RH80530GZ009512/SL5CL [INTEL]

RISC Microprocessor, 32-Bit, 1200MHz, CMOS, PPGA478;
RH80530GZ009512/SL5CL
型号: RH80530GZ009512/SL5CL
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 32-Bit, 1200MHz, CMOS, PPGA478

外围集成电路
文件: 总93页 (文件大小:1934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
R
Mobile Intel® Pentium® III Processor-M  
Datasheet  
January 2003  
Order Number: 298340-006  
Introduction  
R
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended  
for use in medical, life saving, or life sustaining applications.  
The information provided in this report, and related materials and presentations, are intended to illustrate the effects of certain design variables as  
determined by modeling, and are neither a recommendation nor endorsement of any specific system-level design practices or targets. The model results  
are based on a simulated notebook configuration, and do not describe or characterize the properties of any specific, existing system design. A detailed  
description of the simulated notebook configuration is available upon request.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future  
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Mobile Intel® Pentium® III Processor-M may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:  
Intel Corporation  
www.intel.com  
or call 1-800-548-4725  
Intel®, Pentium®, and Intel® SpeedStep®, and MMX™ technology are registered trademarks or trademarks of Intel Corporation and its subsidiaries in the  
United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © Intel Corporation 2000-2002  
2
Mobile Intel® Pentium ® III Processor-M Datasheet  
Introduction  
R
Contents  
1.  
Introduction .................................................................................................................................... 11  
1.1  
1.2  
1.3  
1.4  
Overview .............................................................................................................. 12  
State of the Data.................................................................................................. 12  
Terminology ......................................................................................................... 13  
References........................................................................................................... 13  
2.  
Mobile Intel Pentium III Processor-M Features.............................................................................. 14  
2.1  
New Features in the Mobile Pentium III Processor-M ......................................... 14  
2.1.1 133-MHz PSB With AGTL Signaling....................................................... 14  
2.1.2 512-K On-die Integrated L2 Cache......................................................... 14  
2.1.3 Data Prefetch Logic ................................................................................ 14  
2.1.4 Differential Clocking................................................................................ 14  
2.1.5 Deeper Sleep State................................................................................. 15  
2.1.6 Signal Differences Between the Mobile Pentium III Processor (in  
BGA2 and Micro-PGA2 Packages) and the Mobile Intel Pentium III  
Processor-M............................................................................................ 15  
2.2  
Power Management............................................................................................. 15  
2.2.1 Clock Control Architecture ...................................................................... 15  
2.2.2 Normal State........................................................................................... 15  
2.2.3 Auto Halt State........................................................................................ 16  
2.2.4 Quick Start State..................................................................................... 17  
2.2.5 HALT/Grant Snoop State........................................................................ 18  
2.2.6 Deep Sleep State.................................................................................... 18  
2.2.7 Deeper Sleep State................................................................................. 18  
2.2.8 Operating System Implications of Low-power States............................. 19  
2.2.9 Enhanced Intel SpeedStep Technology ................................................. 19  
AGTL Signals....................................................................................................... 19  
Mobile Intel Pentium III Processor-M CPUID....................................................... 20  
2.3  
2.4  
3.  
Electrical Specifications ................................................................................................................. 21  
3.1  
Processor System Signals................................................................................... 21  
3.1.1 Power Sequencing Requirements .......................................................... 22  
3.1.2 Test Access Port (TAP) Connection....................................................... 23  
3.1.3 Catastrophic Thermal Protection ............................................................ 23  
3.1.4 Unused Signals....................................................................................... 23  
3.1.5 Signal State in Low-power States........................................................... 23  
3.1.5.1  
3.1.5.2  
3.1.5.3  
System Bus Signals.............................................................. 23  
CMOS and Open-drain Signals ............................................ 24  
Other Signals ........................................................................ 24  
3.2  
3.3  
Power Supply Requirements ............................................................................... 24  
3.2.1 Decoupling Guidelines............................................................................ 24  
3.2.2 Voltage Planes........................................................................................ 25  
3.2.3 Voltage Identification............................................................................... 25  
System Bus Clock and Processor Clocking......................................................... 26  
Mobile Intel® Pentium ® III Processor-M Datasheet  
3
Introduction  
R
3.4  
3.5  
3.6  
3.7  
Enhanced Intel SpeedStep Technology...............................................................26  
Maximum Ratings.................................................................................................27  
DC Specifications .................................................................................................27  
AC Specifications .................................................................................................37  
3.7.1 System Bus, Clock, APIC, TAP, CMOS, and Open-drain AC  
Specifications ..........................................................................................37  
4.  
System Signal Simulations.............................................................................................................53  
4.1  
System Bus Clock (BCLK) and PICCLK DC Specifications and AC Signal  
Quality Specifications ...........................................................................................53  
AGTL AC Signal Quality Specifications................................................................55  
Non-AGTL Signal Quality Specifications..............................................................56  
4.3.1 PWRGOOD, VTTPWRGD Signal Quality Specifications........................57  
4.3.1.1.1 VTTPWRGD Noise Parameter Specification...........57  
4.2  
4.3  
4.3.1.2  
VTTPWRGD Transition Parameter Recommendation..........58  
4.3.1.2.1 Transition Region.....................................................58  
4.3.1.2.2 Transition Time ........................................................58  
4.3.1.2.3 Noise........................................................................58  
5.  
Mechanical Specifications ..............................................................................................................60  
5.1  
5.2  
5.3  
Socketable Micro-FCPGA Package .....................................................................60  
Surface Mount Micro-FCBGA Package................................................................64  
Signal Listings ......................................................................................................68  
6.  
7.  
VCC Thermal Specifications ............................................................................................................75  
6.1 Thermal Diode......................................................................................................76  
Processor Initialization and Configuration......................................................................................78  
7.1  
Description............................................................................................................78  
7.1.1 Quick Start Enable...................................................................................78  
7.1.2 System Bus Frequency ...........................................................................78  
7.1.3 APIC Enable............................................................................................78  
Clock Frequencies and Ratios .............................................................................78  
7.2  
8.  
Processor Interface ........................................................................................................................79  
8.1  
8.2  
Alphabetical Signal Reference .............................................................................79  
Signal Summaries ................................................................................................89  
Appendix A. PLL RLC Filter Specification...................................................................................................91  
A1.  
A2.  
A3.  
A4.  
