therefore this bit is hardwired to 0.  
Received Master Abort Status (RMAS):  
The IGD never gets a Master Abort, therefore this bit is hardwired to 0.  
Received Target Abort Status (RTAS):  
12  
The IGD never gets a Target Abort, therefore this bit is hardwired to 0.  
Signaled Target Abort Status (STAS):  
11  
Hardwired to 0. The IGD does not use target abort semantics.  
DEVSEL Timing (DEVT):  
10:9  
8
These bits are hardwired to "00".  
Master Data Parity Error Detected (DPD):  
Since Parity Error Response is hardwired to disabled (and the IGD does not do any  
parity detection), this bit is hardwired to 0.  
Fast Back-to-Back (FB2B):  
7
RO  
1 b  
Hardwired to 1. The IGD accepts fast back-to-back when the transactions are not  
to the same agent.  
User Defined Format (UDF).  
6
5
4
RO  
0 b  
RO  
0 b  
RO  
1 b  
Hardwired to 0.  
66 MHz PCI Capable (66C).  
N/A - Hardwired to 0.  
Capability List (CLIST):  
This bit is set to 1 to indicate that the register at 34h provides an offset into the  
function’s PCI Configuration Space containing a pointer to the location of the first  
item in the list.  
Interrupt Status:  
3
RO  
0 b  
Hardwired to 0.  
Reserved  
2:0  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
215  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.41  
7.2.42  
RID2—Revision Identification  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
08h  
8 bits  
This register is a copy of Function 0. It has the same Read, Write attributes as Function 0. It is  
implemented as common hardware with two access addresses.  
CC—Class Code Register  
PCI Device:  
Function:  
2
1
Address Offset:  
Default Value:  
Access:  
09h  
038000h  
RO  
Size:  
24 bits  
This register contains the device programming interface information related to the Sub-Class Code and  
Base Class Code definition for the IGD. This register also contains the Base Class Code and the  
function sub-class in relation to the Base Class Code.  
Bit  
Access &  
Default  
Description  
Base Class Code (BCC)  
23:16  
RO  
This is an 8-bit value that indicates the base class code for the GMCH. This code  
has the value 03h, indicating a Display Controller.  
03 h  
Sub-Class Code (SUBCC)  
15:8  
7:0  
RO  
80 h  
RO  
80h: Non VGA  
Programming Interface (PI)  
00h: Hardwired as a Display controller.  
00 h  
7.2.43  
7.2.44  
CLS—Cache Line Size  
PCI Device:  
Function:  
Address Offset:  
Size:  
2
1
0Ch  
8 bits  
This register is a Read Only copy of Function 0.  
MLT2—Master Latency Timer  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
0Dh  
8 bits  
This register is a Read Only copy of Function 0.  
216  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.45  
7.2.46  
HDR2—Header Type Register  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
0Eh  
8 bits  
This register is a Read Only copy of Function 0.  
MMADR—Memory Mapped Range Address  
PCI Device:  
Function:  
2
1
Address Offset:  
Default Value:  
Access:  
10h  
00000000h  
RO, R/W  
32 bits  
Size:  
This register requests allocation for the IGD registers and instruction ports. The allocation is for 512 kB  
and the base address is defined by bits [31:19].  
Bit  
Access &  
Default  
Description  
Memory Base Address:  
31:19  
R/W  
0000 h  
RO  
Set by the OS, these bits correspond to address signals [31:19].  
Address Mask:  
18:4  
3
Hardwired to 0s to indicate 512 kB address range.  
0000 h  
RO  
Prefetchable Memory:  
Hardwired to 0 to prevent prefetching.  
0 b  
Memory Type:  
2:1  
0
RO  
Hardwired to 0s to indicate 32-bit address.  
00 b  
RO  
Memory / IO Space:  
Hardwired to 0 to indicate memory space.  
0 b  
7.2.47  
SVID2—Subsystem Vendor Identification  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
2Ch  
16 bits  
This register is a Read Only copy of Function 0. It has the same Read-Write attributes as D2:F0. It is  
implemented as common hardware with two access addresses.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
217  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.48  
7.2.49  
SID2—Subsystem Identification  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
2Eh  
16 bits  
This register is a Read Only copy of Function 0.  
ROMADR—Video BIOS ROM Base Address  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
30h  
32 bits  
This register is a Read Only copy of Function 0. It has the same Read-Write attributes as D2:F0. It is  
implemented as common hardware with two access addresses.  
7.2.50  
7.2.51  
7.2.52  
CAPPOINT—Capabilities Pointer  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
34h  
8 bits  
This register is a Read Only copy of Function 0. It has the same Read-Write attributes as D2:F0. It is  
implemented as common hardware with two access addresses.  
MINGNT—Minimum Grant Register  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
3Eh  
8 bits  
This register is a Read Only copy of Function 0. It has the same Read-Write attributes as D2:F0. It is  
implemented as common hardware with two access addresses.  
MAXLAT—Maximum Latency  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
3Fh  
8 bits  
This register is a Read Only copy of Function 0. It has the same Read-Write attributes as D2:F0. It is  
implemented as common hardware with two access addresses.  
218  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.53  
7.2.54  
MCAPPTR—Mirror of Dev0 Capability Pointer  
(Mirrored_D0_34)  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
44h  
8 bits  
This register is a Read-Only copy of Device 0, Offset 34h register.  
MCAPID—Mirror of Dev0 Capability Identification  
(Mirrored_D0_E0)  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
48h  
72 bits  
This register is a Read-Only copy of Device 0, Offset E0h register.  
7.2.55  
7.2.56  
MGGC—Mirror of Dev0 GMCH Graphics Control  
(Mirrored_D0_52)  
PCI Device:  
Address Offset:  
Size:  
2
52h  
16 bits  
This register is a Read-Only copy of Device 0, Offset 52h register.  
MDEVENdev0f0—Mirror of Dev0 Device Enable  
(Mirrored_D0_54)  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
54h  
32 bits  
This register is a Read-Only copy of Device 0, Offset 54h register.  
7.2.57  
BSM—Base of Stolen Memory Register  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
5Ch  
32 bits  
This register is a Read Only copy of Function 0  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
219  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.58  
7.2.59  
7.2.60  
PMCAPID—Power Management Capabilities ID  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
D0h  
16 bits  
This register is a copy of Function 0. It has the same Read, Write attributes as Function 0. It is  
implemented as common hardware with two access addresses.  
PMCAP—Power Management Capabilities  
PCI Device:  
Function:  
2
1
Address Offset:  
Size:  
D2h  
16 bits  
This register is a copy of Function 0. It has the same Read, Write attributes as Function 0. It is  
implemented as common hardware with two access addresses.  
PMCS—Power Management Control/Status  
PCI Device:  
Function:  
2
1
Address Offset:  
Default Value:  
Access:  
D4h  
0000h  
RO, R/W  
16 bits  
Size:  
Bit  
Access &  
Default  
Description  
PME_Status:  
15  
RO  
0 b  
This bit is 0 to indicate that IGD does not support PME# generation from D3  
(cold).  
Reserved:  
14:9  
8
The IGD does not support data register. This bit always returns 0 when read, write  
operations have no effect.  
PME_En:  
RO  
0 b  
This bit is 0 to indicate that PME# assertion from D3 (cold) is disabled.  
Reserved.  
7:2  
1:0  
PowerState:  
R/W  
00 b  
This field indicates the current power state of the IGD and can be used to set the  
IGD into a new power state. If software attempts to write an unsupported state to  
this field, write operation must complete normally on the bus, but the data is  
discarded and no state change occurs.  
On a transition from D3 to D0 the graphics controller is optionally reset to initial  
values.  
Bits[1:0] Power state  
00 D0 Default  
01 D1 Not Supported  
10 D2 Not Supported  
11 D3  
220  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.2.61  
7.2.62  
7.2.63  
SWSMI—Software SMI  
PCI Device:  
Function:  
Address Offset:  
Size:  
2
1
E0h  
16 bits  
This register is a copy of Function 0. It has the same Read, Write attributes as Function 0. It is  
implemented as common hardware with two access addresses.  
LBB—Legacy Backlight Brightness  
PCI Device:  
Function:  
Address offset:  
Size:  
2
1
F4h  
32 bits  
This register is a copy of Function 0. It has the same Read, Write attributes as Function 0. It is  
implemented as common hardware with two access addresses.  
ASLS—ASL Storage  
PCI Device:  
Function:  
2
1
Address Offset:  
Default Value:  
Access:  
FCh  
00000000h  
R/W  
Size:  
32 bits  
This software scratch register only needs to be read/write accessible. The exact bit register usage must  
be worked out in common between System BIOS and driver software, but storage for  
switching/indicating up to 6 devices is possible with this amount. For each device, the ASL control  
method with require two bits for _DOD (BIOS detectable yes or no, VGA/NonVGA), one bit for  
_DGS (enable/disable requested), and two bits for _DCS (enabled now/disabled now, connected or  
not).  
Bit  
Access &  
Default  
Description  
R/W according to a software controlled usage to support device switching  
31:0  
R/W  
00000000 h  
7.3  
Device #2 – PCI I/O Registers  
The following are not PCI config registers; they are I/O registers. This mechanism allows access to  
internal graphics MMIO registers must not be used to access VGA IO registers which are mapped  
through the MMIO space. VGA registers must be accessed directly through the dedicated VGA IO  
ports.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
221  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
7.3.1  
MMIO Index—MMIO Address Register  
I/O Address:  
Default Value:  
Access:  
IOBAR + 0h  
00000000h  
R/W  
Size:  
32 bits  
MMIO_INDEX: A 32 bit IO write to this port loads the offset of the MMIO register that needs to be  
accessed. An IO Reads returns the current value of this register. An 8/16 bit IO write to this register is  
completed by the GMCH but does not update this register. This mechanism allows access to internal  
graphics MMIO registers must not be used to access VGA IO registers which are mapped through the  
MMIO space. VGA registers must be accessed directly through the dedicated VGA IO ports.  
Bit  
Access &  
Default  
Description  
Register/GTT Offset:  
31:2  
R/W  
This field selects any one of the DWORD registers within the MMIO  
register space of Device #2.  
00000000 h  
Reserved  
1:0  
R/W  
00 b  
7.3.2  
MMIO Data—MMIO Data Register  
I/O Address:  
Default Value:  
Access:  
IOBAR + 4h  
00000000h  
R/W  
Size:  
32 bits  
MMIO_DATA A 32 bit IO write to this port is re-directed to the MMIO register location pointed to by  
the MMIO-index register. A 32 bit IO read to this port is re-directed to the MMIO register address  
pointed to by the MMIO-index register regardless of the target selection in MMIO_INDEX(1:0). 8-bit  
or 16-bit IO writes are completed by the GMCH and may have un-intended side effects, hence must not  
be used to access the data port. 8-bit or 16-bit IO reads are completed normally.  
Bit  
Access &  
Default  
Description  
MMIO data window  
31:0  
R/W  
00000000 h  
§
222  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Internal Graphics Device #2 Configuration Register (D2:F0)  
R
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
223  
System Address Map  
R
8 System Address Map  
The GMCH supports 4 GB of addressable memory space and 64 kB+3 of addressable I/O space. There  
is a programmable memory address space under the 1-MB region which is divided into regions which  
can be individually controlled with programmable attributes such as Disable, Read/Write, Write Only,  
or Read Only. Attribute programming is described in the Register Description section. This section  
focuses on how the memory space is partitioned and what the separate memory regions are used for.  
I/O address space has simpler mapping and is explained near the end of this section.  
Addressing of memory ranges larger than 4 GB is NOT supported. The HREQ [4:3] FSB pins are  
decoded to determine whether the access is above or below 4 GB.  
The GMCH does not support the PCI Dual Address Cycle (DAC) Mechanism, PCI Express 64-bit  
prefetchable memory transactions, or any other addressing mechanism that allows addressing of greater  
than 4 GB on either the DMI or PCI Express interface. The GMCH does not limit DRAM space in  
hardware. There is no hardware lock to stop someone from inserting more memory than is addressable.  
In the following sections, it is assumed that all of the compatibility memory ranges reside on the DMI.  
The exception to this rule is VGA ranges, which may be mapped to PCI Express, DMI, or to the  
internal graphics device (IGD). In the absence of more specific references, cycle descriptions  
referencing PCI should be interpreted as the DMI/PCI, while cycle descriptions referencing PCI  
Express or IGD are related to the PCI Express bus or the internal graphics device respectively. The  
GMCH does not remap APIC or any other memory spaces above TOLUD (Top of Low Usable  
DRAM). The TOLUD register is set to the appropriate value by BIOS.  
The Address Map includes a number of programmable ranges:  
Device 0:  
EPBAR  
window)  
Egress port registers. Necessary for setting up VC1 as an isochronous channel. (4 kB  
MCHBAR Memory mapped range for internal GMCH registers. For example, memory buffer  
register controls. (16 kB window)  
PCIEXBAR Flat memory-mapped address spaced to access device configuration registers. This  
mechanism can be used to access PCI configuration space (0-FFh) and Extended configuration  
space (100h-FFFh) for PCI Express devices. This enhanced configuration access mechanism  
is defined in the PCI Express specification. (256-MB window).  
DMIBAR This window is used to access registers associated with the MCH/ICH (DMI) register  
memory range. (4 kB window)  
GGC – GMCH graphics control register. Used to select the amount of main memory that is pre-  
allocated to support the internal graphics device in VGA (non-linear) and Native (linear)  
modes. (0-64 MB options).  
224  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
System Address Map  
R
Device 1, Function 0:  
MBASE1/MLIMIT1 – PCI Express port non-prefetchable memory access window.  
PMBASE1/PMLIMIT1 – PCI Express port prefetchable memory access window.  
IOBASE1/IOLIMIT1 – PCI Express port IO access window.  
Device 2, Function 0:  
MMADR – IGD registers and internal graphics instruction port. (512 kB window)  
IOBAR – I/O access window for internal graphics. Through this window address/data register  
pair, using I/O semantics, the IGD and internal graphics instruction port registers can be  
accessed.  
GMADR – Internal graphics translation window. (256-MB window)  
GTTADR – Internal graphics translation table location. (256 kB window).  
Device 2, Function 1:  
MMADR – Function 1 IGD registers and internal graphics instruction port. (512 kB window)  
IOBAR – Function 1 IO access window for internal graphics.  
The rules for the above programmable ranges are:  
1. ALL of these ranges MUST be unique and NON-OVERLAPPING. It is the BIOS or system  
designer’s responsibility to limit memory population so that adequate PCI, PCI Express, High  
BIOS, PCI Express Memory Mapped space, and APIC memory space can be allocated.  
2. In the case of overlapping ranges with memory, the memory decode will be given priority.  
3. There are NO Hardware Interlocks to prevent problems in the case of overlapping ranges.  
4. Accesses to overlapped ranges may produce indeterminate results.  
5. The only peer-to-peer cycles allowed below the top of memory (register TOLUD) are DMI to PCI  
Express VGA range writes. Note that peer to peer cycles to the Internal Graphics VGA range are  
not supported.  
The following figure represents system memory address map in a simplified form.  
Figure 8-1. System Address Ranges  
4 GB  
Device 0  
PCI Memory  
Address  
Range  
Device 1  
Device 2  
BARS  
(MBASE1/  
MLIMIT1,  
PMBASE1/  
PMLIMIT1)  
(MMADR,  
GMADR,  
)
GTTADR,  
(EPBAR,  
MCHBAR,  
PCIEXBAR,  
DMIBAR  
(subtractively  
Decoded)o  
TOLUD  
Device 0  
GGC  
(Graphics  
Stolen  
Memory)  
Independently Programmable  
Non - Overlapping Windows  
Main  
Memory  
Address  
Rang e  
1 MB  
Legacy  
Address  
Range  
0
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
225  
System Address Map  
R
8.1  
Legacy Address Range  
This area is divided into the following address regions:  
0 - 640 kB – DOS Area  
640 - 768 kB – Legacy Video Buffer Area  
768 - 896 kB in 16 kB sections (total of eight sections) – Expansion Area  
896 -960 kB in 16 kB sections (total of four sections) – Extended System BIOS Area  
960 kB - 1 MB memory – system BIOS Area  
Figure 8-2. DOS Legacy Address Range  
1MB  
000F_FFFFh  
000F_0000h  
000E_FFFFh  
000E_0000h  
000D_FFFFh  
System BIOS (Upper)  
64KB  
960KB  
896KB  
Extended System BIOS (Lower)  
64KB (16KBx4)  
Expansion Area  
128KB (16KBx8)  
000C_0000h  
768KB  
640KB  
000 B_FFFFh  
Legacy Video Area  
(SMM Memory)  
128KB  
000A_0000h  
0009_FFFFh  
DOS Area  
0000_0000h  
226  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
System Address Map  
R
8.1.1  
8.1.2  
DOS Range (0h – 9_FFFFh)  
The DOS area is 640 kB (0000_0000h – 0009_FFFFh) in size and is always mapped to the main  
memory controlled by the GMCH.  
Legacy Video Area (A_0000h-B_FFFFh)  
The legacy 128 kB VGA memory range, frame buffer, (000A_0000h – 000B_FFFFh) can be mapped  
to IGD (Device #2), to PCI Express (Device #1), and/or to the DMI. The appropriate mapping depends  
on which devices are enabled and the programming of the VGA steering bits. Based on the VGA  
steering bits, priority for VGA mapping is constant. The GMCH always decodes internally mapped  
devices first. Internal to the GMCH, decode precedence is always given to IGD. The GMCH always  
positively decodes internally mapped devices, namely the IGD and PCI Express. Subsequent decoding  
of regions mapped to PCI Express or the DMI depends on the Legacy VGA configuration bits (VGA  
Enable and MDAP). This region is also the default for SMM space.  
Compatible SMRAM Address Range (A_0000h-B_FFFFh)  
When compatible SMM space is enabled, SMM-mode CPU accesses to this range are routed to  
physical system DRAM at 000A 0000h - 000B FFFFh. Non-SMM-mode CPU accesses to this range  
are considered to be to the Video Buffer Area as described above. PCI Express and DMI originated  
cycles to enabled SMM space are not allowed and are considered to be to the Video Buffer Area if IGD  
is not enabled as the VGA device. PCI Express and DMI initiated cycles are attempted as Peer cycles,  
and will master abort on PCI if no external VGA device claims them.  
Monochrome Adapter (MDA) Range (B_0000h-B_7FFFh)  
Legacy support requires the ability to have a second graphics controller (monochrome) in the system.  
Accesses in the standard VGA range are forwarded to IGD, PCI Express, or the DMI (depending on  
configuration bits). Since the monochrome adapter may be mapped to any one of these devices, the  
GMCH must decode cycles in the MDA range (000B_0000h - 000B_7FFFh) and forward either to  
IGD, PCI Express, or the DMI. This capability is controlled by a VGA steering bits and the legacy  
configuration bit (MDAP bit). In addition to the memory range B0000h to B7FFFh, the GMCH  
decodes IO cycles at 3B4h, 3B5h, 3B8h, 3B9h, 3BAh and 3BFh and forwards them to the either IGD,  
PCI Express, and/or the DMI.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
227  
System Address Map  
R
8.1.3  
Expansion Area (C_0000h-D_FFFFh)  
This 128 kB ISA Expansion region (000C_0000h – 000D_FFFFh) is divided into eight 16 KB  
segments. Each segment can be assigned one of four Read/Write states: read-only, write-only,  
read/write, or disabled. Typically, these blocks are mapped through GMCH and are subtractively  
decoded to ISA space. Memory that is disabled is not remapped.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.  
Table 8-1. Expansion Area Memory Segments  
Memory Segments  
Attributes  
Comments  
0C0000H - 0C3FFFH  
0C4000H - 0C7FFFH  
0C8000H - 0CBFFFH  
0CC000H - 0CFFFFH  
0D0000H - 0D3FFFH  
0D4000H - 0D7FFFH  
0D8000H - 0DBFFFH  
0DC000H - 0DFFFFH  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
W/R  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
Add-on BIOS  
8.1.4  
Extended System BIOS Area (E_0000h-E_FFFFh)  
This 64 kB area (000E_0000h – 000E_FFFFh) is divided into four, 16 kB segments. Each segment can  
be assigned independent read and write attributes so it can be mapped either to main DRAM or to DMI.  
Typically, this area is used for RAM or ROM. Memory segments that are disabled are not remapped  
elsewhere.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.  
Table 8-2. Extended System BIOS Area Memory Segments  
Memory Segments  
Attributes  
Comments  
0E0000H - 0E3FFFH  
0E4000H - 0E7FFFH  
0E8000H - 0EBFFFH  
0EC000H - 0EFFFFH  
W/R  
W/R  
W/R  
W/R  
BIOS Extension  
BIOS Extension  
BIOS Extension  
BIOS Extension  
228  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
System Address Map  
R
8.1.5  
System BIOS Area (F_0000h-F_FFFFh)  
This area is a single 64 kB segment (000F_0000h – 000F_FFFFh). This segment can be assigned read  
and write attributes. It is by default (after reset) Read/Write disabled and cycles are forwarded to DMI.  
By manipulating the Read/Write attributes, the GMCH can “shadow” BIOS into the main DRAM.  
When disabled, this segment is not remapped.  
Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.  
Table 8-3. System BIOS Area Memory Segments  
Memory Segments  
Attributes  
WE RE  
Comments  
0F0000H - 0FFFFFH  
BIOS Area  
8.1.6  
Programmable Attribute Map (PAM) Memory Area Details  
The 13 sections from 768 kB to 1 MB comprise what is also known as the PAM Memory Area.  
The GMCH does not handle IWB (Implicit Write-Back) cycles targeting DMI. Since all memory  
residing on DMI should be set as non-cacheable, there normally will not be IWB cycles targeting DMI.  
However, DMI becomes the default target for CPU and DMI originated accesses to disabled segments  
of the PAM region. If the MTRRs covering the PAM regions are set to WB or RC it is possible to get  
IWB cycles targeting DMI. This may occur for DMI originated cycles to disabled PAM regions.  
For example, say that a particular PAM region is set for “Read Disabled” and the MTRR associated  
with this region is set to WB. A DMI master generates a memory read targeting the PAM region. A  
snoop is generated on the FSB and the result is an IWB. Since the PAM region is “Read Disabled” the  
default target for the Memory Read becomes DMI. The IWB associated with this cycle will cause the  
GMCH to hang.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
229  
System Address Map  
R
8.2  
Main Memory Address Range (1 MB to TOLUD)  
This address range extends from 1 MB to the top of physical memory that is permitted to be accessible  
by the GMCH (as programmed in the TOLUD register). All accesses to addresses within this range  
will be forwarded by the GMCH to the DRAM unless they fall into the optional TSEG, optional ISA  
Hole, or optional IGD stolen VGA memory.  
The GMCH provides a maximum DRAM address decode space of 4 GB. The GMCH does not remap  
APIC or PCI Express memory space. This means that as the amount of physical memory populated in  
the system reaches 4 GB, there will be physical memory that exists yet is non-addressable and therefore  
unusable by the system.  
The GMCH does not limit DRAM address space in hardware.  
Figure 8-3. Main Memory Address Range  
8.2.1  
ISA Hole (15 MB-16 MB)  
Legacy ISA based video accelerators originally used this hole. A hole can be created at 15 MB-16 MB  
as controlled by the fixed hole enable in Device 0 space. Accesses within this hole are forwarded to  
the DMI. The range of physical DRAM memory disabled by opening the hole is not remapped to the  
top of the memory – that physical DRAM space is not accessible. This 15 MB-16 MB hole is an  
optionally enabled ISA hole.  
230  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
System Address Map  
R
8.2.2  
TSEG  
TSEG is optionally 1 MB, 2 MB, or 8 MB in size. TSEG is below IGD stolen memory, which is at the  
top of physical memory. SMM-mode CPU accesses to enabled TSEG access the physical DRAM at the  
same address. Non-CPU originated accesses are not allowed to SMM space. PCI Express, DMI, and  
Internal Graphics originated cycles to enabled SMM space are handled as invalid cycle type with reads  
and writes to location 0 and byte enables turned off for writes. When the extended SMRAM space is  
enabled, CPU accesses to the TSEG range without SMM attribute or without WB attribute are also  
forwarded to memory as invalid accesses. Non-SMM-mode Write Back cycles that target TSEG space  
are completed to DRAM for cache coherency. When SMM is enabled the maximum amount of  
memory available to the system is equal to the amount of physical DRAM minus the value in the TSEG  
register which is fixed at 1 MB, 2 MB or 8 MB.  
8.2.3  
Pre-allocated Memory  
Voids of physical addresses that are not accessible as general system memory and reside within system  
memory address range (< TOLUD) are created for SMM-mode and legacy VGA graphics  
compatibility. It is the responsibility of BIOS to properly initialize these regions. The following  
table details the location and attributes of the regions. How to enable and disable these ranges are  
described in the GMCH Control Register Device #0 (GCC).  
Table 8-4. Pre-allocated Memory Example for 64-MB Dram, 1-MB VGA, and 1-MB TSEG  
Memory Segments  
Attributes  
Comments  
0000_0000h – 03DF_FFFFh  
03E0_0000h – 03EF_FFFFh  
R/W  
Available System Memory 62 MB  
SMM Mode Only -  
CPU Reads  
TSEG Address Range & Pre-allocated Memory  
03F0_0000h – 03FF_FFFFh  
R/W  
Pre-allocated Graphics VGA memory.  
1MB (or 4/8/16/32/64 MB) when IGD is enabled.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
231  
System Address Map  
R
8.3  
PCI Express Memory Address Range (TOLUD – 4GB)  
This address range, from the top of physical memory to 4 GB (top of addressable memory space  
supported by the GMCH) is normally mapped via the DMI to PCI.  
Exceptions to this mapping include the BAR memory mapped regions, which include: EPBAR,  
MCHBAR, DMIBAR.  
In the PCI Express port, there are two exceptions to this rule:  
1. Addresses decoded to the PCI Express Memory Window defined by the MBASE1, MLIMIT1,  
PMBASE1, and PMLIMIT1 registers are mapped to PCI Express.  
2. Addresses decoded to PCI Express Configuration Space are mapped based on Bus, Device, and  
Function number. (PCIEXBAR range).  
Note: AGP Aperture no longer exists with PCI Express.  
In an internal graphics configuration, there are three exceptions to this rule:  
3. Addresses decoded to the Graphics Memory Range. (GMADR range)  
4. Addresses decoded to the Graphics Translation Table range (GTTADR range).  
5. Addresses decoded to the Memory Mapped Range of the Internal Graphics Device (MMADR  
range). There is a MMADR range for device 2 function 0 and a MMADR range for device 2  
function 1. Both ranges are forwarded to the internal graphics device.  
Note: The exceptions listed above for internal graphics and the PCI Express ports MUST NOT  
overlap with APCI Configuration Space, FSB Interrupt Space and High BIOS Address Range.  
232  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
System Address Map  
R
Figure 8-4. PCI Express Memory Address Range  
4GB  
FFFF_FFFFh  
High BIOS  
FFE0_0000h  
4GB - 2MB  
DMI Interface  
(subtractive decode)  
FEF0_0000h  
4GB - 17MB  
4GB - 18MB  
4GB - 19MB  
FSB Interrupts  
FEE0_0000h  
FED0_0000h  
DMI Interface  
(subtractive decode)  
Local (CPU) APIC  
I/O APIC  
Optional HSEG  
FEC8_0000h  
FEC0_0000h  
FEDA_0000h to  
FEDB_FFFFh  
4GB - 20MB  
DMI Interface  
(subtractive decode)  
F000_0000h  
E000_0000h  
4GB - 256MB  
Possible  
address  
range  
PCI Express Configuration  
Space  
4GB - 512MB  
DMI Interface  
(subtractive decode)  
Internal Graphics ranges  
PCI Express Port  
TOLUD  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
233  
System Address Map  
R
8.3.1  
APIC Configuration Space (FEC0_0000h-FECF_FFFFh)  
This range is reserved for APIC configuration space which includes the default I/O APIC configuration  
space from FEC0_0000h to FEC7_0FFFh. The default Local (CPU) APIC configuration space goes  
from FEC8_0000h to FECF_FFFFh.  
CPU accesses to the Local APIC configuration space do not result in external bus activity since the  
Local APIC configuration space is internal to the CPU. However, an MTRR must be programmed to  
make the Local APIC range uncacheable (UC). The Local APIC base address in each CPU should be  
relocated to the FEC0_0000h (4 GB-20 MB) to FECF_FFFFh range so that one MTRR can be  
programmed to 64 kB for the Local and I/O APICs. The I/O APIC(s) usually reside in the ICH portion  
of the chip set or as a stand-alone component(s).  
I/O APIC units will be located beginning at the default address FEC0_0000h. The first I/O APIC will  
be located at FEC0_0000h. Each I/O APIC unit is located at FEC0_x000h where x is I/O APIC unit  
number 0 through F(hex). This address range will normally be mapped to DMI.  
Note: There is no provision to support an I/O APIC device on PCI Express.  
8.3.2  
HSEG (FEDA_0000h-FEDB_FFFFh)  
This optional segment from FEDA_0000h to FEDB_FFFFh provides a remapping window to SMM  
memory. It is sometimes called the High SMM memory space. SMM-mode CPU accesses to the  
optionally enabled HSEG are remapped to 000A_0000h - 000B_FFFFh. Non-SMM mode CPU  
accesses to enabled HSEG are considered invalid and are terminated immediately on the FSB. The  
exceptions to this rule are Non-SMM mode Write Back cycles which are remapped to SMM space to  
maintain cache coherency. PCI Express and DMI originated cycles to enabled SMM space are not  
allowed. Physical DRAM behind the HSEG transaction address is not remapped and is not accessible.  
All Cacheline writes with WB attribute or implicit write backs to the HSEG range are completed to  
DRAM like an SMM cycle.  
8.3.3  
8.3.4  
FSB Interrupt Memory Space (FEE0_0000-FEEF_FFFF)  
The FSB Interrupt space is the address used to deliver interrupts to the FSB. Any device on PCI  
Express or DMI may issue a Memory Write to 0FEEx_xxxxh. The GMCH will forward this Memory  
Write along with the data to the FSB as an Interrupt Message Transaction. The GMCH terminates the  
FSB transaction by providing the response and asserting HTRDY#. This Memory Write cycle does not  
go to DRAM.  
High BIOS Area  
The top 2 MB (FFE0_0000h -FFFF_FFFFh) of the PCI Memory Address Range is reserved for System  
BIOS (High BIOS), extended BIOS for PCI devices, and the A20 alias of the system BIOS. The CPU  
begins execution from the High BIOS after reset. This region is mapped to DMI so that the upper  
subset of this region aliases to the 16 MB-256 kB range. The actual address space required for the  
BIOS is less than 2 MB but the minimum CPU MTRR range for this region is 2 MB so that full 2 MB  
must be considered.  
234  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
System Address Map  
R
8.4  
PCI Express Configuration Address Space  
There is a Device 0 register (PCIEXBAR), that defines the base address for the 256-MB block of  
addresses below top of addressable memory (currently 4 GB) for the configuration space associated  
with all devices and functions that are potentially a part of the PCI Express root complex hierarchy.  
This range will be aligned to a 256-MB boundary. BIOS must assign this address range such that it  
will not conflict with any other address ranges.  
See the configuration portion of this document for more details.  
8.4.1  
PCI Express Graphics Attach  
The GMCH can be programmed to direct memory accesses to the PCI Express interface when  
addresses are within either of two ranges specified via registers in GMCH’s Device #1 configuration  
space.  
The first range is controlled via the Memory Base Register (MBASE) and Memory Limit Register  
(MLIMIT) registers.  
The second range is controlled via the Prefetchable Memory Base (PMBASE) and Prefetchable  
Memory Limit (PMLIMIT) registers.  
The GMCH positively decodes memory accesses to PCI Express memory address space as defined by  
the following equations:  
Memory_Base_Address Address Memory_Limit_Address  
Prefetchable_Memory_Base_Address Address Prefetchable_Memory_Limit_Address  
It is essential to support a separate Prefetchable range in order to apply USWC attribute (from the  
processor point of view) to that range. The USWC attribute is used by the processor for write  
combining.  
Note that the GMCH Device #1 memory range registers described above are used to allocate memory  
address space for any PCI Express devices sitting on PCI Express that require such a window.  
The PCICMD1 register can override the routing of memory accesses to PCI Express. In other words,  
the memory access enable bit must be set in the device 1 PCICMD1 register to enable the memory  
base/limit and prefetchable base/limit windows.  
8.4.2  
AGP DRAM Graphics Aperture  
Unlike AGP, PCI Express has no concept of aperture for PCI Express devices. As a result, there is no  
need to translate addresses from PCI Express. Therefore, the GMCH has no APBASE and APSIZE  
registers.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
235  
System Address Map  
R
8.5  
Graphics Memory Address Ranges (Intel Integrated  
Graphics Chipsets Only)  
The GMCH can be programmed to direct memory accesses to IGD when addresses are within any of  
three ranges specified via registers in GMCH’s Device #2 configuration space.  
The Memory Map Base Register (MMADR) is used to access graphics control registers.  
The Graphics Memory Aperture Base Register (GMADR) is used to access graphics memory  
allocated via the graphics translation table.  
The Graphics Translation Table Base Register (GTTADR) is used to access the translation table.  
Normally these ranges will reside above the Top-of-Main-DRAM and below High BIOS and APIC  
address ranges. They normally reside above the top of memory (TOLUD) so they do not steal any  
physical DRAM memory space.  
GMADR is a Prefetchable range in order to apply USWC attribute (from the processor point of view)  
to that range. The USWC attribute is used by the processor for write combining.  
8.6  
System Management Mode (SMM)  
System Management Mode uses main memory for System Management RAM (SMM RAM). The  
GMCH supports: Compatible SMRAM (C_SMRAM), High Segment (HSEG), and Top of Memory  
Segment (TSEG). System Management RAM space provides a memory area that is available for the  
SMI handlers and code and data storage. This memory resource is normally hidden from the system  
OS so that the processor has immediate access to this memory space upon entry to SMM. GMCH  
provides three SMRAM options:  
Below 1-MB option that supports compatible SMI handlers.  
Above 1-MB option that allows new SMI handlers to execute with write-back cacheable SMRAM.  
Optional TSEG area of 1 MB, 2 MB, or 8 MB in size. The TSEG area lies below IGD stolen  
memory.  
The above 1-MB solutions require changes to compatible SMRAM handlers code to properly execute  
above 1 MB.  
Note: DMI and PCI Express masters are not allowed to access the SMM space.  
236  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
System Address Map  
R
8.6.1  
SMM Space Definition  
SMM space is defined by its addressed SMM space and its DRAM SMM space. The addressed SMM  
space is defined as the range of bus addresses used by the CPU to access SMM space. DRAM SMM  