Introduction..........................................................................................................91  
Filter Specification ...............................................................................................91  
Recommendation for Mobile Systems.................................................................92  
Comments ...........................................................................................................93  
4
Mobile Intel® Pentium ® III Processor-M Datasheet  
Introduction  
R
Figures  
Figure 1. Clock Control States.......................................................................................... 17  
Figure 2. PLL RLC Filter ................................................................................................... 25  
Figure 3. VTTPWRGD System-Level Connections .......................................................... 26  
Figure 4. Illustration of VCC Static and Transient Tolerances (VID = 1.40 V) .................. 31  
Figure 5. Illustration of Deep Sleep VCC Static and Transient Tolerances (VID Setting  
= 1.40 V)............................................................................................................ 32  
Figure 6. BCLK (Single Ended)/PICCLK/TCK Generic Clock Timing Waveform............. 44  
Figure 7. Differential BCLK/BCLK# Waveform (Common Mode)..................................... 44  
Figure 8. BCLK/BCLK# Waveform (Differential Mode)..................................................... 45  
Figure 9. Valid Delay Timings........................................................................................... 45  
Figure 10. Setup and Hold Timings .................................................................................. 46  
Figure 11. Cold/Warm Reset and Configuration Timings ................................................. 46  
Figure 12. Power-on Sequence and Reset Timings......................................................... 47  
Figure 13. Power Down Sequencing and Timings (VCC Leading)................................... 48  
Figure 14.Power Down Sequencing and Timings (VCCT Leading).................................... 49  
Figure 15.Test Timings (Boundary Scan)......................................................................... 50  
Figure 16. Test Reset Timings.......................................................................................... 50  
Figure 17. Quick Start/Deep Sleep Timing (BCLK Stopping Method).............................. 51  
Figure 18. Quick Start/Deep Sleep Timing (DPSLP# Assertion Method)......................... 51  
Figure 19. Enhanced Intel SpeedStep Technology/Deep Sleep Timing .......................... 52  
Figure 20. BCLK (Single Ended)/PICCLK Generic Clock Waveform ............................... 54  
Figure 21. Maximum Acceptable Overshoot/Undershoot Waveform ............................... 55  
Figure 22. VTTPWRGD Noise Specification .................................................................... 59  
Figure 23. Socketable Micro-FCPGA Package – Top and Bottom Isometric Views ........ 61  
Figure 24. Socketable Micro-FCPGA Package – Top and Side View.............................. 62  
Figure 25. Socketable Micro-FCPGA Package – Bottom View........................................ 63  
Figure 26. Micro-FCBGA Package – Top and Bottom Isometric Views ........................... 65  
Figure 27. Micro-FCBGA Package – Top and Side Views............................................... 66  
Figure 28. Micro-FCBGA Package – Bottom View........................................................... 67  
Figure 29. Pin/Ball Map – Top View.................................................................................. 68  
Figure 30. PLL Filter Specifications .................................................................................. 92  
Mobile Intel® Pentium ® III Processor-M Datasheet  
5
Introduction  
R
Tables  
Table 1. New and Revised Mobile Intel Pentium III Processor-M Signals........................15  
Table 2. Clock State Characteristics .................................................................................19  
Table 3. Mobile Pentium III Processor-M CPUID..............................................................20  
Table 4. Mobile Pentium III Processor-M CPUID Cache and TLB Descriptors ................20  
Table 5. System Signal Groups.........................................................................................21  
Table 6. Recommended Resistors for Mobile Intel Pentium III Processor-M Signals.......22  
Table 7. Mobile Intel Pentium III Processor-M VID Values ...............................................25  
Table 8. Mobile Intel Pentium III Processor-M Absolute Maximum Ratings .....................27  
Table 9. Power Specifications for Mobile Intel Pentium III Processor-M1..........................28  
Table 10. VCC Tolerances for the Mobile Intel Pentium III Processor-M: VID = 1.40 V  
(Performance Mode) and 1.15 V (Battery Optimized Mode) ............................30  
Table 11. VCC Tolerances for the Mobile Intel Pentium III Processor-M in the Deep Sleep  
State: VID = 1.40 V (Performance Mode) and 1.15 V (Battery Optimized  
Mode).................................................................................................................32  
Table 12. VCC Tolerances for the Low Voltage Mobile Intel Pentium III Processor-M:  
VID = 1.15 V (Performance Mode) and 1.05 V (Battery Optimized Mode) .......33  
Table 13. VCC Tolerances for the Low Voltage Mobile Intel Pentium III Processor-M in  
the Deep Sleep State: VID = 1.15 V (Performance Mode) and 1.05 V (Battery  
Optimized Mode)...............................................................................................33  
Table 14. VCC Tolerances for the Ultra Low Voltage Mobile Intel Pentium III  
Processor-M: VID = 1.1 V (Performance Mode) and 0.95 V (Battery Optimized  
Mode) ................................................................................................................34  
Table 15. VCC Tolerances for the Ultra Low Voltage Mobile Intel Pentium III  
Processor-M in the Deep Sleep State: VID = 1.1 V (Performance Mode) and  
0.95 V (Battery Optimized Mode) ......................................................................34  
Table 16. AGTL Signal Group DC Specifications..............................................................35  
Table 17. AGTL Bus DC Specifications ............................................................................35  
Table 18. CLKREF, APIC, TAP, CMOS, and Open-drain Signal Group DC  
Specifications.....................................................................................................36  
Table 19. System Bus Clock AC Specifications (Differential) ...........................................37  
Table 20. System Bus Clock AC Specifications (133 MHz, Single Ended) ......................38  
Table 21. System Bus Clock AC Specifications (100 MHz, Single Ended) ......................38  
Table 22. Valid Mobile Intel Pentium III Processor-M Frequencies ..................................39  
Table 23. AGTL Signal Groups AC Specifications............................................................40  
Table 24. CMOS and Open-drain Signal Groups AC Specifications................................................. 40  
Table 25. Reset Configuration AC Specifications and Power On/Power Down Timings..41  
Table 26. APIC Bus Signal AC Specifications...................................................................42  
Table 27. TAP Signal AC Specifications ...........................................................................43  
Table 28. Quick Start/Deep Sleep AC Specifications .......................................................43  
Table 29. Enhanced Intel SpeedStep Technology AC Specifications...............................44  
Table 30. BCLK (Differential) DC Specifications and AC Signal Quality Specifications...53  
Table 31. BCLK (Single Ended) DC Specifications and AC Signal Quality  
Specifications.....................................................................................................53  
Table 32. PICCLK DC Specifications and AC Signal Quality Specifications ....................54  
Table 33. 133-MHz AGTL Signal Group Overshoot/Undershoot Tolerance at the  
Processor Core..................................................................................................56  
Table 34. 100-MHz AGTL Signal Group Overshoot/Undershoot Tolerance at the  
Processor Core..................................................................................................56  
Table 35. Non-AGTL Signal Group Overshoot/Undershoot Tolerance at the Processor  
Core ...................................................................................................................57  
Table 36. VTTPWRGD Noise Parameter Specification ....................................................57  
6
Mobile Intel® Pentium ® III Processor-M Datasheet  
Introduction  
R
Table 37. VTTPWRGD Transition Parameter Recommendation ..................................... 58  
Table 38. Socketable Micro-FCPGA Package Specification............................................ 60  
Table 39. Micro-FCBGA Package Mechanical Specifications.......................................... 64  
Table 40. Signal Listing in Order by Pin/Ball Number....................................................... 69  
Table 41. Signal Listing in Order by Signal Name............................................................ 72  
Table 42. Voltage and No-Connect Pin/Ball Locations..................................................... 74  
Table 43. Power Specifications for Mobile Intel Pentium III Processor-M ........................ 75  
Table 44. Thermal Diode Interface ................................................................................... 77  
Table 45. Thermal Diode Specifications........................................................................... 77  
Table 46. BSEL[1:0] Encoding.......................................................................................... 82  
Table 47. Input Signals ..................................................................................................... 89  
Table 48. Output Signals .................................................................................................. 89  
Table 49. Input/Output Signals (Single Driver) ................................................................. 90  
Table 50. Input/Output Signals (Multiple Driver)............................................................... 90  
Table 51. PLL Filter Inductor Recommendations ............................................................. 92  
Table 52. PLL Filter Capacitor Recommendations........................................................... 92  
Table 53. PLL Filter Resistor Recommendations ............................................................. 93  
Mobile Intel® Pentium ® III Processor-M Datasheet  
7
Introduction  
R
Revision History  
Revision  
001  
002  
Description  
Date  
July 2001  
October 2001  
Initial release  
Revision 2.0 Updates include:  
Added new mobile Intel® Pentium® III Processor-M 1.2 GHz  
Added new Low Voltage mobile Intel Processor-M 800/533, 800A/500,  
750/450, 733/466 MHz speeds  
Added new Ultra Low Voltage mobile Intel Processor-M 700/300 MHz  
speed  
Updated Processor Specifications (Tables 9, 12-15, 42)  
Load lines updated  
Updated Section 5 and tables 36, 37 with additional package details  
Updated references  
003  
Revision 3.0 Updates include:  
January 2002  
Added new Low Voltage mobile Intel Processor-M 866/533, 850/500,  
MHz speeds  
Added new Ultra Low Voltage mobile Intel Processor-M 750/350,  
733/400 MHz speeds  
Updated Processor Specifications (Tables 9, 12-15, 42)  
Added Specification Clarification for VTTPWRGD in Table 25, Figure  
22 and Section 4.3.1  
Added CMOSREF resistor divider recommendations to Section 7  
Updated references  
004  
June 2002  
Revision 4.0 Updates include:  
Target Processor Frequencies updated  
Updated Section 5 and corrected/updated Tables 36 and 37  
Added VTTPWRGD Spec Clarification to Table 25 and Section 4.3.1  
Updated Section 7 with CMOSREF resistor divider recommendations  
from RDDP  
Updated CMOSREF description in Section 8.1  
Updated the Intel® SpeedStep® technology mark  
005  
006  
September 2002  
January 2003  
Revision 5.0 Updates include:  
Target Processor Frequencies updated  
Updated Table 9 and Table 43  
Revision 6.0 Updates include:  
Target Processor Frequencies updated  
Updated Table 9 and Table 43  
8
Mobile Intel® Pentium ® III Processor-M Datasheet  
Introduction  
R
Mobile Intel® Pentium® Processor-M  
Product Features  
„
Supports Enhanced Intel® SpeedStep®  
technology with the following  
Processor core/bus speeds:  
„
Ultra Low Voltage processors support  
Enhanced Intel® SpeedStep® technology  
with the following Processor core/bus  
speeds:  
1.333 GHz/133 MHz (Maximum  
Performance Mode) and 800/133 MHz  
(Battery Optimized Mode)  
933/133 MHz (Maximum  
Performance Mode) and 400/133  
MHz (Battery Optimized Mode)  
900/100 MHz (Maximum  
1.266 GHz/133 MHz (Maximum  
Performance Mode) and 800/133 MHz  
(Battery Optimized Mode)  
Performance Mode) and 400/100  
MHz (Battery Optimized Mode)  
866/133 MHz (Maximum  
1.200 GHz/133 MHz (Maximum  
Performance Mode) and 800/133 MHz  
(Battery Optimized Mode)  
Performance Mode) and 400/133  
MHz (Battery Optimized Mode)  
850/133 MHz (Maximum  
1.133 GHz/133 MHz (Maximum  
Performance Mode) and 733/133 MHz  
(Battery Optimized Mode)  
Performance Mode) and 400/133  
MHz (Battery Optimized Mode)  
800/133 MHz (Maximum  
1.066 GHz/133 MHz (Maximum  
Performance Mode) and 733/133 MHz  
(Battery Optimized Mode)  
Performance Mode) and 400/133  
MHz (Battery Optimized Mode)  
800/100 MHz (Maximum  
1.000 GHz/133 MHz (Maximum  
Performance Mode) and 733/133 MHz  
(Battery Optimized Mode)  
Performance Mode) and 400/100  
MHz (Battery Optimized Mode)  
„
Low Voltage processors support Enhanced  
Intel SpeedStep technology with the following  
Processor core/bus speeds:  
Feature Highlights  
„
„
„
Supports the Intel Architecture with  
Dynamic Execution  
1.00GHz/133 MHz (Maximum  
Performance Mode) and 533/133 MHz  
(Battery Optimized Mode)  
933/133 MHz (Maximum Performance  
Mode) and 533/133 MHz (Battery  
Optimized Mode)  
On-die primary 16-Kbyte instruction cache  
and 16-Kbyte write-back data cache  
On-die second level cache (512-Kbyte)  
with Advanced Transfer Cache  
Architecture  
„
„
„
„
Data Prefetch Logic  
866/133 MHz (Maximum Performance  
Mode) and 533/133 MHz (Battery  
Optimized Mode)  
Integrated AGTL termination  
Integrated math co-processor  
Micro-FCPGA and Micro-FCBGA  
packaging technologies  
800/133 MHz (Maximum Performance  
Mode) and 533/133 MHz (Battery  
Optimized Mode)  
Supports thin form factor notebook  
designs  
850/100 MHz (Maximum Performance  
Mode) and 500/100 MHz (Battery  
Optimized Mode)  
Exposed die enables more efficient  
heat dissipation  
„
Fully compatible with previous Intel  
microprocessors  
800A/100 MHz (Maximum Performance  
Mode) and 500/100 MHz (Battery  
Optimized Mode)  
Binary compatible with all  
applications  
Support for MMX™ technology  
Support for Streaming SIMD  
Extensions  
Mobile Intel® Pentium ® III Processor-M Datasheet  
9
Introduction  
R
„
Power Management Features  
Quick Start, Deep Sleep, and Deeper  
Sleep modes provide low power  
dissipation  
„
On-die thermal diode  
10  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Introduction  
R
1. Introduction  
Using Intel’s advanced 0.13-micron process technology with copper interconnect, the Mobile Intel®  
Pentium® III Processor-M offers high-performance and low-power consumption. The Mobile Intel  
Pentium III Processor-M (hereafter referred to as “the processor”) is based on the same core as existing  
Mobile Intel® Pentium® III Processors. Key performance features include Internet Streaming SIMD  
instructions, an Advanced Transfer Cache architecture, and a processor system bus speed of 133 MHz.  
These features are offered in Micro-FCPGA packages for socketable boards and Micro-FCBGA  
packages for surface mount boards.  
The Low Voltage Mobile Intel Pentium III Processor-M will support both a 133-MHz and a 100-MHz  
bus speed. The Ultra Low Voltage Mobile Intel Pentium III Processor-M will support both 133-MHz  
and 100-MHz (see product features section for specific supported frequencies) bus speed. The Low  
Voltage and Ultra Low Voltage Mobile processors will be available only in the Micro-FCBGA  
package. All of these technologies make outstanding performance possible for mobile PCs in a variety  
of shapes and sizes.  
The processor, when used in conjunction with the Intel SpeedStep® technology applet, supports  
Enhanced Intel SpeedStep technology, which enables real-time dynamic switching of the voltage and  
frequency between two performance modes based on CPU demand. This occurs by switching the bus  
ratios, core operating voltage, and core processor speeds without resetting the system. The processor  
also features a new ultra low power state called Deeper Sleep.  
The 512-kB integrated L2 cache based on the Advanced Transfer Cache architecture runs at full speed  
and is designed to help improve performance. It complements the system bus by providing critical data  
faster and reducing total system power consumption. The processor also features Data Prefetch Logic  
that speculatively fetches data to the L2 cache, resulting in improved performance. The Mobile  
Pentium III Processor-M’s 64-bit wide Assisted Gunning Transceiver Logic (AGTL) system bus  
provides a glue-less, point-to-point interface for a memory controller hub.  
This document covers the electrical, mechanical, and thermal specifications for the following:  
The Mobile Pentium III Processor-M is offered at the following frequencies and voltages  
(Maximum Performance mode/Battery Optimized mode): 1.333 GHz/800 MHz, 1.266 GHz/800  
MHz, 1.200 GHz/800 MHz, 1.133 GHz/733 MHz, 1.066 GHz/733 MHz, and 1.000 GHz/733  
MHz at 1.40 V/1.15 V.  
The Low Voltage Mobile Intel Pentium III Processor-M is offered at the following frequencies and  
voltages (Maximum Performance mode/Battery Optimized mode): 1.00 GHz/533 MHz, 933/533  
MHz, 866/533 MHz, 800/533 MHz, 850/500 MHz, and 800A/500 MHz at 1.15 V/1.05 V.  
The Ultra Low Voltage Mobile Pentium III Processor-M is offered at the following frequency and  
voltage (Maximum Performance mode/Battery Optimized mode): 933/400 MHz, 900/400 MHz,  
866/400 MHz, 850/400 MHz, 800/400 MHz at 1.10 V/0.95 V.  
Unless explicitly stated, all references to the Mobile Pentium III Processor-M in this document also  
apply to the Low Voltage and Ultra Low Voltage Mobile Pentium III Processor-M.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
11  
Introduction  
R
1.1  
Overview  
Performance features  
— Supports the Intel Architecture with Dynamic Execution  
— Supports the Intel Architecture MMX™ technology  
— Supports Streaming SIMD Extensions for enhanced video, sound, and 3D performance  
— Supports Enhanced Intel SpeedStep Technology  
— Integrated Intel Floating Point Unit compatible with the IEEE 754 standard  
— Data Prefetch Logic  
On-die primary (L1) instruction and data caches  
— 4-way set associative, 32-byte line size, 1 line per sector  
— 16-Kbyte instruction cache and 16-Kbyte write-back data cache  
— Cacheable range controlled by processor programmable registers  
On-die second level (L2) cache  
— 8-way set associative, 32-byte line size, 1 line per sector  
— Operates at full core speed  
— 512-Kbyte ECC protected cache data array  
AGTL system bus interface  
— 64-bit data bus, 100-MHz and 133-MHz operation  
— Uniprocessor, two loads only (processor and chipset)  
— Integrated termination  
Processor clock control  
— Quick Start for low power, low exit latency clock “throttling”  
— Deep Sleep mode for lower power dissipation  
— Deeper Sleep mode for lowest power dissipation  
Thermal Diode for measuring processor temperature  
1.2  
State of the Data  
All information in this document is the best available information at the time of publication. Revisions  
of this document will be provided on an as-required basis in the Mobile Intel® Pentium® III Processor  
and Mobile Intel® Pentium® III Processor-M Specification Update.  
12  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Introduction  
R
1.3  
1.4  
Terminology  
Term  
Definition  
#
A “#” symbol following a signal name indicates that the signal is active low. This means that when the signal  
is asserted (based on the name of the signal) it is in an electrical low state. Otherwise, signals are driven in  
an electrical high state when they are asserted. In state machine diagrams, a signal name in a condition  
indicates the condition of that signal being asserted  
!
Indicates the condition of that signal not being asserted. For example, the condition “!STPCLK# and HS” is  
equivalent to “the active low signal STPCLK# is unasserted (i.e., it is at 1.5 V) and the HS condition is true.”  
L
H
0
Electrical low signal levels  
Electrical high signal levels  
Logical low. For example, BD[3:0] = “1010” = “HLHL” refers to a hexadecimal “A,” and D[3:0]# = “1010” =  
“LHLH” also refers to a hexadecimal “A.”  