space is defined as the range of physical DRAM memory locations containing the SMM code. SMM  
space can be accessed at one of three transaction address ranges: Compatible, High and TSEG.  
The Compatible and TSEG SMM space is not remapped and therefore the addressed and DRAM SMM  
space is the same address range. Since the High SMM space is remapped the addressed and DRAM  
SMM space are different address ranges. Note that the High DRAM space is the same as the  
Compatible Transaction Address space. The table below describes three unique address ranges:  
Compatible Transaction Address (Adr C)  
High Transaction Address (Adr H)  
TSEG Transaction Address (Adr T)  
These abbreviations are used later in the table describing SMM Space Transaction Handling.  
Table 8-5. SMM Space Definition Summary  
SMM Space Enabled  
Transaction Address Space  
DRAM Space (DRAM)  
Compatible (C)  
High (H)  
000A_0000h to 000B_FFFFh  
FEDA_0000h to FEDB_FFFFh  
000A_0000h to 000B_FFFFh  
000A_0000h to 000B_FFFFh  
TSEG (T)  
(TOLUD-STOLEN-TSEG) to TOLUD-  
STOLEN  
(TOLUD-STOLEN-TSEG) to TOLUD-  
STOLEN  
8.7  
SMM Space Restrictions  
If any of the following conditions are violated, the results of SMM accesses are unpredictable and may  
cause the system to hang:  
The Compatible SMM space must not be set-up as cacheable.  
High or TSEG SMM transaction address space must not overlap address space assigned to system  
DRAM, or to any “PCI” devices (including DMI, PCI Express, and graphics devices). This is a  
BIOS responsibility.  
Both D_OPEN and D_CLOSE must not be set to 1 at the same time.  
When TSEG SMM space is enabled, the TSEG space must not be reported to the OS as available  
DRAM. This is a BIOS responsibility.  
Any address translated through the GMADR must not target DRAM from A_0000-F_FFFF.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
237  
System Address Map  
R
8.7.1  
SMM Space Combinations  
When High SMM is enabled (G_SMRAME=1 and H_SMRAM_EN=1) the Compatible SMM space is  
effectively disabled. CPU originated accesses to the Compatible SMM space are forwarded to PCI  
Express if VGAEN=1 (also depends on MDAP), otherwise they are forwarded to the DMI. PCI  
Express and DMI originated accesses are never allowed to access SMM space.  
Table 8-6. SMM Space Table  
Global Enable  
G_SMRAME  
High Enable  
H_SMRAM_EN  
TSEG Enable  
TSEG_EN  
Compatible  
(C) Range  
High (H)  
Range  
TSEG (T)  
Range  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Disable  
Enable  
Disable  
Disable  
Disable  
Enable  
Enable  
Disable  
Disable  
Enable  
Disable  
Enable  
Enable  
Disabled  
Disabled  
8.7.2  
SMM Control Combinations  
The G_SMRAME bit provides a global enable for all SMM memory. The D_OPEN bit allows software  
to write to the SMM ranges without being in SMM mode. BIOS software can use this bit to initialize  
SMM code at powerup. The D_LCK bit limits the SMM range access to only SMM mode accesses.  
The D_CLS bit causes SMM data accesses to be forwarded to the DMI or PCI Express. The SMM  
software can use this bit to write to video memory while running SMM code out of DRAM.  
Table 8-7. SMM Control Table  
G_SMRAME  
D_LCK  
D_CLS  
D_OPEN  
CPU in  
SMM Mode  
SMM Code  
Access  
SMM Data  
Access  
0
1
1
1
1
1
1
1
1
x
0
0
0
0
0
1
1
1
X
X
0
0
1
1
X
0
1
x
0
0
1
0
1
x
x
x
x
0
1
x
1
x
0
1
1
Disable  
Disable  
Enable  
Enable  
Enable  
Invalid  
Disable  
Enable  
Enable  
Disable  
Disable  
Enable  
Enable  
Disable  
Invalid  
Disable  
Enable  
Disable  
8.7.3  
8.7.4  
SMM Space Decode and Transaction Handling  
Only the CPU is allowed to access SMM space. PCI Express and DMI originated transactions are not  
allowed to SMM space.  
CPU WB Transaction to an Enabled SMM Address Space  
CPU Writeback transactions (REQ[1]# = 0) to enabled SMM address space must be written to the  
associated SMM DRAM even though D_OPEN=0 and the transaction is not performed in SMM mode.  
This ensures SMM space cache coherency when cacheable extended SMM space is used.  
238  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
System Address Map  
R
8.8  
8.9  
Memory Shadowing  
Any block of memory that can be designated as read-only or write-only can be “shadowed” into  
GMCH DRAM memory. Typically this is done to allow ROM code to execute more rapidly out of  
main DRAM. ROM is used as read-only during the copy process while DRAM at the same time is  
designated write-only. After copying, the DRAM is designated read-only so that ROM is shadowed.  
CPU bus transactions are routed accordingly.  
I/O Address Space  
The GMCH does not support the existence of any other I/O devices beside itself on the CPU bus. The  
GMCH generates either DMI or PCI Express bus cycles for all CPU I/O accesses that it does not claim.  
Within the host bridge the GMCH contains two internal registers in the CPU I/O space, Configuration  
Address Register (CONFIG_ADDRESS) and the Configuration Data Register (CONFIG_DATA).  
These locations are used to implement a configuration space access mechanism.  
The CPU allows 64 k+3 bytes to be addressed within the I/O space. The GMCH propagates the CPU  
I/O address without any translation on to the destination bus and therefore provides addressability for  
64 k+3 byte locations. Note that the upper three locations can be accessed only during I/O address  
wrap-around when CPU bus HAB_16 address signal is asserted. HAB_16 is asserted on the CPU bus  
whenever an I/O access is made to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. HAB_16 is also  
asserted when an I/O access is made to 2 bytes from address 0FFFFh.  
A set of I/O accesses (other than ones used for configuration space access) are consumed by the  
internal graphics device if it is enabled. The mechanisms for internal graphics I/O decode and the  
associated control is explained later.  
The I/O accesses (other than ones used for configuration space access) are forwarded normally to the  
DMI bus unless they fall within the PCI Express I/O address range as defined by the mechanisms  
explained below. I/O writes are NOT posted. Memory writes to ICH or PCI Express are posted. The  
PCICMD1 register can disable the routing of I/O cycles to PCI Express.  
The GMCH responds to I/O cycles initiated on PCI Express or DMI with a UR status. Upstream I/O  
cycles and configuration cycles should never occur. If one does occur, the request will route as a read  
to memory address 0h so a completion is naturally generated (whether the original request was a read  
or write). The transaction will complete with a UR completion status.  
For Intel Pentium M Processor with 2 MBL2 Cache processor, I/O reads that lie within 8-byte  
boundaries but cross 4-byte boundaries are issued from the CPU as 1 transaction. The GMCH will  
break this into two separate transactions. This has not been done on previous chipsets. I/O writes that  
lie within 8-byte boundaries but cross 4-byte boundaries are assumed to be split into two transactions  
by the CPU.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
239  
System Address Map  
R
8.9.1  
PCI Express I/O Address Mapping  
The GMCH can be programmed to direct non-memory (I/O) accesses to the PCI Express bus interface  
when CPU initiated I/O cycle addresses are within the PCI Express I/O address range. This range is  
controlled via the I/O Base Address (IOBASE) and I/O Limit Address (IOLIMIT) registers in GMCH  
Device #1 configuration space.  
8.10  
GMCH Decode Rules and Cross-Bridge Address  
Mapping  
VGAA = 000A_0000 – 000A_FFFF  
MDA = 000B_0000 – 000B_7FFF  
VGAB = 000B_8000 – 000B_FFFF  
MAINMEM = 0100_0000 to TOLUD  
8.10.1  
Legacy VGA and I/O Range Decode Rules  
The legacy 128 kB VGA memory range 000A_0000h-000B_FFFFh can be mapped to IGD (Device  
#2), to PCI Express (Device #1), and/or to the DMI depending on the programming of the VGA  
steering bits. Priority for VGA mapping is constant in that the GMCH always decodes internally  
mapped devices first. Internal to the GMCH, decode precedence is always given to IGD. The GMCH  
always positively decodes internally mapped devices, namely the IGD and PCI Express. Subsequent  
decoding of regions mapped to PCI Express or the DMI depends on the Legacy VGA configurations  
bits (VGA Enable and MDAP).  
§
240  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
System Address Map  
R
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
241  
Host Interface  
R
9 Host Interface  
9.1  
FSB Source Synchronous Transfers  
The GMCH supports the Intel Pentium M Processor with 2 MBL2 Cache processor subset of the  
Enhanced Mode Scaleable Bus. The cache line size is 64 bytes. Source synchronous transfer is used for  
the address and data signals. The address signals are double pumped and a new address can be  
generated every other bus clock. At 100 MHz and 133 MHz bus clock the address signals run at 200,  
266 and 400 MT/s for a maximum address queue rate of 66 M and 100 M addresses/sec. The data is  
quad pumped and an entire 64B cache line can be transferred in two bus clocks. At 100 MHz and 133  
MHz bus clock the data signals run at 400 and 533 for a maximum bandwidth of 3.2, 4.3, and 6.4 GB/s  
respectively.  
9.2  
9.3  
9.4  
FSB IOQ Depth  
The Scalable Bus supports up to 12 simultaneous outstanding transactions.  
FSB OOQ Depth  
The GMCH supports only one outstanding deferred transaction on the FSB.  
FSB GTL+ Termination  
The GMCH integrates GTL+ termination resistors on die.  
242  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Host Interface  
R
9.5  
FSB Dynamic Bus Inversion  
The GMCH supports Dynamic Bus Inversion (DBI) when driving and when receiving data from the  
CPU. DBI limits the number of data signals that are driven to a low voltage on each quad pumped data  
phase. This decreases the worst-case power consumption of the GMCH. HDINV#_3:0 indicate if the  
corresponding 16 bits of data are inverted on the bus for each quad pumped data phase:  
HDINVB_3:0  
Data Bits  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HD15:0#  
HD31:16#  
HD47:32#  
HD63:48#  
Whenever the processor or the GMCH drives data, each 16-bit segment is analyzed. If more than 8 of  
the 16 signals would normally be driven low on the bus the corresponding HDINV# signal will be  
asserted and the data will be inverted prior to being driven on the bus. Whenever the CPU or the  
GMCH receives data it monitors HDINV# [3:0] to determine if the corresponding data segment should  
be inverted.  
9.6  
FSB Interrupt Overview  
The Intel Pentium M Processor with 2 MBL2 Cache processor supports FSB interrupt delivery. They  
do not support the APIC serial bus interrupt delivery mechanism. Interrupt related messages are  
encoded on the FSB as “Interrupt Message Transactions”. FSB interrupts may originate from the CPUs  
on the FSB, or from a downstream device on the DMI or PCI Express Graphics Attach. In the later  
case, the GMCH drives the “Interrupt Message Transaction” on the FSB.  
In the IOxAPIC environment, an interrupt is generated from the IOxAPIC to a CPU in the form of an  
upstream Memory Write. The ICH contains IOxAPICs, and its interrupts are generated as upstream  
DMI Memory Writes. Furthermore, the PCI 2.3 specification and PCI Express Specifications define  
MSI’s (Message Signaled Interrupts) that are also in the form of Memory Writes. A PCI device may  
generate an interrupt as an MSI cycle on it’s PCI bus instead of asserting a hardware signal to the  
IOxAPIC. The MSI may be directed to the IOxAPIC. The IOxAPIC in turn generates an interrupt as  
an upstream DMI Memory Write. Alternatively, the MSI may directly route to the FSB. The target of  
an MSI is dependent on the address of the interrupt Memory Write. The GMCH forwards upstream  
DMI and PCI Express Graphics Attach low priority Memory Writes to address 0FEEx_xxxxh to the  
FSB as “Interrupt Message Transactions”.  
The GMCH also broadcasts EOI cycles generated by a CPU downstream to the PCI Express Port and  
DMI interfaces.  
9.7  
APIC Cluster Mode support  
This is required for backwards compatibility with existing software, including various OS’s. As one  
example, beginning with Microsoft* Windows* 2000 there is a mode (boot.ini) that allows an end user  
to enable the use of cluster addressing support of the APIC.  
§
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
243  
Functional Description  
R
10 Functional Description  
This chapter describes the GMCH interfaces and major functional units  
10.1  
Host Interface  
The GMCH supports the Intel Pentium M Processor with 2 MBL2 Cache processor subset of the  
Enhanced Mode Scaleable Bus. The cache line size is 64 bytes. Source synchronous transfer is used for  
the address and data signals. The address signals are double pumped and a new address can be  
generated every other bus clock. At 100 MHz and 133 MHz bus clock the address signals run at 200,  
266 and 400 MT/s for a maximum address queue rate of 66 M and 100 M addresses/sec. The data is  
quad pumped and an entire 64B cache line can be transferred in two bus clocks. At 100 MHz and 133  
MHz bus clock the data signals run at 400 and 533 for a maximum bandwidth of 3.2, 4.3, and 6.4 GB/s  
respectively.  
The Scalable Bus supports up to 12 simultaneous outstanding transactions. The GMCH supports only  
one outstanding deferred transaction on the FSB.  
10.1.1  
10.1.2  
FSB GTL+ Termination  
The GMCH integrates GTL+ termination resistors on die.  
FSB Dynamic Bus Inversion  
The GMCH supports Dynamic Bus Inversion (DBI) when driving and when receiving data from the  
CPU. DBI limits the number of data signals that are driven to a low voltage on each quad pumped data  
phase. This decreases the worst-case power consumption of the GMCH. HDINV#_3:0 indicate if the  
corresponding 16 bits of data are inverted on the bus for each quad pumped data phase:  
HDINVB_3:0  
Data Bits  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HD15:0#  
HD31:16#  
HD47:32#  
HD63:48#  
Whenever the processor or the GMCH drives data, each 16-bit segment is analyzed. If more than 8 of  
the 16 signals would normally be driven low on the bus the corresponding HDINV# signal will be  
asserted and the data will be inverted prior to being driven on the bus. Whenever the CPU or the  
GMCH receives data it monitors HDINV# [3:0] to determine if the corresponding data segment should  
be inverted.  
244  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.1.3  
APIC Cluster Mode support  
This is required for backwards compatibility with existing software, including various OS’s. As one  
example, beginning with Microsoft* Windows* 2000 there is a mode (boot.ini) that allows an end user  
to enable the use of cluster addressing support of the APIC.  
The (G)MCH supports three types of interrupt re-direction:  
Physical  
Flat-Logical  
Clustered-Logical  
10.2  
System Memory Controller  
This section describes the GMCH system memory interface for both DDR memory and DDR2  
memory. The GMCH supports both DDR and DDR2 memory and either one or two DIMMs per  
channel.  
The Intel 915GM/GME/PM and Intel 910GML/GMLE GMCH DRAM sub-system supports DDR and  
DDR2 devices.  
The Intel 915GMS GMCH DRAM sub-system support only DDR2 devices.  
The Mobile Intel® 915GM/GME/PM Express Chipset supports three memory channel organizations:  
Single Channel configuration for DDR 333 MHz devices  
Dual Channel Asymmetric for DDR2 400/533 MHz devices  
Dual Channel Symmetric for DDR2 400/533 MHz devices  
The Mobile Intel 910GML/GMLE Express chipset supports three memory channel organizations:  
Single Channel configuration for DDR 333 MHz devices  
Dual Channel Asymmetric for DDR2 400 MHz devices  
Dual Channel Symmetric for DDR2 400 MHz devices  
The Intel 915GMS chipset only supports one memory channel organization:  
Single Channel configuration for DDR2 400 MHz devices  
If configured as a single channel system, that channel can have one, two, three, or four ranks populated.  
If configured as a dual channel system, each channel can have one or two ranks populated. So in either  
case there can be a maximum of 4 ranks (2 double sided SO-DIMMs) populated.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
245  
Functional Description  
R
Table 10-1. System Memory Organization Support for DDR  
DDR  
Page  
Size  
Smallest  
Increments  
Largest  
Increments  
Maximum Capacity  
(2 DS SO-DIMMs)  
Tech  
Width  
Banks  
256 Mb  
256 Mb  
512 Mb  
512 Mb  
1 GB  
X8  
X16  
X8  
8 k  
4 k  
8 k  
8 k  
8 k  
4
4
4
4
4
256 MB  
128 MB  
512 MB  
256 MB  
512 MB  
512 MB  
256 MB  
1 GB  
1 GB  
512 MB  
2 GB  
X16  
X16  
512 MB  
1 GB  
1 GB  
2 GB  
Table 10-2. System Memory Organization Support for DDR2  
DDR2  
Page  
Size  
Banks  
Smallest  
Increments  
Largest  
Increments  
Maximum Capacity  
(2 DS SO-DIMMs)  
Tech  
Width  
256 Mb  
256 Mb  
512 Mb  
512 Mb  
1 GB  
X8  
X16  
X8  
8 k  
4 k  
8k  
4
4
4
4
8
256 MB  
128 MB  
512 MB  
256 MB  
512 MB  
512 MB  
256 MB  
1 GB  
1 GB  
512 MB  
2 GB  
X16  
X16  
8 k  
8 k  
512 MB  
1 GB  
1 GB  
2 GB  
Table 10-3. DDR / DDR2 Supported Configurations  
Technology  
Configuration  
# of Row  
Address Bits  
# of Column  
Address Bits  
# of Bank  
Address Bits  
Page  
Size  
Rank Size  
256 Mbit  
256 Mbit  
512 Mbit  
512 Mbit  
512 Mbit  
1 Gbit  
16M X 16  
32M X 8  
32M X 16  
64M X 8  
64M X 8  
64M X 16  
128M X 8  
64M X 16  
128M X 8  
13  
13  
13  
13  
14  
14  
14  
13  
14  
9
2
2
2
2
2
2
2
3
3
4 k  
128 MB  
256 MB  
256 MB  
512 MB  
512 MB  
512 MB  
1 GB  
10  
10  
11  
10  
10  
11  
10  
10  
8 k  
8 v  
16 k  
8 k  
8 k  
1 Gbit  
16 k  
8 k  
1 Gbit  
512 MB  
1 GB  
1 Gbit  
8 k  
246  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.2.1  
Memory Channel Organization Modes  
The system memory controller supports three styles of memory organization (Symmetric, Asymmetric  
and Single Channel) and two modes of operation (DDR and DDR2). Rules for populating SO-DIMM  
slots are included in this chapter.  
10.2.1.1  
Interleaved (Symmetric) Mode  
This mode provides maximum performance on real applications. Addresses are ping-ponged between  
the channels, and the switch happens after each cache line (64-byte boundary) if a second request sits  
behind the first, and that request is to an address on the second channel, that request can be sent before  
data from the first request has returned. Due to this feature, some progress is made even furthering page  
conflict scenarios. If two consecutive cache lines are requested, both may be retrieved simultaneously,  
since they are guaranteed to be on opposite channels. The drawbacks of Symmetric mode are that the  
system designer must populate both channels of memory so they have equal capacity, but the  
technology and device width may vary from one channel to the other.  
Table 10-4. Sample System Memory Organization with Symmetric Channels  
Channel A  
population  
DRBs in  
Channel A  
Channel B  
population  
DRBs in  
Channel B  
Rank 1  
Rank 0  
512 MB  
512 MB  
1024 MB  
512 MB  
512 MB  
512 MB  
1024 MB  
512 MB  
10.2.1.2  
Asymmetric Mode  
This mode trades performance for system design flexibility. Unlike the previous mode, addresses start  
in channel A and stay there until the end of the highest rank in channel A, and then addresses continue  
from the bottom of channel B to the top. Real world applications are unlikely to make requests that  
alternate between addresses that sit on opposite channels with this memory organization, so in most  
cases, bandwidth will be limited to that of a single channel. The system designer is free to populate or  
not to populate any rank on either channel, including either degenerate single channel case.  
Table 10-5. Sample System Memory Organization with Asymmetric Channels  
Channel A  
population  
DRBs in  
Channel A  
Channel B  
population  
DRBs in  
Channel B  
Rank 1  
Rank 0  
1024 MB  
512 MB  
1536 MB  
512 MB  
512 MB  
256 MB  
768 MB  
256 MB  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
247  
Functional Description  
R
Figure 10-1. System Memory Styles  
single channel  
CL  
dual channel interleaved  
dual channel asym m etric  
channels don’t have to m atch  
channels don’t have to m atch  
C L  
C L  
TOM  
TOM  
TOM  
C H1  
C H0  
C H1  
CH0-top  
D RB  
CH0 or C H1  
C H0  
C H1  
C H0  
C H1  
C H0  
0
0
0
Channel selector controlled by  
D CC [10:9]  
10.2.1.3  
DRAM Address Mapping  
In the tables below, r indicates a Row address bit, b indicates a bank select bit, and c indicates a column  
address bit. h indicates a channel select bit, and s indicates that the bit is part of the decode for a chip  
select (rank select) bit, but since different ranks may use different technologies or organizations, the  
only way to be sure to which channel and rank an address belongs is to check the DRB register  
programming. Both s and h are provided for the example of a homogenous population only. Column bit  
10 is always used for an AutoPrecharge indication. An asterisk (*) indicates that row address bit 4 will  
always be driven to 0.  
248  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
Table 10-6. DRAM Device Configurations –Dual Channel Asymmetric Mode / Single Channel Mode  
256X16  
13  
256  
13  
10  
2
512  
13  
512  
13  
512  
13  
10  
2
512  
14  
1024  
14  
1024  
14  
1024  
13  
1024  
14  
Technology (Mb)  
Row bits  
column bits  
bank bits  
9
10  
11  
10  
10  
11  
10  
10  
2
2
2
2
2
2
3
3
width (b)  
16  
8
16  
8
16  
8192  
1024  
4
8
16  
8
16  
8
Rows  
8192  
512  
4
8192  
1024  
4
8192  
1024  
4
8192  
2048  
4
16384  
1024  
4
16384  
1024  
4
16384  
2048  
4
8192  
1024  
8
16384  
1024  
8
Columns  
Banks  
Page Size (KB)  
devices per rank  
Rank Size (MB)  
Depth (M)  
4
8
8
16  
8
8
8
16  
8
8
4
8
4
8
4
8
4
8
4
8
128  
16  
256  
32  
27  
yes  
256  
32  
512  
64  
256  
32  
27  
no  
512  
64  
512  
64  
1024  
128  
29  
512  
64  
1024  
128  
29  
Addr bits [n:0]  
available in DDR  
26  
27  
28  
28  
28  
28  
yes  
yes  
yes  
no  
yes  
yes  
no  
no  
available in DDR2  
yes  
yes  
no  
no  
yes  
yes  
no  
no  
yes  
yes  
Memory  
Host Address bit  
Address bit  
31  
30  
29  
28  
27  
26  
25  
24  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
r 13  
r 11  
r 12  
r 10  
r 9  
-
r 13  
r 11  
r 12  
r 10  
r 9  
-
-
-
r 11  
r 12  
r 10  
r 9  
r 8  
-
r 13  
r 12  
r 10  
r 9  
r 8  
r 13  
r 12  
r 10  
r 9  
r 8  
r 11  
r 12  
r 10  
r 9  
r 8  
-
r 12  
r 10  
r 9  
r 8  
r 12  
r 10  
r 9  
r 8  
r 12  
r 10  
r 9  
r 8  
r 10  
r 9  
r 8  
r 8  
r 8  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
r 7  
r 6  
r 7  
r 6  
r 7  
r 6  
r 7  
r 6  
r 7  
r 6  
r 7  
r 6  
r 7  
r 6  
r 7  
r 6  
r 7  
r 6  
r 5  
r 4  
r 3  
r 2  
r 1  
r 0  
b 0  
b 1  
b 2  
c 9  
c 8  
c 7  
c 6  
r 7  
r 6  
r 5  
r 4  
r 3  
r 2  
r 1  
r 0  
b 0  
b 1  
b 2  
c 9  
c 8  
c 7  
c 6  
r 5  
r 5  
r 5  
r 5  
r 5  
r 5  
r 5  
r 5  
r 4  
r 4  
r 4  
r 4  
r 4  
r 4  
r 4  
r 4  
r 3  
r 3  
r 3  
r 3  
r 3  
r 3  
r 3  
r 3  
r 2  
r 2  
r 2  
r 2  
r 2  
r 2  
r 2  
r 2  
r 1  
r 1  
r 1  
r 1  
r 1  
r 1  
r 1  
r 1  
r 0  
r 0  
r 0  
r 0  
r 0  
r 0  
r 0  
r 0  
r 11  
r 12  
b 0  
b 1  
c 8  
c 7  
c 6  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
b 0  
b 1  
c 11  
c 9  
c 8  
c 7  
c 6  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
b 0  
b 1  
c 11  
c 9  
c 8  
c 7  
c 6  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
249  
Functional Description  
R
Memory  
Host Address bit Address bit  
8
7
6
5
4
3
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
c 5  
c 4  
c 3  
c 2  
c 1  
c 0  
NOTES:  
1. b – ‘bank’ select bit  
2. c – ‘column’ address bit  
3. r – ‘row’ address bit  
250  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
Table 10-7. DRAM Device Configurations – Dual Channel Symmetric Mode  
256  
13  
9
256  
13  
512  
13  
512  
13  
512  
13  
512  
14  
1024  
14  
1024  
14  
1024  
13  
1024  
14  
Technology (Mb)  
Row bits  
10  
10  
11  
10  
10  
10  
11  
10  
10  
column bits  
bank bits  
2
2
2
2
2
2
2
2
3
3
16  
8192  
512  
4
8
16  
8
16  
8
16  
8
16  
8
width (b)  
8192  
1024  
4
8192  
1024  
4
8192  
2048  
4
8192  
1024  
4
16384  
1024  
4
16384  
1024  
4
16384  
2048  
4
8192  
1024  
8
16384  
1024  
8
Rows  
Columns  
Banks  
4
8
8
16  
8
8
8
16  
8
8
Page Size (KB)  
devices per rank  
Rank Size (MB)  
Depth (M)  
4
8
4
8
4
8
4
8
4
8
128  
16  
26  
yes  
yes  
256  
32  
256  
32  
512  
64  
256  
32  
512  
64  
512  
64  
1024  
128  
29  
512  
64  
1024  
128  
29  
27  
27  
28  
27  
28  
28  
28  
Addr bits [n:0]  
available in DDR  
available in DDR2  
yes  
yes  
yes  
no  
yes  
no  
no  
no  
yes  
no  
yes  
no  
no  
no  
yes  
yes  
yes  
yes  
Mem  
Host Address bit Addr-bit  
-
-
-
-
-
-
-
-
-
-
31  
-
-
-
-
-
-
-
r 13  
r 11  
r 12  
r 10  
r 9  
-
r 13  
r 11  
r 12  
r 10  
r 9  
30  
-
-
-
r 11  
r 12  
r 10  
r 9  
-
r 13  
r 12  
r 10  
r 9  
r 8  
r 7  
r 6  
r 5  
r 4  
r 3  
r 2  
r 1  
r 0  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
c 5  
c 4  
c 3  
r 13  
r 12  
r 10  
r 9  
r 8  
r 7  
r 6  
r 5  
r 4  
r 3  
r 2  
r 1  
r 0  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
c 5  
c 4  
c 3  
r 11  
r 12  
r 10  
r 9  
r 8  
r 7  
r 6  
r 5  
r 4  
r 3  
r 2  
r 1  
r 0  
b 0  
b 1  
b 2  
c 9  
c 8  
c 7  
c 6  
c 5  
c 4  
c 3  
29  
-
r 12  
r 10  
r 9  
r 8  
r 7  
r 6  
r 5  
r 4  
r 3  
r 2  
r 1  
r 0  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
c 5  
c 4  
c 3  
r 12  
r 10  
r 9  
r 8  
r 7  
r 6  
r 5  
r 4  
r 3  
r 2  
r 1  
r 0  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
c 5  
c 4  
c 3  
r 12  
r 10  
r 9  
r 8  
r 7  
r 6  
r 5  
r 4  
r 3  
r 2  
r 1  
r 0  
r 11  
b 1  
b 0  
c 9  
c 8  
c 7  
c 6  
c 5  
c 4  
c 3  
28  
r 10  
27  
r 9  
26  
r 8  
r 8  
r 8  
r 8  
25  
r 7  
r 7  
r 7  
r 7  
24  
r 6  
r 6  
r 6  
r 6  
23  
r 5  
r 5  
r 5  
r 5  
22  
r 4  
r 4  
r 4  
r 4  
21  
r 3  
r 3  
r 3  
r 3  
20  
r 2  
r 2  
r 2  
r 2  
19  
r 1  
r 1  
r 1  
r 1  
18  
r 0  
r 0  
r 0  
r 0  
17  
r 11  
b 0  
b 1  
c 11  
c 9  
c 8  
c 7  
c 6  
c 5  
c 4  
c 3  
b 0  
b 1  
c 11  
c 9  
c 8  
c 7  
c 6  
c 5  
c 4  
c 3  
b 0  
b 1  
b 2  
c 9  
c 8  
c 7  
c 6  
c 5  
c 4  
c 3  
16  
r 12  
15  
b 0  
14  
b 1  
13  
c 8  
12  
c 7  
11  
c 6  
10  
c 5  
9
c 4  
8
c 3  
7
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
251  
Functional Description  
R
h
h
h
h
h
h
h
h
h
h
6
5
4
3
c 2  
c 1  
c 0  
c 2  
c 1  
c 0  
c 2  
c 1  
c 0  
c 2  
c 1  
c 0  
c 2  
c 1  
c 0  
c 2  
c 1  
c 0  
c 2  
c 1  
c 0  
c 2  
c 1  
c 0  
c 2  
c 1  
c 0  
c 2  
c 1  
c 0  
NOTES:  
1. b – ‘bank’ select bit  
2. c – ‘column’ address bit  
3. h – channel select bit  
4. r – ‘row’ address bit  
10.2.2  
DRAM Technologies and Organization  
All standard 256 Mb, 512 Mb, and 1 Gb technologies and addressing are supported for x16 and x8  
devices.  
The GMCH supports various page sizes. Page size is individually selected for every rank; 4 kB, 8 kB,  
and 16 kB for asymmetric, Symmetric, or single channel modes.  
The DRAM sub-system supports single or dual channels, 64-bit wide per channel.  
A maximum of four ranks (2 double sided SO-DIMMs) populated:  
If configured as a single channel system, that channel can have one, two, three or four ranks  
populated.  
If configured as a dual channel system, each channel can have one or two ranks populated.  
Mixed mode Double-Sided SO-DIMMs (x8 and x16 on the same SO-DIMM) are not supported.  
By using 1-Gb technology, the largest memory capacity is 2 GB.  
By using 256-Mb technology, the smallest memory capacity is 128 MB (16M x 16b x 4 devices x 1  
ranks = 128 MB).  
10.2.2.1  
Supported SO-DIMM types  
DDR  
GMCH = supports DDR 200 pin up-buffered SO-DIMM’s specified in the JEDEC DDR SO-DIMM  
specification  
Non ECC, Single Sided, x16 width  
Non ECC, Single Sided, x8 width  
Non ECC, Double Sided, x16 width  
Non ECC, Double Sided, x8 width (stacked)  
DDR2  
GMCH supports DDR2-SDRAM 200 pin up-buffered SO-DIMM’s specified in the JEDEC DDR2 SO-  
DIMM specification  
Non ECC, Single Sided, x16 width  
Non ECC, Single Sided, x8 width  
Non ECC, Double Sided, x16 width  
Non ECC, Double Sided, x8 width (stacked)  
252  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.2.2.2  
10.2.2.3  
Rules for Populating SO-DIMM Slots  
In all modes, the frequency of System Memory will be the lowest frequency of all SO-DIMMs in the  
system, as determined through the SPD registers on the SO-DIMMs.  
In the Single Channel modes, any SO-DIMM slot within the channel may be populated in any  
order. Either channel may be used. To save power, any unused channel should be powered down.  
In Dual Channel Asymmetric mode, any SO-DIMM slot may be populated in any order.  
In Dual Channel Symmetric mode, any SO-DIMM slot may be populated in any order, but the total  
memory in each channel must be the same.  
Pin Connectivity for Single and Dual Channel Modes  
Table 10-8. Single Channel Mode Signal Mapping for DDR/DDR2  
Single Channel Signal Mapping  
SO-DIMM 0  
SO-DIMM 1  
SM_CK [1:0]  
SM_CK# [1:0]  
SM_CS# [1:0]  
SM_CKE [1:0]  
SM_ODT[1:0]  
(DDR2 support only)  
SA_BS [2:0]  
SA_MA[13:0]  
SA_RAS#  
SM_CK [4:3]  
SM_CK# [4:3]  
SM_CS# [3:2]  
SM_CKE [3:2]  
SM_ODT [3:2]  
(DDR2 support only)  
SB_BS[2:0]  
SB_MA [13:0]  
SB_RAS#  
SA_CAS#  
SB_CAS#  
SA_WE#  
SB_WE#  
SA_DQ [63:0]  
SA_DQS [7:0]  
SA_DQS#[7:0]  
SA_DM[7:0]  
Table 10-9. Dual Channel Mode Signal Mapping for DDR/DDR2  
Dual Channel Mode  
Channel A  
Channel B  
SODIMM A  
SM_CK[1:0]  
SM_CK[1:0]#  
NA  
SODIMM B  
SM_CK[1:0]  
NA  
NA  
SM_CK[1:0]#  
SM_CK[4:3]  
SM_CK[4:3]  
SM_CK[4:3]#  
NA  
SM_CK[4:3]#  
SM_CS[1:0]#  
SM_CKE[1:0]  
SM_ODT[1:0]  
(DDR2 support)  
SM_CS[3:2]#  
SM_CKE[3:2]  
SM_ODT[3:2]  
(DDR2 support)  
NA  
SM_CS[1:0]#  
SM_CKE[1:0]  
SM_ODT[1:0]  
(DDR2 support)  
NA  
NA  
NA  
SM_CS[3:2]#  
SM_CKE[3:2]  
SM_ODT[3:2]  
(DDR2 support)  
NA  
NA  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
253  
Functional Description  
R
10.2.3  
System Memory Configuration Registers Overview  
The configuration registers located in the PCI configuration space of the GMCH control the System  
Memory operation. Following is a brief description of configuration registers used by GMCH for  
proper operation of the memory subsystem.  
DRAM Rank Boundary (CxDRBy)  
The x represents a channel, A or B. The y represents a rank, 0 through 1. DRB registers define the  
upper addresses for a rank of DRAM devices in a channel. When the GMCH is configured in  
asymmetric mode, each register represents a single rank. When the GMCH is configured in a dual  
Symmetric mode, each register represents a pair of corresponding ranks in opposing channels. There  
are four DRB registers for each channel.  
DRAM Rank Architecture (CxDRAy)  
The x represents a channel, A or B. The y represents a rank, 0 through 1. DRA registers specify the  
architecture features of each rank of devices in a channel. The only architecture feature specified is  
page size. When GMCH is configured in asymmetric mode, each DRA represents a single rank in a  
single channel. When GMCH is configured in a dual-channel lock-step or Symmetric mode, each DRA  
represents a pair of corresponding ranks in opposing channels. There are four DRA registers per  
channel. Each requires only 3 bits, so there are two DRAs packed into a byte.  
Clock Configuration (CLKCFG)  
Specifies DRAM frequency. The same clock frequency will be driven to all SO-DIMMs.  
DRAM Timing (CxDRTy)  
The x represents a channel, A or B. This register grew too large for a single 32-bit access, so a second  
register was added, differentiated by y, A or B. The DRT registers define the timing parameters for all  
devices in a channel. The BIOS programs this register with “least common denominator” values after  
reading the SPD registers of each SO-DIMM in the channel.  
DRAM Control (CxDRCy)  
The x represents a channel, A or B. This register grew too large for a single 32 bit access, so a second  
register was added, differentiated by y, 0 or 1. DRAM refresh mode, rate, and other controls are  
selected here.  
10.2.4  
DRAM Clock Generation  
The GMCH PLL generates two differential 166 MHz, 200 MHz or 266 MHz clock pairs for every  
supported SODIMM. There are total of 4 clock pairs driven directly by GMCH to the 2 SO-DIMMs.  
254  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.2.5  
DDR2 On-Die Termination  
On die termination (ODT) is a feature that allows a DRAM to turn on/off internal termination  
resistance for each DQ, DM, DQS, and DQS# signal for x8 and x16 configurations via the ODT  
control signals.  
The ODT feature is designed to improve signal integrity of the memory channel by allowing the  
termination resistance for the DQ, DM, DQS, and DQS# signals to be located inside the DRAM  
devices themselves instead of on the motherboard. The GMCH drives out the required ODT signals,  
based on memory configuration and which rank is being written to or read from, to the DRAM devices  
on a targeted SO-DIMM rank to enable or disable their termination resistance.  
10.2.6  
DDR2 Off Chip Driver Impedance Calibration  
The OCD impedance adjustment mode allows the GMCH to measure and adjust the pull-up and pull-  
down strength of the DRAM devices. It uses a series of EMRS commands to guide the DRAM through  
measurement and calibration cycles. This feature is described in more detail in the JEDEC DDR2  
device specification.  
The algorithm and sequence of the adjustment cycles is handled by software. The GMCH adjusts the  
DRAM driver impedance by issuing OCD commands to the SO-DIMM and looking at the analog  
voltage on the DQ lines.  
10.2.7  
DRAM Power Management  
GMCH implements extensive support for power management on the SDRAM interface. GMCH will  
drive the CKE pins to perform these SDRAM power management operations. During Suspend to RAM  
(S3) states, the SDRAM are put into self-refresh state to conserve power by asserting the CKE pin. In  
addition, a “dynamic row power down” function is implemented, by which the SDRAM devices can be  
put in a power down state when they are idle.  
10.2.7.1  
Dynamic Row Power Down Operation  
GMCH implements CKE control to dynamically put the DRAM devices in a power down state. If  
dynamic power down is enabled, all ranks are powered up before doing a refresh cycle and all ranks are  
powered down at the end of refresh.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
255  
Functional Description  
R
10.3  
PCI Express Interface (Intel® 915GM/915GME/915PM  
Only)  
See system overview chapter in this document for list of PCI Express features. See the PCI Express  
Specification for further details.  
This GMCH is part of a PCI Express root complex. This means it connects a host CPU/memory  
subsystem to a PCI Express Hierarchy. The control registers for this functionality are located in device  
#1 configuration space and two Root Complex Register Blocks (RCRBs).  
The PCI Express architecture is specified in layers. Compatibility with the PCI addressing model (a  
load-store architecture with a flat address space) is maintained to ensure that all existing applications  
and drivers operate unchanged. The PCI Express configuration uses standard mechanisms as defined  
in the PCI Plug-and-Play specification. The initial speed of 2.5 GHz (250 MHz internally) results in  
2.5 Gb/s/direction which provides a 250 MB/s communications channel in each direction (500 MB/s  
total) that is close to twice the data rate of classic PCI per lane.  
10.3.1  
Layering Overview  
The representation of layers in the PCI Express architecture: the Transaction Layer, the Data Link  
Layer, and the Physical Layer is to simplify the understanding of the high-level functionality.  
PCI Express uses packets to communicate information between components. Packets are formed in the  
Transaction and Data Link Layers to carry the information from the transmitting component to the  
receiving component. As the transmitted packets flow through the other layers, they are extended with  
additional information necessary to handle packets at those layers. At the receiving side the reverse  
process occurs and packets get transformed from their Physical Layer representation to the Data Link  
Layer representation and finally (for Transaction Layer Packets) to the form that can be processed by  
the Transaction Layer of the receiving device.  
10.3.2  
Transaction Layer  
The upper layer of the PCI Express architecture is the Transaction Layer. The Transaction Layer’s  
primary responsibility is the assembly and disassembly of Transaction Layer Packets (TLPs). TLPs are  
used to communicate transactions, such as read and write, as well as certain types of events. The  
Transaction Layer also manages flow control of TLPs.  
Note: If the (G)MCH receives two back-to-back malformed packets, the second malformed packet is  
not trapped or logged. The (G)MCH will not log or identify the second malformed packet. However,  
the 1st malformed TLP is logged, and is considered a Fatal Error. Link behavior is not guaranteed at  
that point whether a 2nd malformed TLP is detected or not.  
10.3.3  
Data Link Layer  
The middle layer in the PCI Express stack, the Data Link Layer, serves as an intermediate stage  
between the Transaction Layer and the Physical Layer. Responsibilities of Data Link Layer include link  
management, error detection, and error correction.  
256  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.3.4  
Physical Layer  
The Physical Layer includes all circuitry for interface operation, including driver and input buffers,  
parallel-to-serial and serial-to-parallel conversion, PLL(s), and impedance matching circuitry.  
10.4  
Intel® Serial Digital Video Output (SDVO) (Intel  
915GM/915GME/910GML/910GMLE/915GMS Only)  
The SDVO description is located here because it is muxed onto the PCI Express x16 port pins. PCI  
Express and SDVO simultaneous operation is NOT supported even though SDVO does not require all  
of the PCI Express lanes. The AC/DC specifications are identical to the PCI Express Graphics  
interface.  
The Intel SDVO port is the second generation of digital video output from compliant IntelGMCHs.  
The electrical interface is based on the PCI Express interface, though the protocol and timings are  
completely unique. Whereas PCI Express runs at a fixed frequency, the frequency of the SDVO  
interface is dependant upon the active display resolution and timing. The port can be dynamically  
configured in several modes to support display configurations.  
Essentially, an SDVO port will transmit display data in a high-speed, serial format across differential  
AC coupled signals. An SDVO port consists of a sideband differential clock pair and a number of  
differential data pairs.  
10.4.1  
Intel® SDVO Capabilities  
SDVO ports can support a variety of display types including LVDS, DVI, HDMI, TV-Out, and  
external CE type devices. The GMCH utilizes an external SDVO device to translate from SDVO  
protocol and timings to the desired display format and timings. The Internal Graphics controller can  
have one or two SDVO ports multiplexed on the x16 PCI Express interface. .  
The SDVO port defines a two-wire point-to-point communication path between the SDVO device and  
GMCH. The SDVO Control Clock and Data provide similar functionality to I2C. However unlike I2C,  
this interface is intended to be point-to-point (from the GMCH to the SDVO device) and will require  
the SDVO device to act as a switch and direct traffic from the SDVO Control bus to the appropriate  
receiver. Additionally, this Control bus will be able to run at faster speeds (up to 1 MHz) than a  
traditional I2C interface would.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
257  
Functional Description  
R
10.4.2  
Intel® SDVO Modes  
The port can be dynamically configured in several modes:  
Standard – Baseline SDVO functionality. Supports Pixel Rates between 25 and 200 MP/s.  
Utilizes three data pairs to transfer RGB data.  
Extended – Adds Alpha support to data stream. Supports Pixel Rates between 25 and 200 MP/s.  
Utilizes four data channels and is only supported on SDVO B. Leverages channel C (SDVO C)  
Red pair as the Alpha pair for channel B (SDVO B).  
Dual Standard – Utilizes Standard data streams across both SDVO B and SDVO C. Both channels  
can only run in Standard mode (3 data pairs) and each channel supports Pixel Rates between 25  
and 200 MP/s.  
Dual Independent Standard - In Dual Independent Standard mode, each SDVO channel will see a  
different pixel stream. The data stream across SDVO B will not be the same as the data stream  
across SDVO C.  
Dual Simultaneous Standard - In Dual Simultaneous Standard mode, both SDVO channels will see  
the same pixel stream. The data stream across SDVO B will be the same as the data stream across  
SDVO C. The display timings will be identical, but the transfer timings may not be - i.e. B Clocks  
and Data may not be perfectly aligned with SDVO C Clock and Data as seen at the SDVO  
device(s). Since this utilizes just a single data stream, it utilizes a single pixel pipeline within the  
GMCH.  
10.5  
Integrated Graphics Controller (Intel®  
915GM/915GME/910GML/915GMS Only)  
The GMCH provides a highly integrated graphics accelerator and chipset while allowing a flexible  
integrated system graphics solution.  
Figure 10-2. GMCH Graphics Controller Block Diagram  
DAC (Analog)  
TV-Out (Analog)  
LVDS (Digital)  
Video Engine  
M
e
m
o
r
Port  
Mux  
Control  
Display  
Engine  
2D Engine  
3D Engine  
SDVOB & C  
y
Gfx_Blk_Dia  
High bandwidth access to data is provided through the graphics and system memory ports. The GMCH  
can access graphics data located in system memory at 4.2 GB/s – 8.5 GB/s (depending on memory  
configuration). The GMCH uses Intel’s Direct Memory Execution model to fetch textures from system  
memory.  
258  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.5.1  
Integrated Graphics Engine Overview  
GMCH’s Internal Graphics Device (IGD) contains several types of components.  
The GMCH has a 3D/2D Instruction Processing unit to control the graphics engines. The IGD’s 3D  
and 2D engines are fed with data through the memory controller. The output of the engines are  
processed as surfaces and sent to memory, which are then retrieved and processed by GMCH’s display  
planes.  
The IGD graphics engine can be broken down into three components:  
3D Engine  
2D Engine  
Video Engine  
The entire IGD is fed with data from its memory controller. The graphics performance is directly  
related to the amount of bandwidth available. If the engines are not receiving data fast enough from the  
memory controller (e.g., single-channel DDR333), the rest of the IGD will also be affected.  
10.6  
3D Engine (Intel® 915GM/915GME/910GML/910GMLE/  
915GMS Only)  
The 3D engine of GMCH has been designed with a deep pipelined architecture, where performance is  
maximized by allowing each stage of the pipeline to simultaneously operate on different primitives or  
portions of the same primitive. GMCH supports Perspective-Correct Texture Mapping, Multitextures,  
Bump-Mapping, Cubic Environment Maps, Bilinear, Trilinear and Anisotropic MIP mapped filtering,  
Gouraud shading, Alpha-blending, Vertex, and Per Pixel Fog and Z/W Buffering.  
The 3D pipeline subsystem performs the 3D rendering acceleration. The main blocks of the pipeline are  
the Setup Engine, Scan Converter, Texture Pipeline, and Raster Pipeline. A typical programming  
sequence would be to send instructions to set the state of the pipeline followed by rending instructions  
containing 3D primitive vertex data.  
The engines’ performance is dependent on the memory bandwidth available. Systems that have more  
bandwidth available will outperform systems with less bandwidth. The engines’ performance is also  
dependent on the core clock frequency. The higher the frequency, the more data is processed.  
10.6.1  
Setup Engine  
The setup stage of the pipeline takes the input data associated with each vertex of a 3D primitive and  
computes the various parameters required for scan conversion. In formatting this data, GMCH  
maintains sub-pixel accuracy.  
10.6.1.1  
3D Primitives and Data Formats Support  
The 3D primitives rendered by GMCH are points, lines, discrete triangles, line strips, triangle strips,  
triangle fans and polygons. In addition to this, GMCH supports the Microsoft DirectX* Flexible Vertex  
Format (FVF), which enables the application to specify a variable length of parameter list obviating the  
need for sending unused information to the hardware. Strips, Fans and Indexed Vertices as well as  
FVF, improve the vertex rate delivered to the setup engine significantly.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
259  
Functional Description  
R
10.6.1.2  
Pixel Accurate “Fast” Scissoring and Clipping Operation  
The GMCH supports 2D clipping to a scissor rectangle within the drawing window. Objects are  
clipped to the scissor rectangle, avoiding processing pixels that fall outside the rectangle. The GMCH’s  
clipping and scissoring in hardware reduce the need for software to clip objects, and thus improve  
performance. During the setup stage, GMCH clips objects to the scissor window.  
A scissor rectangle accelerates the clipping process by allowing the driver to clip to a bigger region  
than the hardware renders to. The scissor rectangle needs to be pixel accurate, and independent of line  
and point width. GMCH will support a single scissor box rectangle, which can be enabled or disabled.  
The rectangle is defined as an Inclusive box. Inclusive is defined as “draw the pixel if it is inside the  
scissor rectangle”.  
10.6.1.3  
10.6.1.4  
Depth Bias  
The GMCH supports source Depth Biasing in the Setup Engine. The Depth Bias value is specified in  
the vertex command packet on a per primitive basis. The value ranges from -1 to 1. The Depth Bias  
value is added to the z or w value of the vertices. This is used for coplanar polygon priority. If two  
polygons are to be rendered which are coplanar, due to the inherent precision differences induced by  
unique x, y and z values, there is no guarantee which polygon will be closer or farther. By using Depth  
Bias, it is possible to offset the destination z value (compare value) before comparing with the new z  
value.  
Backface Culling  
As part of the setup, the GMCH discards polygons from further processing, if they are facing away  
from or towards the user’s viewpoint. This operation, referred to as “Back Face Culling” is  
accomplished based on the “clockwise” or “counter-clockwise” orientation of the vertices on a  
primitive. This can be enabled or disabled by the driver.  
10.6.1.5  
10.6.1.6  
Scan Converter  
Working on a per-polygon basis, the Scan Converter uses the vertex and edge information is used to  
identify all pixels affected by features being rendered.  
Pixel Rasterization Rules  
The GMCH supports both OpenGL and D3D pixel rasterization rules to determine whether a pixel is  
filled by the triangle or line. For both D3D and OpenGL modes, a top-left filling convention for filling  
geometry will be used. Pixel rasterization rule on rectangle primitive is also supported using the top-left  
fill convention.  
10.6.2  
Texture Engine  
The GMCH allows an image, pattern, or video to be placed on the surface of a 3D polygon.  
The texture processor receives the texture coordinate information from the setup engine and the texture  
blend information from the scan converter. The texture processor performs texture color or ChromaKey  
matching, texture filtering (anisotropic, trilinear and bilinear interpolation), and YUV to RGB  
conversions.  
260  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.6.2.1  
Perspective Correct Texture Support  
A textured polygon is generated by mapping a 2D texture pattern onto each pixel of the polygon. A  
texture map is like wallpaper pasted onto the polygon. Since polygons are rendered in perspective, it is  
important that texture be mapped in perspective as well. Without perspective correction, texture is  
distorted when an object recedes into the distance.  
10.6.2.2  
10.6.2.3  
Texture Formats and Storage  
The GMCH supports up to 32 bits of color for textures.  
Texture Decompression  
DirectX supports Texture Compression to reduce the bandwidth required to deliver textures. As the  
textures’ average size gets larger with higher color depth and multiple textures become the norm, it  
becomes increasingly important to provide a mechanism for compressing textures. Texture  
decompression formats supported include DXT1, DXT2, DXT3, DXT4, DXT5 and FXT1.  
10.6.2.4  
10.6.2.5  
Texture ChromaKey  
ChromaKey describes a method of removing a specific color or range of colors from a texture map  
before it is applied to an object. For “nearest” texture filter modes, removing a color simply makes  
those portions of the object transparent (the previous contents of the back buffer show through). For  
“linear” texture filtering modes, the texture filter is modified if only the non-nearest neighbor texels  
match the key (range).  
Anti-Aliasing  
Aliasing is one of the artifacts that degrade image quality. In its simplest manifestation, aliasing causes  
the jagged staircase effects on sloped lines and polygon edges. Another artifact is the moiré patterns  
which occur as a result of a very small number of pixels available on screen to contain the data of a  
high resolution texture map. More subtle effects are observed in animation, where very small primitives  
blink in and out of view.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
261  
Functional Description  
R
10.6.2.6  
Texture Map Filtering  
The GMCH supports many texture mapping modes. Perspective correct mapping is always performed.  
As the map is fitted across the polygon, the map can be tiled, mirrored in either the U or V directions,  
or mapped up to the end of the texture and no longer placed on the object (this is known as clamp  
mode). The way a texture is combined with other object attributes is also definable.  
The GMCH supports up to 12 Levels-of-Detail (LODs) ranging in size from 2048x2048 to 1x1 texels.  
Textures need not be square. Included in the texture processor is a texture cache, which provides  
efficient MIP mapping.  
The GMCH supports seven types of texture filtering:  
1. Nearest (Point Filtering): Texel with coordinates nearest to the desired pixel is used. (This is used  
if only one LOD is present.)  
2. Linear (Bilinear Filtering): A weighted average of a 2x2 area of texels surrounding the desired  
pixel is used. (This is used if only one LOD is present.)  
3. Nearest MIP Nearest (Point Filtering): This is used if many LODs are present. The nearest LOD is  
chosen and the texel with coordinates nearest to the desired pixel is used.  
4. Linear MIP Nearest (Bilinear MIP Mapping): This is used if many LODs are present. The nearest  
LOD is chosen and a weighted average of a 2x2 area of texels surrounding the desired pixel is used  
(four texels). This is also referred to as Bilinear MIP Mapping.  
5. Nearest MIP Linear (Point MIP Mapping): This is used if many LODs are present. Two  
appropriate LODs are selected and within each LOD the texel with coordinates nearest to the  
desired pixel is selected. The Final texture value is generated by linear interpolation between the  
two texels selected from each of the MIP Maps.  
6. Linear MIP Linear (Trilinear MIP Mapping): This is used if many LODs are present. Two  
appropriate LODs are selected and a weighted average of a 2x2 area of texels surrounding the  
desired pixel in each MIP Map is generated (four texels per MIP Map). The Final texture value is  
generated by linear interpolation between the two texels generated for each of the MIP Maps.  
Trilinear MIP Mapping is used minimize the visibility of LOD transitions across the polygon.  
7. Anisotropic MIP Nearest (Anisotropic Filtering): This is used if many LODs are present. The  
nearest LOD-1 level will be determined for each of four sub-samples for the desired pixel. These  
four sub-samples are then bilinear filtered and averaged together.  
8. Both D3D (DirectX 6.0) and OGL (Rev.1.1) allow support for all these filtering modes.  
10.6.2.7  
10.6.2.8  
Multiple Texture Composition  
The GMCH also performs multiple texture composition. This allows the combination of two or greater  
MIP Maps to produce a new one with new LODs and texture attributes in a single or iterated pass.  
Flexible vertex format support allows multitexturing because it makes it possible to pass more than one  
texture in the vertex structure.  
Bi-Cubic Filter (4x4 Programmable Texture Filter)  
A bi-cubic texture filter can be selected instead of the bilinear filter. The implementation is of a 4x4  
separable filter with loadable coefficients. A 4x4 filter can be used for providing high-quality up/ down  
scaling of 2D or 3D rendered images  
262  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.6.2.9  
Cubic Environment Mapping  
Environment maps allow applications to render scenes with complex lighting and reflections while  
significantly decreasing CPU load. There are several methods to generate environment maps such as  
spherical, circular and cubic. The GMCH supports cubic reflection mapping over spherical and circular  
since it is the best choice to provide real-time environment mapping for complex lighting and  
reflections.  
Cubic Mapping requires a texture map for each of the 6 cube faces. These can be generated by pointing  
a camera with a 90-degree field-of-view in the appropriate direction. Per-vertex vectors (normal,  
reflection or refraction) are interpolated across the polygon and the intersection of these vectors with  
the cube texture faces is calculated. Texel values are then read from the intersection point on the  
appropriate face and filtered accordingly.  
10.6.3  
Raster Engine  
The Raster Engine is where the color data such as fogging, specular RGB, texture map blending, etc. is  
processed. The final color of the pixel is calculated and the RGBA value combined with the  
corresponding components resulting from the Texture Engine. These textured pixels are modified by  
the specular and fog parameters. These specular highlighted, fogged, textured pixels are color blended  
with the existing values in the frame buffer. In parallel, stencil, alpha and depth buffer tests are  
conducted which will determine whether the Frame and Depth buffers will be updated with the new  
pixel values.  
10.6.3.1  
10.6.3.2  
Texture Map Blending  
Multiple Textures can be blended together in an iterative process and applied to a primitive. The  
GMCH allows up to four texture coordinates and texture maps to be specified onto the same polygon.  
Also, the GMCH supports using a texture coordinate set to access multiple texture maps. State  
variables in multiple texture are bound to texture coordinates, texture map or texture blending.  
Combining Intrinsic and Specular Color Components  
The GMCH allows an independently specified and interpolated “specular RGB” attribute to be added  
to the post-texture blended pixel color. This feature provides a full RGB specular highlight to be  
applied to a textured surface, permitting a high quality reflective colored lighting effect not available in  
devices which apply texture after the lighting components have been combined. If specular-add state  
variable is disabled, only the resultant colors from the map blending are used. If this state variable is  
enabled, RGB values from the output of the map blending are added to values for RS, GS, BS on a  
component by component basis.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
263  
Functional Description  
R
10.6.3.3  
Color Shading Modes  
The Raster Engine supports the flat and Gouraud shading modes. These shading modes are  
programmed by the appropriate state variables issued through the command stream.  
Flat shading is performed by smoothly interpolating the vertex intrinsic color components (Red, Green,  
Blue), Specular Highlights (R,G,B), Fog, and Alpha to the pixel, where each vertex color has the same  
value. The setup engine substitutes one of the vertex’s attribute values for the other two vertices  
attribute values thereby creating the correct flat shading terms. This condition is set up by the  
appropriate state variables issued prior to rendering the primitive.  
OpenGL and D3D use a different vertex to select the flat shaded color. This vertex is defined as the  
“provoking vertex”. In the case of strips/fans, after the first triangle, attributes on every vertex that  
define a primitive are used to select the flat color of the primitive. A state variable is used to select the  
“flat color” prior to rendering the primitive.  
Gouraud shading is performed by smoothly interpolating the vertex intrinsic color components (Red,  
Green, Blue). Specular Highlights (R,G,B), Fog, and Alpha to the pixel, where each vertex color has a  
different value.  
All the attributes can be selected independently from one of the shading modes by setting the  
appropriate value state variables.  
10.6.3.4  
10.6.3.5  
Color Dithering  
Color Dithering helps to hide color quantization errors. Color Dithering takes advantage of the human  
eye’s propensity to “average” the colors in a small area. Input color, alpha, and fog components are  
converted from 8-bit components to 5- or 6- bit component by dithering. Dithering is performed on  
blended textured pixels. In 32-bit mode, dithering is not performed on the components  
Vertex and Per Pixel Fogging  
Fogging is used to create atmospheric effects such as low visibility conditions in flight simulator- type  
games. It adds another level of realism to computer-generated scenes. Fog can be used for depth cueing  
or hiding distant objects. With fog, distant objects can be rendered with fewer details (fewer polygons),  
thereby improving the rendering speed or frame rate. Fog is simulated by attenuating the color of an  
object with the fog color as a function of distance. The higher the density (lower visibility for distant  
objects). There are two ways to implement the fogging technique: per-vertex (linear) fogging and per-  
pixel (non-linear) fogging. The per-vertex method interpolates the fog value at the vertices of a  
polygon to determine the fog factor at each pixel within the polygon. This method provides realistic  
fogging as long as the polygons are small. With large polygons (such as a ground plane depicting an  
airport runway), the per-vertex technique results in unnatural fogging.  
The GMCH supports both types of fog operations, vertex and per pixel or table fog. If fog is disabled,  
the incoming color intensities are passed unchanged to the destination blend unit.  
10.6.3.6  
Alpha Blending (Frame Buffer)  
Alpha Blending adds the material property of transparency or opacity to an object. Alpha blending  
combines a source pixel color (RSGSBS) and alpha (AS) component with a destination pixel color  
(RDGDBD) and alpha (AD) component. For example, this is so that a glass surface on top (source) of a  
red surface (destination) would allow much of the red base color to show through.  
Blending allows the source and destination color values to be multiplied by programmable factors and  
then combined via a programmable blend function. The combined and independent selection of factors  
and blend functions for color and alpha are supported.  
264  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.6.3.7  
10.6.3.8  
Microsoft Direct X* API and SGI OpenGL Logic Ops  
Both APIs provide a mode to use bitwise ops in place of alpha blending. This is used for rubber-  
banding, i.e., draw a rubber band outline over the scene using an XOR operation. Drawing it again  
restores the original image without having to do a potentially expensive redraw.  
Color Buffer Formats: 8-, 16-, or 32-bits per pixel (Destination Alpha)  
The Raster Engine will support 8-bit, 16-bit, and 32-bit Color Buffer Formats. The 8-bit format is used  
to support planar YUV420 format, which used only in Motion Compensation and Arithmetic Stretch  
format. The bit format of Color and Z will be allowed to mix.  
The GMCH supports both double and triple buffering, where one buffer is the primary buffer used for  
display and one or two are the back buffer(s) used for rendering.  
The frame buffer of the GMCH contains at least two hardware buffers—the Front Buffer (display  
buffer) and the Back Buffer (rendering buffer). While the back buffer may actually coincide with (or be  
part of) the visible display surface, a separate (screen or window-sized) back buffer is used to permit  
double-buffered drawing. That is, the image being drawn is not visible until the scene is complete and  
the back buffer made visible (via an instruction) or copied to the front buffer (via a 2D BLT operation).  
Rendering to one and displaying from the other remove the possibility of image tearing. This also  
speeds up the display process over a single buffer. Additionally, triple back buffering is also supported.  
The instruction set of the GMCH provides a variety of controls for the buffers (e.g., initializing, flip,  
clear, etc.).  
10.6.3.9  
Depth Buffer  
The Raster Engine will be able to read and write from this buffer and use the data in per fragment  
operations that determine whether resultant color and depth value of the pixel for the fragment are to be  
updated or not.  
Typical applications for entertainment or visual simulations with exterior scenes require far/near ratios  
of 1000 to 10000. At 1000, 98% of the range is spent on the first 2% of the depth. This can cause  
hidden surface artifacts in distant objects, especially when using 16-bit depth buffers. A 24 bit Z-buffer  
provides 16 million Z-values as opposed to only 64 K with a 16-bit Z buffer. With lower Z-resolution,  
two distant overlapping objects may be assigned the same Z-value. As a result, the rendering hardware  
may have a problem resolving the order of the objects, and the object in the back may appear through  
the object in the front.  
By contrast, when W (or eye-relative Z) is used, the buffer bits can be more evenly allocated between  
the near and far clip planes in world space. The key benefit is that the ratio of far and near is no longer  
an issue, allowing applications to support a maximum range of miles, yet still get reasonably accurate  
depth buffering within inches of the eye point.  
The GMCH supports a flexible format for the floating-point W buffer, wherein the number of exponent  
bits is programmable. This allows the driver to determine variable precision as a function of the  
dynamic range of the W (screen-space Z) parameter.  
The selection of depth buffer size is relatively independent of the color buffer. A 16-bit Z/W or 24 bit  
Z/W buffer can be selected with a 16-bit color buffer. Z buffer is not supported in 8-bit mode.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
265  
Functional Description  
R
10.6.3.10 Stencil Buffer  
The Raster Engine will provide 8-bit stencil buffer storage in 32-bit mode and the ability to perform  
stencil testing. Stencil testing controls 3D drawing on a per pixel basis, conditionally eliminating a  
pixel on the outcome of a comparison between a stencil reference value and the value in the stencil  
buffer at the location of the source pixel being processed. They are typically used in multipass  
algorithms to achieve special effects, such as decals, outlining, shadows and constructive solid  
geometry rendering.  
10.6.3.11 Projective Textures  
The GMCH will support two, simultaneous projective textures at full rate processing, and four textures  
at half rate. These textures require three floating point texture coordinates to be included in the Flexible  
Vertex Format(FVF). Projective textures enable special effects such as projecting spot light textures  
obliquely onto walls, etc.  
10.7  
2D Engine (Intel® 915GM/915GME/910GML/910GMLE/  
915GMS Only)  
The GMCH contains BLT functionality, and an extensive set of 2D instructions. To take advantage of  
the 3D drawing engine’s functionality, some BLT functions such as Alpha BLTs, arithmetic (bilinear)  
stretch BLTs, rotations, transposing pixel maps, limited color space conversion, and DIBs make use of  
the 3D renderer.  
10.7.1  
GMCH VGA Registers  
The 2D registers are a combination of registers based on the Video Graphics Array (VGA) adapter and  
others that Intel has added to support graphics modes that have color depths, resolutions, and hardware  
acceleration features that go beyond the original VGA standard.  
10.7.2  
2D Functionality  
10.7.2.1  
Block Level Transfer (BLT) Function  
The stretch BLT function can stretch source data in the X and Y directions to a destination larger or  
smaller than the source. Stretch BLT functionality expands a region of memory into a larger or smaller  
region using replication and interpolation. The stretch BLT function also provides format conversion  
and data alignment.  
266  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.7.2.2  
Logical 128-bit Fixed BLT and 256-bit Fill Engine  
Use of this BLT engine accelerates the Graphical User Interface (GUI) of Microsoft Windows*  
operating systems. The 128-bit GMCH BLT Engine provides hardware acceleration of block transfers  
of pixel data for many common Windows operations. The term BLT refers to a block transfer of pixel  
data between memory locations. The BLT engine can be used for the following:  
Move rectangular blocks of data between memory locations  
Data alignment  
Perform logical operations (raster ops)  
The rectangular block of data does not change as it is transferred between memory locations. The  
allowable memory transfers are between: cacheable system memory and frame buffer memory, frame  
buffer memory and frame buffer memory, and within system memory. Data to be transferred can  
consist of regions of memory, patterns, or solid color fills. A pattern will always be 8x8 pixels wide  
and may be 8, 16, or 32 bits per pixel.  
The GMCH BLT engine has the ability to expand monochrome data into a color depth of 8, 16, or 32  
bits. BLTs can be either opaque or transparent. Opaque transfers move the data specified to the  
destination. Transparent transfers compare destination color to source color and write according to the  
mode of transparency selected.  
Data is horizontally and vertically aligned at the destination. If the destination for the BLT overlaps  
with the source memory location, the GMCH can specify which area in memory to begin the BLT  
transfer. Hardware is included for all 256 raster operations (Source, Pattern, and Destination) defined  
by Microsoft, including transparent BLT.  
The GMCH has instructions to invoke BLT and stretch BLT operations, permitting software to set up  
instruction buffers and use batch processing. The GMCH can perform hardware clipping during BLTs.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
267  
Functional Description  
R
10.8  
Video Engine (Intel® 915GM/915GME/910GML/  
910GMLE/915GMS Only)  
10.8.1  
Hardware Motion Compensation  
The motion compensation (MC) process consists of reconstructing a new picture by predicting (either  
forward, backward, or bi-directionally) the resulting pixel colors from one or more reference pictures.  
The GMCH receives the video stream and implements MC and subsequent steps in hardware.  
Performing MC in hardware reduces the processor demand of software-based MPEG-2 decoding, and  
thus improves system performance.  
The MC functionality is overloaded onto the texture cache and texture filter. The texture cache is used  
to typically access the data in the reconstruction of the frames and the filter is used in the actual motion  
compensation process. To support this overloaded functionality the texture cache additionally supports  
the following input formats: YUV420 planar.  
10.8.2  
Sub-Picture Support  
Sub-picture is used for two purposes, one is Subtitles for movie captions, etc. (which are superimposed  
on a main picture), and menus used to provide some visual operation environments the user of a  
content player.  
DVD allows movie subtitles to be recorded as Sub-pictures. On a DVD disc, it is called "Subtitle"  
because it has been prepared for storing captions. Since the disc can have a maximum of 32 tracks for  
Subtitles, they can be used for various applications, for example, as Subtitles in different languages or  
other information to be displayed.  
There are two kinds of menus, the system menus and other In-Title Menus. First, the system menus are  
displayed and operated at startup of or during the playback of the disc or from the stop state. Second,  
In-Title menus can be programmed as a combination of Sub-picture and Highlight commands to be  
displayed during playback of the disc.  
The GMCH supports sub-picture for DVD and DBS by mixing the two video streams via alpha  
blending. Unlike color keying, alpha blending provides a softer effect and each pixel that is displayed  
is a composite between the two video stream pixels. The GMCH can utilize four methods when  
dealing with sub-pictures. The flexibility enables the GMCH to work with all sub- picture formats.  
10.8.3  
De-interlacing Support  
For display on a progressive computer monitor, interlaced data that has been formatted for display on  
interlaced monitors (TV), needs to be de-interlaced. The simple approaches to de-interlacing create  
unwanted display artifacts. More advanced de-interlacing techniques have a large cost associated with  
them. The compromise solution is to provide a low cost but effective solution and enable both  
hardware and software based external solutions. Software based solutions are enabled through a high  
bandwidth transfer to system memory and back.  
268  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.8.3.1  
Dynamic Bob and Weave  
Interlaced data that originates from a video camera creates two fields that are temporally offset by 1/60  
of a second. There are several schemes to de-interlace the video stream: line replication, vertical  
filtering, field merging and vertical temporal filtering. Field merging takes lines from the previous field  
and inserts them into the current field to construct the frame – this is known as Weaving. This is the  
best solution for images with little motion however, showing a frame that consists of the two fields will  
have serration or feathering of moving edges when there is motion in the scene. Vertical filtering or  
“Bob” interpolates adjacent lines rather replicating the nearest neighbor. This is the best solution for  
images with motion however, it will have reduced spatial resolution in areas that have no motion and  
introduces jaggies. In absence of any other de-interlacing, these form the baseline and are supported by  
the GMCH.  
10.9  
Display Interfaces (Intel® 915GM/915GME/910GML/  
910GMLE/915GMS Only)  
Note: The Intel 915GME and Intel 910GMLE chipsets do not support the TV-Out display interface.  
The display is the defining portion of a graphics controller. The display converts a set of source images  
or surfaces, combines them and sends them out at the proper timing to an output interface connected to  
a display device. Along the way, the data can be converted from one format to another, stretched or  
shrunk, and color corrected or gamma converted.  
The GMCH is able to drive a CRT, LCD panel, Analog TV and/or two SDVO ports (muxed with PCI  
Express) capable of driving an SDVO device. External SDVO devices are capable of driving a standard  
progressive scan analog monitor with resolutions up to 2048x1536 at 75 Hz. The SDVO ports are  
capable of driving a variety of TV-Out, TMDS, and LVDS transmitters.  