1
Logical high. For example, BD[3:0] = “1010” = “HLHL” refers to a hexadecimal “A,” and D[3:0]# = “1010” =  
“LHLH” also refers to a hexadecimal “A.”  
TBD  
X
Specifications that are yet to be determined and will be updated in future revisions of the document.  
Don’t care condition  
References  
P6 Family of Processors Hardware Developer’s Manual (Order Number 244001-001)  
Intel® Architecture Optimization Reference Manual (Order Number 245127-001)  
Intel® Architecture Software Developer’s Manual  
— Volume I: Basic Architecture (Order Number 245470)  
— Volume II: Instruction Set Reference (Order Number 245471)  
— Volume III: System Programming Guide (Order Number 245472)  
CK-408 (CK-Titan) Clock Synthesizer/Driver Specification (Contact your Intel Field Sales  
Representative)  
Mobile Intel® Pentium® III Processor-M I/O Buffer Models, IBIS Format (Contact your Intel  
Field Sales Representative)  
Intel® 830 Chipset Family: 82830 Graphics and Memory Controller Hub (GMCH-M) Datasheet  
(Order Number 298338-003)  
Intel® 830 Chipset Family: Intel® 830 Chipset Platform Design Guide (Order Number 298339-  
003)  
Intel® 830 Chipset Family: Intel® 82801CAM I/O Controller Hub 3 (ICH3-M) Datasheet (Order  
Number 290716-001)  
Intel® Mobile Voltage Positioning -II (IMVP-II) Design Guide (Contact your Intel Field Sales  
Representative)  
Mobile Intel® Pentium® III Processor-M /440MX Platform Design Guide (Contact your Intel  
Field Sales Representative)  
Intel® Processor Identification and the CPUID Instruction Application Note AP-485 (Order  
Number 241618-020)  
Mobile Intel® Pentium ® III Processor-M Datasheet  
13  
Mobile Intel Pentium III Processor-M Features  
R
2. Mobile Intel Pentium III Processor-M  
Features  
2.1  
New Features in the Mobile Pentium III  
Processor-M  
2.1.1  
133-MHz PSB With AGTL Signaling  
The Mobile Pentium III Processor-M uses Assisted GTL (AGTL) signaling on the PSB interface. The  
main difference between AGTL and GTL+ used on previous Intel processors is VCCT = 1.25 V for  
AGTL versus 1.5 V for GTL+. The lower voltage swing enables high performance at lower power.  
The Low Voltage Mobile Pentium III Processor-M will support 100-MHz and 133-MHz bus  
frequencies. The Ultra Low Voltage Mobile Pentium III Processor-M will support both 100-MHz and  
133-MHz bus frequencies (see product features for specific supported frequencies).  
2.1.2  
2.1.3  
512-K On-die Integrated L2 Cache  
The 512-K, on die, integrated L2 cache on the Mobile Pentium III Processor-M is double the L2 cache  
size on the mobile Pentium III processor. The L2 cache runs at the processor core speed and the  
increased cache size provides superior processing power.  
Data Prefetch Logic  
The Mobile Pentium III Processor-M features Data Prefetch Logic that speculatively fetches data to the  
L2 cache before an L1 cache request occurs. This reduces transactions between the cache and system  
memory reducing or eliminating bus cycle penalties, resulting in improved performance. The  
processor also includes extensions to memory order and reorder buffers that boost performance.  
2.1.4  
Differential Clocking  
The Mobile Intel Pentium III Processor-M is the first mobile Intel processor to support Differential  
Clocking. Differential clocking requires the use of two complementary clocks: BCLK and BCLK#.  
Benefits of differential clocking include easier scaling to lower voltages, reduced EMI, and less jitter.  
All references to BCLK in this document apply to BCLK# also even if not explicitly stated. The  
Mobile Intel Pentium III Processor-M will also support Single Ended Clocking. The processor will  
configure itself for differential or single ended clocking based on the waveforms detected on the  
BCLK and BCLK#/CLKREF signal lines.  
14  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mobile Intel Pentium III Processor-M Features  
R
2.1.5  
2.1.6  
Deeper Sleep State  
The Deeper Sleep State is a new low power state on the Mobile Intel Pentium III Processor-M. It is  
functionally identical to the Deep Sleep State but at a lower voltage. More details are provided in  
Section 2.2.7.  
Signal Differences Between the Mobile Pentium III  
Processor (in BGA2 and Micro-PGA2 Packages) and  
the Mobile Intel Pentium III Processor-M  
A list of new and changed signals is shown in Table 1.  
Table 1. New and Revised Mobile Intel Pentium III Processor-M Signals  
Signals  
Function  
BCLK, BCLK# Differential host clk signals.  
CLKREF  
BSEL[1:0]  
DPSLP#  
NCTRL  
Host Clock reference signal in Single Ended Clocking mode.  
Signals are output only instead of I/O. Please refer to the Appendix for details.  
Deep Sleep pin (replaces SLP# pin on the Pentium III processor).  
AGTL output buffer pull down impedance control.  
VID[4:0]  
Voltage Identification (different implementation from Pentium III processor). Please refer to  
Section 3.2.3 for details.  
VTTPWRGD Power Good signal for VCCT, which indicates that, the VID signals are stable. Please refer to  
Figure 3 for VTTPWRGD system level connections.  
2.2  
Power Management  
2.2.1  
Clock Control Architecture  
The Mobile Pentium III Processor-M clock control architecture (Figure 1) has been optimized for  
leading edge mobile computer designs. The clock control architecture consists of six different clock  
states: Normal, Auto Halt, Quick Start, HALT/Grant Snoop, Deep Sleep, and Deeper Sleep states. The  
Auto Halt state provides a low-power clock state that can be controlled through the software execution  
of the HLT instruction. The Quick Start state provides a very low power and low exit latency clock  
state that can be used for hardware controlled “idle” computer states. The Deep Sleep and Deeper  
Sleep states provide extremely low-power states that can be used for “Power-On-Suspend” computer  
states, which is an alternative to shutting off the processor’s power. The exit latency of the Deep Sleep  
state is 30 µsec in the Mobile Pentium III Processor-M. Performing state transitions not shown in  
Figure 1 is neither recommended nor supported. Table 2 provides the clock state characteristics, which  
are described in detail in the following sections.  
2.2.2  
Normal State  
The Normal state of the processor is the normal operating mode where the processor’s core clock is  
running and the processor is actively executing instructions.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
15  
Mobile Intel Pentium III Processor-M Features  
R
2.2.3  
Auto Halt State  
This is a low-power mode entered by the processor through the execution of the HLT instruction. A  
transition to the Normal state is made by a halt break event (one of the following signals going active:  
NMI, INTR, BINIT#, INIT#, RESET#, FLUSH#, or SMI#).  
Asserting the STPCLK# signal while in the Auto Halt state will cause the processor to transition to the  
Quick Start state. Deasserting STPCLK# will cause the processor to return to the Auto Halt state  
without issuing a new Halt bus cycle.  
The SMI# interrupt is recognized in the Auto Halt state. The return from the System Management  
Interrupt (SMI) handler can be to either the Normal state or the Auto Halt state. See the Intel®  
Architecture Software Developer’s Manual, Volume III: System Programmer’s Guide for more  
information. No Halt bus cycle is issued when returning to the Auto Halt state from the System  
Management Mode (SMM).  
The FLUSH# signal is serviced in the Auto Halt state. After the on-chip and off-chip caches have been  
flushed, the processor will return to the Auto Halt state without issuing a Halt bus cycle. Transitions in  
the A20M# and PREQ# signals are recognized while in the Auto Halt state.  
16  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mobile Intel Pentium III Processor-M Features  
R
Figure 1. Clock Control States  
STPCLK#1  
BCLK stopped  
or DPSLP#  
Normal  
2
Quick Start  
Deep Sleep  
(!STPCLK# and !HS)  
or RESET#  
HS=false  
BCLK on  
and !DPSLP#  
STPCLK#1  
core  
halt  
break  
snoop  
voltage  
core  
HLT  
snoop  
occurs  
serviced  
raised  
!STPCLK#  
and HS  
instruction1  
voltage  
reduced  
snoop  
occurs  
Auto Halt  
HS=true  
HALT/Grant  
Snoop  
Deeper  
Sleep  
snoop  
serviced  
V0001-02  
NOTES:  
1. State transition does not occur until the Stop Grant or Auto Halt acknowledge bus cycle completes  
Halt break – A20M#, BINIT#, FLUSH#, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
HLT – HLT instruction executed  
HS – Processor Halt State  
2. Restrictions apply to the use of both methods of entering Deep Sleep. See Deep Sleep state description for details.  
2.2.4  
Quick Start State  
The processor is required to be configured for the Quick Start state by strapping the A15# signal low.  
More details are provided in Section 7.1. In the Quick Start state the processor is only capable of acting  
on snoop transactions generated by the system bus priority device. Because of its snooping behavior,  
Quick Start can only be used in a uniprocessor (UP) configuration.  
A transition to the Deep Sleep state can be made by stopping the clock input to the processor or  
asserting the DPSLP# signal. A transition back to the Normal state (from the Quick Start state) is made  
only if the STPCLK# signal is deasserted.  
While in the Quick Start state the processor is limited in its ability to respond to input. It is incapable  
of latching any interrupts, servicing snoop transactions from symmetric bus masters or responding to  
FLUSH# or BINIT# assertions. While the processor is in the Quick Start state, it will not respond  
properly to any input signal other than STPCLK#, RESET#, or BPRI#. If any other input signal  
changes, then the behavior of the processor will be unpredictable. No serial interrupt messages may  
begin or be in progress while the processor is in the Quick Start state.  
RESET# assertion will cause the processor to immediately initialize itself, but the processor will stay  
in the Quick Start state after initialization until STPCLK# is deasserted.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
17  
Mobile Intel Pentium III Processor-M Features  
R
2.2.5  
2.2.6  
HALT/Grant Snoop State  
The processor will respond to snoop transactions on the system bus while in the Auto Halt or Quick  
Start state. When a snoop transaction is presented on the system bus the processor will enter the  
HALT/Grant Snoop state. The processor will remain in this state until the snoop has been serviced and  
the system bus is quiet. After the snoop has been serviced, the processor will return to its previous  
state. If the HALT/Grant Snoop state is entered from the Quick Start state, then the input signal  
restrictions of the Quick Start state still apply in the HALT/Grant Snoop state, except for those signal  
transitions that are required to perform the snoop.  
Deep Sleep State  
The Deep Sleep state is a very low power state the processor can enter while maintaining its context.  
The Deep Sleep state is entered by stopping the BCLK and BCLK# inputs to the processor, or by  
asserting the DPSLP# signal while it is in the Quick Start state. Note that either one of the methods  
can be used to enter Deep Sleep but not both at the same time. When BCLK and BCLK# are stopped,  
they must obey the DC levels specified in Table 30 and Table 31.  
The processor will return to the Quick Start state from the Deep Sleep state when the BCLK and  
BCLK# inputs are restarted or the DPSLP# signal is deasserted. Due to the PLL lock latency, there is a  
delay of up to 30 µsec after the clocks have started before this state transition happens. PICCLK may  
be removed in the Deep Sleep state. PICCLK should be designed to turn on when BCLK and BCLK#  
turn on or DPSLP# is deasserted when transitioning out of the Deep Sleep state.  
2.2.7  
Deeper Sleep State  
The Deeper Sleep state is the lowest power state the processor can enter while maintaining its context.  
It is functionally identical to the Deep Sleep State but at a lower voltage. The processor transitions to  
the Deeper Sleep state from the Deep Sleep when the voltage regulator lowers the core voltage. The  
VID signals for the Deeper Sleep State are supplied to the voltage regulator through control from the  
I/O Controller Hub component. For more details on how this is implemented on the Mobile Intel  
Pentium III Processor-M /Intel 830 platform, please refer to the Intel® 82801CAM I/O Controller Hub  
3 (ICH3-M) Datasheet and contact your Intel Field Sales Representative for details on Intel Mobile  
Voltage Positioning – II (IMVP-II) implementation. For details on how Deeper Sleep is implemented  
on 440MX chipset based systems using the Intel SpeedStep technology Control Logic Plus (ISSCL+)  
component, please refer to the Mobile Intel® Pentium® III Processor-M/440MX Platform Design  
Guide.  
18  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mobile Intel Pentium III Processor-M Features  
R
Table 2. Clock State Characteristics  
Clock State  
Exit Latency  
Snooping?  
System Uses  
Normal  
N/A  
Yes  
Yes  
Normal program execution  
Auto Halt  
Quick Start  
S/W controlled entry idle mode  
10 µsec  
Through snoop, to  
HALT/Grant Snoop state:  
immediate  
Yes  
H/W controlled entry/exit mobile throttling  
Supports snooping in the low power states  
Through STPCLK#, to  
Normal state: 10 µsec  
HALT/Grant  
Snoop  
A few bus clocks after  
snoop completion  
Yes  
No  
Deep Sleep  
H/W controlled entry/exit mobile powered-on  
suspend support  
30 µsec  
Deeper Sleep  
Platform Dependent  
No  
H/W controlled entry/exit mobile powered-on  
suspend support  
100 µsec (recommended)  
2.2.8  
2.2.9  
Operating System Implications of Low-power States  
The time-stamp counter and the performance monitor counters are not guaranteed to count in the  
Quick Start state. The local APIC timer and performance monitor counter interrupts should be disabled  
before entering the Deep Sleep state or the resulting behavior will be unpredictable.  
Enhanced Intel SpeedStep Technology  
The Mobile Intel Pentium III Processor-M supports Enhanced Intel SpeedStep technology. Enhanced  
Intel SpeedStep technology allows the processor to switch automatically between two core frequencies  
based on CPU demand, without resetting the processor or changing the system bus frequency. The  
processor has two bus ratios programmed into it instead of one, and the GHI# signal controls which  
one is used. After reset, the processor will start in the lower of its two core frequencies, the Battery  
Optimized mode. An operating mode transition to the high core frequency can be made by putting the  
processor into the Deep Sleep state, raising the core voltage, setting GHI# low, and returning to the  
Normal state. This puts the processor into the “Maximum performance” mode. Reversing these steps  
transitions the processor back to the low-core frequency. Please contact your Intel Field Sales  
Representative for details on how Enhanced Intel SpeedStep technology can be implemented with the  
Mobile Intel Pentium III Processor-M, Intel 830MP chipset, or its equivalent and the Intel SpeedStep  
technology applet.  
2.3  
AGTL Signals  
The Mobile Pentium III Processor-M system bus signals use a variation of the low-voltage swing GTL  
signaling technology. The AGTL system bus depends on incident wave switching and uses flight time  
for timing calculations of the AGTL signals, as opposed to capacitive derating. Intel recommends  
analog signal simulation of the system bus including trace lengths. Contact your field sales  
representative to receive the IBIS models for the Mobile Pentium III Processor-M.  
The AGTL system bus of the Mobile Pentium III Processor-M is designed to support high-speed data  
transfers with multiple loads on a long bus that behaves like a transmission line. This termination is  
provided on the processor core (except for the RESET# signal).  
Mobile Intel® Pentium ® III Processor-M Datasheet  
19  
Mobile Intel Pentium III Processor-M Features  
R
2.4  
Mobile Intel Pentium III Processor-M CPUID  
When the CPUID version information is loaded with EAX=01H, the EAX and EBX registers contain  
the values shown in Table 3. After a power-on RESET, the EDX register contains the processor  
version information (type, family, model, stepping). Please refer to the Intel Processor Identification  
and the CPUID Instruction Application Note AP-485 for more details. Table 4 shows the CPUID  
Cache and TLB descriptor values after the L2 cache is initialized.  
Table 3. Mobile Pentium III Processor-M CPUID  
EAX[31:0]  
EBX[7:0]  
Brand ID  
Reserved [31:14] Type [13:12] Family [11:8] Model [7:4] Stepping [3:0]  
X
0
6
B
X
06  
Table 4. Mobile Pentium III Processor-M CPUID Cache and TLB Descriptors  
Cache and TLB Descriptors  
01H, 02H, 03H, 04H, 08H, 0CH, 83H  
20  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
3. Electrical Specifications  
3.1  
Processor System Signals  
Table 5 lists the processor system signals by type. All AGTL signals are synchronous with the BCLK  
and BCLK# signals. All TAP signals are synchronous with the TCK signal except TRST#. All CMOS  
input signals can be applied asynchronously.  