10.9.1  
Display Overview  
The graphics display can be broken down into three components:  
Display Planes  
Display Pipes  
Display Ports  
The display planes are broken down into: primary and secondary display, overlay, sprite, primary and  
secondary cursor and VGA.  
The display pipe consists of the target where the display planes that will be combined meet and a  
timing generator to set the graphics timing modes. The timing generator determines which time the  
display occurs.  
The display port is the destination for the result of the pipe. The GMCH contains five display ports,  
two analog (CRT DAC and TV out) and three digital (LVDS, SDVO B and SDVO C). The ports will  
be explained in more detail later in this chapter.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
269  
Functional Description  
R
10.9.2  
Planes  
The GMCH contains a variety of planes, such as primary and secondary display, overlay, sprite,  
primary and secondary cursor and VGA. A plane consists of rectangular shaped image that has  
characteristics such as source, size, position, method, and format. These planes get attached to source  
surfaces, which are rectangular memory surfaces with a similar set of characteristics. They are also  
associated with a particular destination pipe.  
10.9.2.1  
Display Plane  
The primary and secondary display plane works in an indexed move, hi-color mode or a true color  
mode. The true color mode allows for an 8-b alpha channel. One of the primary operations of the  
display plane is the set mode operation. The set-mode operation occurs when it is desired to enable a  
display, change the display timing, or source format. The secondary display plane can be used as a  
primary surface on the secondary display or as a sprite planes on either the primary or secondary  
display.  
10.9.2.2  
10.9.2.3  
Cursor A/B Plane  
The cursor planes are one of the simplest display planes. The cursors can operate as cursors or as a  
popup. The cursors can operate in either the alpha blended mode or the AND/XOR mode. These planes  
are always the top in the Z-order with the other planes. When both cursors are on the same display  
pipe, cursor A is always above cursor B. With a few exceptions, the cursor plan has a fixed size of  
64x64 and a fixed Z-order (top). In legacy modes, cursor can cause the display data below it to be  
inverted.  
Cursor Color Formats  
Color data can be in an indexed format or a true color format. Indexed data uses the entries in the four  
entry cursor palette to convert the two-bit index to a true color format before being passed to the  
blenders. The index can optionally specify that a cursor pixel be transparent or cause an inversion of  
the pixel value below it or one of two colors from the cursor palette. Blending of YUV or RGB data is  
only supported with planes that have data of the same format.  
270  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.9.2.4  
Popup Cursor  
The popup cursor plane is used for control functions in mobile applications. This is not used for typical  
desktop applications. Either Cursor or cursor B can be used as a popup with exceptions based on  
restrictions on usage of cursor B  
The requirements for the hardware icon  
64 by 64 pixels 4 colors  
Displayable in all standard and centered VGA modes and all extended modes  
Can be positioned anywhere on the screen  
Flat memory addressing for source (can load images with a single string move instruction)  
Only the hardware cursor has a higher Z-order precedence over the hardware icon. Icon should appear  
over any video windows (full motion video or live video input) but should appear under the hardware  
cursor if it exists.  
Hardware icon memory must be protected from being overwritten by video drivers, video BIOS or the  
video controller itself. This can be done through software (the video BIOS and drivers are aware of the  
icon memory and do not use it).  
In standard modes (non-VGA) either cursor A or cursor B can be used for a popup with the limitations  
of cursor B cannot be used in double wide mode. VGA and double wide modes must use cursor A for  
the popup. Popup on the VGA modes must not use the 32-bpp data format.  
10.9.2.5  
Overlay Plane  
The overlay engine provides a method of merging either video capture data (from an external Video  
Capture device) or data delivered by the CPU, with the graphics data on the screen. The source data  
can be mirrored horizontally or vertically or both.  
Source/Destination Color Keying/Chroma Keying  
Overlay source/destination Chroma Keying enables blending of the overlay with the underlying  
graphics background. Destination color keying/Chroma Keying can be used to handle occluded  
portions of the overlay window on a pixel by pixel basis that is actually an underlay. Destination  
Chroma Keying would only be used for YUV pass through to TV. Destination color keying supports a  
specific color (8- or 15-bit) mode as well as 32-bit alpha blending.  
Source color keying/Chroma Keying is used to handle transparency based on the overlay window on a  
pixel by pixel basis. This is used when “blue screening” an image to overlay the image on a new  
background later.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
271  
Functional Description  
R
Gamma Correction  
Gamma correction is applied to the video signal to compensate for the nonlinear characteristics of the  
display device and the human eye. Applying the correction at the source for digital data makes the best  
use of the limited number of bits available for each of the color components. The amount of correction  
applied is determined by the tube characteristics and is different for NTSC TVs (2.2), PAL TVs (2.8),  
and SVGA type (1.4-2.8) monitors.  
To compensate for overlay color intensity loss due to the non-linear response between display devices,  
the overlay engine supports independent gamma correction. This allows the overlay data to be  
converted to linear data or corrected for the display device when not blending.  
YUV to RGB Conversion  
The format conversion can be bypassed in the case of RGB source data. The format conversion  
assumes that the YUV data is input in the 4:4:4 format and uses the full range scale.  
Maximum Resolution and Frequency  
The maximum frequency supported by the overlay logic is 180 MHz. The maximum resolution is  
dependent on a number of variables.  
Deinterlacing Support  
For display on a progressive computer monitor, interlaced data that has been formatted for display on  
interlaced monitors (TV), needs to be de-interlaced. The simple approaches to de-interlacing create  
unwanted display artifacts. More advanced de-interlacing techniques have a large cost associated with  
them. The compromise solution is to provide a low cost but effective solution and enable both  
hardware and software based external solutions. Software based solutions are enabled through a high  
bandwidth transfer to system memory and back.  
10.9.2.6  
Dynamic Bob and Weave  
Weaving is done by - field merging takes lines from the previous field and inserts them into the current  
field to construct the frame. This is the best solution for images with little motion however, showing a  
frame that consists of the two fields will have serration or feathering of moving edges when there is  
motion in the scene.  
Vertical filtering or “Bob” interpolates adjacent lines rather replicating the nearest neighbor. This is the  
best solution for images with motion. However, it will have reduced spatial resolution in areas that  
have no motion and may introduce jagged edges. In absence of any other deinterlacing, these form the  
baseline and are supported by the GMCH.  
272  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
Scaling Filter and Control  
The scaling filter has three vertical taps and five horizontal taps. Arbitrary scaling (per pixel  
granularity) for any video source (YUV422 or YUV420) format is supported.  
The overlay logic can scale an input image up to 1600X1200 with no major degradation in the filter  
used as long as the maximum frequency limitation is met. Display resolution and refresh rate  
combinations where the dot clock is greater than the maximum frequency require the overlay to use  
pixel replication.  
10.9.2.7  
VGA Plane  
The VGA plane is a special plane. It is based on legacy interfaces and provides legacy support for  
applications that use VGA register interface. VGA only works in indexed display modes. The VGA  
plane is a special case plane. It operates in several modes and has a set of restrictions on its use. It is not  
to operate with any other planes active except the pop-up plane.  
10.9.3  
Display Pipes  
The GMCH has two independent display pipes, allowing for support of two independent display  
streams. The pipe is the target of a set of combined planes (done at the Alpha blender) and a timing  
generator to setup the display timing graphics modes. The timing generators provide the basic timing  
information for each of the display pipes.  
Pipe A can operate in a single-wide or “double-wide” mode at 2x graphics core clock though they are  
effectively limited by the perspective display port. The display planes and the cursor plane will provide  
a “double wide” mode to feed the pipe.  
10.9.4  
Clock Generator Units (DPLL)  
The GMCH provides two DPLL clock generator units provide a stable frequency for driving display  
pipes. It operates by converting an input reference frequency into an output frequency. The timing  
generators take their input from internal DPLL devices that are programmable to generate pixel clocks  
in the range of 25-400 MHz. Accuracy for VESA timing modes is required to be within ± 0.5%.  
The DPLL can take a reference frequency from the external reference input (DREF_CLKINN/P),  
(DREF_SSCCLKINN/P) the TV clock input (TVCLKIN).  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
273  
Functional Description  
R
10.10  
Display Ports (Intel® 915GM/915GME/910GML/  
910GMLE/915GMS Only)  
A port is the destination for the result of the pipe. The GMCH has five display ports, two analog and  
three digital.  
CRT  
LVDS  
TV out (Not supported by the Intel 915GME / Intel 910GMLE)  
SDVO B  
SDVO C  
The GMCH has one dedicated CRT display port, one TV out port, one LVDS port, and two SDVO  
ports. SDVO ports B and C are multiplexed with the PCI Express based Graphics interface and are not  
available if an external PCI Express based Graphics device is in use or a PCI Express x1 device is used.  
SDVO Ports B and C can also operate in dual-channel mode, where the data bus is connected to both  
display ports, allowing a single device to take data at twice the pixel rate.  
Table 10-10. Display Port Characteristics  
(Analog)  
LVDS  
Port B  
(Digital)  
Port C  
(Digital)  
Interface Protocol  
RGB DAC  
LVDS  
sDVO 1.0  
sDVO 1.0  
S
I
HSYNC  
Yes  
Enable/Polar  
ity  
Encoded during blanking codes  
G
N
A
L
VSYNC  
Yes  
Enable/Polar  
ity  
Encoded during blanking codes  
BLANK  
STALL  
No  
No  
No  
No  
No  
No  
Encoded  
Yes  
Encoded  
Yes  
S
Field  
No  
No  
No  
Display_Enable  
Yes*  
Encoded  
Encoded  
Image Aspect Ratio  
Pixel Aspect Ratio  
Voltage  
Programmable and typically 1.33:1 or 1.78:1  
Square*  
Square  
RGB 0.7V p-  
p
1.2 VDC  
300 mV p-p  
Scalable 1.x V  
See sDVO clocking section: Differential  
400 Mpixel 200/400 Mpixel  
Clock  
NA  
7x  
Differential  
Max Rate  
Format  
350 Mpixel  
224 MPixel  
Analog RGB  
Multiple  
RGB 8:8:8 YUV 4:4:4  
18/ 24 bpp  
Control Bus  
DDC1/DDC2  
B
Optional  
DDC  
GMBUS  
External Device  
Connector  
No  
No  
TMDS/LVDS Transmitter /TV Encoder  
DVI/CVBS/S-Video/Component/SCART  
VGA/DVI-I  
Special Functions  
Monitor  
Sense  
Power  
Sequence  
Hot Plug  
Detection  
High speed  
mode  
TV Sense  
SCART  
WSS  
Muxed on PCI Express  
Based Graphics  
No  
No  
Yes  
Yes  
NOTE: Single signal software selectable between display enable and Blank#.  
274  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.10.1 Analog Display Port Characteristics  
The GMCH’s analog port utilizes an integrated 400 MHz RAMDAC that can directly drive a standard  
progressive scan analog monitor up to a resolution of 2048x1536 pixels with 32-bit color at 75 Hz.  
The analog display port provides a RGB signal output along with a HSYNC and VSYNC signal. There  
is an associated DDC signal pair that is implemented using GPIO pins dedicated to the analog port. The  
intended target device is for a CRT based monitor with a VGA connector. Display devices such as  
LCD panels with analog inputs may work satisfactory but no functionality has been added to the  
signals to enhance that capability.  
Table 10-11. Analog Port Characteristics  
Signal  
Port Characteristic  
Support  
Voltage Range  
Monitor Sense  
Analog Copy Protection  
Sync on Green  
Voltage  
0.7 V p-p only  
Analog Compare  
RGB  
No  
No  
2.5 V  
Enable/Disable  
Polarity adjust  
Composite Sync Support  
Special Flat Panel Sync  
Stereo Sync  
Port control  
HSYNC  
VSYNC  
VGA or port control  
No  
No  
No  
Voltage  
Externally buffered to 5V  
Through DDC interface  
DDC  
Control  
10.10.1.1 Integrated RAMDAC  
The display function contains a RAM-based Digital-to-Analog Converter (RAMDAC) that transforms  
the digital data from the graphics and video subsystems to analog data for the CRT monitor. GMCH’s  
integrated 400 MHz RAMDAC supports resolutions up to 2048 x 1536 at 75 Hz. Three, 8-bit DACs  
provide the R, G, and B signals to the monitor.  
10.10.1.2 Sync Signals  
HSYNC and VSYNC signals are digital. External level shifting buffers are required. These signals can  
be polarity adjusted and individually disabled in one of the two possible states. The sync signals should  
power up disabled in the high state. No composite sync or special flat panel sync support will be  
included.  
10.10.1.3 VESA/VGA Mode  
VESA/VGA mode provides compatibility for pre-existing software that set the display mode using the  
VGA CRTC registers. Timings are generated based on the VGA register values.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
275  
Functional Description  
R
10.10.1.4 DDC (Display Data Channel)  
DDC is a standard defined by VESA. Its purpose is to allow communication between the host system  
and display. Both configuration and control information can be exchanged allowing Plug and Play*  
systems to be realized. Support for DDC 1 and 2 is implemented. The Mobile Intel 915 Express  
Chipset Family uses the CRTDDCCLK and CRTDDCDATA signals to communicate with the analog  
monitor. Mobile Intel 915 Express Chipset Family will generate these signals at 2.5 V. External pull-up  
resistors and level shifting circuitry should be implemented on the board.  
The GMCH implements a hardware GMBus controller that can be used to control these signals  
allowing for transactions speeds up to 400 kHz.  
10.10.2 Dedicated TV Out Port  
Note: No feature in section 10.10.2 is supported by the Intel 915GME / Intel 910GMLE chipsets.  
Integrated TV-out device supported on Display pipe A and pipe B.  
Three Integrated 10 bit DAC  
NTSC/PAL encoder standard formats supported  
Up to 1024x768 resolution supported for NTSC/PAL  
Multiplexed Output interface:  
Composite Video  
S-Video  
Component Video (YprPb)  
Combination: (Composite & S-Video)  
Tri-level Sync signal  
Macrovision support  
Overscan Scaling Support  
10.10.2.1 Connectors  
The TV-Out interface support three connector types  
Composite (CVBS)  
S-Video  
Component  
10.10.2.2 Composite Video Connector  
Composite video is connected through a single RCA type connector. This carries the CVBS signal and  
does not include audio. Audio is normally associated with the video and comes in a single (for mono)  
or two RCA connectors (stereo).  
276  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.10.2.3 S-Video Connector  
The S-Video signal and connector provide an improved quality video image over the composite image  
by sending separate luminance and chrominance channels. Cross talk between chrominance and  
luminance is eliminated and the horizontal resolution is increased due to the elimination of the low pass  
filter in the luminance path. Both the S-Video 4-pin mini DIN connector and the SCART can support  
this signal type.  
10.10.2.4 Component Analog YUV connector  
Newer TVs can be connected to a DVD player through an analog YUV connection. These connectors  
might be labeled as YUV, Y R-Y B-Y, YCrCb, or Y Pr Pb. Three separate RCA connector/cables are  
used to make the connection. The 1.0 V Y signal includes a 0.3 V sync signal and the U and V signals  
are 0.7 V. If WSS information is present, it will be on the Y signal.  
10.10.2.5 Content Protection  
Content protection will be provided through the external encoder using Macrovision. DVD software  
must verify the presence of a Macrovision TV encoder before playback continues. Simple attempts to  
disable the Macrovision operation must be detected.  
10.10.3 Dedicated LFP LVDS Port  
The GMCH has a dedicated ANSI/TIA/EIA –644-1995 Specification compliant dual channel LFP  
LVDS interface that can support TFT panel resolutions up to UXGA with a maximum pixel format of  
18 bpp, and with SSC supported frequency range from 25 MHz to 112 MHz (single channel/dual  
channel).  
The display pipe selected by the LVDS display port is programmed with the panel timing parameters  
that are determined by installed panel specifications or read from an onboard EDID ROM. The  
programmed timing values are then “locked” into the registers to prevent unwanted corruption of the  
values. From that point on, the display modes are changed by selecting a different source size for that  
pipe, programming the VGA registers, or selecting a source size and enabling the VGA. The timing  
signals will remain stable and active through mode changes. These mode changes include VGA to  
VGA, VGA to HiRes, HiRes to VGA, and HiRes to HiRes.  
The transmitter can operate in a variety of modes and supports several data formats. The serializer  
supports 6-bit or 8-bit color and single or dual channel operating modes. The display stream from the  
display pipe is sent to the LVDS transmitter port at the dot clock frequency, which is determined by the  
panel timing requirements. The output of LVDS is running at a fixed multiple of the dot clock  
frequency, which is determined by the mode of operation; single or dual channel.  
Depending on configuration and mode, a single channel can take 18 bits of RGB pixel data plus 3 bits  
of timing control (HSYNC/VSYNC/DE) and output them on three differential data pair outputs. A  
dual channel interface converts 36 of color information plus the 3 bits of timing control and outputs it  
on six or eight sets of differential data outputs.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
277  
Functional Description  
R
This display port is normally used in conjunction with the pipe functions of panel scaling and 6-8-bit  
dither. This display port is also used in conjunction with the panel power sequencing and additional  
associated functions.  
When enabled, the LVDS constant current drivers consume significant power. Individual pairs or sets  
of pairs can be selected to be powered down when not used. When disabled, individual or sets of pairs  
will enter a low power state. When the port is disabled all pairs enters a low power mode. The panel  
power sequencing can be set to override the selected power state of the drivers during power  
sequencing.  
For more details on using the GMCH’s LFP LVDS interface for TFT panel support, please refer to the  
Common Panel Interface Specification, Rev 1.6 for details on:  
10.10.4 LVDS panel support  
Table 10-12. LVDS Panel support  
LVDS panel  
XGA  
SXGA  
SXGA+  
UXGA  
1024 x 768  
1280 x 1024  
1400 x 1050  
1600 x 1200  
Intel 915GM  
Intel 915GMS *  
Intel 910GML  
X
X
X
X
X
X
X
X
X
X
Note: Intel 915GMS only supports single channel LVDS panel types.  
Table 10-13. LVDS Wide Panel support  
LVDS panel  
WXGA  
WSXGA+  
WUXGA  
1280 x 760  
1600 x 900  
1920 x 1200  
Intel 915GM  
X
X
X
X
Intel 915GMS *  
Note: Intel 915GMS only supports single channel LVDS panel types.  
10.10.5 LVDS Interface Signals  
LVDS for flat panel is compatible with the ANSI/TIA/EIA-644 specification. This is an electrical  
standard only defining driver output characteristics and receiver input characteristics. There are two  
LVDS transmitter channels (channel A and channel B) in the LVDS interface. Each channel consists of  
4-data pairs and a clock pair. The interface consists of a total of ten differential signal pairs of which  
eight are data and two are clocks. The phase locked transmit clock is transmitted in parallel with the  
data being sent out over the data pairs and over the LVDS clock pair.  
278  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
Each channel supports transmit clock frequency ranges from 25 MHz to 112 MHz, which provides a  
throughput of up to 784 Mbps on each data output and up to 112 MP/s on the input. When using both  
channels, they each operate at the same frequency each carrying a portion of the data. The maximum  
pixel rate is increased to 224 MP/s but may be limited to less than that due to restrictions elsewhere in  
the circuit.  
The LVDS Port enable bit enables or disables the entire LVDS interface. When the port is disabled, it  
will be in a low power state. Once the port is enabled, individual driver pairs will be disabled based on  
the operating mode. Disabled drivers can be powered down for reduced power consumption or  
optionally fixed to forced 0’s output.  
10.10.6 LVDS Data Pairs and Clock Pairs  
The LVDS data and clock pairs are identical buffers and differ only in the use defined for that pair.  
The LVDS data pair is used to transfer pixel data as well as the LCD timing control signals. The pixel  
bus data to serial data mapping options are specified elsewhere. A single or dual clock pair is used to  
transfer clocking information to the LVDS receiver. A serial pattern of 1100011 represents one cycle  
of the clock.  
There are two LVDS transmitter channels (channel A and channel B) in the LVDS interface. Each  
channel contains 1 clock pair and 3-data pair of low voltage differential swing signals. Diagram below  
shows a pair of LVDS signals and swing voltage.  
Figure 10-3. LVDS Swing Voltage  
"1"  
"0"  
450mV  
344mV  
250mV  
1.425V  
1.372V  
1.325V  
"1"  
Vb  
Va  
0.0mV  
| Va - Vb |  
"0"  
1.20V  
250mV  
344mV  
450mV  
1.075V  
1.028V  
0.975V  
NOTE: 1’s and 0’s are represented the differential voltage between the pair of signals.  
Figure 10-4. LVDS Clock and Data Relationship  
1
1
1
0
0
0
1
1
1
LVDS Clock Pair  
LVDS Data Pair  
7th  
data  
1st  
data  
2nd  
data  
3rd  
data  
4th  
data  
5th  
data  
6th  
data  
7th  
data  
1st  
data  
LVDS Clock and data  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
279  
Functional Description  
R
10.10.7 LVDS Pair States  
The LVDS pairs can be put into one of five states, powered down tri-state, powered down 0 V,  
common mode, send zeros, or active. When in the active state, several data formats are supported.  
When in powered down state, the circuit enters a low power state and drives out 0 V or tri-states on  
both the output pins for the entire channel. The common mode tri-state is both pins of the pair set to  
the common mode voltage. The common mode state only occurs on B3, A3, or CLKB. These are the  
signals that optionally get used when driving either 18-bpp panels or dual channel with a single clock.  
When in the send zeros state, the circuit is powered up but sends only zero for the pixel color data  
regardless what the actual data is with the clock lines and timing signals sending the normal clock and  
timing data.  
10.10.8 Single Channel versus Dual Channel Mode  
Both single channel and dual channel modes are available to allow interfacing to either single or dual  
channel panel interfaces. This LVDS port can operate in single channel or dual channel mode. Dual  
channel mode uses twice the number of LVDS pairs and transfers the pixel data at twice the rate of the  
single channel. In general, one channel will be used for even pixels and the other for odd pixel data.  
The first pixel of the line is determined by the display enable going active and that pixel will be sent  
out channel A. All horizontal timings for active, sync, and blank will be limited to be on two pixel  
boundaries in the two channel modes.  
10.10.9 LVDS Channel Skew  
When in dual channel mode, the two channels must meet the panel requirements with respect to the  
inter channel skew.  
10.10.10 LVDS PLL  
The Display PLL is used to synthesize the clocks that control transmission of the data across the LVDS  
interface. The three operations that are controlled are the pixel rate, the load rate, and the IO shift rate.  
These are synchronized to each other and have specific ratios based on single channel or dual channel  
mode. If the pixel clock is considered the 1x rate, a 7x or 3.5x speed IO_shift clock needed for the  
high speed serial outputs setting the data rate of the transmitters. The load clock will have either a 1x  
or .5x ratio to the pixel clock.  
10.10.11 SSC Support  
The GMCH is designed to tolerate a 0.6%-2.5% down/center spread at a modulation rate range from  
30-50 kHz triangle. By using an external SSC clock synthesizer to provide the 66 MHz reference clock  
into the GMCH Pipe B PLL, spectrally spread 7X, 3.5X, and 1X LVDS clocking is output from  
GMCH Pipe B PLL.  
280  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.10.12 Panel Power Sequencing  
This section provides details for the power sequence timing relationship of the panel power, the  
backlight enable and the LVDS data timing delivery. In order to meet the panel power timing  
specification requirements, two signals, PANELVDDEN and PANELBKLTEN are provided to control  
the timing sequencing function of the panel and the backlight power supplies.  
10.10.12.1 Panel Power Sequence States  
A defined power sequence is recommended when enabling the panel or disabling the panel. The set of  
timing parameters can vary from panel to panel vendor, provided that they stay within a predefined  
range of values. The panel VDD power, the backlight on/off state and the LVDS clock and data lines  
are all managed by an internal power sequencer.  
A requested power-up sequence is only allowed to begin after the power cycle delay time requirement  
T4 is met.  
Figure 10-5. Panel Power Sequencing  
T5  
TX  
T3  
T4  
T4  
T1+T2  
Panel  
On  
Panel VDD  
Enable  
Panel  
BackLight  
Enable  
Off  
Off  
Valid  
Clock/Data Lines  
Power On Sequence from off state and  
Power Off Sequence after full On  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
281  
Functional Description  
R
Table 10-14. Panel Power Sequencing Timing Parameters  
Panel Power Sequence Timing Parameters  
Name  
Min  
Max  
Units  
Spec Name  
From  
To  
LVDS  
T1+T2  
T5  
Vdd On to LVDS Active  
.1 Vdd  
0
60  
ms  
Active  
Panel Vdd must be on for a minimum time  
before the LVDS data stream is enabled.  
Backlight  
LVDS  
Active  
Backlight  
on  
200  
X
ms  
ms  
LVDS data must be enabled for a  
minimum time before the backlight is  
turned on.  
TX  
Backlight State  
Backlight  
Off  
LVDS off  
X
Backlight must be disabled for a minimum  
time before the LVDS data stream is  
stopped.  
T3  
T4  
LVDS State  
LVDS Off  
Power Off  
Start power  
off  
0
50  
X
ms  
ms  
Data must be off for a minimum time  
before the panel VDD is turned off.  
Power cycle Delay  
Power On  
Sequence  
Start  
400  
When panel VDD is turned from On to  
Off, a minimum wait must be satisfied  
before the panel VDD is enabled again.  
282  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.10.12.2 Back Light Inverter Control  
The GMCH offers integrated PWM for TFT panel Backlight Inverter brightness control. Other  
methods of control are specified in the Common Panel Interface Specification.  
PWM – based Backlight Brightness Control  
SMBus-based Backlight Brightness Control  
DBL (Display Brightness Link) –to- VDL (Video Data Link) Power Sequencing  
10.10.13 SDVO Digital Display Port  
The GMCH’s SDVO ports are each capable of driving a 200 MP pixel rate. Each port is capable of  
driving a digital display up to 1600x1200 at 60 Hz. When in dual-channel mode, GMCH can drive a  
flat panel up to 2048x1536 at 60 Hz or dCRT/HDTV up to 1920x1080 at 85 Hz.  
The GMCH is compliant with DVI Specification 1.0. When combined with a DVI compliant external  
device and connector, the GMCH has a high speed interface to a digital display (e.g., flat panel or  
digital CRT).  
Each port can transmit data according to one or more protocols. The digital ports are connected to an  
external device that converts one protocol to another. Examples of this are TV encoders, external  
DACs, LVDS transmitters, and TMDS transmitters. Each display port has control signals that may be  
used to control, configure and/or determine the capabilities of an external device.  
The GMCH has several options for driving digital displays. The GMCH contains two SDVO ports that  
are multiplexed on the PCI Express based Graphics interface. When an external PCI Express Based  
Graphics accelerator is not present, the GMCH can use the multiplexed SDVO ports to provide extra  
digital display options.  
he GMCH has the capability to support digital display devices through two SDVO ports muxed with  
the PCI Express BASED GRAPHICS signals. When an external graphics accelerator is utilized, these  
SDVO ports are not available.  
The shared SDVO ports each support a pixel clock up to 200 MHz and can support a variety of  
transmission devices. When using a dual-channel external transmitter, it will be possible to pair the two  
SDVO ports in dual-channel mode to support a single digital display with higher resolutions and  
refresh rates. In this mode, GMCH is capable of driving pixel clock up to 330 MHz.  
SDVOCTRL_DATA is an open-drain signal that will act as a strap during reset to tell the GMCH  
whether the interface is a PCI Express interface or an SDVO interface. When implementing SDVO  
device, a pull-up is placed on this line to signal to the GMCH to run in SDVO mode and for proper  
GMBus operation.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
283  
Functional Description  
R
10.10.13.1 TMDS Capabilities  
The GMCH is compliant with DVI Specification 1.0. When combined with a DVI compliant external  
device and connector, the GMCH has a high speed interface to a digital display (e.g., flat panel or  
digital CRT). When combining the two multiplexed SDVO ports, the GMCH can drive a flat panel up  
to 2048x1536 or a dCRT/HDTV up to 1920x1080. Flat Panel is a fixed resolution display. The GMCH  
supports panel fitting in the transmitter, receiver or an external device, but has no native panel fitting  
capabilities. The GMCH will however, provide unscaled mode where the display is centered on the  
panel.  
10.10.13.2 LVDS Capabilities  
The GMCH may use the multiplexed SDVO ports to drive an LVDS transmitter. Flat Panel is a fixed  
resolution display. The GMCH supports panel fitting in the transmitter, receiver or an external device,  
but has no native panel fitting capabilities. The GMCH will however, provide unscaled mode where the  
display is centered on the panel. Mobile Intel® 915 Express Chipset Family supports scaling in the  
LVDS transmitter through the SDVO stall input pair.  
10.10.13.3 TV-Out Capabilities (not supported by the Intel 915GME/Intel 910GMLE)  
Although traditional TVs are not digital displays, the GMCH utilizes a digital display channel to  
communicate with a TV-Out transmitter. For that reason, Mobile Intel® 915 Express Chipset Family  
considers a TV-Output to be a digital display. GMCH will support NTSC/PAL/SECAM standard  
definition formats. The GMCH will generate the proper timing for the external encoder. The external  
encoder is responsible for generation of the proper format signal. Since the multiplexed SDVO  
interface is  
A NTSC/PAL/SECAM display on the TV-out port can be configured to be the boot device. It is  
necessary to ensure that appropriate BIOS support is provided. If EasyLink is supported in the GMCH,  
then this mechanism could be used to interrogate the display device.  
The TV-out interface on GMCH is addressable as a master device. This allows an external TV encoder  
device to drive a pixel clock signal on SDVO_TVClk[+/-] that the GMCH uses as a reference  
frequency. The frequency of this clock is dependent on the output resolution required.  
Flicker Filter and Overscan Compensation  
The overscan compensation scaling and the flicker filter is done in the external TV encoder chip. Care  
must be taken to allow for support of TV sets with high performance de-interlacers and progressive  
scan displays connected to by way of a non-interlaced signal. Timing will be generated with pixel  
granularity to allow more overscan ratios to be supported.  
Direct YUV from Overlay  
When source material is in the YUV format and is destined for a device that can take YUV format data  
in, it is desired to send the data without converting it to RGB. This avoids the truncation errors  
associated with multiple color conversion steps. The common situation will be that the overlay source  
data is in the YUV format and will bypass the conversion to RBG as it is sent to the TV port directly.  
284  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
Sync Lock Support  
Sync lock to the TV will be done using the external encoders PLL combined with the display phase  
detector mechanism. The availability of this feature will be determined which external encoder is in  
use.  
Analog Content Protection  
Analog content protection will be provided through the external encoder using Macrovision. DVD  
software must verify the presence of a Macrovision TV encoder before playback continues. Simple  
attempts to disable the Macrovision operation must be detected.  
Connectors  
Target TV connectors support includes the CVBS, S-Video, Component, and SCART connectors. The  
external TV encoder in use will determine the method of support.  
10.10.14 Control Bus  
Communication to SDVO registers and monitor DDCs, are accomplished by using the  
SDVOCTRL_DATA and SDVOCTRL_CLK signals through the SDVO device. These signals run up  
to 1MHz and connect directly to the SDVO device. The SDVO device is then responsible for routing  
the DDC and PROM data streams to the appropriate location. Consult SDVO device data sheets for  
level shifting requirements of these signals.  
10.10.15 Intel SDVO Modes  
The port can be dynamically configured in several modes:  
Standard – Baseline SDVO functionality. Supports Pixel Rates between 25 and 200 MP/s. Utilizes  
three data pairs to transfer RGB data.  
Extended – Adds Alpha support to data stream. Supports Pixel Rates between 25 and 200 MP/s.  
Utilizes four data channels and is only supported on SDVO B. Leverages channel C (SDVO C)  
Red pair as the Alpha pair for channel B (SDVO B).  
Dual Standard – Utilizes Standard data streams across both SDVO B and SDVO C. Both channels  
can only run in Standard mode (3 data pairs) and each channel supports Pixel Rates between 25  
and 200 MP/s.  
Dual Independent Standard - In Dual Independent Standard mode, each SDVO channel will  
see a different pixel stream. The data stream across SDVO B will not be the same as the data  
stream across SDVO C.  
Dual Simultaneous Standard - In Dual Simultaneous Standard mode, both SDVO channels  
will see the same pixel stream. The data stream across SDVO B will be the same as the data  
stream across SDVO C. The display timings will be identical, but the transfer timings may not  
be - i.e. SDVO B Clocks and Data may not be perfectly aligned with SDVO C Clock and Data  
as seen at the SDVO device(s). Since this utilizes just a single data stream, it utilizes a single  
pixel pipeline within the GMCH.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
285  
Functional Description  
R
10.11  
Multiple Display Configurations  
Since the GMCH has several display ports available for its two pipes, it can support up to two different  
images on different display devices. Timings and resolutions for these two images may be different.  
Refer to the Mobile Intel 915 Express Chipset Family software PRD for more details on synchronous  
display support  
The GMCH is also incapable of operating in parallel with an external PCI Express graphics device. The  
GMCH can, however, work in conjunction with a PCI graphics adapter.  
10.12  
Power Management  
Power Management capabilities of the (G)MCH include the following:  
10.12.1 Power Management Overview  
ACPI 1.0b and 2.0 compliant power management  
ACPI S0, S3 (Cold and Hot states), S4, S5 states  
CPU States: C0, C1, C2, C3/C4 states  
Internal Graphics Display Device states: D0, D1, D2, D3  
Graphics Display Adapter States: D0, D3  
PCI Express Link States: L0, L0s, L1, L2, L3  
10.12.2 ACPI States Overview  
GMCH supports the following ACPI states:  
10.12.2.1 System  
G0/S0 Full On  
G1/S1 Not supported.  
G1/S2 Not supported.  
G1/S3- Cold Suspend to RAM (STR). Context saved to memory.  
G1/S3-Hot Suspend to RAM (STR). All voltage supplies left on except the CPU Core and FSB  
VTT.  
G1/S4 Suspend to Disk (STD). All power lost (except wakeup on ICH)  
G2/S5 Soft off. All power lost (except wakeup on ICH). Total reboot.  
G3  
Mechanical off. All power (AC and battery) removed from system.  
286  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.12.2.2 CPU  
C0  
C1  
C2  
C3  
C4  
Full On  
Auto Halt  
Stop Grant.  
Deep Sleep.  
Deeper Sleep.  
10.12.2.3 Internal Graphics Display Device Control  
D0  
D1  
D2  
D3  
Display active  
Low power state  
Suspend display  
Power off display  
10.12.2.4 Internal Graphics Adapter  
D0  
Full on, display active  
D3 Hot Graphics clocks off  
D3 Cold Power off  
10.12.2.5 PCI Express Link States  
L0  
L0s  
L1  
L2  
L3  
Full on – Active transfer state  
First Active Power Management low power state – Low exit latency  
Lowest Active Power Management– Long exit latency  
Lower link state with power applied – Longer exit latency  
Lowest power state (power off) – Longest exit latency  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
287  
Functional Description  
R
10.13  
Thermal Management  
System level thermal management requires comprehending thermal solutions for two domains of  
operation:  
1. Robust Thermal Solution Design: Proper system design should include implementation of a robust  
thermal solution. The system’s thermal solution should be capable of dissipating the platform’s  
TDP power while keeping all components (particularly GMCH, for the purposes of this  
discussion) below the relevant Tdie_max under the intended usage conditions. Such conditions  
include ambient air temperature and available airflow inside the notebook.  
2. Thermal Failsafe Protection Assistance: As a backup to the implemented thermal solution, the  
system design should provide a method to provide additional thermal protection for the  
components of concern (particularly GMCH, for purposes of this discussion). The failsafe  
assistance mechanism is to help manage components from being damaged by excessive thermal  
stress under situations in which the implemented thermal solution is inadequate or has failed.  
This section covers the thermal failsafe assistance mechanisms that are available for the GMCH and  
recommends a usage model designed to accomplish the failsafe Protection Assistance.  
The GMCH provides two internal thermal sensors, plus hooks for an external thermal sensor  
mechanism. These can be used for detecting the component temperature and for triggering thermal  
control within the GMCH. The GMCH has implemented several silicon level thermal management  
features that can lower both GMCH and DDR power during periods of high activity. These features can  
help control temperature of the GMCH and DDR and thus help prevent thermally induced component  
failures. These features include:  
Memory throttling triggering by memory heating  
Memory throttling triggering by GMCH heating  
THRMTRIP# support  
10.13.1 Internal Thermal Sensor  
The GMCH incorporates two on-die thermal sensors which may be enabled separately. When  
“tripped” at various values, the thermal sensors may be programmed to cause hardware throttling  
and/or software interrupts. Hardware throttling includes main memory programmable throttling  
thresholds. Sensor trip points may also be programmed to be generated various interrupts, including  
SCI, SMI, SERR, or an internal graphics INTR.  
288  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.13.1.1 Trip Points  
There are three programmable temperature trip points for each of the two internal thermal sensors:  
Catastrophic, Hot, and Auxiliary:  
The GMCH can be programmed to generate interrupts when any of these three trip points has been  
crossed in the upwards direction. In addition, the GMCH can be programmed to enable throttling of the  
DDR interface when the Catastrophic and/or Hot trip points are crossed in the upwards direction.  
Crossing the Catastrophic trip point may be programmed to generate an interrupt, enable hardware  
throttling, and immediately shut down the system (via Halt, or via THRMTRIP# assertion).  
Crossing the Hot trip point may be programmed to generate an interrupt and/or enable hardware  
throttling.  
Crossing the Auxiliary trip point can be programmed to generate an interrupt.  
The current state of all trip points (HOT/CAT/AUX) may be read by software via the Thermal  
Sensor Status Registers (TSSRs). It is recommended to use Halt or THRMTRIP# assertion on  
Catastrophic trip. Using an interrupt to initiate shutdown at Catastrophic temperature may be  
delayed since there is no guaranteed minimum interrupt service latency.  
10.13.1.2 Thermometer  
The Thermometer Reading Register (TRR) is primarily useful as an indicator of die temperature  
trending. The TRR value tends to decrease as the die temperature increases. Intel currently has no  
recommended end user usage model for this register. It is provided solely as an indication of  
temperature trending, for customer system characterization. Absolute temperature accuracy will  
vary from part to part. Refer to section 10.13.4 for more details on the sensor accuracy  
(Taccuracy).  
10.13.2 Sample Programming Model  
Intel BIOS reference code implements a thermal failsafe mechanism based upon the assumptions stated  
in the beginning of this chapter. The subsections below describe the algorithms implemented in the  
reference code.  
10.13.2.1 Setting the “Hot” Temperature Trip Point  
Program the Thermal Hot Temperature Setting Register (THTS) as recommended in the latest  
Mobile Intel® 915 Express Chipset Family BIOS spec and memory reference code.  
Program the Thermal Sensor Control Register (TSC) as recommended in the latest Mobile Intel®  
915 Express Chipset Family BIOS spec and memory reference code.  
To enable Error / SMI / SCI / INTR commands for CAT/HOT/AUX trip, set the appropriate bit in  
TERRCMD / TSMICMD / TSCICMD / TINTRCMD registers. Refer to latest Mobile Intel® 915  
Express Chipset Family EDS and BIOS spec update for programming details.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
289  
Functional Description  
R
10.13.3 Trip Point Temperature Targets  
Table 10-15 below provides recommended trip points based upon the usage model of the thermal  
sensors as a thermal protection failsafe mechanism. These settings assume that the system’s thermal  
solution has been designed to provide adequate cooling for a TDP power condition and that the settings  
for the silicon level thermal management are only intended to provide failsafe protection of the part  
beyond the capabilities of the thermal solution.  
Intel’s recommended trip point settings take into account the inaccuracy of the internal thermal sensors  
as described in section 10.13.4 and are intended to cause the GMCH to initiate thermal failsafe control  
mechanisms at the noted temperatures under the worst case accuracy, Taccuracy. Therefore, in parts  
which actually exhibit the worst case inaccuracy, failsafe control mechanisms may actually be initiated  
at a temperature which is Taccuracy below the nominal trip point.  
Table 10-15: Recommended Programming for Available Trip Points  
Zone  
Nominal Trip Points  
Recommended action  
Halt operation  
Catastrophic  
T
= Tdie,max + 41°C - Taccuracy =  
Catastrophic  
133°C  
Hot  
T
T
+ 3°C + T  
accuracy  
= 121°C  
Initiate throttling  
Hot = die,max  
Aux  
OEM decision, based on OEM criteria (for  
example: Taux = Temp at which an auxiliary fan  
should be turned on)  
OEM decision, based on OEM criteria (for  
example: turn on an auxiliary fan)  
Crossing a trip point in either direction may generate several types of interrupts. Each trip point has a  
register which can be programmed to select the type of interrupt to be generated.  
Crossing a trip point may also initiate hardware-based throttling without software intervention.  
10.13.4 Thermal Sensor Accuracy  
Thermal sensor accuracy, Taccuracy, for GMCH is ± 13 °C for temperature range 80 °C to 133 °C.  
This value is based on product characterization and is not guaranteed by manufacturing test.  
Software has the ability to program the Tcat, Thot, and Taux trip points, but these trip points should be  
selected with consideration for the thermal sensor accuracy and the quality of the platform thermal  
solution. Overly conservative (unnecessarily low) temperature settings may unnecessarily degrade  
performance due to frequent throttling, while overly aggressive (dangerously high) temperature settings  
may fail to protect the part against permanent thermal damage.  
290  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Functional Description  
R
10.13.5 Thermal Throttling Options  
The GMCH has two independent mechanisms that cause system memory bandwidth throttling.  
The first is GMCH thermal management to ensure that the chipset is operating within thermal limits.  
The mechanism can be initiated by a thermal sensor (internal or external) trip or by GMCH usage  
exceeding a programmed threshold via a weighted input averaging filter.  
The second is Dram Thermal management to ensure that the dram chips are operating within thermal  
limits. Throttling can be initiated by dram activity measurement exceeding a programmed threshold.  
Another possible usage model targets skin temperature control near memory. Throttling can be  
initiated by an external thermal sensor trip or by dram activity measurement exceeding a programmed  
threshold.  
10.13.6 THRMTRIP Operation  
Assertion of the GMCH’s THRMTRIP# (Thermal Trip) indicates the GMCH junction temperature  
has reached a level beyond which damage may occur. Upon assertion of THRMTRIP#, the GMCH will  
shut off its internal clocks (thus halting program execution) in an attempt to reduce the GMCH core  
junction temperature. Once activated, THRMTRIP# remains latched until RSTIN# is asserted. The  
GMCH THRMTRIP# and CPU THRMMTRIP# signals connects to ICH6-M.  
10.14  
Clocking  
10.14.1 Overview  
The GMCH has a total of five PLLs providing many times that many internal clocks. The PLLs are:  
Host PLL – Generates the main core clocks in the host clock domain. Can also be used to generate  
memory and internal graphics core clocks. Uses the Host clock (HCLKN/HCLKP) as a reference.  
Memory PLL – Can be used to generate memory and internal graphics core clocks, when not  
generated by the Host PLL. This PLL is not needed in all configurations, but exists to provide  
more flexible frequency combinations without an unreasonable VCO frequency. Uses the Host  
clock (HCLKN/HCLKP) as a reference.  
PCI Express PLL – Generates all PCI Express related clocks, including the DMI that connects to  
the ICH6-M. This PLL uses the 100 MHz (GCLKN/GCLKP) as a reference.  
Display PLL A – Generates the internal clocks for Display A. Uses DREF_CLKIN as a reference.  
Display PLL B – Generates the internal clocks for Display A or Display B. Also may optionally  
use DREF_SSCCLKIN as a reference for SSC support for LVDS display on pipe B.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
291  
Functional Description  
R
10.14.2 GMCH Reference Clocks  
Reference Input clocks  
Input Frequency  
Associated PLL  
Host / Memory / Graphics Core  
Display PLL A  
100 MHz / 133MHz  
96 MHz / 100 MHz  
96 MHz / 100 MHz  
100 MHz  
HCLKP / HCLKN  
DREF_CLKN / DREF_CLKP  
DREF_SSCCLKN / DREF_SSCCLKP  
GCLKP / GCLKN  
Display PLL B  
PCI Express / DMI PLL  
10.14.3 Host/Memory/Graphics Core Clock Frequency Support  
10.14.3.1 Intel 915GM Host/Memory/Graphics Clock Support  
Table 10-16. Intel 915GM Graphics Clock Frequency Support  
Host  
Memory  
Gfx Core Voltage  
2D Display core  
3D Render core  
400 MHz  
533 MHz  
400 MHz  
533 MHz  
533 MHz  
400 MHz  
533 MHz  
533 MHz  
DDR 333  
DDR 333  
1.05 V  
1.05 V  
1.05 V  
1.05 V  
1.05 V  
1.5 V  
133, 200  
133, 190  
133, 166, 200  
133, 166, 190  
DDR2 400  
DDR2 400  
DDR2 533  
DDR2 400  
DDR2 400  
DDR2 533  
133, 200  
133, 160, 200  
133, 200  
133, 160, 200  
133, 200  
133, 160, 200  
133, 200,333  
133, 200, 333  
133, 200, 333  
133, 160, 200, 333  
133, 160, 200, 333  
133, 160, 200, 333  
1.5 V  
1.5 V  
10.14.3.2 Intel 915GMS Host/Memory/Graphics Clock Support  
Table 10-17. Intel 915GMS Graphics Clock Frequency Support  
Host  
Memory  
Gfx Core Voltage  
2D Display core  
3D Render core  
400 MHz  
DDR2 400  
1.05 V  
133, 200  
133, 160  
10.14.3.3 Intel 910GML Host/Memory/Graphics Clock Support  
Table 10-18. Intel 910GML Graphics Clock Frequency Support  
Host  
Memory  
Gfx Core Voltage  
2D Display Core  
3D Render Core  
400 MHz  
400 MHz  
DDR 333  
1.05 V  
1.05 V  
133, 200  
133, 200  
133, 166  
133, 160  
DDR2 400  
§
292  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Electrical Characteristics  
R
11 Electrical Characteristics  
This chapter contains the absolute maximum electrical ratings, power dissipation values, and DC  
characteristics.  
11.1  
Absolute Maximum Ratings  
Table 11-1 specifies absolute maximum and minimum ratings. Within functional operating parameters,  
functionality and long-term reliability can be expected.  
At conditions outside functional operating parameters, but within absolute maximum and minimum  
ratings, neither functionality nor long-term reliability can be expected. If a device is returned to  
conditions within functional operating parameters after having been subjected to conditions outside  
these parameters, but within the absolute maximum and minimum ratings, the device may be  
functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional  
operating parameters.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term  
reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time  
then, when returned to conditions within the functional operating parameters, it will either not function  
or its reliability will be severely degraded.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
293  
Electrical Characteristics  
R
Table 11-1. Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
0
Max  
105  
150  
Unit  
°C  
Notes  
1
2
Tdie  
Die Temperature under Bias  
Storage Temperature  
-55  
°C  
Tstorage  
GMCH Core  
-0.3  
-0.3  
1.65  
1.65  
V
V
VCC  
VCC  
1.05 V Core Supply Voltage with respect to VSS  
1.5 V Core Supply Voltage with respect to VSS  
Host Interface  
-0.3  
1.65  
V
VTT (FSB Vccp)  
1.05 V AGTL+ buffer DC Input Voltage with  
respect to VSS  
DDR Interface (333 MTs)  
-0.3  
-0.3  
4.0  
V
V
VCCSM  
2.5 V DDR System Memory Data Buffers Supply  
Voltage with respect to VSS  
1.65  
VCCA_SM  
1.5 V VCCASM is the Analog power supply for  
SM data buffers used for DLL & other logic  
DDR2 Interface (400 MTs/533 MTs)  
-0.3  
-0.3  
4.0  
V
V
VCCSM  
1.8 V DDR2 Supply Voltage with Respect to Vss.  
1.65  
VCCA_SM  
1.5 V VCCASM is the Analog power supply for  
SM data buffers used for DLL & other logic  
DMI /PCI Express* Graphics/SDVO Interface  
-0.3  
1.65  
2.65  
V
V
VCC3G  
1.5 V PCI-Express Supply Voltage with respect to  
VSS  
-0.3  
VCCA_3GBG  
2.5 V Analog Supply Voltage with respect to  
VSSA3GBG  
CRT DAC Interface (8 bit DAC)  
-0.3  
-0.3  
2.65  
2.65  
V
V
VCCA_CRTDAC  
VCC_SYNC  
2.5 V DAC Supply Voltage with respect to  
VSSA_CRTDAC  
2.5 V CRT Sync Supply Voltage  
HV CMOS Interface  
-0.3  
2.65  
V
VCCHV  
2.5 V Supply Voltage with respect to VSS  
TV OUT Interface (10 bit DAC)  
1.5 V TV Supply  
-0.3  
-0.3  
1.65  
3.65  
V
V
VCCD_TVDAC  
VCCA_TVDACA  
VCCA_TVDACB  
VCCA_TVDACC  
VCCA_TVBG  
3.3 V TV Analog Supply  
-0.3  
-0.3  
3.65  
1.65  
V
V
3.3 V TV Analog Supply  
1.5 V Quiet Supply  
VCCDQ_TVDA  
C
LVDS Interface  
-0.3  
-0.3  
1.65  
2.65  
V
V
VCCD_LVDS  
1.5 V LVDS Digital Power Supply  
2.5 V LVDS Data/Clock Transmitter Supply  
294  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Electrical Characteristics  
R
Parameter  
Symbol  
VCCTX_LVDS  
VCCA_LVDS  
Min  
Max  
Unit  
Notes  
Voltage with respect to VSS  
-0.3  
2.65  
V
2.5 V LVDS Analog Supply voltage with respect  
to VSS  
PLL Analog Power Supplies  
-0.3  
1.65  
V
VCCA_HPLL,  
VCCA_MPLL,  
VCCD_HMPLL,  
VCCA_3GPLL,  
VCCA_DPLLA,  
VCCA_DPLLB  
1.5 V Power Supply for various PLL  
NOTES:  
1. Functionality is not guaranteed for parts that exceed Tdie temperature above 105 ºC. Tdie is measured at  
top center of the package. Full performance may be affected if the on-die thermal sensor is enabled.  
2. Storage temperature is applicable to storage conditions only. In this scenario, the silicon must not receive  
a clock, and no pins can be connected to a voltage bias. Storage within these limits will not affect the  
long-term reliability of the device. This rating applies to the silicon and does not include any tray or  
packaging. Possible damage to the GMCH may occur if the GMCH temperature exceeds 150 ºC. Intel  
does not guarantee functionality for parts that have exceeded temperatures above 150 ºC due to spec  
violation.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
295  
Electrical Characteristics  
R
11.2  
Power Characteristics  
Table 11-2. Non-Memory Power Characteristics  
Symbol  
Parameter  
Signal Names  
Min  
Typ  
Max7  
Unit  
Notes  
TDP  
W
1, 2  
Intel® 915GM/915GME/910GML/910GMLE  
Intel® 915PM  
6.0  
5.5  
Intel® 915GMS  
4.8  
IVTT  
VTT Supply Current (1.05v)  
VTT  
640  
2600  
mA  
mA  
IVCC1_05  
1.05 V Core Supply Current  
(External GFX)  
VCC  
VCC  
VCC  
VCC  
IVCC1_05  
1.05 V Core Supply Current  
(Integrated GFX)  
3700  
4000  
6750  
1500  
0.150  
60  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IVCC1_5  
1.5 V Core Supply Current  
(External GFX)  
IVCC1_5  
1.5 V Core Supply Current  
(Integrated GFX)  
IVCC3G  
1.5 V PCI Express Supply  
Current  
VCC3G,  
VCCA_3GPLL  
4,6  
IVCCA_3GBG  
IVCCD_LVDS  
IVCCA_LVDS  
IVCCTX_LVDS  
IVCCCRT  
2.5 V PCI Express Analog  
Supply Current  
VCCA_3GBG  
VCCD_LVDS  
VCCA_LVDS  
VCCTX_LVDS  
1.5 V LVDS (Digital) Supply  
Current  
2.5 V LVDS (Analog)  
Supply Current  
10  
2.5 V LVDS (I/O) Supply  
Current  
60  
2.5 V CRT DAC Supply  
Current (IvccADAC)  
2.5V CRT Sync Supply  
Current (Ivccsync)  
VCCA_CRTDAC  
VCC_SYNC  
68  
2
mA  
mA  
IVCCHV  
2.5 V HV CMOS Supply  
Current  
VCCHV  
2
mA  
mA  
IVCCD_TVDAC  
1.5 V TV Supply Current  
(Ivcc_TVDAC)  
VCCD_TVDAC  
VCCQ_TVDAC  
24  
6
6
1.5 V TV Quiet Supply  
Current (IVccQ_TVDAC)  
IVCCTVDAC  
3.3 V TV Analog Supply  
Current (IvccATVDAC)  
3.3 V TV Bandgap Supply  
Current (IvccATVBG)  
VCCA_TVBG  
120  
45  
mA  
mA  
VCCA_TVDACA  
VCCA_TVDACB  
VCCA_TVDACC  
IVCCAHPLL  
Host PLL Supply Current  
VCCA_HPLL  
296  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Electrical Characteristics  
R
Symbol  
Parameter  
Signal Names  
Min  
Typ  
Max7  
40  
Unit  
Notes  
IVCCADPLLA,B,  
Display PLLA Supply  
Current  
Display PLLB Supply  
Current  
VCCA_DPLLA  
mA  
mA  
40  
VCCA_DPLLB  
VCCA_MPLL  
IVCCAMPLL  
Memory PLL Supply  
Current  
45  
mA  
mA  
IVCCDHMPLL  
HMPLL Supply Current for  
Digital Interface  
VCCD_HMPLL  
150  
NOTES:  
1. This spec is the Thermal Design Power and is the estimated maximum possible expected power  
generated in a component by a realistic application. It is based on extrapolations in both hardware and  
software technology over the life of the component. It does not represent the expected power generated  
by a power virus. Studies by Intel indicate that no application will cause thermally significant power  
dissipation exceeding this specification, although it is possible to concoct higher power synthetic  
workloads that write but never read. Under realistic read/write conditions, this higher power workload can  
only be transient and is accounted in the Icc (max) spec. Tdie is measured at the top center of the  
package.  
2. Please contact your Intel Field Representative for latest TDP data.  
3. Estimate is only for max current coming through the chipset’s supply balls.  
4. Rail includes PLL current.  
5. Iccmax is determined on a per-interface basis, and all can not happen simultaneously.  
Table 11-3. DDR (333 MTs) Power Characteristics  
Symbol  
IVCCSM  
Parameter  
Min  
Type  
Max  
Unit  
Notes  
DDR System Memory Interface  
(2.5 V) Supply Current  
1 Channel  
2 Channel  
1050  
2200  
N/A  
mA  
mA  
mA  
(DDR)  
ISUS_VCCSM  
(DDR)  
ISMVREF  
(DDR)  
DDR System Memory Interface  
(2.5 V) Standby Supply Current  
DDR System Memory Interface  
Reference Voltage (1.25 V) Supply  
Current  
10  
10  
µA/pin  
µA/pin  
mA  
ISUS_SMVREF  
DDR System Memory Interface  
Reference Voltage (1.25 V) Standby  
Supply Current  
ITTRC  
DDR System Memory Interface  
Resistor Compensation Voltage  
(2.5 V) Supply Current  
42  
(DDR)  
ISUS_TTRC  
(DDR)  
DDR System Memory Interface  
Resistor Compensation Voltage  
(2.5 V) Standby Supply Current  
~ 0  
µA  
IVCCASM  
Memory DLL  
1 Channel  
2 Channel  
1 Channel  
2 Channel  
125  
250  
0
mA  
mA  
ISUS_VCCASM  
Memory DLL (Standby)  
0
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
297  
Electrical Characteristics  
R
Table 11-4. DDR 2 (400 MTs/533 MTs) Power Characteristics  
Symbol  
IVCCSM  
Parameter  
Min  
Type  
Max  
Unit  
Notes  
DDR2 System Memory Interface  
(1.8 V, 400 MTs) Supply Current  
1 Channel  
2 Channel  
1 Channel  
2 Channel  
1 Channel  
2 Channel  
950  
1900  
1200  
2400  
~ 5  
mA  
mA  
mA  
mA  
mA  
(DDR2)  
IVCCSM  
DDR2 System Memory Interface  
(1.8 V, 533 MTs) Supply Current  
(DDR2)  
ISUS_VCCSM  
(DDR2)  
DDR2 System Memory Interface  
(1.8 V) Standby Supply Current  
Number  
is same  
for 400  
~ 5  
MTs and  
533MTs  
ISMVREF  
DDR2 System Memory Interface  
Reference Voltage (0.90 V) Supply  
Current  
10  
10  
µA/pin  
µA/pin  
mA  
(DDR2)  
ISUS_SMVREF  
(DDR2)  
DDR2 System Memory Interface  
Reference Voltage (0.90 V) Standby  
Supply Current  
ITTRC  
DDR2 System Memory Interface  
Resister Compensation Voltage  
(1.8 V) Supply Current  
32  
(DDR2)  
ISUS_TTRC  
(DDR2)  
DDR2 System Memory Interface  
Resister Compensation Voltage  
(1.8 V) Standby Supply Current  
~ 0  
µA  
IVCCASM  
Memory DLL (400 MTs)  
Memory DLL (533 MTs)  
Memory DLL (Standby)  
1 Channel  
2 Channel  
1 Channel  
2 Channel  
1 Channel  
2 Channel  
215  
290  
280  
390  
0
mA  
mA  
mA  
IVCCASM  
ISUS_VCCASM  
0
NOTE: Standby or Sus in Table 3 and Table 4 refers to system memory in Self Refresh during S3 Cold (STR).  
298  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Electrical Characteristics  
R
11.3  
Signal Groups  
The signal description includes the type of buffer used for the particular signal:  
AGTL+  
Open Drain AGTL+ interface signal. Refer to the AGTL+ I/O Specification for complete  
details. (VCCP)  
Analog  
CMOS  
HVCMOS  
COD  
Analog signal interface  
CMOS buffers. 1.5 V tolerant  
CMOS buffers. 2.5 V tolerant  
CMOS Open Drain buffers. 2.5 V tolerant  
DDR system memory (2.5 V CMOS buffers)  
DDR2 system memory (1.8 V CMOS buffers)  
DDR  
DDR2  
PCI Express* GFX/Serial DVO  
PCI Express interface signals. These signals are compatible  
with PCI Express Base Specification 1.0a Electrical Signal Specifications. The buffers are not 3.3 V  
tolerant. Differential voltage spec = (|D+ - D-|) * 2 = 1.2 V max. Single-ended maximum = 1.5V.  
Single-ended minimum = 0V. Please refer to the PCIE specification.  
SSTL-2  
2.5 V tolerant Stub Series Termination Logic  
SSTL-1.8 1.8 V tolerant Stub Series Termination Logic  
LVDS  
Ref  
Low Voltage Differential Signal interface  
Voltage reference signal  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
299  
Electrical Characteristics  
R
Table 11-5. Signal Groups  
Signal  
Group  
Signal Type  
Signals  
Notes  
Host Interface Signal Groups  
(a)  
AGTL+  
HADS#, HBNR#, HBREQ0#,HDBSY#, HDRDY#,  
HDINV[3:0]#, HA[31:3]#, HADSTB[1:0]#,  
HD[63:0]#,HDSTBP[3:0]#, HDSTBN[3:0]#, HHIT#,  
HHITM#, HREQ[4:0]#  
Input/Output  
(b)  
(c)  
AGTL+  
HBPRI#, HCPURST#, HDEFER#, HTRDY#, HRS[2:0]#,  
HDPWR#  
Common Clock  
Outputs  
CMOS Output  
HCPUSLP#, THRMTRIP#  
HLOCK#  
CMOS Type  
Buffer with  
Vtt  
(d)  
(e)  
AGTL+  
Asynchronous Input  
Analog Host I/F Ref  
& Comp. Signals  
HVREF, HXSWING, HYSWING, HXRCOMP, HXSCOMP,  
HYRCOMP, HYSCOMP  
Serial DVO or PCI-Express Graphics Interface Signal Groups  
(f)  
(g)  
(h)  
PCI-E GFX/SDVO  
Input  
PCI-E GFX Interface: EXP_RXN[15:0], EXP_RXP[15:0],  
SDVO Interface: SDVO_TVCLKIN#, SDVO_TVCLKIN,  
SDVOB_INT#, SDVOB_INT, SDVOC_INT#, SDVOC_INT,  
SDVO_FLDSTALL#, SDVO_FLDSTALL  
Please see  
Signal  
Description  
chapter for  
SDVO & PCI  
Express  
GFX Pin  
Mapping  
PCI-E GFX/SDVO  
Output  
PCI-E GFX Interface: EXP_TXN[15:0], EXP_TXP[15:0]  
SDVO Interface: SDVOB_RED#, SDVOB_RED,  
SDVOB_GREEN#, SDVOB_GREEN, SDVOB_BLUE#,  
SDVOB_BLUE, SDVOB_CLKN, SDVOB_CLKP,  
SDVOC_RED#/SDVOB_ALPHA#,  
SDVOC_RED/SDVOB_ALPHA, SDVOC_GREEN#,  
SDVOC_GREEN, SDVOC_BLUE#, SDVOC_BLUE,  
SDVOC_CLKN, SDVOC_CLKP  
Please see  
Signal  
Description  
chapter for  
SDVO & PCI  
Express  
GFX Pins  
Mapping  
Analog  
PCI-E GFX/SDVO I/F  
Compensation  
Signals  
EXP_ICOMP0  
EXP_COMPI  
DDR Interface Signal Groups  
(i)  
SSTL- 2  
DDR CMOS I/O  
DQ (SA_DQ[63:0], SB_DQ[63:0])  
DQS (SA_DQS[7:0], SB_DQS[7:0])  
DM (SA_DM[7:0], SB_DM[7:0])  
MA (SA_MA[13:0], SB_MA[13:0])  
BS (SA_BS[1:0], SB_BS[1:0])  
RAS# (SA_RAS#, SB_RAS#)  
CAS# (SA_CAS#, SB_CAS#)  
WE# (SA_WE#, SB_WE#)  
(j)  
SSTL – 2  
DDR CMOS Output  
SM_CKE[3:0], SM_CS[3:0]#,  
SM_CK[4:3,1:0], SM_CK[4:3,1:0]#  
SMVREF(1:0)  
(k)  
DDR Reference  
Voltage  
300  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Electrical Characteristics  
R
Signal  
Group  
Signal Type  
Signals  
Notes  
DDR2 Interface Signal Groups  
(l)  
SSTL – 1.8  
DDR2 CMOS I/O  
DQ (SA_DQ[63:0], SB_DQ[63:0])  
DQS (SA_DQS[7:0], SB_DQS[7:0])  
DQS# (SA_DQS[7:0]#, SB_DQS[7:0]#)  
DM (SA_DM[7:0], SB_DM[7:0])  
MA (SA_MA[13:0], SB_MA[13:0])  
BS (SA_BS[2:0], SB_BS[2:0])  
RAS# (SA_RAS#, SB_RAS#)  
CAS# (SA_CAS#, SB_CAS#)  
WE# (SA_WE#, SB_WE#),  
SM_ODT[3:0],  
(m)  
SSTL – 1.8  
DDR2 CMOS Output  
SM_CKE[3:0], SM_CS[3:0]#,  
SM_CK[4:3,1:0], SM_CK[4:3,1:0]#  
SMVREF(1:0)  
(n)  
DDR2 Reference  
Voltage  
LVDS Signal Groups  
(o) LVDS  
LADATAP[2:0], LADATAN[2:0], LACLKP, LACLKN,  
LBDATAP[2:0], LBDATAN[2:0], LBCLKP, LBCLKN  
LVDS Input/Output  
Analog  
LIBG  
Current  
Mode  
LVDS Miscellaneous  
Reference  
pin. DC  
Spec. not  
required  
CRT DAC Signal Groups  
Analog Current  
RED, RED#, GREEN, GREEN#, BLUE, BLUE#  
REFSET  
Please refer  
to Section  
11.4.2  
Outputs  
Analog/Ref  
DAC Miscellaneous  
Current  
Mode  
Reference  
pin. DC  
Spec. not  
required  
HVCMOS Type  
HSYNC, VSYNC  
Please refer  
to the VESA  
specification  
for details  
TV DAC Signal Groups (these signals are not supported on the Intel 915GME / Intel 910GMLE chipsets)  
Analog Current  
Outputs  
TVDAC_A, TVDAC_B, TVDAC_C, TV_IRTNA,  
TV_IRTNB, TV_IRTNC  
Analog/Ref  
DAC Miscellaneous  
TV_REFSET  
Current  
Mode  
Reference  
pin. DC  
Spec. not  
required  
Clocks, Reset, and Miscellaneous Signal Groups  
(p)  
(q)  
HVCMOS Input  
Low Voltage Diff.  
EXT_TS[1:0]#, CFG[20:18], CFG[2:0]  
HCLKP(BCLK/BCLK0), HCLKN(BCLK#/BCLK1),  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
301  
Electrical Characteristics  
R
Signal  
Group  
Signal Type  
Clock Input  
Signals  
Notes  
DREF_CLKP, DREF_CLKN, DREF_SSCLKP,  
DREF_SSCLKN, GCLKP, GCLKN  
(r)  
HVCMOS Output  
HVCMOS I/O  
BM_BUSY#, LVDD_EN, LBKLT_EN, LBKLT_CTRL  
(s)  
DDCCLK, DDCDATA, LDDC_CLK, LDDC_DATA,  
SDVOCTRL_CLK, SDVOCTRL_DATA, LCTLB_DATA,  
LCTLA_CLK  
(t)  
AGTL+ Input/Output  
MISC  
CFG[17:3], RSVD  
RSTIN#, PWROK  
(u)  
I/O Buffer Supply Voltages  
(v)  
AGTL+ Termination  
Voltage  
VTT (Vccp)  
(w)  
SDVO, DMI, PCI  
Express GFX  
Voltages  
VCC3G, VCCA_3GBG  
(x)  
(y)  
(z)  
2.5 V DDR Supply  
Voltage  
VCCSM (DDR)  
VCCSM (DDR2)  
VCCA_SM  
1.8V DDR2 Supply  
Voltage  
1.5 V DDR/DDR2  
Analog Supply  
(aa)  
(ab)  
(ac)  
GMCH Core  
VCC  
HV Supply Voltage  
VCCHV  
TV DAC Supply  
Voltage  
VCCD_TVDAC, VCCDQ_TVDAC  
(ad)  
(ae)  
(af)  
TV DAC Band Gap  
and Channel Supply  
VCCA_TVBG, VCCA_TVDACA,VCCA_TVDACB,  
VCCA_TVDACC  
CRT DAC Supply  
Voltage  
VCCA_CRTDAC, VCC_SYNC  
PLL Supply Voltages  
VCCA_HPLL, VCCA_MPLL, VCCD_HMPLL  
VCCA_3GPLL, VCCA_DPLLA, VCCA_DPLLB  
(ag)  
(ah)  
1.5 V LVDS Digital  
Supply  
VCCD_LVDS  
2.5 V LVDS  
Data/CLK Transmitter  
Supply  
VCCTX_LVDS  
(ai)  
2.5 V LVDS Analog  
Supply  
VCCA_LVDS  
302  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Electrical Characteristics  
R
11.4  
DC Characteristics  
11.4.1  
General DC Characteristics  
Table 11-6. DC Characteristics  
Symbol  
Signal  
Group  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
I/O Buffer Supply Voltage (AC Noise not included)  
VCC  
VCC  
VTT  
(aa)  
(aa)  
(v)  
1.05 V GMCH Core Supply  
Voltage  
1.0  
1.05  
1.1  
V
1.5 V GMCH Core Supply  
Voltage  
1.425  
1.5  
1.575  
V
V
1.05 V Host AGTL+  
Termination Voltage  
0.9475  
1.05  
1.1025  
VCCSM (DDR)  
VCCSM (DDR2)  
VCCASM (DDR)  
VCCASM (DDR2)  
VCC3G  
(x)  
(y)  
(z)  
(z)  
(w)  
DDR I/O Supply Voltage  
DDR2 I/O Supply Voltage  
DDR I/O Analog Supply  
DDR2 I/O Analog Supply  
2.3  
2.5  
1.8  
1.5  
1.5  
1.5  
2.7  
V
V
V
V
V
1.7  
1.9  
1.425  
1.425  
1.575  
1.575  
1.575  
DMI, SDVO, PCI Express GFX 1.425  
Supply Voltage  
VCCA_3GBG  
(w)  
DMI, SDVO, PCI Express GFX 2.32  
Analog Voltage  
2.5  
2.625  
V
VCCHV  
(ab)  
(ac)  
(ac)  
(ad)  
HV CMOS Supply Voltage  
TV DAC Supply Voltage  
2.375  
1.425  
2.5  
1.5  
1.5  
3.3  
2.625  
1.575  
1.575  
3.465  
V
V
V
V
VCCD_TVDAC  
VCCDQ_TVDAC  
TV DAC Quiet Supply Voltage 1.425  
VCCA_TVDACA  
VCCA_TVDACB  
VCCA_TVDACC  
VCCA_TVBG  
TV DAC Analog & Band Gap  
Supply Voltage  
3.135  
VCCA_CRTDAC  
VCC_SYNC  
(ae)  
(ae)  
CRT DAC Supply Voltage  
2.32  
2.32  
2.5  
2.5  
2.625  
2.625  
V
V
CRT DAC SYNC Supply  
Voltage  
VCCA_HPLL,  
VCCA_MPLL,  
VCCD_HMPLL  
VCCA_3GPLL,  
VCCA_DPLLA,  
VCCA_DPLLB  
(af)  
Various PLLS Analog Supply  
Voltages  
1.425  
1.5  
1.575  
V
1 -Ripple  
Noise  
spec.  
VCCD_LVDS  
VCCTX_LVDS  
(ag)  
(ah)  
Digital LVDS Supply Voltage  
1.425  
1.5  
2.5  
1.575  
2.625  
V
V
Data/Clock Transmitter LVDS 2.375  
Supply Voltage  
VCCA_LVDS  
Reference Voltages  
HVREF  
(ai)  
Analog LVDS Supply Voltage  
2.375  
2.5  
2.625  
V
(e)  
(e)  
(k)  
Host Address and Data  
Reference Voltage  
2/3 x VTT 2/3 x VTT 2/3 x VTT V  
– 2%  
+ 2%  
HXSWING  
HYSWING  
Host Compensation Reference 0.3125 x 0.3125x  
Voltage  
0.3125x  
VTT + 2%  
V
VTT – 2% VTT  
SMVREF (DDR)  
DDR Reference Voltage  
0.5VCCS 0.50 x  
M - 0.05  
0.5VCCSM V  
+ 0.05  
VCCSM  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
303  
Electrical Characteristics  
R
Symbol  
Signal  
Group  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
SMVREF (DDR2)  
(n)  
DDR2 Reference Voltage  
0.49 x  
VCCSM  
0.50 x  
VCCSM  
0.51 x  
VCCSM  
V
Host Interface  
VIL_H  
(a,d,t)  
(a,d,t)  
(a,b,t)  
(a,b,t)  
(a,b,t)  
Host AGTL+ Input Low Voltage -0.10  
Host AGTL+ Input High Voltage (2/3 x  
0
(2/3 x VTT) V  
– 0.1  
VIH_H  
VOL_H  
VOH_H  
IOL_H  
VTT (1.05) VTT + 0.1 V  
VTT) + 0.1  
Host AGTL+ Output Low  
Voltage  
(0.3125 x  
V
VTT) + 0.1  
Host AGTL+ Output High  
Voltage  
VTT-0.1  
VTT  
V
Host AGTL+ Output Low  
Current  
VTTmax  
(1-  
/
mA  
Rttmin=50  
ohm  
0.3125)Rtt  
min  
ILEAK_H  
(a,d,t)  
Host AGTL+ Input Leakage  
Current  
20  
uA  
VOL<Vpa  
d<  
Vtt  
CPAD  
(a,d,t)  
(c)  
Host AGTL+ Input Capacitance 2  
CMOS Output Low Voltage  
3.5  
pF  
V
VOL_H  
0.1 VTT  
IOL = 1  
mA  
VOH_H  
(c)  
CMOS Output High Voltage  
0.9VTT  
VTT  
V
IOH = 1  
mA  
DDR Interface  
VIL(DC) (DDR)  
(i)  
(i)  
(i)  
(i)  
DDR Input Low Voltage  
DDR Input High Voltage  
DDR Input Low Voltage  
DDR Input High Voltage  
SMVREF – V  
0.15  
VIH(DC) (DDR)  
VIL(AC) (DDR)  
VIH(AC) (DDR)  
SMVREF  
+ 0.15  
V
SMVREF – V  
0.31  
SMVREF  
+ 0.31  
V
VOL (DDR)  
VOH (DDR)  
ILeak (DDR)  
CI/O (DDR)  
(i, j)  
(i, j)  
(i)  
DDR Output Low Voltage  
DDR Output High Voltage  
Input Leakage Current  
0.4  
V
2
2
2.1  
3.0  
V
10  
µA  
pF  
(i, j)  
DDR Input/Output Pin  
Capacitance  
6.0  
DDR2 Interface  
VIL(DC) (DDR2)  
VIH(DC) (DDR2)  
VIL(AC) (DDR2)  
VIH(AC) (DDR2)  
(l)  
(l)  
(l)  
(l)  
DDR2 Input Low Voltage  
DDR2 Input High Voltage  
DDR2 Input Low Voltage  
DDR2 Input High Voltage  
SMVREF – V  
0.125  
SMVREF  
+ 0.125  
V
SMVREF – V  
0.250  
SMVREF  
+ 0.250  
V
VOL (DDR2)  
VOH (DDR2)  
ILeak (DDR2)  
(l, m) DDR2 Output Low Voltage  
(l, m) DDR2 Output High Voltage  
0.3  
10  
V
2
2
1.5  
V
(l)  
Input Leakage Current  
uA  
304  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Electrical Characteristics  
R
Symbol  
Signal  
Group  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
CI/O (DDR2)  
(l, m)  
DDR2 Input/Output Pin  
Capacitance  
3.0  
6.0  
pF  
1.5 V PCI Express Interface 1.0a (includes PCI Express GFX and SDVO)  
VTX-DIFF P-P  
(f, g)  
Differential Peak to Peak  
Output Voltage  
0.400  
0.6  
20  
V
3, 4  
VTX_CM-ACp  
(f, g)  
AC Peak Common Mode  
Output Voltage  
mV  
3
ZTX-DIFF-DC  
VRX-DIFF p-p  
(f, g)  
(f, g)  
DC Differential TX Impedance 80  
100  
120  
1.2  
Differential Input Peak to Peak 0.175  
Voltage  
V
3, 4  
VRX_CM-ACp  
(f, g)  
AC peak Common Mode Input  
Voltage  
150  
0.8  
mV  
Clocks, Reset, and Miscellaneous Signals  
VIL  
(p)  
(p)  
(p)  
(p)  
(q)  
(q)  
(q)  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
Input Capacitance  
Input Low Voltage  
Input High Voltage  
Crossing Voltage  
V
VIH  
2.0  
V
ILEAK  
CIN  
10  
μA  
pF  
V
3.0  
6.0  
VIL  
0
VIH  
0.660  
0.710  
0.850  
V
VCROSS  
0.45x(VIH - 0.5x(VIH  
VIL)  
-
0.55x(VIH - V  
VIL)  
VIL)  
CIN  
(q)  
Input Capacitance  
0.5  
1.5  
0.4  
pF  
VOL  
(r, s)  
Output Low Voltage (CMOS  
Outputs)  
V
VOH  
(r, s)  
(r, s)  
(r, s)  
(s)  
Output High Voltage (CMOS  
Outputs)  
2.1  
-1  
V
IOL  
Output Low Current (CMOS  
Outputs)  
1
mA  
mA  
@VOL_HI  
max  
IOH  
VIL  
VIH  
Output High Current (CMOS  
Outputs)  
@VOH_HI  
min  
Input Low Voltage (DC)  
(Vcchv/2) - V  
0.2  
(s)  
Input High Voltage (DC)  
(vcchv/2)  
+ 0.2  
V
ILEAK  
CIN  
(s)  
(s)  
(u)  
(u)  
(u)  
Crossing Voltage  
Input Capacitance  
Input Low Voltage  
Input High Voltage  
Input Leakage Current  
10  
uA  
3.0  
6.0  
pF  
V
VIL  
0.8  
VIH  
2.0  
V
ILEAK  
100  
μA  
0<Vin<V  
CC3_3  
CIN  
(u)  
Input Capacitance  
4.690  
5.370  
pF  
LVDS Interface: Functional Operating Range (VCC=2.5 V 5%)  
VOD (o) Differential Output Voltage 250  
350  
450  
mV  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
305  
Electrical Characteristics  
R
Symbol  
Signal  
Group  
Parameter  