Table 5. System Signal Groups  
Group Name  
Signals  
AGTL Input  
AGTL Output  
AGTL I/O  
BPRI#, DEFER#, RESET#, RSP#  
PRDY#  
A[35:3]#, ADS#, AERR#, AP[1:0]#, BERR#, BINIT#, BNR#, BP[3:2]#, BPM[1:0]#,  
BREQ0#, D[63:0]#, DBSY#, DEP[7:0]#, DRDY#, HIT#, HITM#, LOCK#, REQ[4:0]#,  
RP#, RS[2:0]#, TRDY#  
1.5 V CMOS Input  
1.8 V CMOS Input  
A20M#, DPSLP#, FLUSH#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, PREQ#, SMI#,  
STPCLK#  
PWRGOOD  
1.5 V Open Drain Output FERR#, IERR#  
3.3 V Open Drain Output BSEL[1:0], VID[4:0]  
1.25 V input  
Clock  
GHI#, VTTPWRGD  
BCLK, BCLK# (Differential Mode)  
BCLK (Single Ended Mode)  
PICCLK  
2.5 V Clock Input  
APIC Clock  
APIC I/O  
PICD[1:0]  
Thermal Diode  
TAP Input  
THERMDC, THERMDA  
TCK, TDI, TMS, TRST#  
TDO  
TAP Output  
Power/Other  
CLKREF, CMOSREF, EDGECTRLP, NC, NCTRL, PLL1, PLL2, RTTIMPEDP, VCC  
VCCT, VREF, VSS,  
,
NOTES:  
1. VCC is the power supply for the core logic.  
2. PLL1 and PLL2 are power/ground for the PLL analog section. See Section 3.2.2 for details.  
3. VCCT is the power supply for the system bus buffers.  
4. VREF is the voltage reference for the AGTL input buffers.  
5. VSS is system ground.  
The APIC data and TAP outputs are Open-drain and should be pulled up to 1.5 V using resistors with  
the values shown in Table 6. If Open-drain drivers are used for input signals, then they should also be  
pulled up to the appropriate voltage using resistors with the values shown in Table 6.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
21  
Electrical Specifications  
R
Table 6. Recommended Resistors for Mobile Intel Pentium III Processor-M Signals  
Mobile Intel Pentium III Processor-M Signal 1, 2  
Recommended  
Resistor Value ()  
No pull-up  
GHI# 3  
10 pull-down  
14 pull-up  
BREQ0#4  
NCTRL  
39 pull-up  
TMS  
39 pull-down  
56.2 pull-up  
56.2 pull-down  
110 pull-down  
150 pull-up  
TCK  
PRDY#, RESET#5  
RTTIMPEDP  
EDGECTRLP  
PICD[1:0], TDO  
PREQ#, TDI  
200-300 pull-up  
500 pull-down  
1 K pull-up  
TRST#  
BSEL[1:0], TESTHI, VID[4:0], VTTPWRGD  
TESTLO  
1 K pull-down  
1.5 K pull-up  
3 K pull-up  
FERR#, IERR#, PWRGOOD  
FLUSH#  
Additional Pullup/Pulldown Resistor Recommendations7  
270 pull-up  
680 pull-up  
1.5 K pull-up  
NOTES:  
SMI#  
STPCLK#  
A20M#, DPSLP#, INIT#, IGNNE#, LINT0/INTR, LINT1/NMI  
1. The recommendations above are only for signals that are being used. These recommendations are maximum  
values only; stronger pull-ups may be used. Pull-ups for the signals driven by the chipset should not violate the  
chipset specification. Refer to Section 3.1.4 for the required pull-up or pull-down resistors for signals that are not  
being used.  
2. Open-drain signals must never violate the undershoot specification in Section 4.3. Use stronger pull-ups if there  
is too much undershoot.  
3. GHI# has an on-die pull-up to VCCT  
.
4. A pull-down on BREQ0# is an alternative to having the central agent to drive BREQ0# low at reset.  
5. A 56.2 1% terminating resistor connected to VCCT is required.  
6. The following signals are actively driven high by the ICH3-M component and do not need external pull up  
resistors on ICH3-M based platforms: A20M#, DPSLP#, INIT#, IGNNE#, LINT0/INTR, LINT1/NMI, SMI#,  
STPCLK#.  
7. These pull up recommendations apply to systems on which these signals are not actively pulled high such as  
those utilizing the 82443MX chipset.  
3.1.1  
Power Sequencing Requirements  
Unlike the Mobile Pentium III Processor, the Mobile Intel Pentium III Processor-M has specific power  
sequencing requirements. The power on sequencing and timings are shown in Figure 12 and Table 25.  
Power down timing requirements are shown in Figure 13, Figure 14, and Table 25. The VCC power  
plane must not rise too fast. At least 200 µsec (TR) must pass from the time that VCC is at 10% of its  
nominal value until the time that VCC is at 90% of its nominal value. The recommended VCC rise and  
fall times for Enhanced Intel SpeedStep technology and Deeper Sleep transitions are 100 µsec (max).  
For more details, please refer to the Intel® Mobile Voltage Positioning -II (IMVP-II) Design Guide.  
22  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
3.1.2  
Test Access Port (TAP) Connection  
The TAP interface is an implementation of the IEEE 1149.1 (“JTAG”) standard. Due to the voltage  
levels supported by the TAP interface, Intel recommends that the Mobile Intel Pentium III Processor-M  
and the other 1.5-V JTAG specification compliant devices be last in the JTAG chain after any devices  
with 3.3-V or 5.0-V JTAG interfaces within the system. A translation buffer should be used to reduce  
the TDO output voltage of the last 3.3/5.0 V device down to the 1.5-V range that the Mobile Intel  
Pentium III Processor-M can tolerate. Multiple copies of TMS and TRST# must be provided, one for  
each voltage level.  
A Debug Port and connector may be placed at the start and end of the JTAG chain containing the  
processor, with TDI to the first component coming from the Debug Port and TDO from the last  
component going to the Debug Port. There are no requirements for placing the Mobile Intel Pentium III  
Processor-M in the JTAG chain, except for those that are dictated by voltage requirements of the TAP  
signals.  
3.1.3  
3.1.4  
Catastrophic Thermal Protection  
The Mobile Intel Pentium III Processor-M does not support catastrophic thermal protection or the  
THERMTRIP# signal. An external thermal sensor must be used to protect the processor and the system  
against excessive temperatures. If the external thermal sensor detects a processor junction temperature  
of 101°C (maximum), both the VCC and VCCT supplies to the processor must be reduced to at least 50%  
of the nominal values within 500 ms, and Intel recommends turning them off completely within 1  
second to prevent damage to the processor. Processor temperature must be monitored in all states  
including low power states.  
Unused Signals  
All signals named NC must be unconnected. Unused AGTL inputs, outputs and bi-directional signals  
should be unconnected. Unused CMOS active low inputs should be connected to 1.5 V and unused  
active high inputs should be connected to VSS. Unused Open-drain outputs should be unconnected.  
When tying any signal to power or ground, a resistor will allow for system testability. For unused  
signals, Intel suggests that 1.5-kresistors are used for pull-ups and 1.0-kresistors are used for pull-  
downs.  
PICCLK must be driven with a clock that meets specification and the PICD[1:0] signals must be pulled  
up separately to 1.5 V with 150-resistors, even if the local APIC is not used.  
If the TAP signals are not used then the inputs should be pulled to ground with 1-kresistors and  
TDO should be left unconnected.  
3.1.5  
Signal State in Low-power States  
3.1.5.1  
System Bus Signals  
All of the system bus signals have AGTL input, output, or input/output drivers. Except when servicing  
snoops, the system bus signals are tri-stated and pulled up by the termination resistors. Snoops are not  
permitted in the Deep Sleep and Deeper Sleep states.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
23  
Electrical Specifications  
R
3.1.5.2  
3.1.5.3  
CMOS and Open-drain Signals  
The CMOS input signals are allowed to be in either the logic high or low state when the processor is in  
a low-power state. In the Auto Halt state these signals are allowed to toggle. These input buffers have  
no internal pull-up or pull-down resistors and system logic can use CMOS or Open-drain drivers to  
drive them.  
The Open-drain output signals have open drain drivers and external pull-up resistors are required. One  
of the two output signals (IERR#) is a catastrophic error indicator and is tri-stated (and pulled-up)  
when the processor is functioning normally. The FERR# output can be either tri-stated or driven to VSS  
when the processor is in a low-power state depending on the condition of the floating-point unit. Since  
this signal is a DC current path when it is driven to VSS, Intel recommends that the software clears or  
masks any floating-point error condition before putting the processor into the Deep Sleep state.  
Other Signals  
The system bus clocks (BCLK, BCLK#) must be driven in all of the low-power states except the Deep  
Sleep state. The APIC clock (PICCLK) must be driven whenever BCLK and BCLK# are driven.  
Otherwise, it is permitted to turn off PICCLK by holding it at VSS. BCLK and BCLK# should be obey  
the DC levels in Table 30 (for Differential Clocking) and Table 31 (for Single Ended Clocking).  
In the Auto Halt state, the APIC bus data signals (PICD[1:0]) may toggle due to APIC bus messages.  
These signals are required to be tri-stated and pulled-up when the processor is in the Quick Start or  
Deep Sleep states.  