Min  
Nom  
Max  
Unit  
Notes  
Change in VOD between  
Complementary Output States  
ΔVOD  
VOS  
(o)  
(o)  
(o)  
50  
mV  
Offset Voltage  
1.125  
1.25  
1.375  
50  
V
Change in VOS between  
Complementary Output States  
ΔVOS  
mV  
IOs  
IOZ  
(o)  
(o)  
Output Short Circuit Current  
Output TRI-STATE Current  
-3.5  
1
-10  
10  
mA  
μA  
NOTES:  
1. Following are the noise rejection specifications for PLL supplies.  
VCCA_HPLL  
34 dB(A) attenuation of power supply noise in 1 MHz(f1) to 66 MHz(f2) range, <0.2 dB gain in  
pass band and peak to peak noise should be limited to < 120 mV  
VCCA_MPLL  
34 dB(A) attenuation of power supply noise in 1 MHz(f1) to 66MHz(f2) range, <0.2 dB gain in  
pass band and peak to peak noise should be limited to < 120 mV  
VCCD_HMPLL  
VCCA_3GPLL  
peak to peak noise should be limited to < 120 mV  
< 0 dB(A) in 0 to 1MHz, 20 dB(A) attenuation of power supply noise in 1 MHz(f1) to 1.25 GHz(f2)  
range, <0.2 dB gain in pass band and peak to peak noise should be limited to < 40 mV  
VCCA_DPLLA  
VCCA_DPLLB  
VccASM(DDR2)  
Vcc3G  
20 dB(A) attenuation of power supply noise in 10 kHz(f1) to 2.5 MHz(f2) range, <0.2 dB gain in  
pass band and peak to peak noise should be limited to < 100 mV  
20 dB(A) attenuation of power supply noise in 10 kHz(f1) to 2.5 MHz(f2) range, <0.2 dB gain in  
pass band and peak to peak noise should be limited to < 100 mV  
30 dB(A) attenuation of power supply noise in 50 MHz (f1) to 266 MHz (f2), < 0.2 dB gain in  
pass band and peak to peak noise should be limited to < 120 mv  
< 0 dB(A) in 0 to 1.5 MHz, 20 dB(A) attenuation of power supply noise in 1.5 MHz(f1) to 1.25  
GHz(f2) range, <0.2 dB gain in pass band and peak to peak noise should be limited to < 40 mV  
2. Determined with 2x GMCH DDR/DDR2 buffer strength settings into a 50 Ω to 0.5xVCCSM (DDR/DDR2)  
test load.  
3. Specified at the measurement point into a timing and voltage compliance test load as shown in  
Transmitter compliance eye diagram of PCI Express specification and measured over any 250  
consecutive TX Ul's. Specified at the measurement point and measured over any 250 consecutive ULS.  
The test load shown in receiver compliance eye diagram of PCI Express specification. Should be used as  
the RX device when taking measurements.  
4. Low voltage PCI Express (PCI Express Graphics/SDVO) interface.  
306  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Electrical Characteristics  
R
11.4.2  
CRT DAC DC Characteristics  
Table 11-7. CRT DAC DC Characteristics: Functional Operating Range (VCCADAC = 2.5 V 5%)  
Parameter  
Min  
Typical  
Max  
Units  
Notes  
DAC Resolution  
8
Bits  
(1)  
Max Luminance (full-scale)  
Min Luminance  
0.665  
0.700  
0.000  
73.2  
0.770  
V
V
(1, 2, 4) white video level voltage  
(1, 3, 4) black video level voltage  
LSB Current  
μA  
(4, 5)  
(1, 6)  
(1, 6)  
Integral Linearity (INL)  
Differential Linearity (DNL)  
-1.0  
-1.0  
+1.0  
+1.0  
LSB  
LSB  
Video channel-channel  
voltage amplitude mismatch  
6
%
(7)  
Monotonicity  
Guaranteed  
NOTES:  
1. Measured at each R, G, B termination according to the VESA Test Procedure – Evaluation of Analog  
Display Graphics Subsystems Proposal (Version 1, Draft 4, December 1, 2000).  
2. Max steady-state amplitude  
3. Min steady-state amplitude  
4. Defined for a double 75-Ω termination.  
5. Set by external reference resistor value.  
6. INL and DNL measured and calculated according to VESA video signal standards.  
7. Max full-scale voltage difference among R,G,B outputs (percentage of steady-state full-scale voltage).  
11.4.3  
TV DAC DC Characteristics (not supported on the Intel  
915GME/Intel 910GMLE chipsets)  
Table 11-8.  
TV DAC DC Characteristics: Functional Operating Range (VCCATVDAC[A,B,C] = 3.3  
V 5%)  
Parameter  
Min  
Typical  
Max  
Units  
Notes  
DAC Resolution  
10  
Bits  
Measured at low-frequency  
ENOB (Effective Number of  
Bits)  
7.5  
Bits  
@ NTSC/PAL Video BW  
Integral Linearity (INL)  
-0.5  
-0.5  
+0.5  
+0.5  
LSB  
LSB  
Note: 1  
Note: 1  
Differential Linearity (DNL)  
SNR  
48  
-3  
dB  
%
RMS @ NTSC/PAL Video BW  
Note: 2  
Video channel-channel  
voltage amplitude mismatch  
+3  
Monotonicity  
Guaranteed  
NOTES:  
1. INL and DNL measured and calculated based on the method given in VESA video signal standards.  
2. Max full-scale voltage difference among the outputs (percentage of steady-state full-scale voltage).  
§
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
307  
Electrical Characteristics  
R
308  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
GMCH Strap Pins  
R
12 GMCH Strap Pins  
12.1  
Mobile Intel 915 and 910 Express Chipset Family  
Strapping Configuration  
Only HW straps CFG{2:0} and CFG [6:5] are used for Mobile Intel 915GMS Express Chipset.  
Table 12-1. Mobile Intel 915 Express Chipset Family Strapping Signals and Configuration  
Pin Name  
Strap  
Description  
Configuration  
Notes  
CFG[2:0]  
FSB Frequency  
Select  
000 = Reserved  
001 = FSB533  
010 = Reserved  
011 = Reserved  
100 = Reserved  
101 = FSB400  
110 = Reserved  
111 = Reserved  
CFG[4:3]  
CFG5  
Reserved  
DMI x2 Select  
0 = DMI X2  
1 = DMI X4 (Default)  
0 = DDR2  
CFG6  
CFG7  
DDR vs DDR2  
select  
1 = DDR (Default)  
0 = Reserved  
CPU Strap  
1 = Intel Pentium M Processor with 2  
MBL2 Cache (Default)  
CFG8  
CFG9  
Reserved  
PCI Express  
Graphics Lane  
Reversal  
0 = Reserve Lanes (15->0, 14->1 etc)  
1 = Normal Operation (Default)  
CFG[11:10]  
CFG[13:12]  
Reserved  
XOR/ALL Z test  
straps  
00 = Reserved  
01 = XOR Mode Enabled  
10 = All Z Mode Enabled  
11 = Normal Operation (Default)  
CFG[15:14]  
CFG16  
Reserved  
FSB Dynamic  
ODT  
0 = Dynamic ODT Disabled  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
309  
GMCH Strap Pins  
R
Pin Name  
Strap  
Description  
Configuration  
Notes  
1 = Dynamic ODT Enabled (Default)  
CFG17  
Reserved  
CFG18  
CFG19  
CFG20  
GMCH core  
VCC Select  
0 = 1.05 V (Default)  
1 = 1.5 V  
CPU VTT Select  
0 = 1.05 V (Default)  
1 = 1.2 V (Reserved)  
Reserved  
SDVOCRTL_  
DATA  
SDVO Present  
0 = No SDVO device present  
(Default)  
1 = SDVO device present  
NOTES: All strap signals are sampled with respect to the leading edge of the Mobile Intel 915/910 Express Chipset  
Family PWROK In signal.  
§
310  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
13 Ballout and Package Information  
Figure 13-1. Intel 915GM, 915GME, 915PM, 910GML, 910GMLE Express Chipset GMCH Ballout  
Diagram (Top Left)  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
311  
Ballout and Package Information  
R
Figure 13-2. Intel 915GM, 915GME, 915PM, 910GML, 910GMLE Express Chipset GMCH Ballout  
Diagram (Top Right)  
312  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
13.1  
Intel 915GM, 915GME, 915PM, 910GML and 910GMLE  
Express Chipset GMCH Ballout List  
Some signals may be RESERVED depending on which chipset configuration used. Please refer to the  
signal description chapter for more details for which signals are supported for each chipset.  
Table 13-1. PLL Signal Group  
Ball  
Signal  
AB29  
AC29  
AB1  
AB2  
A24  
GCLKN  
GCLKP  
HCLKN  
HCLKP  
DREF_CLKN  
DREF_CLKP  
A23  
C37  
D37  
DREF_SSCLKN  
DREF_SSCLKP  
Table 13-2.Host Address Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
G9  
C9  
HA3#  
HA4#  
F10  
G11  
B9  
HA15#  
HA16#  
C12  
B13  
A12  
F12  
G12  
E12  
C13  
B11  
D13  
A13  
F13  
E13  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADSTB1#  
E9  
HA5#  
HADSTB0#  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HA17#  
B7  
HA6#  
A7  
A10  
F9  
HA7#  
D7  
HA8#  
B8  
D8  
HA9#  
C7  
B10  
E10  
G10  
D9  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
A8  
G13  
C10  
C11  
D11  
HA18#  
HA19#  
E11  
HA20#  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
313  
Ballout and Package Information  
R
Table 13-3. Host Control Signal Group  
Ball  
Signal  
HADS#  
Ball  
Signal  
HDBSY#  
Ball  
Signal  
F8  
A5  
D5  
B5  
F6  
F7  
C6  
E6  
C5  
B4  
D4  
D6  
G6  
G8  
HRS1#  
HBNR#  
HDEFER#  
HLOCK#  
HBREQ0#  
RSVD33  
HRS0#  
HRS2#  
HBPRI#  
HTRDY#  
RSVD32  
HDRDY#  
B3  
HHIT#  
E7  
HHITM#  
HDPWR#  
HSLPCPU#  
A11  
A4  
Table 13-4. Host Data Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
E4  
E1  
F4  
H7  
E2  
F1  
E3  
D3  
K7  
F2  
J7  
HD0#  
HD1#  
J1  
L5  
K4  
J5  
HD23#  
HD24#  
HD25#  
HD26#  
HD27#  
HD28#  
HD29#  
HD30#  
HD31#  
HDINV1#  
HDSTBN1#  
HDSTBP1#  
HD32#  
HD33#  
HD34#  
HD35#  
HD36#  
HD37#  
HD38#  
HD39#  
HD40#  
HD41#  
HD42#  
HD43#  
HD44#  
HD45#  
V8  
U6  
T7  
HD46#  
HD47#  
HD2#  
HDINV2#  
HDSTBN2#  
HDSTBP2#  
HD48#  
HD3#  
R3  
R2  
W6  
U3  
V5  
W8  
W7  
U2  
U1  
Y5  
Y2  
V4  
Y7  
W1  
W3  
Y3  
Y6  
W2  
U5  
V3  
W4  
HD4#  
P7  
L7  
J3  
HD5#  
HD6#  
HD49#  
HD7#  
P5  
L3  
K3  
K1  
K2  
U7  
V6  
R6  
R5  
P3  
T8  
R7  
R8  
U8  
R4  
T4  
T5  
R1  
T3  
HD50#  
HD8#  
HD51#  
HD9#  
HD52#  
HD10#  
HD11#  
HD12#  
HD13#  
HD14#  
HD15#  
HDINV0#  
HDSTBN0#  
HDSTBP0#  
HD16#  
HD17#  
HD18#  
HD19#  
HD20#  
HD21#  
HD22#  
HD53#  
J8  
HD54#  
H6  
F3  
K8  
H5  
H8  
G4  
G5  
H1  
H2  
K5  
K6  
J4  
HD55#  
HD56#  
HD57#  
HD58#  
HD59#  
HD60#  
HD61#  
HD62#  
HD63#  
HDINV3#  
HDSTBN3#  
HDSTBP3#  
G3  
H3  
314  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Table 13-5. DDR / DDR2 SDRAM Common Signal Group Ball List  
Ball  
AM33  
Signal  
Ball  
AF6  
Signal  
Ball  
AN16  
Signal  
SM_CK0  
SM_CK0#  
SM_CK1  
SM_CK1#  
RSVD28  
RSVD29  
SM_CK3  
SM_CK3#  
SM_CK4  
SM_CK4#  
RSVD30  
SM_CS0#  
SM_CS1#  
SM_CS2#  
SM_CS3#  
SM_ODT0  
SM_ODT1  
SM_ODT2  
SM_ODT3  
AN33  
AL1  
AF5  
AM14  
AH15  
AG16  
AP14  
AL15  
AM11  
AN10  
AC10  
AD10  
AP21  
AM21  
AH21  
AK21  
AK1  
RSVD31  
AE11  
AE10  
AJ34  
AJ33  
SM_CKE0  
SM_CKE1  
SM_CKE2  
SM_CKE3  
Table 13-6. DDR / DDR2 SDRAM Channel a Command Signal Group Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AK15  
AK16  
AL21  
AN15  
AP16  
AP15  
AL17  
AP17  
SA_BS0  
SA_BS1  
SA_BS2  
SA_CAS#  
SA_RAS#  
SA_WE#  
SA_MA0  
SA_MA1  
AP18  
AM17  
AN18  
AM18  
AL19  
AP20  
AM19  
AL20  
SA_MA2  
SA_MA3  
SA_MA4  
SA_MA5  
SA_MA6  
SA_MA7  
SA_MA8  
SA_MA9  
AM16  
AN20  
AM20  
AM15  
AF29  
AF28  
SA_MA10  
SA_MA11  
SA_MA12  
SA_MA13  
SA_RCVENIN#  
SA_RCVENOUT#  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
315  
Ballout and Package Information  
R
Table 13-7. DDR / DDR2 SDRAM Channel A Data Signal Group Ball List  
Ball  
Signal  
SA_DQ0  
Ball  
Signal  
SA_DQ29  
Ball  
AH1  
Signal  
AG35  
AH35  
AL35  
AL37  
AH36  
AJ35  
AK37  
AL34  
AJ37  
AK36  
AK35  
AM36  
AN35  
AP32  
AM31  
AM34  
AM35  
AL32  
AM32  
AP35  
AP33  
AP34  
AN31  
AP31  
AN28  
AP28  
AL30  
AM30  
AM28  
AL28  
AL29  
AN29  
AN30  
AP27  
AM27  
AM23  
AM22  
AL23  
AM24  
AN22  
AP22  
AP24  
AP23  
AN23  
AM9  
AL9  
SA_DQS6#  
SA_DQ56  
SA_DQ57  
SA_DQ58  
SA_DQ59  
SA_DQ60  
SA_DQ61  
SA_DQ62  
SA_DQ63  
SA_DM7  
SA_DQ1  
SA_DQ30  
SA_DQ31  
SA_DM3  
AF3  
AE3  
AD6  
AC4  
AF2  
AF1  
AD4  
AD5  
AD3  
AE5  
AE4  
SA_DQ2  
SA_DQ3  
SA_DQ4  
SA_DQS3  
SA_DQS3#  
SA_DQ32  
SA_DQ33  
SA_DQ34  
SA_DQ35  
SA_DQ36  
SA_DQ37  
SA_DQ38  
SA_DQ39  
SA_DM4  
SA_DQ5  
SA_DQ6  
SA_DQ7  
SA_DM0  
SA_DQS0  
SA_DQS0#  
SA_DQ8  
AL6  
AP7  
AP11  
AP10  
AL7  
SA_DQS7  
SA_DQS7#  
SA_DQ9  
SA_DQ10  
SA_DQ11  
SA_DQ12  
SA_DQ13  
SA_DQ14  
SA_DQ15  
SA_DM1  
SA_DQS1  
SA_DQS1#  
SA_DQ16  
SA_DQ17  
SA_DQ18  
SA_DQ19  
SA_DQ20  
SA_DQ21  
SA_DQ22  
SA_DQ23  
SA_DM2  
SA_DQS2  
SA_DQS2#  
SA_DQ24  
SA_DQ25  
SA_DQ26  
SA_DQ27  
SA_DQ28  
AM7  
AP9  
AM8  
AN8  
AN5  
AN6  
AN3  
AP3  
AP6  
AM6  
AL4  
SA_DQS4  
SA_DQS4#  
SA_DQ40  
SA_DQ41  
SA_DQ42  
SA_DQ43  
SA_DQ44  
SA_DQ45  
SA_DQ46  
SA_DQ47  
SA_DM5  
AM3  
AP4  
AM4  
AM5  
AK2  
AK3  
AG2  
AG1  
AL3  
SA_DQS5  
SA_DQS5#  
SA_DQ48  
SA_DQ49  
SA_DQ50  
SA_DQ51  
SA_DQ52  
SA_DQ53  
SA_DQ54  
SA_DQ55  
SA_DM6  
AM2  
AH3  
AG3  
AJ2  
AJ1  
SA_DQS6  
316  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Table 13-8.DDR / DDR2 SDRAM Channel B Signal Group Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AJ15  
AG17  
AG21  
AK14  
AH14  
AH16  
AH17  
AK17  
SB_BS0  
SB_BS1  
SB_BS2  
SB_RAS#  
SB_CAS#  
SB_WE#  
SB_MA0  
SB_MA1  
AH18  
AJ18  
AK18  
AJ19  
AK19  
AH19  
AJ20  
AH20  
SB_MA2  
SB_MA3  
SB_MA4  
SB_MA5  
SB_MA6  
SB_MA7  
SB_MA8  
SB_MA9  
AJ16  
AG18  
AG20  
AG15  
AF15  
AF14  
SB_MA10  
SB_MA11  
SB_MA12  
SB_MA13  
SB_RCVENIN#  
SB_RCVENOUT#  
Table 13-9. DDR / DDR2 SDRAM Channel B Signal Group Ball List  
Ball  
Signal  
SB_DQ0  
Ball  
Signal  
Ball  
AJ5  
Signal  
AE31  
AE32  
AG32  
AG36  
AE34  
AE33  
AF31  
AF30  
AF32  
AF34  
AF35  
AJ28  
AK28  
SB_DQS2  
SB_DQ46  
SB_DQ47  
SB_DM5  
SB_DQ1  
SB_DQ2  
SB_DQ3  
SB_DQ4  
SB_DQ5  
SB_DQ6  
SB_DQ7  
SB_DM0  
SB_DQS0  
SB_DQS0#  
SB_DQS2#  
AK4  
AK5  
AH6  
AH7  
AG5  
AG4  
AD8  
AD9  
AH4  
AG6  
AE8  
AD7  
AE7  
AF8  
AF7  
AF24  
AG23  
AJ22  
AK22  
AH24  
AH23  
AG22  
AJ21  
AK24  
AK23  
AJ23  
AG10  
AG9  
SB_DQ24  
SB_DQ25  
SB_DQ26  
SB_DQ27  
SB_DQ28  
SB_DQ29  
SB_DQ30  
SB_DQ31  
SB_DM3  
SB_DQS5  
SB_DQS5#  
SB_DQ48  
SB_DQ49  
SB_DQ50  
SB_DQ51  
SB_DQ52  
SB_DQ53  
SB_DQ54  
SB_DQ55  
SB_DM6  
AH33  
AH32  
AK31  
AG30  
AG34  
AG33  
AH31  
AJ31  
AK34  
AK32  
AK33  
AK30  
AJ30  
AH29  
AH28  
AK29  
AH30  
AH27  
AG28  
AK27  
SB_DQ8  
SB_DQS3  
SB_DQS3#  
SB_DQ32  
SB_DQ33  
SB_DQ34  
SB_DQ35  
SB_DQ36  
SB_DQ37  
SB_DQ38  
SB_DQ39  
SB_DM4  
SB_DQ9  
SB_DQ10  
SB_DQ11  
SB_DQ12  
SB_DQ13  
SB_DQ14  
SB_DQ15  
SB_DM1  
SB_DQS6  
SB_DQS6#  
AG8  
AH8  
AC5  
AB8  
AB6  
AA8  
AC8  
AC7  
AA4  
AA5  
AB7  
AB4  
AB5  
SB_DQ56  
SB_DQ57  
SB_DQ58  
SB_DQ59  
SB_DQ60  
SB_DQ61  
SB_DQ62  
SB_DQ63  
SB_DM7  
AH11  
AH10  
AJ9  
SB_DQS1  
SB_DQS1#  
SB_DQ16  
SB_DQ17  
SB_DQ18  
SB_DQ19  
SB_DQ20  
SB_DQ21  
SB_DQ22  
SB_DQ23  
SB_DM2  
AK9  
AJ10  
AM10  
AL10  
SB_DQS4  
SB_DQS4#  
AJ7  
AK6  
AJ4  
AH5  
AK8  
AJ8  
SB_DQ40  
SB_DQ41  
SB_DQ42  
SB_DQ43  
SB_DQ44  
SB_DQ45  
SB_DQS7  
SB_DQS7#  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
317  
Ballout and Package Information  
R
Table 13-10. Analog CRT Signal Group  
Ball  
Signal  
Ball  
Signal  
A19  
B19  
C20  
B20  
RED  
RED#  
E21  
D21  
G21  
H21  
BLUE  
BLUE#  
HSYNC  
VSYNC  
GREEN  
GREEN#  
Table 13-11. Analog TV Signal Group  
Note: These signals are not supported on the Intel 915GME / Intel 910GMLE chipsets and require termination  
according to the platform design guide.  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
A15  
B15  
C16  
TVDAC_A  
TV_IRTNA  
TVDAC_B  
B16  
A17  
B17  
TV_IRTNB  
TVDAC_C  
TV_IRTNC  
Table 13-12. LVDS Display Interface Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
B34  
B33  
B32  
B30  
LA_DATAN0  
LA_DATAN1  
LA_DATAN2  
LA_CLKN  
A34  
A33  
B31  
B29  
LA_DATAP0  
LA_DATAP1  
LA_DATAP2  
LA_CLKP  
C29  
D28  
C27  
C25  
LB_DATAN0  
LB_DATAN1  
LB_DATAN2  
LB_CLKN  
C28  
D27  
C26  
C24  
LB_DATAP0  
LB_DATAP1  
LB_DATAP2  
LB_CLKP  
Table 13-13. LVDS Power Sequencing and Backlight Control Signal Group  
Ball  
Signal  
E25  
F25  
F26  
LBKLT_CRTL  
LBKLT_EN  
LVDD_EN  
Table 13-14. DDC / GMBUS Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
E24  
E23  
C23  
DDCCLK  
DDCDATA  
LCTLA_CLK  
C22  
F23  
F22  
LCTLB_DATA  
LDDC_CLK  
H25  
H24  
SDVOCTRL_CLK  
SDVOCTRL_DAT  
A
LDDC_DATA  
Table 13-15. DMI Serial Interface Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AA31  
AB35  
AC31  
AD35  
Y31  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
AB31  
AC35  
AA33  
AB37  
AC33  
AD37  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
DMI_TXN2  
DMI_TXN3  
Y33  
DMI_TXP0  
DMI_TXP1  
DMI_TXP2  
DMI_TXP3  
AA37  
AB33  
AC37  
AA35  
318  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Table 13-16. PCI Express Based Graphics / Serial Digital Video Out Receive Signal Group  
Ball  
PCI Express /  
Signal  
SDVO Signal  
Ball  
PCI Express /  
Signal  
SDVO Signal  
E30  
F34  
G30  
H34  
J30  
EXP_RXN0  
EXP_RXN1  
EXP_RXN2  
EXP_RXN3  
EXP_RXN4  
EXP_RXN5  
EXP_RXN6  
EXP_RXN7  
EXP_RXN8  
EXP_RXN9  
EXP_RXN10  
EXP_RXN11  
EXP_RXN12  
EXP_RXN13  
EXP_RXN14  
EXP_RXN15  
SDVO_TVCLKIN#  
SDVOB_INT#  
D30  
E34  
F30  
G34  
H30  
J34  
EXP_RXP0  
EXP_RXP1  
EXP_RXP2  
EXP_RXP3  
EXP_RXP4  
EXP_RXP5  
EXP_RXP6  
EXP_RXP7  
EXP_RXP8  
EXP_RXP9  
EXP_RXP10  
EXP_RXP11  
EXP_RXP12  
EXP_RXP13  
EXP_RXP14  
EXP_RXP15  
SDVO_TVCLKIN  
SDVOB_INT  
SDVO_FLDSTALL#  
SDVO_FLDSTALL  
K34  
L30  
M34  
N30  
P34  
R30  
T34  
U30  
V34  
W30  
Y34  
SDVOB_INT#  
SDVOB_INT  
K30  
L34  
M30  
N34  
P30  
R34  
T30  
U34  
V30  
W34  
Table 13-17. PCI Express Based Graphics / Serial Digital Video Out Transmit Signal Group  
Ball  
PCI_E  
Signal  
SDVO Signal  
Ball  
PCI_E  
Signal  
SDVO  
Signal  
E32  
F36  
G32  
H36  
J32  
EXP_TXN0  
EXP_TXN1  
EXP_TXN2  
EXP_TXN3  
EXP_TXN4  
EXP_TXN5  
EXP_TXN6  
EXP_TXN7  
EXP_TXN8  
EXP_TXN9  
EXP_TXN10  
EXP_TXN11  
EXP_TXN12  
EXP_TXN13  
EXP_TXN14  
EXP_TXN15  
D32  
E36  
F32  
G36  
H32  
J36  
EXP_TXP0  
EXP_TXP1  
EXP_TXP2  
EXP_TXP3  
EXP_TXP4  
EXP_TXP5  
EXP_TXP6  
EXP_TXP7  
EXP_TXP8  
EXP_TXP9  
EXP_TXP10  
EXP_TXP11  
EXP_TXP12  
EXP_TXP13  
EXP_TXP14  
EXP_TXP15  
K36  
L32  
M36  
N32  
P36  
R32  
T36  
U32  
V36  
W32  
Y36  
K32  
L36  
M32  
N36  
P32  
R36  
T32  
U36  
V32  
W36  
Table 13-18. Thermal and Power Sequencing Signal Group  
Ball  
Signal  
Ball  
Signal  
AE29  
H10  
RSTIN#  
HCPURST#  
PWROK  
F5  
THRMTRIP#  
EXT_TS0#  
EXT_TS1#  
J21  
H22  
AD30  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Signal  
J23  
BM_BUSY#  
Table 13-19. No Connect Signal Group  
Ball  
Signal  
Ball  
Ball  
Signal  
AP37  
AN37  
AP36  
AP2  
NC1  
NC2  
NC3  
NC4  
NC5  
B37  
AN1  
B1  
NC9  
NC6  
NC7  
NC8  
NC10  
A37  
NC11  
A2  
AP1  
A36  
Table 13-20. Configuration & Reserved Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
G16  
H13  
G14  
F16  
F15  
G15  
E16  
D17  
J16  
CFG0  
CFG1  
CFG2  
CFG3  
CFG4  
CFG5  
CFG6  
CFG7  
CFG8  
CFG9  
E15  
D14  
E14  
H12  
C14  
H15  
J15  
CFG10  
CFG11  
CFG12  
CFG13  
CFG14  
CFG15  
CFG16  
CFG17  
CFG18  
CFG19  
D23  
G25  
G24  
J17  
CFG20  
RSVD21  
RSVD22  
RSVD23  
RSVD24  
RSVD25  
RSVD26  
RSVD27  
A31  
A30  
D26  
D25  
H14  
G22  
G23  
D15  
Table 13-21. Voltage Reference and Compensation Signal Groups  
Ball  
Signal Name  
Ball  
Signal Name  
Ball  
Signal Name  
LVDS  
C2  
D1  
T1  
HXSCOMP  
HXSWING  
HYRCOMP  
HYSCOMP  
HYSWING  
HVREF  
System Memory  
AF22  
AF16  
AK10  
AK11  
AE27  
AE28  
AF9  
SMOCDCOMP0  
SMOCDCOMP1  
SMRCOMPN  
SMRCOMPP  
SMXSLEWIN  
SMXSLEWOUT  
SMYSLEWIN  
SMYSLEWOUT  
SMVREF0  
F28  
F27  
C33  
C31  
LVREFH  
LVREFL  
LIBG  
L1  
P1  
J11  
LVBG  
PCI Express/SDVO  
D36  
EXP_COMPI  
AF10  
AF37  
AD1  
D34  
J20  
J18  
EXP_ICOMPO  
CRT DAC  
REFSET  
TV  
SMVREF1  
Host Interface  
HXRCOMP  
C1  
TV_REFSET  
320  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Table 13-22. Power Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
PLL Signal Group  
VCCA_HPLL  
F37  
G37  
VCCA_3GBG  
A35  
B36  
VCCA_LVDS  
AA1  
AA2  
VSSA_3GBG  
VSSALVDS  
VCCA_MPLL  
High Voltage  
TV Out Signal Group  
(These signals are not  
supported on the Intel  
915GME / Intel 910GMLE  
chipsets and require  
AC2  
AC1  
Y29  
Y28  
Y27  
B23  
C35  
VCCD_HMPLL1  
VCCD_HMPLL2  
VCCA_3GPLL  
VCCA_3GPLL  
VCCA_3GPLL  
VCCA_DPLLA  
VCCA_DPLLB  
B22  
B21  
A21  
VCCHV  
VCCHV  
VCCHV  
CRT DAC  
termination according to the  
platform design guide.)  
H20  
F19  
E19  
G19  
VCC_SYNC  
D19  
H17  
F17  
E17  
D18  
C18  
F18  
E18  
H18  
G18  
VCCD_TVDAC  
VCCDQ_TVDAC  
VCCA_TVDACA  
VCCA_TVDACA  
VCCA_TVDACB  
VCCA_TVDACB  
VCCA_TVDACC  
VCCA_TVDACC  
VCCA_TVBG  
VCCA_CRTDAC  
VCCA_CRTDAC  
VSSA_CRTDAC  
PCI Express Graphics  
AE37  
VCC3G  
VCC3G  
VCC3G  
VCC3G  
VCC3G  
VCC3G  
VCC3G  
LVDS Signal Group  
W37  
U37  
R37  
N37  
L37  
J37  
B26  
VCCD_LVDS  
VCCD_LVDS  
VCCD_LVDS  
VCCTX_LVDS  
VCCTX_LVDS  
VCCTX_LVDS  
B25  
A25  
B28  
A28  
A27  
VSSA_TVBG  
Table 13-23. System Memory Analog Power Signal Group  
Ball  
Signal  
AF20  
AP19  
AF19  
AF18  
VCCASM  
VCCASM  
VCCASM  
VCCASM  
Table 13-24. System Memory Power Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AB9  
AD28  
AE1  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AK13  
AK25  
AK26  
AL12  
AL13  
AL25  
AL26  
AM1  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AB10  
AB11  
AC11  
AC27  
AD11  
AD27  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AE12  
AE26  
AF12  
AF13  
AF25  
AF26  
AG12  
AG13  
AG25  
AG26  
AH12  
AH13  
AH25  
AH26  
AH37  
AJ12  
AJ13  
AJ25  
AJ26  
AK12  
AM12  
AM13  
AM25  
AM26  
AM37  
AN12  
AN13  
AN25  
AN26  
AP12  
AP13  
AP25  
AP26  
AP29  
AP8  
Table 13-25. VTT Power Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
A6  
B2  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
M8  
M9  
N1  
N2  
N3  
N4  
N5  
N6  
N7  
N8  
N9  
P9  
R9  
U9  
V1  
W9  
Y9  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
L11  
M11  
N10  
N11  
P10  
P11  
R10  
R11  
T10  
T11  
U10  
U11  
V10  
V11  
W10  
W11  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
G1  
J10  
J13  
J9  
K10  
K11  
K12  
L9  
M1  
M10  
M2  
M3  
M4  
M5  
M6  
M7  
K13  
322  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Table 13-26. GMCH Core Voltage Power Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
G28  
H26  
H27  
H28  
J25  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
T18  
T20  
T29  
U19  
U20  
V18  
V19  
W18  
W20  
P27  
P28  
R27  
R28  
T27  
T28  
U27  
U28  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
V27  
V28  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
L27  
M27  
N27  
N28  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
J27  
J28  
J29  
K26  
K27  
K28  
K29  
L28  
M28  
M29  
N29  
R29  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
323  
Table 13-27. GMCH Ground Signal Group  
Ball  
Signal  
Ball  
AD33  
AD34  
AD36  
AE2  
Signal  
VSS  
Ball  
AJ3  
Signal  
VSS  
A14  
VSS  
A16  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AJ32  
AJ36  
AJ6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A18  
A20  
A22  
AE30  
AE35  
AE36  
AE6  
AK20  
AK7  
A26  
A29  
AL11  
AL14  
AL16  
AL18  
AL2  
A3  
A32  
AE9  
A9  
AF11  
AF17  
AF21  
AF23  
AF27  
AF33  
AF36  
AF4  
AA29  
AA3  
AL22  
AL24  
AL27  
AL31  
AL33  
AL36  
AL5  
AA30  
AA32  
AA34  
AA36  
AA6  
AA7  
AG11  
AG14  
AG19  
AG24  
AG27  
AG29  
AG31  
AG37  
AG7  
AA9  
AL8  
AB3  
AM29  
AN11  
AN14  
AN17  
AN19  
AN2  
AB30  
AB32  
AB34  
AB36  
AC28  
AC3  
AC30  
AC32  
AC34  
AC36  
AC6  
AC9  
AD2  
AD29  
AD31  
AD32  
AN21  
AN24  
AN27  
AN32  
AN34  
AN36  
AN4  
AH2  
AH22  
AH34  
AH9  
AJ11  
AJ14  
AJ17  
AJ24  
AJ27  
AJ29  
AN7  
AN9  
AP30  
AP5  
324  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
B12  
Signal  
VSS  
Ball  
E33  
Signal  
VSS  
Ball  
J14  
Signal  
VSS  
B14  
B18  
B24  
B27  
B35  
B6  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
E35  
E37  
E5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J19  
J2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
J22  
J24  
J26  
J31  
J33  
J35  
J6  
E8  
F11  
F14  
F20  
F21  
F24  
F29  
F31  
F33  
F35  
G17  
G2  
C15  
C17  
C19  
C21  
C3  
K37  
K9  
C30  
C32  
C34  
C36  
C4  
L10  
L2  
L29  
L31  
L33  
L35  
L4  
G20  
G26  
G27  
G29  
G31  
G33  
G35  
G7  
C8  
D10  
D12  
D16  
D2  
L6  
L8  
M31  
M33  
M35  
M37  
N31  
N33  
N35  
P2  
D20  
D22  
D24  
D29  
D31  
D33  
D35  
E20  
E22  
E26  
E27  
E28  
E29  
E31  
H11  
H16  
H19  
H23  
H29  
H31  
H33  
H35  
H37  
H4  
P29  
P31  
P33  
P35  
P37  
P4  
H9  
J12  
P6  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
325  
Ballout and Package Information  
R
Ball  
P8  
Signal  
VSS  
Ball  
V20  
Signal  
VSS  
Ball  
Y8  
Signal  
VSS  
R31  
R33  
R35  
T19  
T2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
V31  
V33  
V35  
V37  
V7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AA10  
AA11  
AA27  
AA28  
AB27  
AB28  
K14  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
T31  
T33  
T35  
T37  
T6  
V9  
W19  
W29  
W31  
W33  
W35  
W5  
K15  
K16  
K31  
T9  
K33  
U18  
U29  
U31  
U33  
U35  
U4  
K35  
V29  
VSS  
VSS  
VSS  
VSS  
VSS  
Y1  
W27  
W28  
Y10  
Y11  
Y30  
Y32  
Y35  
Y37  
Y4  
V2  
326  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Table 13-28. VCC Core Non-Critical to Function Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
N24  
N25  
N26  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
R18  
R19  
R20  
R22  
R23  
R24  
R25  
R26  
T17  
T21  
T22  
T23  
T24  
T25  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
T26  
U17  
U21  
U22  
U23  
U24  
U25  
U26  
V17  
V21  
V22  
V23  
V24  
V25  
V26  
W17  
W21  
W22  
W23  
W24  
W25  
W26  
Y18  
Y19  
Y20  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
Table 13-29. VTT Core Non-Critical to Function Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
L12  
L13  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
P12  
P13  
R12  
R13  
T12  
T13  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
U12  
U13  
V12  
V13  
W12  
W13  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
M12  
M13  
N12  
N13  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
327  
Ballout and Package Information  
R
Table 13-30. VCCSM Non-Critical to Function Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
AB12  
AB13  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD12  
AD13  
AD14  
AD15  
AD16  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
Table 13-31. VSS Non-Critical to Function Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
AB23  
AB24  
AB25  
AB26  
L14  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
T16  
U14  
U15  
U16  
V14  
V15  
V16  
W14  
W15  
W16  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
L15  
L16  
M14  
M15  
M16  
N14  
N15  
N16  
P14  
P15  
P16  
R14  
R15  
R16  
R17  
R21  
T14  
T15  
328  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
13.2  
GMCH Signal Name Ordering Ball list  
Table 13-32 applies to the Mobile Intel 915GM/GME/PM and Intel 910GML/GMLE Express Chipset ball-out. Some  
signals may be RESERVED depending on chipset configuration used. Please refer to the signal description chapter for  
more details.  
Table 13-32. GMCH Signal Name Ordering Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
N34  
P30  
R34  
T30  
U34  
V30  
W34  
E32  
F36  
G32  
H36  
J32  
EXP_RXP9  
EXP_RXP10  
EXP_RXP11  
EXP_RXP12  
EXP_RXP13  
EXP_RXP14  
EXP_RXP15  
EXP_TXN0  
EXP_TXN1  
EXP_TXN2  
EXP_TXN3  
EXP_TXN4  
EXP_TXN5  
EXP_TXN6  
EXP_TXN7  
EXP_TXN8  
EXP_TXN9  
EXP_TXN10  
EXP_TXN11  
EXP_TXN12  
EXP_TXN13  
EXP_TXN14  
EXP_TXN15  
EXP_TXP0  
EXP_TXP1  
EXP_TXP2  
EXP_TXP3  
EXP_TXP4  
EXP_TXP5  
EXP_TXP6  
EXP_TXP7  
EXP_TXP8  
EXP_TXP9  
EXP_TXP10  
EXP_TXP11  
EXP_TXP12  
E21  
D21  
J23  
AC33  
AD37  
Y33  
AA37  
AB33  
AC37  
A24  
A23  
C37  
D37  
D36  
D34  
E30  
F34  
G30  
H34  
J30  
BLUE  
BLUE#  
DMI_TXN2  
DMI_TXN3  
BM_BUSY#  
CFG0  
DMI_TXP0  
G16  
H13  
G14  
F16  
DMI_TXP1  
DMI_TXP2  
CFG1  
DMI_TXP3  
CFG2  
DREF_CLKN  
DREF_CLKP  
DREF_SSCLKN  
DREF_SSCLKP  
EXP_COMPI  
EXP_ICOMPO  
EXP_RXN0  
EXP_RXN1  
EXP_RXN2  
EXP_RXN3  
EXP_RXN4  
EXP_RXN5  
EXP_RXN6  
EXP_RXN7  
EXP_RXN8  
EXP_RXN9  
EXP_RXN10  
EXP_RXN11  
EXP_RXN12  
EXP_RXN13  
EXP_RXN14  
EXP_RXN15  
EXP_RXP0  
EXP_RXP1  
EXP_RXP2  
EXP_RXP3  
EXP_RXP4  
EXP_RXP5  
EXP_RXP6  
EXP_RXP7  
EXP_RXP8  
CFG3  
F15  
CFG4  
G15  
E16  
CFG5  
CFG6  
D17  
J16  
CFG7  
CFG8  
K36  
L32  
M36  
N32  
P36  
R32  
T36  
U32  
V36  
W32  
Y36  
D32  
E36  
F32  
G36  
H32  
J36  
D15  
E15  
CFG9  
CFG10  
D14  
E14  
CFG11  
CFG12  
H12  
C14  
H15  
J15  
CFG13  
K34  
L30  
CFG14  
CFG15  
M34  
N30  
P34  
R30  
T34  
U30  
V34  
W30  
Y34  
D30  
E34  
F30  
G34  
H30  
J34  
CFG16  
H14  
G22  
G23  
D23  
E24  
CFG17  
CFG18  
CFG19  
CFG20  
DDCCLK  
DDCDATA  
DMI_RXN0  
DMI_RXN1  
DMI_RXN2  
DMI_RXN3  
DMI_RXP0  
DMI_RXP1  
DMI_RXP2  
DMI_RXP3  
DMI_TXN0  
DMI_TXN1  
E23  
AA31  
AB35  
AC31  
AD35  
Y31  
K32  
L36  
M32  
N36  
P32  
R36  
T32  
AA35  
AB31  
AC35  
AA33  
AB37  
K30  
L34  
M30  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
329  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AB2  
H10  
G8  
E4  
E1  
F4  
H7  
E2  
F1  
E3  
D3  
K7  
F2  
J7  
HCLKP  
HCPURST#  
HCPUSLP#  
HD0#  
T4  
T5  
U36  
V32  
W36  
J21  
H22  
AB29  
AC29  
C20  
B20  
G9  
EXP_TXP13  
EXP_TXP14  
EXP_TXP15  
EXT_TS0#  
EXT_TS1#  
GCLKN  
GCLKP  
GREEN  
GREEN#  
HA3#  
HD42#  
HD43#  
R1  
T3  
HD44#  
HD45#  
V8  
U6  
W6  
U3  
V5  
W8  
W7  
U2  
U1  
Y5  
Y2  
V4  
Y7  
W1  
W3  
Y3  
Y6  
W2  
C6  
E6  
H8  
K3  
T7  
HD1#  
HD46#  
HD2#  
HD47#  
HD3#  
HD48#  
HD4#  
HD49#  
HD5#  
HD50#  
HD6#  
HD51#  
HD7#  
HD52#  
C9  
HA4#  
HD8#  
HD53#  
E9  
HA5#  
HD9#  
HD54#  
B7  
HA6#  
HD10#  
HD11#  
HD12#  
HD13#  
HD14#  
HD15#  
HD16#  
HD17#  
HD18#  
HD19#  
HD20#  
HD21#  
HD22#  
HD23#  
HD24#  
HD25#  
HD26#  
HD27#  
HD28#  
HD29#  
HD30#  
HD31#  
HD32#  
HD33#  
HD34#  
HD35#  
HD36#  
HD37#  
HD38#  
HD39#  
HD40#  
HD41#  
HD55#  
A10  
F9  
HA7#  
J8  
HD56#  
HA8#  
H6  
F3  
K8  
H5  
H1  
H2  
K5  
K6  
J4  
HD57#  
D8  
HA9#  
HD58#  
B10  
E10  
G10  
D9  
HA10#  
HD59#  
HA11#  
HD60#  
HA12#  
HA13#  
HD61#  
E11  
F10  
G11  
G13  
C10  
C11  
D11  
C12  
B13  
A12  
F12  
G12  
E12  
C13  
B11  
D13  
A13  
F13  
F8  
HA14#  
HD62#  
HA15#  
HD63#  
HA16#  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDPWR#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
HDSTBP3#  
RSVD32  
HHIT#  
HA17#  
G3  
H3  
J1  
HA18#  
HA19#  
HA20#  
L5  
HA21#  
U5  
G6  
F7  
K4  
J5  
HA22#  
HA23#  
P7  
L7  
HA24#  
G4  
K1  
R3  
V3  
G5  
K2  
R2  
W4  
F6  
HA25#  
J3  
HA26#  
P5  
L3  
HA27#  
HA28#  
U7  
V6  
R6  
R5  
P3  
T8  
R7  
R8  
U8  
R4  
HA29#  
HA30#  
HA31#  
HADS#  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
HBREQ0#  
HCLKN  
B9  
D4  
D6  
B3  
A11  
A7  
E13  
A5  
HHITM#  
HLOCK#  
RSVD33  
HREQ0#  
D5  
E7  
AB1  
330  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
D7  
B8  
NC2  
NC3  
HREQ1#  
HREQ2#  
AN37  
AP36  
AP2  
AP1  
AN1  
B1  
SA_DQ10  
SA_DQ11  
SA_DQ12  
AP32  
AM31  
AM34  
NC4  
C7  
HREQ3#  
NC5  
A8  
HREQ4#  
AM35  
AL32  
AM32  
AN31  
AP31  
AN28  
AP28  
AL30  
SA_DQ13  
SA_DQ14  
SA_DQ15  
SA_DQ16  
SA_DQ17  
SA_DQ18  
SA_DQ19  
SA_DQ20  
SA_DQ21  
SA_DQ22  
SA_DQ23  
SA_DQ24  
SA_DQ25  
SA_DQ26  
SA_DQ27  
SA_DQ28  
SA_DQ29  
SA_DQ30  
SA_DQ31  
SA_DQ32  
SA_DQ33  
SA_DQ34  
SA_DQ35  
SA_DQ36  
SA_DQ37  
SA_DQ38  
SA_DQ39  
SA_DQ40  
SA_DQ41  
SA_DQ42  
SA_DQ43  
SA_DQ44  
SA_DQ45  
SA_DQ46  
SA_DQ47  
SA_DQ48  
SA_DQ49  
SA_DQ50  
SA_DQ51  
SA_DQ52  
NC6  
A4  
HRS0#  
NC7  
C5  
HRS1#  
A2  
NC8  
B4  
HRS2#  
B37  
NC9  
G21  
B5  
HSYNC  
A36  
NC10  
HTRDY#  
A37  
NC11  
J11  
C1  
HVREF  
AD30  
A19  
PWROK  
RED  
HXRCOMP  
HXSCOMP  
HXSWING  
HYRCOMP  
HYSCOMP  
HYSWING  
LACLKN  
C2  
AM30  
AM28  
AL28  
AP27  
AM27  
AM23  
AM22  
AL23  
AM24  
AN22  
AP22  
AM9  
B19  
RED#  
D1  
J20  
REFSET  
RSTIN#  
RSVD21  
RSVD22  
RSVD23  
RSVD24  
RSVD25  
RSVD26  
RSVD27  
SA_BS0  
SA_BS1  
SA_BS2  
SA_CAS#  
SA_DM0  
SA_DM1  
SA_DM2  
SA_DM3  
SA_DM4  
SA_DM5  
SA_DM6  
SA_DM7  
SA_DQ0  
SA_DQ1  
SA_DQ2  
SA_DQ3  
T1  
AE29  
G25  
G24  
J17  
L1  
P1  
B30  
B29  
B34  
B33  
B32  
A34  
A33  
B31  
C25  
C24  
C29  
D28  
C27  
C28  
D27  
C26  
E25  
F25  
C23  
C22  
F23  
F22  
C33  
C31  
F26  
F28  
F27  
AP37  
LACLKP  
A31  
LADATAN0  
LADATAN1  
LADATAN2  
LADATAP0  
LADATAP1  
LADATAP2  
LBCLKN  
A30  
D26  
D25  
AK15  
AK16  
AL21  
AN15  
AJ37  
AP35  
AL29  
AP24  
AP9  
AP4  
AJ2  
AL9  
AL6  
LBCLKP  
AP7  
AP11  
AP10  
AL7  
LBDATAN0  
LBDATAN1  
LBDATAN2  
LBDATAP0  
LBDATAP1  
LBDATAP2  
LBKLT_CRTL  
LBKLT_EN  
LCTLA_CLK  
LCTLB_DATA  
LDDC_CLK  
LDDC_DATA  
LIBG  
AM7  
AN5  
AN6  
AN3  
AP3  
AP6  
AM6  
AL4  
AM3  
AK2  
AK3  
AG2  
AG1  
AL3  
AD3  
AG35  
AH35  
AL35  
AL37  
AH36  
AJ35  
AK37  
AL34  
AM36  
AN35  
SA_DQ4  
SA_DQ5  
SA_DQ6  
SA_DQ7  
SA_DQ8  
SA_DQ9  
LVBG  
LVDD_EN  
LVREFH  
LVREFL  
NC1  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
331  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AM2  
AH3  
AG3  
AF3  
SA_DQ53  
SA_DQ54  
SA_DQ55  
SA_DQ56  
SA_DQ57  
SA_DQ58  
SA_DQ59  
SA_DQ60  
SA_DQ61  
SA_DQ62  
SA_DQ63  
SA_DQS0  
SA_DQS0#  
SA_DQS1  
SA_DQS1#  
SA_DQS2  
SA_DQS2#  
SA_DQS3  
SA_DQS3#  
SA_DQS4  
SA_DQS4#  
SA_DQS5  
SA_DQS5#  
SA_DQS6  
SA_DQS6#  
SA_DQS7  
SA_DQS7#  
SA_MA0  
SA_WE#  
SB_BS0  
AG22  
AJ21  
AG10  
AG9  
AG8  
AH8  
AH11  
AH10  
AJ9  
SB_DQ30  
SB_DQ31  
SB_DQ32  
SB_DQ33  
SB_DQ34  
SB_DQ35  
SB_DQ36  
SB_DQ37  
SB_DQ38  
SB_DQ39  
SB_DQ40  
SB_DQ41  
SB_DQ42  
SB_DQ43  
SB_DQ44  
SB_DQ45  
SB_DQ46  
SB_DQ47  
SB_DQ48  
SB_DQ49  
SB_DQ50  
SB_DQ51  
SB_DQ52  
SB_DQ53  
SB_DQ54  
SB_DQ55  
SB_DQ56  
SB_DQ57  
SB_DQ58  
SB_DQ59  
SB_DQ60  
SB_DQ61  
SB_DQ62  
SB_DQ63  
SB_DQS0  
SB_DQS0#  
SB_DQS1  
SB_DQS1#  
SB_DQS2  
SB_DQS2#  
SB_DQS3  
SB_DQS3#  
SB_DQS4  
AP15  
AJ15  
AG17  
AG21  
AH14  
AF32  
AK34  
AK27  
AK24  
AJ10  
AK5  
SB_BS1  
SB_BS2  
AE3  
AD6  
AC4  
AF2  
SB_CAS#  
SB_DM0  
SB_DM1  
SB_DM2  
SB_DM3  
SB_DM4  
SB_DM5  
SB_DM6  
SB_DM7  
SB_DQ0  
SB_DQ1  
SB_DQ2  
SB_DQ3  
SB_DQ4  
SB_DQ5  
SB_DQ6  
SB_DQ7  
SB_DQ8  
SB_DQ9  
SB_DQ10  
SB_DQ11  
SB_DQ12  
SB_DQ13  
SB_DQ14  
SB_DQ15  
SB_DQ16  
SB_DQ17  
SB_DQ18  
SB_DQ19  
SB_DQ20  
SB_DQ21  
SB_DQ22  
SB_DQ23  
SB_DQ24  
SB_DQ25  
SB_DQ26  
SB_DQ27  
SB_DQ28  
SB_DQ29  
AF1  
AD4  
AD5  
AK36  
AK35  
AK9  
AJ7  
AE7  
AK6  
AJ4  
AB7  
AP33  
AP34  
AN29  
AN30  
AP23  
AN23  
AM8  
AN8  
AE31  
AE32  
AG32  
AG36  
AE34  
AE33  
AF31  
AF30  
AH33  
AH32  
AK31  
AG30  
AG34  
AG33  
AH31  
AJ31  
AK30  
AJ30  
AH29  
AH28  
AK29  
AH30  
AH27  
AG28  
AF24  
AG23  
AJ22  
AK22  
AH24  
AH23  
AH5  
AK8  
AJ8  
AJ5  
AK4  
AG5  
AG4  
AD8  
AD9  
AH4  
AG6  
AE8  
AD7  
AC5  
AB8  
AB6  
AA8  
AC8  
AC7  
AA4  
AA5  
AF34  
AF35  
AK32  
AK33  
AJ28  
AK28  
AK23  
AJ23  
AM10  
AM4  
AM5  
AJ1  
AH1  
AE5  
AE4  
AL17  
SA_MA1  
AP17  
AP18  
AM17  
SA_MA2  
SA_MA3  
SA_MA4  
AN18  
AM18  
AL19  
AP20  
AM19  
AL20  
AM16  
AN20  
AM20  
AM15  
SA_MA5  
SA_MA6  
SA_MA7  
SA_MA8  
SA_MA9  
SA_MA10  
SA_MA11  
SA_MA12  
SA_MA13  
SA_RAS#  
SA_RCVENIN#  
SA_RCVENOUT#  
AP16  
AF29  
AF28  
332  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AM14  
AH15  
AG16  
AP14  
AL15  
AM11  
AN10  
AF22  
AF16  
SM_CS1#  
SM_CS2#  
K28  
K29  
L27  
L28  
M27  
M28  
M29  
N27  
N28  
N29  
P27  
P28  
R27  
R28  
R29  
T18  
T20  
T27  
T28  
T29  
U19  
U20  
U27  
U28  
V18  
V19  
V27  
V28  
W18  
W20  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
M17  
M18  
M19  
M20  
VCC  
VCC  
AL10  
AH6  
SB_DQS4#  
SB_DQS5  
SB_DQS5#  
SB_DQS6  
SB_DQS6#  
SB_DQS7  
SB_DQS7#  
SB_MA0  
SM_CS3#  
VCC  
AH7  
SM_ODT0  
VCC  
AF8  
SM_ODT1  
VCC  
AF7  
SM_ODT2  
VCC  
AB4  
SM_ODT3  
VCC  
AB5  
SMOCDCOMP0  
SMOCDCOMP1  
SMRCOMPN  
SMRCOMPP  
SMVREF0  
VCC  
AH17  
AK17  
AH18  
AJ18  
AK18  
AJ19  
AK19  
AH19  
AJ20  
AH20  
AJ16  
AG18  
AG20  
AG15  
AK14  
AF15  
AF14  
AH16  
H25  
VCC  
SB_MA1  
VCC  
AK10  
AK11  
AF37  
AD1  
AE27  
AE28  
AF9  
AF10  
F5  
SB_MA2  
VCC  
SB_MA3  
VCC  
SB_MA4  
VCC  
SMVREF1  
SB_MA5  
VCC  
SMXSLEWIN  
SMXSLEWOUT  
SMYSLEWIN  
SMYSLEWOUT  
SB_MA6  
VCC  
SB_MA7  
VCC  
SB_MA8  
VCC  
SB_MA9  
VCC  
SB_MA10  
SB_MA11  
SB_MA12  
SB_MA13  
SB_RAS#  
SB_RCVENIN#  
SB_RCVENOUT#  
SB_WE#  
THRMTRIP#  
TV_IRTNA  
TV_IRTNB  
TV_IRTNC  
TV_REFSET  
TVDAC_A  
TVDAC_B  
TVDAC_C  
VCC  
VCC  
B15  
B16  
B17  
J18  
VCC  
VCC  
VCC  
VCC  
A15  
C16  
A17  
G28  
H26  
H27  
H28  
J25  
VCC  
VCC  
VCC  
SDVOCTRL_CLK  
SDVOCTRL_DATA  
SM_CK0  
VCC  
H24  
VCC  
VCC  
AM33  
AN33  
AL1  
VCC  
VCC  
SM_CK0#  
SM_CK1  
VCC  
VCC  
VCC  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
AK1  
SM_CK1#  
RSVD28  
J27  
VCC  
AE11  
AE10  
AJ34  
AJ33  
AF6  
J28  
VCC  
RSVD29  
J29  
VCC  
SM_CK3  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
VCC  
SM_CK3#  
SM_CK4  
VCC  
VCC  
AF5  
SM_CK4#  
RSVD30  
VCC  
AC10  
AD10  
AP21  
AM21  
AH21  
AK21  
AN16  
VCC  
RSVD31  
VCC  
SM_CKE0  
SM_CKE1  
SM_CKE2  
SM_CKE3  
SM_CS0#  
VCC  
VCC  
VCC  
VCC  
VCC  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
333  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
M21  
M22  
M23  
M24  
M25  
M26  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
R18  
R19  
R20  
R22  
R23  
R24  
R25  
R26  
T17  
T21  
T22  
T23  
T24  
T25  
T26  
U17  
U21  
U22  
U23  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
U24  
U25  
U26  
V17  
V21  
V22  
V23  
V24  
V25  
V26  
W17  
W21  
W22  
W23  
W24  
W25  
W26  
Y18  
Y19  
Y20  
H20  
AE37  
J37  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_SYNC  
VCC3G  
F17  
C18  
VCCA_TVDACA  
VCCA_TVDACB  
VCCA_TVDACB  
VCCA_TVDACC  
VCCA_TVDACC  
VCCD_HMPLL1  
VCCD_HMPLL2  
VCCD_LVDS  
VCCD_LVDS  
VCCD_LVDS  
VCCD_TVDAC  
VCCDQ_TVDAC  
VCCHV  
D18  
E18  
F18  
AC2  
AC1  
A25  
B25  
B26  
D19  
H17  
A21  
B21  
VCCHV  
B22  
VCCHV  
AB9  
VCCSM  
AB10  
AB11  
AC11  
AC27  
AD11  
AD27  
AD28  
AE1  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCC3G  
VCCSM  
L37  
VCC3G  
VCCSM  
N37  
R37  
U37  
W37  
F37  
VCC3G  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AF12  
AF13  
AF25  
AF26  
AG12  
AG13  
VCCSM  
VCC3G  
VCCSM  
VCC3G  
VCCSM  
VCC3G  
VCCSM  
VCCA_3GBG  
VCCA_3GPLL  
VCCA_3GPLL  
VCCA_3GPLL  
VCCA_CRTDAC  
VCCA_CRTDAC  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_HPLL  
VCCA_LVDS  
VCCA_MPLL  
VCCA_SM  
VCCSM  
Y29  
Y27  
Y28  
E19  
F19  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
B23  
C35  
AA1  
A35  
AA2  
AF18  
AF19  
AF20  
AP19  
H18  
E17  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCA_SM  
VCCSM  
VCCA_SM  
VCCSM  
VCCA_SM  
VCCSM  
VCCSM  
VCCA_TVBG  
VCCA_TVDACA  
VCCSM  
334  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AG25  
AG26  
AH12  
AH13  
AH25  
AH26  
AH37  
AJ12  
AJ13  
AJ25  
AJ26  
AK12  
AK13  
AK25  
AK26  
AL12  
AL13  
AL25  
AL26  
AM1  
VCCSM  
VCCSM  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
A27  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCTX_LVDS  
VCCTX_LVDS  
VCCTX_LVDS  
VSS  
AA29  
AA30  
AA32  
AA34  
AA36  
AB3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AB27  
AB28  
AB30  
AB32  
AB34  
AB36  
AC3  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AC6  
VCCSM  
AC9  
VCCSM  
AC28  
AC30  
AC32  
AC34  
AC36  
AD2  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AM12  
AM13  
AM25  
AM26  
AM37  
AN12  
AN13  
AN25  
AN26  
AP8  
VCCSM  
AD29  
AD31  
AD32  
AD33  
AD34  
AD36  
AE2  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
A28  
VCCSM  
B28  
VCCSM  
A3  
VCCSM  
A9  
VSS  
AE6  
VCCSM  
A14  
VSS  
AE9  
VCCSM  
A16  
VSS  
AE30  
AE35  
AE36  
AF4  
VCCSM  
AP12  
AP13  
AP25  
AP26  
AP29  
AB12  
AB13  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
A18  
VSS  
VCCSM  
A20  
VSS  
VCCSM  
A22  
VSS  
VCCSM  
A26  
VSS  
AF11  
AF17  
AF21  
AF23  
AF27  
AF33  
AF36  
AG7  
VCCSM  
A29  
VSS  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
A32  
VSS  
AA3  
VSS  
AA6  
VSS  
AA7  
VSS  
AA9  
VSS  
AA10  
AA11  
AA27  
AA28  
VSS  
VSS  
AG11  
AG14  
AG19  
VSS  
VSS  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
335  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AG24  
AG27  
AG29  
AG31  
AG37  
AH2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
E35  
E37  
F11  
F14  
F20  
F21  
F24  
F29  
F31  
F33  
F35  
G2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AN27  
AN32  
AN34  
AN36  
AP5  
AP30  
B6  
AH9  
AH22  
AH34  
AJ3  
B12  
B14  
B18  
B24  
B27  
B35  
C3  
AJ6  
AJ11  
AJ14  
AJ17  
AJ24  
AJ27  
AJ29  
AJ32  
AJ36  
AK7  
G7  
G17  
G20  
G26  
G27  
G29  
G31  
G33  
G35  
H4  
C4  
C8  
C15  
C17  
C19  
C21  
C30  
C32  
C34  
C36  
D2  
AK20  
AL2  
AL5  
H9  
AL8  
H11  
H16  
H19  
H23  
H29  
H31  
H33  
H35  
H37  
J2  
AL11  
AL14  
AL16  
AL18  
AL22  
AL24  
AL27  
AL31  
AL33  
AL36  
AM29  
AN2  
D10  
D12  
D16  
D20  
D22  
D24  
D29  
D31  
D33  
D35  
E5  
J6  
J12  
J14  
J19  
J22  
J24  
J26  
J31  
J33  
J35  
K9  
E8  
AN4  
E20  
E22  
E26  
E27  
E28  
E29  
E31  
E33  
AN7  
AN9  
AN11  
AN14  
AN17  
AN19  
AN21  
AN24  
K14  
336  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
K15  
K16  
K31  
K33  
K35  
K37  
L2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
U31  
U33  
U35  
V2  
VSS  
VSS  
AA24  
AA25  
AA26  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
L14  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS  
VSS  
V7  
VSS  
V9  
VSS  
V20  
V29  
V31  
V33  
V35  
V37  
W5  
VSS  
L4  
VSS  
L6  
VSS  
L8  
VSS  
L10  
L29  
L31  
L33  
L35  
M31  
M33  
M35  
M37  
N31  
N33  
N35  
P2  
VSS  
VSS  
VSS  
W19  
W27  
W28  
W29  
W31  
W33  
W35  
Y1  
VSS  
VSS  
VSS  
VSS  
VSS  
L15  
VSS  
L16  
VSS  
M14  
M15  
M16  
N14  
VSS  
Y4  
VSS  
Y8  
VSS  
P4  
Y10  
Y11  
Y30  
Y32  
Y35  
Y37  
G37  
G19  
B36  
G18  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
VSS  
N15  
P6  
VSS  
N16  
P8  
VSS  
P14  
P29  
P31  
P33  
P35  
P37  
R31  
R33  
R35  
T2  
VSS  
P15  
VSS  
P16  
VSS  
R14  
VSSA_3GBG  
VSSA_CRTDAC  
VSSA_LVDS  
VSSA_TVBG  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
R15  
R16  
R17  
R21  
T14  
T15  
T6  
T16  
T9  
U14  
T19  
T31  
T33  
T35  
T37  
U4  
U15  
U16  
V14  
V15  
V16  
W14  
W15  
W16  
U18  
U29  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
337  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
H21  
A6  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSYNC  
VTT  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
N1  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
U10  
U11  
V1  
VTT  
VTT  
VTT  
V10  
V11  
W9  
VTT  
VTT  
VTT  
W10  
W11  
Y9  
VTT  
VTT  
VTT  
L12  
L13  
M12  
M13  
N12  
N13  
P12  
P13  
R12  
R13  
T12  
T13  
U12  
U13  
V12  
V13  
W12  
W13  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
VTT_NCTF  
N2  
N3  
N4  
N5  
N6  
N7  
B2  
VTT  
N8  
G1  
VTT  
N9  
J9  
VTT  
N10  
N11  
P9  
J10  
J13  
K10  
K11  
K12  
K13  
L9  
VTT  
VTT  
VTT  
P10  
P11  
R9  
VTT  
VTT  
VTT  
R10  
R11  
T10  
T11  
U9  
VTT  
L11  
M1  
VTT  
VTT  
M2  
VTT  
M3  
VTT  
338  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
13.2.1  
GMCH Numerical Order Ball List  
Table 13-33 applies to the Mobile Intel 915GM/GME/PM and Intel 910GML/GMLE Express Chipset ball-out. Some  
signals may be RESERVED depending on chipset configuration used. Please refer to the signal description chapter for  
more details.  
Table 13-33. GMCH Numerical Order Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AB1  
AB2  
HCLKN  
HCLKP  
A2  
NC8  
VSS  
AA1  
AA2  
VCCA_HPLL  
VCCA_MPLL  
VSS  
A3  
AB3  
VSS  
AA3  
A4  
HRS0#  
HBNR#  
VTT  
AB4  
SB_DQS7  
SB_DQS7#  
SB_DQ58  
SB_DM7  
AA4  
SB_DQ62  
SB_DQ63  
VSS  
A5  
AB5  
AA5  
A6  
AB6  
AA6  
A7  
HREQ0#  
HREQ4#  
VSS  
AB7  
AA7  
VSS  
A8  
AB8  
SB_DQ57  
VCCSM  
AA8  
SB_DQ59  
VSS  
A9  
AB9  
AA9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
HA7#  
RSVD33  
HA23#  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AB31  
AB32  
AB33  
AB34  
AB35  
AB36  
VCCSM  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AA31  
AA32  
AA33  
AA34  
AA35  
AA36  
AA37  
VSS  
VCCSM  
VSS  
VCCSM_NCTF  
VCCSM_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS  
HA30#  
VSS  
TVDAC_A  
VSS  
TVDAC_C  
VSS  
RED  
VSS  
VCCHV  
VSS  
DREF_CLKP  
DREF_CLKN  
VCCD_LVDS  
VSS  
VCCTX_LVDS  
VCCTX_LVDS  
VSS  
VSS  
VSS  
GCLKN  
VSS  
RSVD25  
RSVD24  
VSS  
VSS  
VSS  
DMI_RXN0  
VSS  
DMI_RXP2  
VSS  
LADATAP1  
LADATAP0  
VCCA_LVDS  
NC10  
DMI_TXN0  
VSS  
DMI_TXP2  
VSS  
DMI_RXP1  
VSS  
DMI_RXN1  
VSS  
NC11  
DMI_TXP1  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
339  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AD8  
AD9  
SB_DQ50  
SB_DQ51  
RSVD31  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE30  
AE31  
AE32  
AE33  
AE34  
AE35  
AE36  
AE37  
AF1  
VCCSM  
VCCSM  
AB37  
AC1  
DMI_TXN1  
VCCD_HMPLL2  
VCCD_HMPLL1  
VSS  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
AD32  
AD33  
AD34  
AD35  
AD36  
AD37  
AE1  
VCCSM  
AC2  
VCCSM  
VCCSM  
AC3  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM  
VCCSM  
AC4  
SA_DQ59  
VCCSM  
AC5  
SB_DQ56  
VCCSM  
AC6  
VSS  
VCCSM  
AC7  
SB_DQ61  
VCCSM  
AC8  
SB_DQ60  
VCCSM  
AC9  
VSS  
VCCSM  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AC31  
AC32  
AC33  
AC34  
AC35  
AC36  
AC37  
AD1  
RSVD30  
SMXSLEWIN  
SMXSLEWOUT  
RSTIN#  
VCCSM  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM_NCTF  
VCCSM  
VSS  
SB_DQ0  
SB_DQ1  
SB_DQ5  
SB_DQ4  
VSS  
VCCSM  
VSS  
VSS  
VCC3G  
PWROK  
SA_DQ61  
SA_DQ60  
SA_DQ56  
VSS  
VSS  
AF2  
VSS  
AF3  
VSS  
AF4  
VSS  
AF5  
SM_CK4#  
SM_CK4  
SB_DQS6#  
SB_DQS6  
SMYSLEWIN  
SMYSLEWOUT  
VSS  
DMI_RXN3  
VSS  
AF6  
VSS  
AF7  
DMI_TXN3  
VCCSM  
GCLKP  
AF8  
VSS  
AF9  
AE2  
VSS  
DMI_RXN2  
VSS  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AE3  
SA_DQ57  
SA_DQS7#  
SA_DQS7  
VSS  
AE4  
DMI_TXN2  
VSS  
VCCSM  
AE5  
VCCSM  
AE6  
DMI_RXP3  
VSS  
SB_RCVENOUT#  
SB_RCVENIN#  
SMOCDCOMP1  
VSS  
AE7  
SB_DM6  
AE8  
SB_DQ54  
VSS  
DMI_TXP3  
SMVREF1  
VSS  
AE9  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
RSVD29  
AD2  
VCCA_SM  
VCCA_SM  
VCCA_SM  
VSS  
RSVD28  
AD3  
SA_DM7  
SA_DQ62  
SA_DQ63  
SA_DQ58  
SB_DQ55  
VCCSM  
AD4  
VCCSM  
AD5  
VCCSM  
AD6  
SMOCDCOMP0  
VCCSM  
AD7  
340  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF30  
AF31  
AF32  
AF33  
AF34  
AF35  
AF36  
AF37  
AG1  
VSS  
SB_DQ24  
VCCSM  
VCCSM  
VSS  
AG30  
AG31  
AG32  
AG33  
AG34  
AG35  
AG36  
AG37  
AH1  
SB_DQ11  
VSS  
AH37  
AJ1  
VCCSM  
SA_DQS6  
SA_DM6  
SB_DQ2  
SB_DQ13  
SB_DQ12  
SA_DQ0  
SB_DQ3  
VSS  
AJ2  
AJ3  
AJ4  
VSS  
SB_DQ42  
SB_DQ46  
VSS  
SA_RCVENOUT#  
SA_RCVENIN#  
SB_DQ7  
SB_DQ6  
SB_DM0  
VSS  
AJ5  
AJ6  
AJ7  
SB_DQ40  
SB_DQ45  
SB_DQ38  
SB_DM4  
VSS  
SA_DQS6#  
VSS  
AJ8  
AH2  
AJ9  
AH3  
SA_DQ54  
SB_DQ52  
SB_DQ43  
SB_DQS5  
SB_DQS5#  
SB_DQ35  
VSS  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AJ31  
AJ32  
AJ33  
AJ34  
AJ35  
AJ36  
AJ37  
AK1  
AH4  
SB_DQS0  
SB_DQS0#  
VSS  
AH5  
VCCSM  
VCCSM  
VSS  
AH6  
AH7  
SMVREF0  
SA_DQ51  
SA_DQ50  
SA_DQ55  
SB_DQ49  
SB_DQ48  
SB_DQ53  
VSS  
AH8  
SB_BS0  
SB_MA10  
VSS  
AH9  
AG2  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AH31  
SB_DQ37  
SB_DQ36  
VCCSM  
AG3  
AG4  
SB_MA3  
SB_MA5  
SB_MA8  
SB_DQ31  
SB_DQ26  
SB_DQS3#  
VSS  
AG5  
VCCSM  
AG6  
SB_CAS#  
SM_CS2#  
SB_WE#  
SB_MA0  
SB_MA2  
SB_MA7  
SB_MA9  
SM_CKE2  
VSS  
AG7  
AG8  
SB_DQ34  
SB_DQ33  
SB_DQ32  
VSS  
AG9  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
VCCSM  
VCCSM  
VSS  
VCCSM  
VCCSM  
VSS  
SB_DQS2  
VSS  
SB_MA13  
SM_CS3#  
SB_BS1  
SB_MA11  
VSS  
SB_DQ29  
SB_DQ28  
VCCSM  
SB_DQ17  
SB_DQ15  
VSS  
VCCSM  
SB_DQ22  
SB_DQ19  
SB_DQ18  
SB_DQ21  
SB_DQ14  
SM_CK3#  
SM_CK3  
SA_DQ5  
VSS  
SB_MA12  
SB_BS2  
SB_DQ30  
SB_DQ25  
VSS  
SA_DM0  
SM_CK1#  
SA_DQ48  
SA_DQ49  
SB_DQ47  
SB_DM5  
AH32  
AH33  
AH34  
AH35  
AH36  
SB_DQ9  
SB_DQ8  
VSS  
VCCSM  
VCCSM  
VSS  
AK2  
AK3  
SA_DQ1  
SA_DQ4  
SB_DQ23  
VSS  
AK4  
AK5  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
341  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AK6  
AK7  
SB_DQ41  
VSS  
AL13  
AL14  
AL15  
AL16  
AL17  
AL18  
AL19  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL30  
AL31  
AL32  
AL33  
AL34  
AL35  
AL36  
AL37  
AM1  
VCCSM  
VSS  
AM19  
AM20  
AM21  
AM22  
AM23  
AM24  
AM25  
AM26  
AM27  
AM28  
AM29  
AM30  
AM31  
AM32  
AM33  
AM34  
AM35  
AM36  
AM37  
AN1  
SA_MA8  
SA_MA12  
SM_CKE1  
SA_DQ27  
SA_DQ26  
SA_DQ29  
VCCSM  
VCCSM  
SA_DQ25  
SA_DQ22  
VSS  
AK8  
SB_DQ44  
SB_DQ39  
SMRCOMPN  
SMRCOMPP  
VCCSM  
SM_ODT1  
VSS  
AK9  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK30  
AK31  
AK32  
AK33  
AK34  
AK35  
AK36  
AK37  
AL1  
SA_MA0  
VSS  
SA_MA6  
SA_MA9  
SA_BS2  
VSS  
VCCSM  
SB_RAS#  
SA_BS0  
SA_BS1  
SB_MA1  
SB_MA4  
SB_MA6  
VSS  
SA_DQ28  
VSS  
SA_DQ21  
SA_DQ11  
SA_DQ15  
SM_CK0  
SA_DQ12  
SA_DQ13  
SA_DQ8  
VCCSM  
NC6  
VCCSM  
VCCSM  
VSS  
SM_CKE3  
SB_DQ27  
SB_DQS3  
SB_DM3  
VCCSM  
SA_DQ23  
SA_DM2  
SA_DQ20  
VSS  
SA_DQ14  
VSS  
VCCSM  
VSS  
AN2  
SB_DM2  
SB_DQS2#  
SB_DQ20  
SB_DQ16  
SB_DQ10  
SB_DQS1  
SB_DQS1#  
SB_DM1  
SA_DQS0#  
SA_DQS0  
SA_DQ6  
SM_CK1  
VSS  
SA_DQ7  
SA_DQ2  
VSS  
SA_DQ42  
VSS  
AN3  
AN4  
SA_DQ40  
SA_DQ41  
VSS  
AN5  
SA_DQ3  
VCCSM  
SA_DQ53  
SA_DQ47  
SA_DQS5  
SA_DQS5#  
SA_DQ45  
SA_DQ39  
SA_DQS4  
SA_DQ32  
SB_DQS4  
SM_ODT2  
VCCSM  
VCCSM  
SM_CS1#  
SA_MA13  
SA_MA10  
SA_MA3  
SA_MA5  
AN6  
AN7  
AM2  
SA_DQS4#  
VSS  
AN8  
AM3  
AN9  
AM4  
SM_ODT3  
VSS  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AM5  
AM6  
VCCSM  
VCCSM  
VSS  
AM7  
AM8  
AL2  
AM9  
SA_CAS#  
SM_CS0#  
VSS  
AL3  
SA_DQ52  
SA_DQ46  
VSS  
AM10  
AM11  
AM12  
AM13  
AM14  
AM15  
AM16  
AM17  
AM18  
AL4  
AL5  
SA_MA4  
VSS  
AL6  
SA_DQ34  
SA_DQ38  
VSS  
AL7  
SA_MA11  
VSS  
AL8  
AL9  
SA_DQ33  
SB_DQS4#  
VSS  
SA_DQ30  
SA_DQS3#  
VSS  
AL10  
AL11  
AL12  
VCCSM  
342  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
SA_DQ10  
SA_DQS1  
SA_DQS1#  
SA_DM1  
NC3  
C2  
C3  
VCCSM  
VCCSM  
VSS  
AP32  
AP33  
AP34  
AP35  
AP36  
AP37  
B1  
HXSCOMP  
VSS  
AN25  
AN26  
AN27  
AN28  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
AN37  
AP1  
C4  
VSS  
C5  
HRS1#  
HDBSY#  
HREQ3#  
VSS  
SA_DQ18  
SA_DQS2  
SA_DQS2#  
SA_DQ16  
VSS  
C6  
NC1  
C7  
NC7  
C8  
B2  
VTT  
C9  
HA4#  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
D1  
B3  
HA18#  
HA19#  
HA21#  
HA27#  
CFG14  
VSS  
HLOCK#  
SM_CK0#  
VSS  
B4  
HRS2#  
HTRDY#  
VSS  
B5  
SA_DQ9  
VSS  
B6  
B7  
HA6#  
NC2  
B8  
HREQ2#  
HADSTB0#  
NC5  
TVDAC_B  
VSS  
B9  
NC4  
AP2  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
B35  
B36  
B37  
C1  
HA10#  
HA28#  
VSS  
SA_DQ43  
SA_DM5  
VSS  
AP3  
VCCA_TVDACB  
VSS  
AP4  
AP5  
GREEN  
VSS  
SA_DQ44  
SA_DQ35  
VCCSM  
SA_DM4  
SA_DQ37  
SA_DQ36  
VCCSM  
VCCSM  
SM_ODT0  
SA_WE#  
SA_RAS#  
SA_MA1  
SA_MA2  
VCCA_SM  
SA_MA7  
SM_CKE0  
SA_DQ31  
SA_DQS3  
SA_DM3  
VCCSM  
VCCSM  
SA_DQ24  
SA_DQ19  
VCCSM  
VSS  
AP6  
HA22#  
VSS  
AP7  
LCTLB_DATA  
LCTLA_CLK  
LBCLKP  
AP8  
TV_IRTNA  
TV_IRTNB  
TV_IRTNC  
VSS  
AP9  
AP10  
AP11  
AP12  
AP13  
AP14  
AP15  
AP16  
AP17  
AP18  
AP19  
AP20  
AP21  
AP22  
AP23  
AP24  
AP25  
AP26  
AP27  
AP28  
AP29  
AP30  
AP31  
LBCLKN  
LBDATAP2  
LBDATAN2  
RED#  
GREEN#  
VCCHV  
LBDATAP0  
LBDATAN0  
VSS  
VCCHV  
VCCA_DPLLA  
VSS  
LVBG  
VSS  
VCCD_LVDS  
VCCD_LVDS  
VSS  
LIBG  
VSS  
VCCA_DPLLB  
VSS  
VCCTX_LVDS  
LACLKP  
DREF_SSCLKN  
HXSWING  
VSS  
LACLKN  
LADATAP2  
LADATAN2  
LADATAN1  
LADATAN0  
VSS  
D2  
D3  
HD7#  
D4  
HHIT#  
D5  
HBPRI#  
HHITM#  
HREQ1#  
HA9#  
D6  
VSSA_LVDS  
NC9  
D7  
D8  
SA_DQ17  
HXRCOMP  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
343  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
D32  
D33  
D34  
D35  
D36  
D37  
E1  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
E31  
E32  
E33  
E34  
E35  
E36  
E37  
F1  
F25  
F26  
F27  
F28  
F29  
F30  
F31  
F32  
F33  
F34  
F35  
F36  
F37  
G1  
HA13#  
VSS  
VCCA_TVDACA  
VCCA_TVDACC  
VCCA_CRTDAC  
VSS  
LBKLT_EN  
LVDD_EN  
LVREFL  
LVREFH  
VSS  
HA20#  
VSS  
HA29#  
BLUE  
CFG11  
CFG9  
VSS  
EXP_RXP2  
VSS  
DDCDATA  
DDCCLK  
LBKLT_CRTL  
VSS  
VSS  
EXP_TXP2  
VSS  
CFG7  
EXP_RXN1  
VSS  
VCCA_TVDACB  
VCCD_TVDAC  
VSS  
VSS  
VSS  
EXP_TXN1  
VCCA_3GBG  
VTT  
VSS  
BLUE#  
VSS  
EXP_RXN0  
VSS  
CFG20  
VSS  
G2  
VSS  
EXP_TXN0  
VSS  
G3  
HD21#  
G4  
RSVD27  
RSVD26  
LBDATAP1  
LBDATAN1  
VSS  
HDSTBN0#  
HDSTBP0#  
HDPWR#  
VSS  
EXP_RXP1  
VSS  
G5  
G6  
EXP_TXP1  
VSS  
G7  
G8  
HCPUSLP#  
HA3#  
EXP_RXP0  
VSS  
G9  
HD5#  
F2  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
G27  
G28  
G29  
G30  
G31  
G32  
HD9#  
HA12#  
EXP_TXP0  
VSS  
F3  
HD13#  
HA16#  
F4  
HD2#  
HA25#  
EXP_ICOMPO  
VSS  
F5  
THRMTRIP#  
RSVD32  
HDRDY#  
HADS#  
HA17#  
F6  
CFG2  
EXP_COMPI  
DREF_SSCLKP  
HD1#  
F7  
CFG5  
F8  
CFG0  
F9  
VSS  
HA8#  
E2  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
HD4#  
HA15#  
VSSA_TVBG  
VSSA_CRTDAC  
VSS  
E3  
VSS  
HD6#  
E4  
HD0#  
HA24#  
E5  
VSS  
HA31#  
HSYNC  
CFG18  
E6  
VSS  
HDEFER#  
HBREQ0#  
VSS  
E7  
CFG4  
CFG19  
E8  
CFG3  
RSVD22  
RSVD21  
VSS  
E9  
HA5#  
VCCA_TVDACA  
VCCA_TVDACC  
VCCA_CRTDAC  
VSS  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
HA11#  
VSS  
HA14#  
VCC  
HA26#  
VSS  
VSS  
HADSTB1#  
CFG12  
CFG10  
CFG6  
EXP_RXN2  
VSS  
LDDC_DATA  
LDDC_CLK  
VSS  
EXP_TXN2  
344  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
G33  
G34  
G35  
G36  
G37  
H1  
VSS  
EXP_RXP3  
VSS  
J3  
J4  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
K31  
K32  
K33  
K34  
K35  
K36  
K37  
L1  
VTT  
VTT  
HD29#  
HD20#  
VTT  
J5  
HD26#  
VSS  
EXP_TXP3  
VSSA_3GBG  
HD16#  
VTT  
J6  
VSS  
J7  
HD10#  
HD11#  
VTT  
VSS  
J8  
H2  
VSS  
HD17#  
J9  
H3  
VCC  
HD22#  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
J31  
J32  
J33  
J34  
J35  
J36  
J37  
K1  
VTT  
H4  
VSS  
VCC  
HVREF  
VSS  
H5  
VCC  
HD15#  
VCC  
H6  
HD12#  
VTT  
VCC  
H7  
HD3#  
VSS  
VCC  
H8  
HDINV0#  
VSS  
CFG16  
CFG8  
VCC  
H9  
VCC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
H27  
H28  
H29  
H30  
H31  
H32  
H33  
H34  
H35  
H36  
H37  
J1  
HCPURST#  
VSS  
RSVD23  
TV_REFSET  
VSS  
VCC  
VCC  
CFG13  
VCC  
CFG1  
REFSET  
EXT_TS0#  
VSS  
VCC  
CFG17  
VCC  
CFG15  
EXP_RXP6  
VSS  
VSS  
BM_BUSY#  
VSS  
VCCDQ_TVDAC  
VCCA_TVBG  
VSS  
EXP_TXP6  
VSS  
VCC  
VSS  
EXP_RXN5  
VSS  
VCC_SYNC  
VSYNC  
EXT_TS1#  
VSS  
VCC  
VCC  
EXP_TXN5  
VSS  
VCC  
EXP_RXN4  
VSS  
HYSCOMP  
VSS  
SDVOCTRL_DATA  
SDVOCTRL_CLK  
VCC  
L2  
EXP_TXN4  
VSS  
L3  
HD31#  
VSS  
L4  
VCC  
EXP_RXP5  
VSS  
L5  
HD24#  
VSS  
VCC  
L6  
VSS  
EXP_TXP5  
VCC3G  
HDSTBN1#  
HDSTBP1#  
HDINV1#  
HD25#  
HD18#  
HD19#  
HD8#  
L7  
HD28#  
VSS  
EXP_RXP4  
VSS  
L8  
L9  
VTT  
EXP_TXP4  
VSS  
K2  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
VSS  
K3  
VTT  
EXP_RXN3  
VSS  
K4  
VTT_NCTF  
VTT_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
K5  
EXP_TXN3  
VSS  
K6  
K7  
HD23#  
VSS  
K8  
HD14#  
VSS  
J2  
K9  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
345  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
L31  
L32  
L33  
L34  
L35  
L36  
L37  
M1  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC  
M26  
M27  
M28  
M29  
M30  
M31  
M32  
M33  
M34  
M35  
M36  
M37  
N1  
VCC_NCTF  
VCC  
N34  
N35  
N36  
N37  
P1  
EXP_RXP9  
VSS  
VCC  
EXP_TXP9  
VCC3G  
VCC  
EXP_RXP8  
VSS  
HYSWING  
VSS  
P2  
EXP_TXP8  
VSS  
P3  
HD36#  
P4  
VSS  
EXP_RXN7  
VSS  
P5  
HD30#  
P6  
VSS  
VCC  
EXP_TXN7  
VSS  
P7  
HD27#  
VSS  
P8  
VSS  
EXP_RXN6  
VSS  
VTT  
P9  
VTT  
N2  
VTT  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
R1  
VTT  
EXP_TXN6  
VSS  
N3  
VTT  
VTT  
N4  
VTT  
VTT_NCTF  
VTT_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC  
EXP_RXP7  
VSS  
N5  
VTT  
N6  
VTT  
EXP_TXP7  
VCC3G  
N7  
VTT  
N8  
VTT  
VTT  
N9  
VTT  
M2  
VTT  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
N31  
N32  
N33  
VTT  
M3  
VTT  
VTT  
M4  
VTT  
VTT_NCTF  
VTT_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC  
M5  
VTT  
M6  
VTT  
M7  
VTT  
M8  
VTT  
M9  
VTT  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
VTT  
VTT  
VTT_NCTF  
VTT_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC  
VSS  
EXP_RXP10  
VSS  
EXP_TXP10  
VSS  
EXP_RXN9  
VSS  
VCC  
EXP_TXN9  
VSS  
VCC  
EXP_RXN8  
VSS  
HD44#  
R2  
HDSTBP2#  
HDSTBN2#  
HD41#  
EXP_TXN8  
VSS  
R3  
R4  
346  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
R5  
R6  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
T31  
T32  
T33  
T34  
T35  
T36  
T37  
U1  
VTT_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
VCC  
U21  
U22  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
U31  
U32  
U33  
U34  
U35  
U36  
U37  
V1  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC  
HD35#  
HD34#  
R7  
HD38#  
R8  
HD39#  
R9  
VTT  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
R36  
R37  
T1  
VTT  
VTT  
VSS  
VTT_NCTF  
VTT_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VSS_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC  
VCC  
VCC  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC  
VSS  
EXP_RXN12  
VSS  
EXP_TXN12  
VSS  
EXP_RXP13  
VSS  
VCC  
EXP_TXP13  
VCC3G  
VCC  
EXP_RXP12  
VSS  
VTT  
V2  
VSS  
EXP_TXP12  
VSS  
V3  
HDSTBN3#  
HD57#  
V4  
EXP_RXN11  
VSS  
V5  
HD50#  
V6  
HD33#  
VCC  
EXP_TXN11  
VSS  
V7  
VSS  
VCC  
V8  
HD46#  
EXP_RXN10  
VSS  
HD54#  
V9  
VSS  
U2  
HD53#  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
V27  
V28  
VTT  
EXP_TXN10  
VSS  
U3  
HD49#  
VTT  
U4  
VSS  
VTT_NCTF  
VTT_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
VCC  
EXP_RXP11  
VSS  
U5  
HDINV3#  
HD47#  
U6  
EXP_TXP11  
VCC3G  
U7  
HD32#  
U8  
HD40#  
U9  
VTT  
HYRCOMP  
VSS  
T2  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
VTT  
T3  
VTT  
HD45#  
VCC  
T4  
VTT_NCTF  
VTT_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
VSS  
HD42#  
VSS  
T5  
HD43#  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC  
T6  
VSS  
T7  
HDINV2#  
HD37#  
T8  
T9  
VSS  
T10  
T11  
T12  
VTT  
VTT  
VCC  
VTT_NCTF  
VCC  
VCC  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
347  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
V29  
V29  
V30  
V31  
V32  
V33  
V34  
V35  
V36  
V37  
W1  
VSS  
VSS  
W19  
W20  
W21  
W22  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
W31  
W32  
W33  
W34  
W35  
W36  
W37  
Y1  
VSS  
VCC  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y30  
Y31  
Y32  
Y33  
Y34  
Y35  
Y36  
Y37  
VSS  
VSS  
EXP_RXP14  
VSS  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VSS  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
VCC_NCTF  
VCC_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCCA_3GPLL  
VCCA_3GPLL  
VCCA_3GPLL  
VSS  
EXP_TXP14  
VSS  
EXP_RXN13  
VSS  
EXP_TXN13  
VSS  
VSS  
VSS  
HD59#  
HD63#  
EXP_RXN14  
VSS  
W2  
W3  
HD60#  
EXP_TXN14  
VSS  
W4  
HDSTBP3#  
VSS  
W5  
EXP_RXP15  
VSS  
W6  
HD48#  
HD52#  
W7  
EXP_TXP15  
VCC3G  
W8  
HD51#  
W9  
VTT  
VSS  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
VTT  
Y2  
HD56#  
VTT  
DMI_RXP0  
VSS  
Y3  
HD61#  
VSS  
VTT_NCTF  
VTT_NCTF  
VSS_NCTF  
VSS_NCTF  
VSS_NCTF  
VCC_NCTF  
VCC  
Y4  
DMI_TXP0  
EXP_RXN15  
VSS  
Y5  
HD55#  
HD62#  
HD58#  
VSS  
Y6  
Y7  
EXP_TXN15  
VSS  
Y8  
Y9  
VTT  
348  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
13.3 Mobile Intel 915GMS Express Chipset Ballout Diagram  
Figure 13-3. Intel 915GMS GMCH Ballout Diagram  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
349  
Ballout and Package Information  
R
Figure 13-4. Intel 915GMS GMCH Ballout Diagram  
350  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
13.4  
Mobile Intel 915GMS Series Express Chipset Family Ballout List  
Some signals may be RESERVED depending on which Mobile Intel 915GMS Express Chipset configuration used.  
Please refer to the signal description chapter for more details.  
Table 13-34. PLL Signal Group  
Ball  
V23  
Signal  
GCLKN  
W23  
AA3  
Y3  
GCLKP  
HCLKN  
HCLKP  
A22  
A21  
H31  
J31  
DREF_CLKN  
DREF_CLKP  
DREF_SSCLKN  
DREF_SSCLKP  
Table 13-35.Host Address Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
C12  
G12  
F11  
A8  
HA15#  
HA16#  
B13  
A14  
C13  
J15  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA30#  
HA31#  
HADSTB1#  
C6  
G11  
E12  
B8  
HA3#  
HA4#  
HADSTB0#  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HA17#  
HA5#  
HA6#  
B7  
H12  
E13  
C14  
F14  
E14  
D13  
B14  
H15  
C11  
B11  
C9  
HA7#  
A9  
HA8#  
A7  
HA9#  
J12  
G14  
J14  
G13  
H14  
A11  
D12  
F13  
E11  
A13  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
HA18#  
HA19#  
HA20#  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
351  
Ballout and Package Information  
R
Table 13-36. Host Control Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
G9  
E8  
B3  
E9  
A4  
F8  
HADS#  
HBNR#  
E5  
C4  
F9  
A5  
B5  
C7  
HDEFER#  
HLOCK#  
HBREQ0#  
HRS0#  
B2  
C3  
G1  
C5  
HHIT#  
HHITM#  
HBPRI#  
HTRDY#  
HDRDY#  
HDBSY#  
HDPWR#  
HSLPCPU#  
HRS1#  
HRS2#  
Table 13-37. Host Data Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
F5  
F2  
E2  
J5  
F3  
G3  
F4  
E3  
J9  
HD0#  
HD1#  
HD2#  
HD3#  
HD4#  
HD5#  
HD6#  
HD7#  
HD8#  
L5  
U8  
K7  
U9  
V9  
R1  
K6  
U3  
R9  
L7  
HD23#  
HD24#  
HD25#  
HD26#  
HD27#  
HD28#  
HD29#  
HD30#  
HD31#  
HDINV1#  
HDSTBN1#  
HDSTBP1#  
HD32#  
HD33#  
HD34#  
HD35#  
HD36#  
HD37#  
HD38#  
HD39#  
HD40#  
HD41#  
HD42#  
HD43#  
HD44#  
HD45#  
V5  
V6  
R7  
U1  
U2  
W7  
W8  
W1  
V2  
W4  
Y2  
HD46#  
HD47#  
HDINV2#  
HDSTBN2#  
HDSTBP2#  
HD48#  
HD49#  
HD50#  
HD51#  
HD52#  
HD53#  
HD54#  
HD55#  
HD56#  
HD57#  
HD58#  
HD59#  
HD60#  
F6  
J7  
J8  
HD9#  
HD10#  
HD11#  
HD12#  
HD13#  
HD14#  
HD15#  
HDINV0#  
HDSTBN0#  
HDSTBP0#  
HD16#  
HD17#  
HD18#  
HD19#  
HD20#  
HD21#  
HD22#  
K8  
L9  
Y5  
J1  
V3  
V4  
R6  
P5  
P3  
R8  
P7  
P9  
W3  
R4  
R3  
R5  
U6  
U5  
AA9  
AA8  
AA1  
V7  
AA6  
Y6  
Y8  
W9  
Y7  
F1  
K9  
G7  
J6  
G5  
G4  
K3  
K4  
P1  
R2  
K5  
J3  
HD61#  
HD62#  
HD63#  
HDINV3#  
HDSTBN3#  
HDSTBP3#  
W5  
AA4  
AA5  
J2  
Table 13-38. DDR2 SDRAM Common Signal Group Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AE31  
AF31  
AF5  
SM_CK0  
SM_CK0#  
SM_CK1  
SM_CK1#  
SM_CK3  
SM_CK3#  
SM_CK4  
AJ5  
SM_CK4#  
SM_CKE0  
SM_CKE1  
SM_CKE2  
SM_CKE3  
SM_CS0#  
SM_CS1#  
AL14  
AH12  
AF12  
AG12  
AK13  
AJ12  
SM_CS2#  
SM_CS3#  
SM_ODT0  
SM_ODT1  
SM_ODT2  
SM_ODT3  
AC23  
AC25  
AH21  
AJ21  
AD11  
AG13  
AE5  
AJ29  
AJ28  
AH5  
352  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Table 13-39. DDR2 SDRAM Channel a Command Signal Group Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AE15  
AD13  
AB25  
AE12  
AG15  
AJ15  
AC21  
AC20  
SA_BS0  
SA_BS1  
SA_BS2  
SA_CAS#  
SA_RAS#  
SA_WE#  
SA_MA0  
SA_MA1  
AC19  
AD20  
AE19  
AE20  
AF20  
AF21  
AE21  
AA24  
SA_MA2  
SA_MA3  
SA_MA4  
SA_MA5  
SA_MA6  
SA_MA7  
SA_MA8  
SA_MA9  
AC11  
AB23  
AB24  
AF13  
AC27  
AB26  
SA_MA10  
SA_MA11  
SA_MA12  
SA_MA13  
SA_RCVENIN#  
SA_RCVENOUT#  
Table 13-40. DDR2 SDRAM Channel A Data Signal Group Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
Y27  
SA_DQ0  
SA_DQ1  
AF24  
AF25  
AF26  
AL25  
AJ25  
AG27  
AG26  
AK25  
AL24  
AG23  
AG24  
AK24  
AJ23  
AJ24  
AK11  
AL11  
AJ7  
SA_DM2  
SA_DQS2  
SA_DQS2#  
SA_DQ24  
SA_DQ25  
SA_DQ26  
SA_DQ27  
SA_DQ28  
SA_DQ29  
SA_DQ30  
SA_DQ31  
SA_DM3  
AG11  
AG6  
AE6  
AG7  
AG9  
AF9  
AL7  
AK7  
AK2  
AJ2  
SA_DQ45  
SA_DQ46  
SA_DQ47  
SA_DM5  
Y28  
AC29  
AE29  
AA28  
AA29  
AB31  
AC30  
AA31  
AB29  
AA30  
AG29  
AG28  
AJ26  
AL26  
AG30  
AG31  
AL27  
AK27  
AJ30  
AL28  
AK28  
AF29  
AE28  
AE25  
AE24  
AE27  
AF27  
AE23  
AC26  
SA_DQ2  
SA_DQ3  
SA_DQ4  
SA_DQS5  
SA_DQS5#  
SA_DQ48  
SA_DQ49  
SA_DQ50  
SA_DQ51  
SA_DQ52  
SA_DQ53  
SA_DQ54  
SA_DQ55  
SA_DM6  
SA_DQ5  
SA_DQ6  
SA_DQ7  
SA_DM0  
SA_DQS0  
SA_DQS0#  
SA_DQ8  
AK6  
AJ6  
SA_DQ9  
SA_DQS3  
SA_DQS3#  
SA_DQ32  
SA_DQ33  
SA_DQ34  
SA_DQ35  
SA_DQ36  
SA_DQ37  
SA_DQ38  
SA_DQ39  
SA_DM4  
AK3  
AH2  
AL5  
AH3  
AG5  
AH1  
AG1  
AC6  
AC7  
AF3  
AE3  
AD3  
AC2  
AD6  
AE2  
AF2  
SA_DQ10  
SA_DQ11  
SA_DQ12  
SA_DQ13  
SA_DQ14  
SA_DQ15  
SA_DM1  
SA_DQS1  
SA_DQS1#  
SA_DQ16  
SA_DQ17  
SA_DQ18  
SA_DQ19  
SA_DQ20  
SA_DQ21  
SA_DQ22  
SA_DQ23  
SA_DQS6  
SA_DQS6#  
SA_DQ56  
SA_DQ57  
SA_DQ58  
SA_DQ59  
SA_DQ60  
SA_DQ61  
SA_DQ62  
SA_DQ63  
SA_DM7  
AL9  
AL12  
AJ11  
AH9  
AJ9  
AJ10  
AK10  
AL10  
AG10  
AF10  
AH7  
SA_DQS4  
SA_DQS4#  
SA_DQ40  
SA_DQ41  
SA_DQ42  
SA_DQ43  
SA_DQ44  
SA_DQS7  
SA_DQS7#  
AF6  
AH11  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
353  
Ballout and Package Information  
R
Table 13-41. DDR2 SDRAM Channel B Signal Group Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AJ14  
AG14  
AL21  
AH14  
AJ13  
AK14  
AC12  
SB_BS0  
SB_BS1  
SB_BS2  
SB_RAS#  
SB_CAS#  
SB_WE#  
SB_MA0  
AE14  
AC15  
AD14  
AG19  
AJ19  
AJ20  
AK20  
SB_MA1  
SB_MA2  
SB_MA3  
SB_MA4  
SB_MA5  
SB_MA6  
SB_MA7  
AL19  
AH20  
AF14  
AL20  
AG20  
AL13  
SB_MA8  
SB_MA9  
SB_MA10  
SB_MA11  
SB_MA12  
SB_MA13  
Table 13-42. Analog CRT Signal Group  
Ball  
F21  
Signal  
RED  
Ball  
D22  
Signal  
Ball  
Signal  
GREEN#  
BLUE  
H22  
G23  
HSYNC  
VSYNC  
F22  
E22  
RED#  
D23  
C23  
GREEN  
BLUE#  
Table 13-43. Analog TV Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
A17  
B17  
TVDAC_A  
TV_IRTNA  
C18  
B18  
TVDAC_B  
TV_IRTNB  
A19  
B19  
TVDAC_C  
TV_IRTNC  
Table 13-44. LVDS Display Interface Signal Group  
Ball  
Signal  
LADATAP0  
E31  
D30  
C29  
C27  
F31  
D31  
D29  
D27  
LADATAP1  
LADATAP2  
LACLKP  
LADATAN0  
LADATAN1  
LADATAN2  
LACLKN  
Table 13-45. LVDS Power Sequencing and Backlight Control Signal Group  
Ball  
Signal  
G26  
F26  
H25  
LBKLT_CRTL  
LBKLT_EN  
LVDD_EN  
354  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Table 13-46. LVDS Power Sequencing and Backlight Control Signal Group  
Ball  
Signal  
G26  
F26  
H25  
LBKLT_CRTL  
LBKLT_EN  
LVDD_EN  
Table 13-47. DDC / GMBUS Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
J23  
J25  
D26  
DDCCLK  
DDCDATA  
LCTLA_CLK  
C26  
E25  
F25  
LCTLB_DATA  
LDDC_CLK  
G27  
SDVOCTRL_CLK  
SDVOCTRL_DAT  
A
H27  
LDDC_DATA  
Table 13-48. DMI Serial Interface Signal Group  
Ball  
Signal  
Ball  
Signal  
V24  
W29  
U24  
V29  
DMI_RXN0  
DMI_RXN1  
DMI_RXP0  
DMI_RXP1  
V26  
W31  
U26  
V31  
DMI_TXN0  
DMI_TXN1  
DMI_TXP0  
DMI_TXP1  
Table 13-49. Serial Digital Video Out Receive Signal Group  
Ball  
SDVO Signal  
Ball  
SDVO Signal  
M28  
P28  
U28  
SDVO_TVCLKIN#  
SDVOB_INT#  
L28  
N28  
R28  
SDVO_TVCLKIN  
SDVOB_INT  
SDVO_FLDSTALL#  
SDVO_FLDSTALL  
Table 13-50. Serial Digital Video Out Transmit Signal Group  
Ball  
M30  
SDVO Signal  
Ball  
L30  
SDVO Signal  
SDVOB_RED#  
SDVOB_GREEN#  
SDVOB_BLUE#  
SDVOB_CLKN  
SDVOB_RED  
SDVOB_GREEN  
SDVOB_BLUE  
SDVOB_CLKP  
N26  
P30  
U30  
M26  
N30  
R30  
Table 13-51. Thermal and Power Sequencing Signal Group  
Ball  
Signal  
W25  
F7  
RSTIN#  
HCPURST#  
PWROK  
W27  
J26  
J18  
J27  
BM_BUSY#  
THRMTRIP#  
EXT_TS0#  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
355  
Ballout and Package Information  
R
Table 13-52. No Connect Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
EXT_TS1#  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A10  
A2  
AJ31  
AK1  
AK22  
AK31  
AL1  
AL2  
AL22  
AL29  
AL3  
AL30  
AL31  
B1  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
A29  
A3  
A30  
A31  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
B10  
B31  
C1  
C10  
C31  
E10  
F10  
G10  
J10  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB17  
AB18  
AB19  
AB2  
K10  
K11  
K12  
K13  
K14  
K15  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K25  
K26  
K27  
K29  
K30  
K31  
L10  
AB20  
AB21  
AB22  
AB3  
AB5  
AB6  
AB7  
AB9  
AC22  
AE22  
AF22  
AG22  
AJ1  
L11  
L12  
AJ22  
L13  
356  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
U13  
U14  
U18  
U19  
U20  
U21  
U22  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
P18  
P19  
P20  
P21  
P22  
R10  
R11  
R12  
R13  
R14  
R18  
R19  
R20  
R21  
R22  
T11  
T12  
T13  
T14  
T18  
T19  
T20  
T21  
U10  
U11  
U12  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
357  
Ballout and Package Information  
R
Table 13-53. Configuration & Reserved Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
D15  
E17  
F15  
CFG0  
CFG1  
CFG2  
G17  
H17  
H19  
CFG5  
CFG6  
F29  
E27  
W2  
RSVD24  
RSVD25  
RSVD1  
RSVD23  
Table 13-54. Voltage Reference and Compensation Signal Groups  
Ball  
Signal Name  
System Memory  
Ball  
Signal Name  
Host Interface  
Ball  
Signal Name  
L26  
EXP_ICOMPO  
CRT DAC  
AB27  
AE9  
SMOCDCOMP0  
SMOCDCOMP1  
SMRCOMPN  
SMRCOMPP  
SMXSLEWIN  
SMXSLEWOUT  
SMYSLEWIN  
SMYSLEWOUT  
SMVREF0  
K1  
E6  
J13  
L1  
HXRCOMP  
HXSCOMP  
HXSWING  
HYRCOMP  
HYSCOMP  
HYSWING  
HVREF  
J21  
J19  
REFSET  
AD7  
AE7  
TV  
TV_REFSET  
LVDS  
Y24  
K2  
L3  
AA25  
AC10  
AD10  
Y30  
J29  
H29  
F30  
G30  
LVREFH  
LVREFL  
LIBG  
J11  
SDVO  
P26  
EXP_COMPI  
LVBG  
AE1  
SMVREF1  
Table 13-55. Power Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
PLL Signal Group  
C21  
C22  
VCCHV  
VCCHV  
B30  
VSSALVDS  
AD1  
AC1  
AC3  
AC5  
R23  
B21  
J30  
VCCA_HPLL  
VCCA_MPLL  
TV Out Signal Group  
CRT DAC  
E18  
VCCD_TVDAC  
VCCDQ_TVDAC  
VCCA_TVDACA  
VCCA_TVDACA  
VCCA_TVDACB  
VCCA_TVDACB  
VCCA_TVDACC  
VCCA_TVDACC  
VCCA_TVBG  
VCCD_HMPLL1  
VCCD_HMPLL2  
VCCA_3GPLL  
VCCA_DPLLA  
VCCA_DPLLB  
H21  
C20  
D21  
D20  
VCC_SYNC  
D17  
F18  
G18  
F19  
G19  
F20  
G20  
E19  
E20  
VCCA_CRTDAC  
VCCA_CRTDAC  
VSSA_CRTDAC  
LVDS Signal Group  
PCI Express Graphics  
P31  
VCC3G  
VCC3G  
A23  
VCCD_LVDS  
VCCD_LVDS  
VCCD_LVDS  
VCCTX_LVDS  
VCCTX_LVDS  
VCCA_LVDS  
R31  
M31  
L31  
B23  
B25  
A26  
B26  
B29  
VCCA_3GBG  
VSSA_3GBG  
VSSA_TVBG  
High Voltage  
VCCHV  
B20  
358  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Table 13-56. System Memory Analog Power Signal Group  
Ball  
Signal  
AC13  
AC14  
AL15  
VCCASM  
VCCASM  
VCCASM  
Table 13-57. System Memory Power Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
AD18  
AE17  
AE18  
AF1  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AJ18  
AK17  
AK18  
AK30  
AL17  
AL18  
AL23  
AL6  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AG18  
AC17  
AC18  
AC31  
AD17  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AF17  
AF18  
AH17  
AH18  
AJ17  
AG17  
Table 13-58. VTT Power Signal Group  
Ball  
A6  
Signal  
VTT  
A12  
E1  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
N1  
N2  
N3  
N4  
N5  
N6  
N7  
N8  
N9  
Y1  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
VTT  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
359  
Ballout and Package Information  
R
Table 13-59. GMCH Core Voltage Power Signal Group  
Ball  
L23  
Signal  
VCC  
L24  
M24  
N23  
N24  
P24  
R15  
R17  
T15  
T16  
T17  
U16  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Table 13-60. GMCH Ground Signal Group  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A15  
A18  
AF15  
AF19  
AF23  
AF28  
AF30  
AF7  
B22  
B27  
B4  
A20  
A25  
B6  
A27  
B9  
AA2  
C15  
C17  
C19  
C2  
AA23  
AA26  
AA27  
AA7  
AG2  
AG21  
AG25  
AG3  
C25  
C30  
C8  
AB28  
AB30  
AC24  
AC28  
AC9  
AH10  
AH13  
AH15  
AH19  
AH6  
D11  
D14  
D18  
D19  
D25  
E15  
E21  
E23  
E26  
E29  
E30  
E4  
AD12  
AD15  
AD19  
AD2  
AJ27  
AJ3  
AK12  
AK15  
AK19  
AK21  
AK23  
AK26  
AK29  
AK5  
AD21  
AD5  
AD9  
AE10  
AE11  
AE13  
AE26  
AE30  
AF11  
E7  
AK9  
F12  
F17  
F23  
B12  
B15  
360  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F27  
G15  
G2  
L8  
U27  
U29  
U31  
U4  
M23  
M25  
M27  
M29  
N25  
N27  
N29  
N31  
P2  
G21  
G22  
G25  
G29  
G31  
G6  
U7  
V1  
V25  
V27  
V28  
V30  
V8  
G8  
H11  
H13  
H18  
H20  
H23  
H26  
H30  
J17  
J20  
J22  
J4  
P23  
P25  
P27  
P29  
P4  
W24  
W26  
W28  
W30  
W6  
P6  
P8  
Y23  
Y25  
Y26  
Y29  
Y31  
Y4  
R16  
R24  
R25  
R26  
R27  
R29  
U15  
U17  
U23  
U25  
L2  
L25  
L27  
L29  
L4  
Y9  