3.2  
Power Supply Requirements  
3.2.1  
Decoupling Guidelines  
The Mobile Intel Pentium III Processor-M Micro-FCPGA package has twelve 0805IDC, 1-µF surface  
mount decoupling capacitors. Eight capacitors are on the VCC supply and four capacitors are on VCCT.  
For the Micro-FCBGA package, there are six 0.68-µF capacitors on VCC and two 0.68-µF capacitors  
on VCCT . In addition to the package capacitors, sufficient board level capacitors are also necessary for  
power supply decoupling. These guidelines are as follows:  
High and Mid Frequency VCC decoupling – Place twenty-four 0.22-µF 0603 capacitors directly  
under the package on the solder side of the motherboard using at least two vias per capacitor  
node. Ten 10-µF X7 6.3 V 1206-size ceramic capacitors should be placed around the package  
periphery near the balls. Trace lengths to the vias should be designed to minimize inductance.  
Avoid bending traces to minimize ESL.  
High and Mid Frequency VCCT decoupling – Place ten 1-µF X7R 0603 ceramic capacitors close  
to the package. Via and trace guidelines are the same as above.  
Bulk VCC decoupling – Minimum of 1200-µF capacitance with Equivalent Series Resistance  
(ESR) less than or equal to 3.5 m.  
Bulk VCCT decoupling – Platform dependent but recommendation for Intel 830 Chipset Family  
based systems is minimum of 660 µF with ESR less than or equal to 7 m.  
24  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
3.2.2  
Voltage Planes  
All VCC and VSS pins/balls must be connected to the appropriate voltage plane. All VCCT and VREF  
pins/balls must be connected to the appropriate traces on the system electronics. In addition to the main  
VCC, VCCT, and VSS power supply signals, PLL1 and PLL2 provide analog decoupling to the PLL  
section. PLL1 and PLL2 should be connected according to Figure 2. Do not connect PLL2 directly to  
VSS. Appendix A contains the RLC filter specification.  
Figure 2. PLL RLC Filter  
L1  
R1  
PLL1  
PLL2  
VCCT  
C1  
V0027-01  
3.2.3  
Voltage Identification  
There are five voltage identification balls/pins on the Mobile Intel Pentium III Processor-M. These  
signals can be used to support automatic selection of VCC voltages. They are needed to cleanly support  
voltage specification variations on current and future processors. VID[4:0] are defined in Table 7. The  
voltages specified in the VID table are the Battery Optimized Mode VCC voltages. The VID[4:0]  
signals are open drain on the processor and need pullup resistors to 3.3 V on the motherboard. Please  
refer to the mobile VR guidelines provided by Intel for additional information.  
Table 7. Mobile Intel Pentium III Processor-M VID Values  
VID[4:0]  
VCC (V)  
VID[4:0]  
VCC (V)  
VID[4:0]  
VCC (V)  
VID[4:0]  
VCC (V)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
1.750  
1.700  
1.650  
1.600  
1.550  
1.500  
1.450  
1.400  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.350  
1.300  
1.250  
1.200  
1.150  
1.100  
1.050  
1.000  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
0.775  
0.750  
0.725  
0.700  
0.675  
0.650  
0.625  
0.600  
Figure 3 shows the system level connections for the VTTPWRGD signal. Please refer to the  
appropriate VR and system level guidelines provided by Intel for more details.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
25  
Electrical Specifications  
R
Figure 3. VTTPWRGD System-Level Connections  
Vcct  
Vcct  
Processor  
Voltage Regulator  
Vcct  
1k  
Vttpwrgd  
(output)  
Vttpwrgd  
(input)  
3.3V  
100k  
10k  
Clock Generator  
Vttpwrgd#  
(input)  
1.2V to 3.3V Level Shifter  
3.3  
3.4  
System Bus Clock and Processor Clocking  
The BCLK and BCLK# clock inputs directly control the operating speed of the system bus interface.  
All system bus timing parameters are specified with respect to the crossing point of the rising edge of  
the BCLK input and falling edge of the BCLK# input. The Mobile Intel Pentium III Processor-M core  
frequency is a multiple of the BCLK frequency. The processor core frequency is configured during  
manufacturing. The configured bus ratio is visible to software in the Power-on configuration register.  
See Section 7.2 for details.  
Multiplying the bus clock frequency is necessary to increase performance while allowing for easier  
distribution of signals within the system. Clock multiplication within the processor is provided by the  
internal Phase Lock Loop (PLL), which requires constant frequency BCLK, BCLK# inputs. During  
Reset or on exit from the Deep Sleep state, the PLL requires some amount of time to acquire the phase  
of BCLK and BCLK#. This time is called the PLL lock latency, which is specified in Section 3.7, AC  
timing parameters T18 and T47.  
Enhanced Intel SpeedStep Technology  
The Mobile Intel Pentium III Processor-M supports Enhanced Intel SpeedStep technology, which  
enables the processor to operate in two modes, the Maximum Performance mode or the Battery  
Optimized mode. Each frequency and voltage pair identifies the operating mode. The voltage provided  
to the processor must meet the core voltage specification for the current operating mode. If an  
operating mode transition is made, then the system logic must direct the voltage regulator to regulate to  
the voltage specification of the other mode. After reset, the processor will start in the lower of its two  
core frequencies, so the core voltage must meet the lower voltage specification. Any RESET# assertion  
will force the processor to the lower frequency, and the core voltage must behave appropriately. INIT#  
assertions ("soft" resets) and APIC bus INIT messages do not change the operating mode of the  
processor. Some electrical and thermal specifications are for a specific voltage and frequency. The  
Mobile Intel Pentium III Processor-M will meet the electrical and thermal specifications specific to the  
current operating mode, and it is not guaranteed to meet the electrical and thermal specifications  
specific to the opposite operating mode. The timing specifications must be met when performing an  
operating mode transition.  
26  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
3.5  
Maximum Ratings  
Table 8 contains the Mobile Intel Pentium III Processor-M stress ratings. Functional operation at the  
absolute maximum and minimum is neither implied nor guaranteed. The processor should not receive a  
clock while subjected to these conditions. Functional operating conditions are provided in the AC and  
DC tables. Extended exposure to the maximum ratings may affect device reliability. Furthermore,  
although the processor contains protective circuitry to resist damage from static electric discharge, one  
should always take precautions to avoid high static voltages or electric fields.  
Table 8. Mobile Intel Pentium III Processor-M Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
°C  
Notes  
Note 1  
TStorage  
VCC(Abs)  
VCCT  
Storage Temperature  
–40 85  
Supply Voltage with respect to VSS  
–0.5 1.75  
–0.3 1.75  
–0.3 1.75  
–0.3 1.75  
–0.3 2.0  
–0.3 2.0  
–0.3 2.4  
–0.3 3.3  
V
System Bus Buffer Voltage with respect to VSS  
System Bus Buffer DC Input Voltage with respect to VSS  
1.25V Buffer DC Input Voltage with respect to VSS  
1.5V Buffer DC Input Voltage with respect to VSS  
1.8V Buffer DC Input Voltage with respect to VSS  
2.0V Buffer DC Input Voltage with respect to VSS  
2.5V Buffer DC Input Voltage with respect to VSS  
VID ball/pin DC Input Voltage with respect to VSS  
VID Current  
V
VIN GTL  
VIN125  
VIN15  
V
Notes 2, 3  
Note 4  
Note 5  
Note 6  
Note 7  
Note 9  
Note 8  
Note 8  
V
V
VIN18  
V
VIN20  
V
VIN25  
V
VINVID  
3.465  
V
IVID  
-0.3 3.6  
mA  
NOTES:  
1. The shipping container is only rated for 65°C.  
2. Parameter applies to the AGTL signal groups only. Compliance with both VIN GTL specifications is required.  
3. The voltage on the AGTL signals must never be below –0.3 or above 1.75 V with respect to ground.  
4. Parameter applies to CLKREF, GHI#, TESTHI, VTTPWRGD signals.  
5. Parameter applies to CMOS, Open-drain, APIC, TESTLO and TAP bus signal groups only.  
6. Parameter applies to PWRGOOD signal.  
7. Parameter applies to PICCLK signal.  
8. Parameter applies to each VID pin/ball individually.  
9. Parameter applies to BCLK signal in Single Ended Clocking Mode.  
3.6  
DC Specifications  
Table 9 through Table 18 list the DC specifications for the Mobile Intel Pentium III Processor-M.  