L6  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
361  
Ballout and Package Information  
R
13.4.1  
Mobile Intel 915GMS Express Chipset Family Ball-Out Numerical Order  
Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
NC  
HA10#  
VTT  
NC  
NC  
VSS  
SA_DQ6  
NC  
A10  
A11  
A12  
A13  
A14  
A15  
A17  
A18  
A19  
A2  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA3  
AB30  
AB31  
AB5  
VSS  
SA_MA9  
SMXSLEWOUT  
VSS  
NC  
HA14#  
HA22#  
VSS  
AB6  
NC  
AB7  
NC  
AB9  
VSS  
VCCA_MPLL  
SMYSLEWIN  
SA_MA10  
SB_MA0  
VCCA_SM  
VCCA_SM  
SB_MA2  
VCCSM  
TVDAC_A  
VSS  
AC1  
SA_DQ4  
SA_DQ5  
HCLKN  
SA_DQS0#  
SA_DM0  
HDSTBN3#  
HDSTBP3#  
HD59#  
VSS  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC17  
AC18  
AC19  
AC2  
TVDAC_C  
NC  
VSS  
A20  
A21  
A22  
A23  
A25  
A26  
A27  
A29  
A3  
AA30  
AA31  
AA4  
DREF_CLKP  
DREF_CLKN  
VCCD_LVDS  
VSS  
AA5  
VCCSM  
AA6  
VCCTX_LVDS  
VSS  
SA_MA2  
SA_DQ63  
SA_MA1  
SA_MA0  
NC  
AA7  
AA8  
HD56#  
HD55#  
NC  
NC  
AA9  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC3  
NC  
AB1  
NC  
NC  
A30  
A31  
A4  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB17  
AB18  
AB19  
AB2  
NC  
NC  
SM_CKE0  
VSS  
NC  
HDRDY#  
HRS0#  
VTT  
NC  
SM_CKE1  
SA_DQ23  
SA_RCVENIN#  
VSS  
A5  
NC  
A6  
NC  
A7  
HREQ3#  
HREQ0#  
HREQ2#  
HD57#  
NC  
NC  
A8  
NC  
SA_DQ2  
VCCD_HMPLL1  
SA_DQ7  
VCCSM  
A9  
NC  
AA1  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA2  
AA20  
NC  
Ac30  
AC31  
AC5  
NC  
NC  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB3  
NC  
NC  
VCCD_HMPLL2  
SA_DQ58  
SA_DQ59  
VSS  
NC  
NC  
AC6  
NC  
SA_MA11  
SA_MA12  
SA_BS2  
SA_RCVENOUT#  
SMOCDCOMP0  
VSS  
AC7  
NC  
AC9  
NC  
VCCA_HPLL  
SMYSLEWOUT  
SM_CS0#  
VSS  
AD1  
NC  
AD10  
AD11  
AD12  
AD13  
AD14  
NC  
NC  
VSS  
SA_DQS0  
NC  
SA_BS1  
SB_MA3  
NC  
362  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
VSS  
VCCSM  
VCCSM  
VSS  
SB_MA10  
VSS  
SA_DQ12  
SA_DQ13  
SA_DQS6#  
SA_DQ46  
SA_DM5  
SA_DQS5  
SA_DQ56  
VSS  
AD15  
AD17  
AD18  
AD19  
AD2  
AF14  
AF15  
AF17  
AF18  
AF19  
AF2  
AG30  
AG31  
AG5  
VCCSM  
VCCSM  
VSS  
AG6  
VSS  
AG7  
SA_MA3  
VSS  
SA_DQS7#  
SA_MA6  
SA_MA7  
NC  
AD20  
AD21  
AD3  
AG9  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF3  
AH1  
SA_DQ62  
VSS  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH17  
AH18  
AH19  
AH2  
SA_DQ44  
SM_CS3#  
VSS  
AD5  
SA_DM7  
SMRCOMPN  
VSS  
VSS  
AD6  
SA_DM2  
SA_DQS2  
SA_DQS2#  
SA_DQ21  
VSS  
AD7  
SB_RAS#  
VSS  
AD9  
SMVREF1  
VSS  
AE1  
VCCSM  
VCCSM  
VSS  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE17  
AE18  
AE19  
AE2  
VSS  
SA_CAS#  
VSS  
SA_DQ16  
SA_DQ60  
VSS  
SA_DQ55  
SB_MA9  
SM_CKE2  
SA_DQS6  
SM_CK4  
VSS  
SB_MA1  
SA_BS0  
VCCSM  
VCCSM  
SA_MA4  
SA_DQS7  
SA_MA5  
SA_MA8  
NC  
AF30  
AF31  
AF5  
AH20  
AH21  
AH3  
SM_CK0#  
SM_CK1  
SA_DQ43  
VSS  
AF6  
AH5  
AF7  
AH6  
SA_DQS5#  
SA_DQ57  
SA_DQ40  
SA_DQ45  
SM_ODT1  
SM_CS1#  
SB_BS1  
SA_RAS#  
VCCSM  
VCCSM  
SB_MA4  
VSS  
SA_DQ42  
SA_DQ38  
NC  
AF9  
AH7  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE29  
AE3  
AG1  
AH9  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG17  
AG18  
AG19  
AG2  
AJ1  
SA_DM4  
SA_DQ37  
SM_ODT3  
SB_CAS#  
SB_BS0  
SA_WE#  
VCCSM  
VCCSM  
SB_MA5  
SA_DQ51  
SB_MA6  
SM_CKE3  
NC  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AJ17  
AJ18  
AJ19  
AJ2  
SA_DQ22  
SA_DQ19  
SA_DQ18  
VSS  
SA_DQ20  
SA_DQ17  
SA_DQ3  
SA_DQ61  
VSS  
SB_MA12  
VSS  
AE30  
AE31  
AE5  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG3  
SM_CK0  
SM_CK1#  
SA_DQ47  
SMRCOMPP  
SMOCDCOMP1  
VCCSM  
SA_DQ41  
VSS  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
NC  
SA_DQ30  
SA_DQ31  
VSS  
AE6  
SA_DQS3  
SA_DQS3#  
SA_DQ25  
SA_DQ10  
VSS  
AE7  
AE9  
SA_DQ27  
SA_DQ26  
SA_DQ9  
SA_DQ8  
VSS  
AF1  
AF10  
AF11  
AF12  
AF13  
SM_ODT0  
SA_MA13  
SM_CK3#  
SM_CK3  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
363  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
VSS  
SA_DM1  
NC  
NC  
SB_MA11  
SB_BS2  
NC  
VSS  
NC  
AJ3  
AJ30  
AJ31  
AJ5  
AL2  
AL20  
AL21  
AL22  
AL23  
AL24  
AL25  
AL26  
AL27  
AL28  
AL29  
AL3  
AL30  
AL31  
AL5  
AL6  
AL7  
AL9  
B1  
B9  
C1  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C17  
C18  
C19  
C2  
SM_CK4#  
SA_DQ53  
SA_DQ34  
SA_DQ39  
NC  
HA7#  
VCCSM  
SA_DQ29  
SA_DQ24  
SA_DQ11  
SA_DQ14  
SA_DQS1  
NC  
AJ6  
HA15#  
AJ7  
HA23#  
AJ9  
HA27#  
VSS  
AK1  
SA_DQS4  
SA_DQ32  
VSS  
VSS  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK17  
AK18  
AK19  
AK2  
TVDAC_B  
VSS  
SM_ODT2  
SB_WE#  
VSS  
NC  
VSS  
NC  
C20  
C21  
C22  
C23  
C25  
C26  
C27  
C29  
C3  
VCCA_CRTDAC  
VCCHV  
VCCHV  
BLUE#  
VSS  
NC  
VCCSM  
VCCSM  
VSS  
SA_DM6  
VCCSM  
SA_DQ48  
SA_DQ35  
NC  
SA_DQ50  
SB_MA7  
VSS  
LCTLB_DATA  
LACLKP  
LADATAP2  
HHITM#  
VSS  
AK20  
AK21  
AK22  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
AK3  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
B17  
B18  
B19  
B2  
NC  
HA8#  
VSS  
VSS  
C30  
C31  
C4  
SA_DM3  
SA_DQ28  
VSS  
NC  
HA21#  
HA31#  
HLOCK#  
HCPUSLP#  
HA3#  
VSS  
C5  
SA_DQ15  
SA_DQS1#  
VSS  
TV_IRTNA  
TV_IRTNB  
TV_IRTNC  
HHIT#  
C6  
C7  
HRS2#  
VSS  
C8  
SA_DQ54  
VCCSM  
NC  
C9  
HA9#  
VCCHV  
VCCA_DPLLA  
VSS  
VSS  
AK30  
AK31  
AK5  
B20  
B21  
B22  
B23  
B25  
B26  
B27  
B29  
B3  
D11  
D12  
D13  
D14  
D15  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D25  
D26  
D27  
D29  
HA11#  
VSS  
HA30#  
SA_DQ52  
SA_DQ49  
VSS  
VCCD_LVDS  
VCCD_LVDS  
VCCTX_LVDS  
VSS  
VSS  
AK6  
CFG0  
AK7  
AK9  
VCCDQ_TVDAC  
VSS  
NC  
AL1  
SA_DQS4#  
SA_DQ33  
SA_DQ36  
SB_MA13  
SM_CS2#  
VCCA_SM  
VCCSM  
VCCSM  
SB_MA8  
VCCA_LVDS  
HBPRI#  
VSSALVDS  
NC  
VSS  
AL10  
AL11  
AL12  
AL13  
AL14  
AL15  
AL17  
AL18  
AL19  
VSSA_CRTDAC  
VCCA_CRTDAC  
GREEN#  
BLUE  
B30  
B31  
B4  
VSS  
VSS  
B5  
HRS1#  
VSS  
B6  
LCTLA_CLK  
LACLKN  
LADATAN2  
B7  
HREQ1#  
HA6#  
B8  
364  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
LADATAP1  
LADATAN1  
VTT  
D30  
D31  
E1  
F25  
F26  
F27  
F29  
F3  
LDDC_DATA  
LBKLT_EN  
VSS  
H15  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H25  
H26  
H27  
H29  
H30  
H31  
J1  
HADSTB1#  
CFG6  
VSS  
NC  
E10  
E11  
E12  
E13  
E14  
E15  
E17  
E18  
E19  
E2  
RSVD24  
HD4#  
RSVD23  
VSS  
HA13#  
LIBG  
HA5#  
F30  
F31  
F4  
VCC_SYNC  
HSYNC  
VSS  
LADATAN0  
HD6#  
HA26#  
HA29#  
VSS  
F5  
HD0#  
LVDD_EN  
VSS  
CFG1  
F6  
HD9#  
VCCD_TVDAC  
VCCA_TVBG  
HD2#  
F7  
HCPURST#  
HDBSY#  
HBREQ0#  
HDPWR#  
NC  
SDVOCTRL_DATA  
LVREFL  
VSS  
F8  
F9  
DREF_SSCLKN  
HD12#  
E20  
E21  
E22  
E23  
E25  
E26  
E27  
E29  
E3  
VSSA_TVBG  
VSS  
G1  
G10  
G11  
G12  
G13  
G14  
G15  
G17  
G18  
G19  
G2  
CFG12  
GREEN  
VSS  
HA4#  
J10  
J11  
J12  
J13  
J14  
J15  
J17  
J18  
J19  
J2  
HA16#  
HVREF  
LDDC_CLK  
VSS  
HA19#  
HREQ4#  
HXSWING  
HA18#  
HA17#  
VSS  
RSVD25  
VSS  
CFG5  
HA24#  
VSS  
HD7#  
VCCA_TVDACA  
VCCA_TVDACB  
VSS  
VSS  
E30  
E31  
E4  
THRMTRIP#  
TV_REFSET  
HD22#  
LADATAP0  
VSS  
G20  
G21  
G22  
G23  
G25  
G26  
G27  
G29  
G3  
VCCA_TVDACC  
VSS  
VSS  
E5  
HDEFER#  
HXSCOMP  
VSS  
J20  
J21  
J22  
J23  
J25  
J26  
J27  
J29  
J3  
VSS  
E6  
REFSET  
VSS  
E7  
VSYNC  
VSS  
E8  
HBNR#  
HTRDY#  
HD13#  
DDCCLK  
DDCDATA  
BM_BUSY#  
EXT_TS0#  
LVREFH  
HD21#  
E9  
LBKLT_CRTL  
SDVOCTRL_CLK  
VSS  
F1  
F10  
F11  
F12  
F13  
F14  
F15  
F17  
F18  
F19  
F2  
NC  
HADSTB0#  
VSS  
HD5#  
LVBG  
G30  
G31  
G4  
VSS  
VCCA_DPLLB  
DREF_SSCLKP  
VSS  
HA12#  
J30  
J31  
J4  
HA28#  
HDSTBP0#  
HDSTBN0#  
VSS  
CFG2  
G5  
VSS  
G6  
J5  
HD3#  
VCCA_TVDACA  
VCCA_TVDACB  
HD1#  
G7  
HD15#  
J6  
HDINV0#  
HD10#  
VSS  
G8  
J7  
G9  
HADS#  
VSS  
J8  
HD11#  
F20  
F21  
F22  
F23  
VCCA_TVDACC  
RED  
H11  
H12  
H13  
H14  
J9  
HD8#  
HA25#  
K1  
HXRCOMP  
NC  
VSS  
RED#  
K10  
K11  
VSS  
NC  
HA20#  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
365  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
NC  
NC  
SDVO_TVCLKIN  
NC  
K12  
K13  
K14  
K15  
K17  
K18  
K19  
K2  
L28  
L29  
L3  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N2  
VSS  
NC  
NC  
NC  
HYSWING  
NC  
SDVOB_RED  
NC  
L30  
L31  
L4  
NC  
VSSA_3GBG  
NC  
NC  
VSS  
NC  
NC  
NC  
L5  
HD23#  
VSS  
NC  
HYSCOMP  
NC  
L6  
VTT  
K20  
K21  
K22  
K23  
K25  
K26  
K27  
K29  
K3  
L7  
HDINV1#  
NC  
VSS  
NC  
L8  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N3  
NC  
NC  
L9  
HDSTBP1#  
NC  
VTT  
NC  
M1  
NC  
VCC  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M2  
NC  
NC  
NC  
VCC  
NC  
NC  
VSS  
NC  
NC  
SDVOB_GREEN#  
NC  
VSS  
SDVOB_INT  
VSS  
VTT  
HD16#  
NC  
NC  
K30  
K31  
K4  
NC  
NC  
NC  
HD17#  
HD20#  
HD29#  
HD25#  
HDSTBN1#  
HD14#  
HYRCOMP  
NC  
NC  
SDVOB_BLUE  
VSS  
VTT  
K5  
N30  
N31  
N4  
NC  
K6  
VTT  
K7  
NC  
VTT  
K8  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M3  
N5  
NC  
VTT  
K9  
N6  
VTT  
L1  
EXT_TS1#  
N7  
VSS  
VTT  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L2  
N8  
NC  
VCC  
VTT  
N9  
NC  
VSS  
P1  
HD18#  
NC  
NC  
SDVOB_GREEN  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P2  
NC  
VSS  
NC  
NC  
SDVO_TVCLKIN#  
NC  
NC  
VSS  
VTT  
NC  
NC  
NC  
NC  
SDVOB_RED#  
VCCA_3GBG  
VTT  
NC  
M30  
M31  
M4  
NC  
NC  
VSS  
NC  
NC  
VTT  
NC  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
M5  
NC  
VTT  
NC  
M6  
VTT  
VSS  
NC  
NC  
M7  
VCC  
VCC  
VSS  
EXP_ICOMPO  
VSS  
VTT  
M8  
P20  
P21  
P22  
P23  
P24  
VTT  
NC  
M9  
VTT  
NC  
N1  
NC  
VSS  
VCC  
N10  
N11  
NC  
366  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
VSS  
EXP_COMPI  
VSS  
NC  
NC  
NC  
NC  
P25  
P26  
P27  
P28  
P29  
P3  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
U1  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V2  
NC  
NC  
SDVOB_INT#  
VSS  
NC  
NC  
VCC  
NC  
VCC  
NC  
HD36#  
SDVOB_BLUE#  
VCC3G  
VSS  
VCC  
NC  
P30  
P31  
P4  
NC  
NC  
NC  
HD51#  
NC  
NC  
P5  
HD35#  
VSS  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V3  
NC  
NC  
P6  
NC  
P7  
HD38#  
VSS  
HDSTBN2#  
NC  
GCLKN  
DMI_RXN0  
VSS  
P8  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U2  
NC  
P9  
HD39#  
HD28#  
NC  
NC  
R1  
NC  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R2  
DMI_TXN0  
VSS  
NC  
NC  
NC  
VSS  
VSS  
NC  
VCC  
DMI_RXP1  
HD32#  
VSS  
NC  
VSS  
VCC  
NC  
V30  
V31  
V4  
VSS  
NC  
DMI_TXP1  
HD33#  
HD46#  
HD47#  
HD58#  
VSS  
VCC  
HDSTBP2#  
NC  
NC  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U3  
V5  
NC  
NC  
V6  
NC  
HD19#  
NC  
V7  
VSS  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R3  
V8  
NC  
DMI_RXP0  
VSS  
V9  
HD27#  
HD50#  
NC  
NC  
W1  
VCCA_3GPLL  
VSS  
DMI_TXP0  
VSS  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W2  
NC  
VSS  
SDVO_FLDSTALL#  
VSS  
NC  
VSS  
NC  
VSS  
NC  
HD30#  
SDVOB_BLKN  
VSS  
SDVO_FLDSTALL  
VSS  
NC  
U30  
U31  
U4  
NC  
VSS  
NC  
HD42#  
SDVOB_BLKP  
VCC3G  
NC  
R30  
R31  
R4  
U5  
HD45#  
HD44#  
VSS  
NC  
U6  
RSVD1  
NC  
HD41#  
U7  
R5  
HD43#  
U8  
HD24#  
HD26#  
VSS  
W20  
W21  
W22  
W23  
W24  
NC  
R6  
HD34#  
U9  
NC  
R7  
HDINV2#  
HD37#  
V1  
NC  
GCLKP  
VSS  
R8  
V10  
V11  
NC  
R9  
HD31#  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
367  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
NC  
NC  
HCLKP  
SMVREF0  
VSS  
W25  
W26  
W27  
W28  
W29  
W3  
RSTIN#  
VSS  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y2  
Y3  
Y30  
Y31  
Y4  
NC  
PWROK  
VSS  
NC  
VSS  
NC  
DMI_RXN1  
HD40#  
VSS  
Y5  
HD54#  
HD60#  
HD63#  
HD61#  
VSS  
NC  
Y6  
NC  
W30  
W31  
W4  
Y7  
DMI_TXN1  
HD52#  
HDINV3#  
VSS  
HD53#  
NC  
Y8  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Y27  
Y28  
Y29  
Y9  
NC  
W5  
NC  
W6  
VSS  
W7  
HD48#  
HD49#  
HD62#  
VTT  
SMXSLEWIN  
VSS  
W8  
W9  
VSS  
Y1  
NC  
SA_DQ0  
SA_DQ1  
VSS  
Y10  
Y11  
Y12  
NC  
NC  
368  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
13.5 Mobile Intel 915GMS Express Chipset Family Signal Name  
Ordering Ball List  
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
D23  
C23  
J26  
BLUE  
BLUE#  
M22  
V23  
W23  
E22  
D22  
A11  
D12  
F13  
E11  
A13  
C12  
G12  
G14  
J14  
G13  
H14  
B13  
A14  
C13  
J15  
H12  
E13  
C14  
F14  
E14  
C6  
EXT_TS1#  
GCLKN  
GCLKP  
GREEN  
GREEN#  
HA10#  
HA11#  
HA12#  
HA13#  
HA14#  
HA15#  
HA16#  
HA17#  
HA18#  
HA19#  
HA20#  
HA21#  
HA22#  
HA23#  
HA24#  
HA25#  
HA26#  
HA27#  
HA28#  
HA29#  
HA3#  
F9  
AA3  
Y3  
F7  
C5  
F5  
F2  
J7  
HBREQ0#  
HCLKN  
HCLKP  
HCPURST#  
HCPUSLP#  
HD0#  
BM_BUSY#  
CFG0  
D15  
E17  
F15  
G17  
H17  
J23  
CFG1  
CFG2  
CFG5  
HD1#  
CFG6  
HD10#  
HD11#  
HD12#  
HD13#  
HD14#  
HD15#  
HD16#  
HD17#  
HD18#  
HD19#  
HD2#  
DDCCLK  
J8  
J25  
DDCDATA  
J1  
V24  
W29  
U24  
V29  
V26  
W31  
U26  
V31  
A22  
A21  
H31  
J31  
DMI_RXN0  
F1  
K9  
G7  
K3  
K4  
P1  
R2  
E2  
K5  
J3  
DMI_RXN1  
DMI_RXP0  
DMI_RXP1  
DMI_TXN0  
DMI_TXN1  
DMI_TXP0  
DMI_TXP1  
DREF_CLKN  
DREF_CLKP  
DREF_SSCLKN  
DREF_SSCLKP  
EXP_COMPI  
EXP_ICOMPO  
SDVO_TVCLKIN#  
SDVOB_INT#  
SDVO_FLDSTALL#  
SDVO_TVCLKIN  
SDVOB_INT  
SDVO_FLDSTALL  
SDVOB_RED#  
SDVOB_GREEN#  
SDVOB_BLUE#  
SDVOB_BLKN  
SDVOB_RED  
SDVOB_GREEN  
SDVOB_BLUE  
SDVOB_BLKP  
EXT_TS0#  
HD20#  
HD21#  
HD22#  
HD23#  
HD24#  
HD25#  
HD26#  
HD27#  
HD28#  
HD29#  
HD3#  
J2  
L5  
P26  
L26  
M28  
P28  
U28  
L28  
N28  
R28  
M30  
N26  
P30  
U30  
L30  
M26  
N30  
R30  
J27  
U8  
K7  
U9  
V9  
R1  
K6  
J5  
D13  
B14  
G11  
E12  
B8  
HA30#  
HA31#  
HA4#  
HA5#  
U3  
R9  
V3  
V4  
R6  
P5  
P3  
R8  
P7  
P9  
HD30#  
HD31#  
HD32#  
HD33#  
HD34#  
HD35#  
HD36#  
HD37#  
HD38#  
HD39#  
HA6#  
C11  
B11  
C9  
HA7#  
HA8#  
HA9#  
G9  
HADS#  
HADSTB0#  
HADSTB1#  
HBNR#  
HBPRI#  
F11  
H15  
E8  
B3  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
369  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
F3  
W3  
R4  
R3  
R5  
U6  
U5  
V5  
HD4#  
HD40#  
AA5  
B2  
HDSTBP3#  
HHIT#  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
HD41#  
C3  
HHITM#  
HLOCK#  
HREQ0#  
HREQ1#  
HREQ2#  
HREQ3#  
HREQ4#  
HRS0#  
HD42#  
C4  
HD43#  
A8  
HD44#  
B7  
HD45#  
A9  
HD46#  
A7  
V6  
HD47#  
J12  
A5  
W7  
W8  
G3  
W1  
V2  
HD48#  
HD49#  
B5  
HRS1#  
HD5#  
C7  
HRS2#  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB17  
AB18  
AB19  
AB2  
HD50#  
H22  
E9  
HSYNC  
HD51#  
HTRDY#  
HVREF  
W4  
Y2  
HD52#  
J11  
K1  
HD53#  
HXRCOMP  
HXSCOMP  
HXSWING  
HYRCOMP  
HYSCOMP  
HYSWING  
LACLKN  
LACLKP  
LADATAN0  
LADATAN1  
LADATAN2  
LADATAP0  
LADATAP1  
LADATAP2  
LBKLT_CRTL  
LBKLT_EN  
LCTLA_CLK  
LCTLB_DATA  
LDDC_CLK  
LDDC_DATA  
LIBG  
Y5  
HD54#  
E6  
AA9  
AA8  
AA1  
V7  
HD55#  
J13  
L1  
HD56#  
HD57#  
K2  
HD58#  
L3  
AA6  
F4  
HD59#  
D27  
C27  
F31  
D31  
D29  
E31  
D30  
C29  
G26  
F26  
D26  
C26  
E25  
F25  
F30  
G30  
H25  
J29  
H29  
A10  
A31  
AA10  
AA11  
AA12  
AB20  
AB21  
AB22  
AB3  
HD6#  
Y6  
HD60#  
Y8  
HD61#  
W9  
Y7  
HD62#  
AB5  
HD63#  
AB6  
E3  
HD7#  
AB7  
J9  
HD8#  
AB9  
F6  
HD9#  
AC22  
AE22  
AF22  
AG22  
AJ22  
AK22  
AL22  
B10  
F8  
HDBSY#  
HDEFER#  
HDINV0#  
HDINV1#  
HDINV2#  
HDINV3#  
HDPWR#  
HDRDY#  
HDSTBN0#  
HDSTBN1#  
HDSTBN2#  
HDSTBN3#  
HDSTBP0#  
HDSTBP1#  
HDSTBP2#  
E5  
J6  
L7  
R7  
W5  
G1  
A4  
LVBG  
LVDD_EN  
LVREFH  
LVREFL  
NC  
C10  
G5  
K8  
E10  
F10  
U1  
AA4  
G4  
L9  
G10  
NC  
J10  
NC  
K10  
NC  
K11  
NC  
U2  
K12  
370  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
K13  
K14  
K15  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K25  
K27  
K29  
K30  
K31  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R10  
R11  
R12  
R13  
R14  
R18  
R19  
R20  
R21  
R22  
T11  
T12  
T13  
T14  
T18  
T19  
T20  
T21  
U10  
U11  
U12  
U13  
U14  
U18  
U19  
U20  
U21  
U22  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
AL31  
AK31  
AJ31  
C31  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
371  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
NC  
NC  
SA_DQ14  
SA_DQ15  
SA_DQ16  
SA_DQ17  
SA_DQ18  
SA_DQ19  
SA_DQ2  
SA_DQ55  
SA_DQ56  
SA_DQ57  
SA_DQ58  
SA_DQ59  
SA_DQ6  
B31  
AL30  
A30  
AL27  
AK27  
AF29  
AE28  
AE25  
AE24  
AC29  
AE27  
AF27  
AE23  
AC26  
AL25  
AJ25  
AG27  
AG26  
AK25  
AL24  
AE29  
AG23  
AG24  
AK11  
AL11  
AJ7  
AH2  
AH1  
NC  
AG1  
NC  
AL29  
A2  
AC6  
NC  
AC7  
NC  
B1  
AB31  
AF3  
NC  
SA_DQ60  
SA_DQ61  
SA_DQ62  
SA_DQ63  
SA_DQ7  
A29  
NC  
SA_DQ20  
SA_DQ21  
SA_DQ22  
SA_DQ23  
SA_DQ24  
SA_DQ25  
SA_DQ26  
SA_DQ27  
SA_DQ28  
SA_DQ29  
SA_DQ3  
AL3  
AE3  
NC  
A3  
AD3  
NC  
AL2  
AC2  
NC  
AL1  
Ac30  
AG29  
AG28  
AB29  
AA30  
AL28  
AK28  
AF25  
AF26  
AJ23  
AJ24  
AK10  
AL10  
AG9  
NC  
SA_DQ8  
AK1  
AJ1  
NC  
SA_DQ9  
NC  
SA_DQS0  
SA_DQS0#  
SA_DQS1  
SA_DQS1#  
SA_DQS2  
SA_DQS2#  
SA_DQS3  
SA_DQS3#  
SA_DQS4  
SA_DQS4#  
SA_DQS5  
SA_DQS5#  
SA_DQS6  
SA_DQS6#  
SA_DQS7  
SA_DQS7#  
SA_MA0  
C1  
W27  
F21  
PWROK  
RED  
F22  
RED#  
J21  
REFSET  
RSTIN#  
RSVD1  
NC  
SA_DQ30  
SA_DQ31  
SA_DQ32  
SA_DQ33  
SA_DQ34  
SA_DQ35  
SA_DQ36  
SA_DQ37  
SA_DQ38  
SA_DQ39  
SA_DQ4  
W25  
W2  
K26  
L22  
NC  
H19  
F29  
RSVD23  
RSVD24  
RSVD25  
NC  
AL9  
E27  
AL12  
AJ11  
AH9  
AF9  
M10  
F10  
AH3  
NC  
AG5  
SA_BS0  
SA_BS1  
SA_BS2  
SA_CAS#  
SA_DM0  
SA_DM1  
SA_DM2  
SA_DM3  
SA_DM4  
SA_DM5  
SA_DM6  
SA_DM7  
SA_DQ0  
SA_DQ1  
SA_DQ10  
SA_DQ11  
SA_DQ12  
SA_DQ13  
AE15  
AD13  
AB25  
AE12  
AA31  
AJ30  
AF24  
AK24  
AJ10  
AG7  
AL5  
AJ9  
AE2  
AA28  
AG10  
AF10  
AH7  
AF2  
SA_DQ40  
SA_DQ41  
SA_DQ42  
SA_DQ43  
SA_DQ44  
SA_DQ45  
SA_DQ46  
SA_DQ47  
SA_DQ48  
SA_DQ49  
SA_DQ5  
AC21  
AC20  
AC11  
AB23  
AB24  
AF13  
AC19  
AD20  
AE19  
AE20  
AF20  
AF21  
AE21  
AA24  
AG15  
AC27  
SA_MA1  
SA_MA10  
SA_MA11  
SA_MA12  
SA_MA13  
SA_MA2  
AF6  
AH11  
AG11  
AG6  
SA_MA3  
AE6  
SA_MA4  
AL7  
SA_MA5  
AD6  
Y27  
AK7  
SA_MA6  
AA29  
AK2  
SA_DQ50  
SA_DQ51  
SA_DQ52  
SA_DQ53  
SA_DQ54  
SA_MA7  
Y28  
SA_MA8  
AJ26  
AL26  
AG30  
AG31  
AJ2  
SA_MA9  
AK6  
SA_RAS#  
SA_RCVENIN#  
AJ6  
AK3  
372  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
SA_RCVENOUT#  
SA_WE#  
SMOCDCOMP1  
SMRCOMPN  
SMRCOMPP  
SMVREF0  
SMVREF1  
SMXSLEWIN  
SMXSLEWOUT  
SMYSLEWIN  
SMYSLEWOUT  
THRMTRIP#  
TV_IRTNA  
TV_IRTNB  
TV_IRTNC  
TV_REFSET  
TVDAC_A  
TVDAC_B  
TVDAC_C  
VCC  
AB26  
AJ15  
AJ14  
AG14  
AL21  
AJ13  
AC12  
AE14  
AF14  
AL20  
AG20  
AL13  
AC15  
AD14  
AG19  
AJ19  
AJ20  
AK20  
AL19  
AH20  
AH14  
AK14  
G27  
AE9  
AD7  
AE7  
Y30  
AE1  
Y24  
AA25  
AC10  
AD10  
J18  
F18  
G18  
VCCA_TVDACA  
VCCA_TVDACA  
VCCA_TVDACB  
VCCA_TVDACB  
VCCA_TVDACC  
VCCA_TVDACC  
VCCD_HMPLL1  
VCCD_HMPLL2  
VCCD_LVDS  
VCCD_LVDS  
VCCD_LVDS  
VCCD_TVDAC  
VCCDQ_TVDAC  
VCCHV  
SB_BS0  
F19  
SB_BS1  
G19  
SB_BS2  
F20  
SB_CAS#  
SB_MA0  
G20  
AC3  
AC5  
A23  
SB_MA1  
SB_MA10  
SB_MA11  
SB_MA12  
SB_MA13  
SB_MA2  
B23  
B17  
B18  
B19  
J19  
B25  
E18  
D17  
SB_MA3  
B20  
SB_MA4  
VCCHV  
A17  
C18  
A19  
L23  
C21  
SB_MA5  
VCCHV  
C22  
SB_MA6  
VCCSM  
AC17  
AC18  
AC31  
AD17  
AD18  
AE17  
AE18  
AF1  
SB_MA7  
VCCSM  
SB_MA8  
VCC  
VCCSM  
L24  
SB_MA9  
VCC  
VCCSM  
M24  
N23  
N24  
P24  
R15  
R17  
T15  
SB_RAS#  
SB_WE#  
VCC  
VCCSM  
VCC  
VCCSM  
VCC  
VCCSM  
SDVOCTRL_CLK  
SDVOCTRL_DATA  
SM_CK0  
VCC  
VCCSM  
H27  
VCC  
VCCSM  
AE31  
AF31  
AF5  
AF17  
AF18  
AG17  
AG18  
AH17  
AH18  
AJ17  
AJ18  
AK17  
AK18  
AK30  
AL17  
AL18  
AL23  
AL6  
SM_CK0#  
SM_CK1  
VCC  
VCCSM  
VCC  
VCCSM  
T16  
SM_CK1#  
SM_CK3  
VCC  
VCCSM  
AE5  
T17  
VCC  
VCCSM  
AJ29  
AJ28  
AH5  
U16  
H21  
P31  
R31  
M31  
R23  
C20  
D21  
B21  
J30  
SM_CK3#  
SM_CK4  
VCCSM  
VCC_SYNC  
VCC3G  
VCCSM  
SM_CK4#  
SM_CKE0  
SM_CKE1  
SM_CKE2  
SM_CKE3  
SM_CS0#  
SM_CS1#  
SM_CS2#  
SM_CS3#  
SM_ODT0  
SM_ODT1  
SM_ODT2  
SM_ODT3  
SMOCDCOMP0  
VCC3G  
VCCSM  
AJ5  
VCCA_3GBG  
VCCA_3GPLL  
VCCA_CRTDAC  
VCCA_CRTDAC  
VCCA_DPLLA  
VCCA_DPLLB  
VCCA_HPLL  
VCCA_LVDS  
VCCA_MPLL  
VCCA_SM  
VCCA_SM  
VCCA_SM  
VCCA_TVBG  
VCCSM  
AC23  
AC25  
AH21  
AJ21  
AD11  
AG13  
AL14  
AH12  
AF12  
AG12  
AK13  
AJ12  
AB27  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
VCCSM  
AD1  
B29  
AC1  
AC13  
AC14  
AL15  
E19  
VCCTX_LVDS  
VCCTX_LVDS  
VSS  
A26  
B26  
A15  
VSS  
A18  
VSS  
A20  
VSS  
A25  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
373  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
Ball  
Signal  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A27  
AA2  
AK23  
AK26  
AK29  
AK5  
AK9  
B12  
B15  
B22  
B27  
B4  
H11  
H13  
H18  
H20  
H23  
H26  
H30  
J17  
J20  
J22  
J4  
AA23  
AA26  
AA27  
AA7  
AB28  
AB30  
AC24  
AC28  
AC9  
B6  
AD12  
AD15  
AD19  
AD2  
B9  
L2  
C15  
C17  
C19  
C2  
L25  
L27  
L29  
L4  
AD21  
AD5  
C25  
C30  
C8  
L6  
AD9  
L8  
AE10  
AE11  
AE13  
AE26  
AE30  
AF11  
AF15  
AF19  
AF23  
AF28  
AF30  
AF7  
M23  
M25  
M27  
M29  
N25  
N27  
N29  
N31  
P2  
D11  
D14  
D18  
D19  
D25  
E15  
E21  
E23  
E26  
E29  
E30  
E4  
P23  
P25  
P27  
P29  
P4  
AG2  
AG21  
AG25  
AG3  
E7  
F12  
F17  
F23  
F27  
G15  
G2  
P6  
P8  
AH10  
AH13  
AH15  
AH19  
AH6  
R16  
R24  
R25  
R26  
R27  
R29  
U15  
U17  
U23  
U25  
U27  
G21  
G22  
G25  
G29  
G31  
G6  
AJ27  
AJ3  
AK12  
AK15  
AK19  
AK21  
G8  
374  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Ball  
Signal  
Ball  
Signal  
VSS  
VSS  
VTT  
VTT  
VTT  
VTT  
VTT  
U29  
U31  
U4  
N6  
N7  
N8  
N9  
Y1  
VSS  
VSS  
U7  
VSS  
V1  
VSS  
V25  
V27  
V28  
V30  
V8  
VSS  
VSS  
VSS  
VSS  
VSS  
W24  
W26  
W28  
W30  
W6  
Y23  
Y25  
Y26  
Y29  
Y31  
Y4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
Y9  
NC  
A31  
L31  
D20  
E20  
B30  
G23  
A12  
A6  
VSSA_3GBG  
VSSA_CRTDAC  
VSSA_TVBG  
VSSALVDS  
VSYNC  
VTT  
VTT  
VTT  
E1  
VTT  
M1  
VTT  
M2  
VTT  
M3  
VTT  
M4  
VTT  
M5  
VTT  
M6  
VTT  
M7  
VTT  
M8  
VTT  
M9  
VTT  
N1  
VTT  
N2  
VTT  
N3  
VTT  
N4  
VTT  
N5  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
375  
Ballout and Package Information  
R
13.6  
Mobile Intel 91xM Series Express Chipset Family  
Package Mechanical Information  
13.6.1  
Intel 915PM/GM/GME and 910GML/GMLE Package  
Mechanical Information  
The Intel 915GMCH comes in a Micro-FCBGA package, which is similar to the mobile processor  
package. The package consists of a silicon die mounted face down on an organic substrate  
populated with solder balls on the bottom side. Capacitors may be placed in the area surrounding  
the die. Because the die-side capacitors are electrically conductive, and only slightly shorter than  
the die height, care should be taken to avoid contacting the capacitors with electrically conductive  
materials. Doing so may short the capacitors and possibly damage the device or render it  
inactive.  
The use of an insulating material between the capacitors and any thermal solution should be  
considered to prevent capacitor shorting. An exclusion, or keep out area, surrounds the die and  
capacitors, and identifies the contact area for the package. Care should be taken to avoid contact  
with the package inside this area.  
The Intel 915 package is a 1257 ball micro-FCBGA. Unless otherwise specified, interpret the  
dimensions and tolerances in accordance with ASME Y14.5-1994. The dimensions are in  
millimeters.  
Tolerances:  
.X - ± 0.1  
.XX - ± 0.05  
Angles - ± 1.0 degrees  
Package parameters  
Die Size: 395mm x 395mm  
Land metal diameter: 630 microns  
Solder resist opening: 560 microns  
376  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Figure 13-5. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express Chipset Package Micro-  
FCBGA  
Figure 13-6. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express Chipset Package Ball  
Grid Array  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
377  
Ballout and Package Information  
R
Figure 13-7. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express Chipset Package Top  
View  
378  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Figure 13-8. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express Chipset Package Side  
View  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
379  
Ballout and Package Information  
R
Figure 13-9. Mobile Intel 915PM/GM/GME/GL and 910GMLE Express Chipset Package Details  
B & K  
Figure 13-10. Recommended Via Stack Up for Platform (Standard Chipset Package)  
4/4/4 mil internal stripline  
trace/space in breakout region  
12mil Cu web  
in plane  
30 mil max  
anti-pad size  
required to  
maintain gnd  
reference  
16mil BGA pad  
42mil BGA pitch  
42mil BGA pitch  
42mil via pitch  
10/22/30 via  
380  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
13.7  
Mobile Intel 915GMS Express Chipset Package  
Mechanical Information  
The Mobile Intel 915GMS Express Chipset comes in a Micro-FCBGA package, which is similar  
to the mobile processor package. The package consists of a silicon die mounted face down on an  
organic substrate populated with solder balls on the bottom side. Capacitors may be placed in the  
area surrounding the die. Because the die-side capacitors are electrically conductive, and only  
slightly shorter than the die height, care should be taken to avoid contacting the capacitors with  
electrically conductive materials. Doing so may short the capacitors and possibly damage the  
device or render it inactive.  
The use of an insulating material between the capacitors and any thermal solution should be  
considered to prevent capacitor shorting. An exclusion, or keep out area, surrounds the die and  
capacitors, and identifies the contact area for the package. Care should be taken to avoid contact  
with the package inside this area.  
The Intel 915GMS package is an 840 ball micro-FCBGA. Unless otherwise specified, interpret  
the dimensions and tolerances in accordance with ASME Y14.5-1994. The dimensions are in  
millimeters.  
Tolerances:  
.X - ± 0.1  
.XX - ± 0.05  
Angles - ± 1.0 degrees  
Note: The ball array is not uniform and it is non-orthogonal. Mobile Intel 915GMS consists of  
five regions. Four regions around the periphery and one region in the center. Each region has  
different pin pitch characteristics to facilitate breakout routing.  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
381  
Ballout and Package Information  
R
Figure 13-11. Mobile Intel 915GMS Express Chipset Package Micro-FCBGA  
Figure 13-12. Mobile Intel 915GMS Express Chipset Package Ball Grid Array  
7.3152  
(0.8128 x 9 = 7.3152)  
17.2720  
(1.016 x 17 = 17.2720)  
2
4
6
8
10  
12  
14 16 18  
15 17  
20  
22 24 26 28 30  
23 25 27 29 31  
1
3
5
7
9
11  
AL11  
13  
AL13  
19  
21  
AL22  
AL24  
AK24  
AJ24  
AL26  
AK26  
AJ26  
AL28  
AK28  
AJ28  
AG28  
AF28  
AE28  
AC28  
AB28  
AA28  
AL30  
AL1  
AL3  
AL6  
AK6  
AJ6  
AH6  
AG6  
AF6  
AE6  
AD6  
AC6  
AB6  
AL9  
AL15  
AL18  
AK18  
AJ18  
AH18  
AG18  
AF18  
AE18  
AD18  
AC18  
AB18  
AL20  
AK20  
AJ20  
AH20  
AG20  
AF20  
AE20  
AD20  
AC20  
AB20  
AL2  
AK2  
AL5  
AL7  
AL10  
AK10  
AL12  
AK12  
AL14  
AL17  
AK17  
AJ17  
AH17  
AG17  
AF17  
AE17  
AD17  
AC17  
AB17  
AL19  
AL21  
AL23  
AK23  
AJ23  
AL25  
AK25  
AJ25  
AL27  
AK27  
AJ27  
AL29  
AK29  
AJ29  
AL31  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AK1  
AJ1  
AH1  
AG1  
AK22  
AK3  
AJ3  
AK9  
AJ9  
AK11  
AJ11  
AK13  
AJ13  
AK15  
AJ15  
AK30  
AK31  
AK5  
AK7  
AJ7  
AK14  
AK19  
AK21  
AJ2  
AH2  
AG2  
AF2  
AJ5  
AH5  
AG5  
AF5  
AJ10  
AJ12  
AJ14  
AH14  
AJ19  
AH19  
AJ21 AJ22  
AH21  
AJ30  
AJ31  
AH3  
AG3  
AH9  
AG9  
AH11  
AG11  
AH13  
AG13  
AH15  
AG15  
AH7  
AG7  
AF7  
AH10  
AH12  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG30  
AG29  
AG31  
AF31  
AG10  
AF10  
AG12  
AF12  
AG14  
AF14  
AG19  
AF19  
AG21  
AF21  
AE21  
AD21  
AC21  
AB21  
AF22  
AE22  
AC22  
AB22  
AA22  
AF24  
AE24  
AC24  
AB24  
AA24  
AF26  
AF27  
AF30  
7.3152  
AF1  
AE1  
AD1  
AC1  
AF3  
AE3  
AF9  
AE9  
AF11  
AE11  
AF13  
AE13  
AF15  
AE15  
AF23  
AE23  
AC23  
AB23  
AA23  
Y23  
AF25  
AE25  
AC25  
AB25  
AA25  
Y25  
AF29  
AE29  
(0.8128 x 9 = 7.3152)  
AE26  
AE27  
AE30  
AE2  
AD2  
AC2  
AE5  
AD5  
AC5  
AE7  
AD7  
AE10  
AD10  
AE12  
AD12  
AE14  
AD14  
AE19  
AD19  
AE31  
AD3  
AC3  
AB3  
AD9  
AC9  
AB9  
AD11  
AC11  
AB11  
AD13  
AC13  
AB13  
AD15  
AC15  
AB15  
AC26  
AC27  
AC30  
AC29  
AB29  
AC31  
AC7  
AB7  
AC10  
AB10  
AC12  
AB12  
AC14  
AB14  
AC19  
AB19  
AB26  
AB30  
AB1  
AB27  
AA27  
Y27  
AB31  
AA31  
Y31  
AB2  
AB5  
17.2720  
(1.016 x 17 = 17.2720)  
AA26  
AA30  
AA3  
AA5  
AA7  
AA9  
AA29  
AA AA1 AA2  
AA4  
Y4  
AA6  
Y6  
AA8  
AA10  
Y10  
AA12  
Y12  
AA14  
AA16  
AA18  
AA20  
AA  
Y
AA11  
AA13  
Y13  
AA15  
AA17  
AA19  
Y19  
AA21  
Y21  
Y22  
Y24  
Y26  
Y28  
Y30  
Y29  
Y1  
Y3  
Y5  
Y7  
Y9  
Y14  
Y16  
Y18  
Y20  
Y2  
Y8  
Y11  
W11  
V11  
Y15  
Y17  
W17  
V17  
Y
W22  
W24  
W26  
W28  
W30  
1.0160  
W12  
V12  
U12  
W14  
V14  
U14  
W16  
V16  
U16  
W18  
V18  
U18  
T18  
R18  
P18  
W20  
V20  
U20  
T20  
R20  
P20  
W23  
V23  
U23  
R23  
P23  
N23  
M23  
L23  
W25  
V25  
U25  
R25  
P25  
N25  
M25  
L25  
W27  
V27  
U27  
R27  
P27  
N27  
M27  
L27  
W29  
V29  
U29  
R29  
P29  
N29  
M29  
L29  
W31  
V31  
U31  
R31  
P31  
N31  
M31  
L31  
W1  
W3  
V3  
U3  
R3  
P3  
N3  
M3  
L3  
W5  
V5  
U5  
R5  
P5  
N5  
M5  
L5  
W7  
V7  
U7  
R7  
P7  
N7  
M7  
L7  
W9  
V9  
U9  
R9  
P9  
N9  
M9  
L9  
W13  
V13  
U13  
T13  
R13  
P13  
W15  
V15  
U15  
T15  
R15  
P15  
W19  
V19  
W21  
V21  
W2  
V2  
W4  
V4  
W6  
V6  
W8  
V8  
W10  
V10  
W
V
W
V22  
U22  
V24  
U24  
V26  
U26  
V28  
U28  
V30  
U30  
V1  
U1  
R1  
P1  
N1  
M1  
L1  
V
T
P
U11  
T11  
R11  
P11  
U17  
T17  
R17  
P17  
U19  
T19  
R19  
P19  
U21  
T21  
R21  
P21  
U
T
R
P
N
U
R
U2  
R2  
P2  
N2  
M2  
L2  
U4  
R4  
P4  
N4  
M4  
L4  
U6  
R6  
P6  
U8  
R8  
P8  
N8  
M8  
L8  
K8  
J8  
U10  
R10  
P10  
T12  
R12  
P12  
N12  
M12  
L12  
T14  
R14  
P14  
N14  
M14  
L14  
T16  
R16  
P16  
N16  
M16  
L16  
R22  
P22  
N22  
R24  
P24  
N24  
R26  
P26  
N26  
R28  
P28  
N28  
R30  
P30  
N30  
N18  
M18  
L18  
N20  
M20  
L20  
N6  
M6  
L6  
N
1
0
N
1
1
N13  
M13  
L13  
N15  
M15  
L15  
N17  
M17  
L17  
N19  
M19  
L19  
N21  
M21  
L21  
N
M22  
L22  
M24  
L24  
M26  
L26  
M28  
L28  
M30  
L30  
M11  
M10  
M
M
L
L11  
L10  
17.2720  
L
(1.0160 x 17 = 17.2720)  
K11  
K10  
K13  
J13  
K15  
K18  
J18  
H18  
G18  
K20  
K22  
J22  
K25  
J25  
H25  
K27  
J27  
K30  
K12  
J12  
K14  
K17  
K19  
J19  
K21  
J21  
K23  
K26  
K29  
J29  
H29  
K31  
J31  
K1  
J1  
K3  
J3  
K5  
J5  
K7  
J7  
K9  
J9  
K
K
H
K2  
J2  
K4  
J4  
K6  
J6  
J11  
J15  
J20  
H20  
G20  
J30  
(A2, B1, B2, C1 and C2  
J14  
H14  
G14  
F14  
E14  
D14  
C14  
J17  
H17  
G17  
F17  
J23  
J26  
J
J
J10  
H11  
H13  
G13  
H15  
G15  
H22  
G22  
H27  
G27  
H30  
H12  
G12  
F12  
E12  
D12  
C12  
H19  
G19  
F19  
H21  
H23  
H26  
H31  
H
G
F
E
D
C
G1  
G3  
G5  
G7  
G9  
G2  
F2  
E2  
G4  
F4  
E4  
C4  
B4  
A4  
G6  
F6  
E6  
C6  
B6  
A6  
G8  
F8  
G10  
G11  
ball locations are different  
Refer Details "A")  
G
G21  
F21  
E21  
D21  
G23 G25 G26  
F23 F25 F26  
G29 G30 G31  
F29 F30 F31  
F1  
E1  
F3  
E3  
F5  
E5  
F7  
E7  
F9  
E9  
F11  
E11  
D11  
F13  
E13  
D13  
F15  
E15  
D15  
F18  
E18  
D18  
F20  
E20  
D20  
F22  
E22  
D22  
C22  
B22  
F27  
E27  
D27  
C27  
B27  
F10  
E10  
C10  
B10  
A10  
F
7.3152  
E
C
E17  
D17  
C17  
E19  
D19  
C19  
E23 E25 E26  
D25  
E29 E30 E31  
D30  
E8  
C8  
B8  
A8  
D
(0.8128 x 9 = 7.3152)  
D23  
C23  
B23  
D26  
C26  
B26  
D29  
C29  
B29  
D31  
C31  
B31  
C1  
B1  
C3  
B3  
C5  
B5  
C7  
B7  
C9  
B9  
C2  
B2  
A2  
C11  
B11  
C13  
B13  
C15  
B15  
C18  
B18  
C20  
B20  
C25  
B25  
C30  
B30  
C21  
B21  
A21  
B
A
B12  
A12  
B14  
A14  
B17  
A17  
B19  
A19  
B
A
A3  
3
A5  
5
A7  
7
A9  
9
A11  
A13  
A15  
A18  
A20  
A22  
A27  
A23 A25 A26  
A29 A30 A31  
1
11  
13  
15 17  
14 16 18  
19  
21  
23 25 27 29 31  
22 24 26 28 30  
2
4
6
8
10  
12  
20  
0.6984  
REF (6 Places)  
7.3152  
17.2720  
(1.016 x 17 = 17.2720)  
A
(0.8128  
x 9 = 7.3152)  
BOTTOM VIEW  
AA12  
AA14  
Y14  
AA16  
Y16  
AA18  
Y18  
W18  
V18  
U18  
T18  
AA20  
AA21  
AA11  
AA13  
Y13  
AA15  
Y15  
AA17  
Y17  
W17  
V17  
U17  
T17  
AA19  
Y19  
W19  
V19  
U19  
T19  
Y12  
W12  
V12  
U12  
Y20  
W20  
V20  
U20  
T20  
R20  
Y11  
W11  
V11  
U11  
T11  
R11  
Y21  
W21  
V21  
U21  
T21  
R21  
W14  
V14  
W16  
V16  
W13  
V13  
U13  
T13  
R13  
W15  
V15  
U15  
T15  
R15  
E
U14  
U16  
E1  
E3  
C3  
E2  
T12  
R12  
T14  
R14  
T16  
R16  
8.6300 (0.8630 x 10 = 8.6300)  
D
(1.016)  
R18  
R17  
R19  
C1  
B1  
C2  
B2  
A2  
C4  
B4  
A4  
C
P12  
N12  
M12  
L12  
P14  
N14  
M14  
L14  
P16  
N16  
M16  
L16  
P18  
N18  
M18  
L18  
P20  
N20  
M20  
L20  
P11  
N11  
M11  
L11  
P13  
N13  
M13  
L13  
P15  
N15  
M15  
L15  
P17  
N17  
M17  
L17  
P19  
N19  
M19  
L19  
P21  
N21  
M21  
L21  
0.800 x 2 = 1.600  
B3  
A3  
B
A
1.016 x 2 = 2.032  
8.6300  
1
3
(0.8630  
x 10 = 8.6300)  
2
DETAIL "A"  
Center Array  
SCALE 2:1  
Note: The center point of the ‘center’ ball T16 coincides with the center of the package. This should be  
used as reference for the center ball array.  
382  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Figure 13-13. Mobile Intel 915GMS Express Chipset Package Top View  
27.00±0.050  
C
Ø5.200  
(2x)  
3.250  
4
3.098  
10.043  
3.250 (2x)  
27.00±0.050  
10.043  
5.080  
3
2.540  
3.098  
2
TOP VIEW  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
383  
Ballout and Package Information  
R
Figure 13-14. Mobile Intel 915GMS Express Chipset Package Side View  
0.2000  
A
1.1700  
Min 0.800  
AK30  
AJ30  
AH30  
AF30  
AE30  
AD30  
AB30  
AA30  
Y30  
SUBSTRATE  
C
W30  
V30  
U30  
T30  
R30  
P30  
N30  
M30  
L30  
K30  
J30  
H30  
G30  
F30  
E30  
D30  
C30  
B30  
A30  
DIE  
B
(2.010)  
SIDE VIEW  
(UNMOUNTED PKG)  
Figure 13-15. Mobile Intel 915GMS Express Chipset Package Details B & C  
384  
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
Ballout and Package Information  
R
Figure 13-16. Recommended Via Stack Up for Platform (Small Factor Chipset Package)  
4/4/4 mil stripline trace/space  
in breakout region  
12mil Cu  
web in plane  
28 mil max  
antipad size  
required to  
maintain gnd  
reference  
16mil BGA pad  
32mil BGA  
pitch (parallel  
to breakout)  
40mil BGA pitch  
(perpendicular to  
breakout)  
10/22/28 via  
For the Intel 915GMS, optimal solder joint reliability requires 16-mil diameter pads through out  
the small form factor board pattern. Reducing pad diameters will have an adverse impact on  
solder joint reliability and could affect component warrantee.  
§
Mobile Intel® 915 and 910 Express Chipset Family of Products Datasheet  
385  

相关型号:

QG82915GME/SLA9K

Memory Controller, CMOS, PBGA1257
INTEL

QG82915GMS/SL8G9

Memory Controller
INTEL

QG82915PM/SL8G7

Memory Controller, PBGA1257
INTEL

QG82945G

Intel® 945G Express and Intel® 945GC Express Chipsets for Embedded Computing
INTEL

QG82945GC

Intel® 945G Express and Intel® 945GC Express Chipsets for Embedded Computing
INTEL

QG82945GCSLA9C

DRAM Controller, 64M X 16, CMOS, PBGA1202, 34 X 34 MM, 0.80 MM PITCH, FCBGA-1202
INTEL

QG82945GM

Mobile Intel 945GM Express Chipset for Embedded Computing
INTEL

QG82945GMS

Memory Controller, CMOS, PBGA998
INTEL

QG82945GZ

Memory Controller, PBGA1202
INTEL

QG82975X

Memory Controller, CMOS, PBGA1202
INTEL

QGA220701

Thermal Magnetic Circuit Breaker,
SCHNEIDER

QGA220703

Thermal Magnetic Circuit Breaker,
SCHNEIDER