Specifications are valid only while meeting specifications for the junction temperature, clock  
frequency, and input voltages. The junction temperature range for all DC specifications is 0°C to  
100°C. Care should be taken to read all notes associated with each parameter. Unlike the Mobile  
Pentium III Processor, the Vcc tolerances for the Mobile Intel Pentium III Processor-M are not specified  
as a percentage of nominal. The tolerances are instead specified in the form of load lines for the static  
and transient cases in Table 10 through Table 15. Illustration of the load lines is shown in Figure 4 and  
Figure 5.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
27  
Electrical Specifications  
R
Table 9. Power Specifications for Mobile Intel Pentium III Processor-M1  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
Notes  
VCC  
Transient VCC for core logic  
Battery Optimized Mode  
0.95  
1.05  
1.15  
V
Notes 10, 11  
Maximum Performance Mode  
1.10  
1.15  
1.40  
VCC,DC  
Static VCC for core logic  
Battery Optimized Mode  
0.95  
1.05  
1.15  
V
Notes 10, 11  
Maximum Performance Mode  
1.10  
1.15  
1.40  
VCCDPRSLP  
Transient VCC for core logic during Deeper Sleep 0.785 0.85 0.900  
0.80 0.85 0.880  
VCC for System Bus Buffers, Transient tolerance 1.138 1.25 1.362  
V
V
V
V
A
Note 11  
VCCDPRSLP, DC Static VCC for core logic during Deeper Sleep  
Note 11  
VCCT  
VCCT,DC  
ICC  
± 9%, Notes 8,11  
±5%, Notes 2,11  
Note 4  
VCC for System Bus Buffers, Static tolerance  
Current for VCC at core frequency  
1.188 1.25 1.312  
300 MHz & 0.95 V  
350 MHz & 0.95 V  
400 MHz & 0.95 V  
450 MHz & 1.05 V  
466 MHz & 1.05 V  
500 MHz & 1.05 V  
533 MHz & 1.05 V  
700 MHz & 1.10 V  
733 MHz & 1.10 V  
750 MHz & 1.10 V  
800 MHz & 1.10 V  
850 MHz & 1.10 V  
866 MHz & 1.10 V  
900 MHz & 1.10 V  
933 MHz & 1.10 V  
667 MHz & 1.15 V  
733 MHz & 1.15 V  
750 MHz & 1.15 V  
800 MHz & 1.15 V  
850 MHz & 1.15 V  
866 MHz & 1.15 V  
933 MHz & 1.15 V  
1.000 GHz & 1.15 V  
866 MHz & 1.40 V  
933 MHz & 1.40 V  
1.000 GHz & 1.40 V  
1.066 GHz & 1.40 V  
1.133 GHz & 1.40 V  
1.200 GHz & 1.40 V  
1.266 GHz & 1.40 V  
1.333 GHz & 1.40 V  
3.98  
4.28  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
4.58  
6.08  
6.19  
6.38  
6.61  
7.58  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
7.58  
7.58  
7.58  
8.25  
8.38  
8.43  
8.57  
8.90  
9.39  
9.47  
9.57  
10.21  
10.32  
10.50  
10.94  
15.87  
16.45  
16.83  
17.46  
18.11  
18.69  
18.69  
18.92  
ICCT  
Current for VCCT  
2.7  
A
A
Notes 3, 4  
Note 4  
ICC,AH  
Processor Auto Halt current at  
28  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Symbol  
Parameter  
Min  
Typ  
Max Unit  
Notes  
0.95 V  
1.05 V  
1.10 V  
1.15 V  
1.40 V  
1.88  
3.36  
3.09  
4.52  
8.85  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
ICC,QS  
Processor Quick Start current at  
A
A
Note 4  
0.95 V  
1.05 V  
1.10 V  
1.15 V  
1.40 V  
1.82  
3.22  
2.91  
4.30  
8.53  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
ICC,DSLP  
Processor Deep Sleep Leakage current at  
Note 4  
0.95 V  
1.05 V  
1.10 V  
1.15 V  
1.40 V  
1.70  
3.01  
2.65  
3.99  
8.04  
Notes 4, 12  
Notes 4, 12  
Notes 4, 12  
ICC,DPRSLP  
ICC,DPRSLPULV  
ILVID  
Processor Deeper Sleep Leakage current  
Processor Deeper Sleep Leakage current  
VID leakage current  
1.70  
1.27  
0.5  
A
Note 5  
A
Notes 5, 12  
Note 9  
mA  
A/µs  
dICC/dt  
VCC power supply current slew rate  
400  
Notes 6, 7  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. Processors will comply  
with the ICCx max specification for the current mode of operation.  
,
2. Static voltage regulation includes: DC output initial voltage set point adjust, output ripple and noise, temperature  
and warm up.  
3.  
4. ICCx max  
15, VCCT max  
I
CCT is the current supply for the system bus buffers, including the on-die termination.  
specifications are specified at VCC static (typical) derived from the tolerances in Table 10 through Table  
, Tjmax, and under maximum signal loading conditions.  
,
,
5. Maximum ICC,DPRSLP specified at VCC = 0.85 V.  
6. Based on simulations and averaged over the duration of any change in current. Use to compute the maximum  
inductance and reaction time of the voltage regulator. This parameter is not tested.  
7. Maximum values specified by design/characterization at nominal VCC and VCCT  
8. VCCx must be within this range under all operating conditions, including maximum current transients. VCCx must  
return to within the static voltage specification, VCCx DC, within 100 µs after a transient event.  
.
,
9. VID leakage current is < 100 µA for VID voltages under 3.0 V.  
10. Typical VCC indicates the VID encoded voltage. Voltage supplied must conform to the load line specification  
shown in Table 10 through Table 15.  
11. Voltages are measured at the processor socket pin for the Micro-FCPGA part and at the package ball on the  
Micro-FCBGA part.  
12. This specification applies only to the Ultra Low Voltage Mobile Intel Pentium III Processor-M.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
29  
Electrical Specifications  
R
Table 10. VCC Tolerances for the Mobile Intel Pentium III Processor-M: VID = 1.40 V (Performance  
Mode) and 1.15 V (Battery Optimized Mode)  
Performance Mode  
Battery Optimized Mode  
ICC (A)  
VCC (V)  
ICC (A)  
VCC (V)  
Static  
Static  
Transient  
Transient  
Typ  
1.400  
1.396  
1.392  
1.388  
1.384  
1.380  
1.376  
1.372  
1.368  
1.364  
1.360  
1.356  
1.352  
1.348  
1.344  
1.340  
1.336  
1.332  
1.328  
1.324  
1.320  
1.316  
1.312  
1.308  
Min  
Max  
Min  
Max  
Typ  
Min  
Max  
Min  
Max  
0.0  
1.0  
1.375  
1.371  
1.367  
1.363  
1.359  
1.355  
1.351  
1.347  
1.343  
1.339  
1.335  
1.331  
1.327  
1.323  
1.319  
1.315  
1.311  
1.307  
1.303  
1.299  
1.295  
1.291  
1.287  
1.283  
1.425  
1.421  
1.417  
1.413  
1.409  
1.405  
1.401  
1.397  
1.393  
1.389  
1.385  
1.381  
1.377  
1.373  
1.369  
1.365  
1.361  
1.357  
1.353  
1.349  
1.345  
1.341  
1.337  
1.333  
1.355  
1.351  
1.347  
1.343  
1.339  
1.335  
1.331  
1.327  
1.323  
1.319  
1.315  
1.311  
1.307  
1.303  
1.299  
1.295  
1.291  
1.287  
1.283  
1.279  
1.275  
1.271  
1.267  
1.263  
1.445  
1.441  
1.437  
1.433  
1.429  
1.425  
1.421  
1.417  
1.413  
1.409  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
1.135  
1.131  
1.127  
1.123  
1.119  
1.115  
1.111  
1.107  
1.103  
1.099  
1.095  
1.091  
1.087  
1.083  
1.079  
1.110  
1.106  
1.102  
1.098  
1.094  
1.900  
1.086  
1.082  
1.078  
1.074  
1.070  
1.066  
1.062  
1.058  
1.054  
1.160 1.090  
1.156 1.086  
1.152 1.082  
1.148 1.078  
1.144 1.074  
1.140 1.070  
1.136 1.066  
1.132 1.062  
1.128 1.058  
1.124 1.054  
1.120 1.050  
1.116 1.046  
1.112 1.042  
1.108 1.038  
1.104 1.034  
1.180  
1.176  
1.172  
1.168  
1.164  
1.160  
1.156  
1.152  
1.148  
1.144  
1.140  
1.136  
1.132  
1.128  
1.124  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
19.0  
20.0  
21.0  
22.0  
23.0  
1.405 10.0  
1.401 11.0  
1.397 12.0  
1.393 13.0  
1.389 14.0  
1.385  
1.381  
1.377  
1.373  
1.369  
1.365  
1.361  
1.357  
1.353  
30  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Figure 4. Illustration of VCC Static and Transient Tolerances (VID = 1.40 V)  
1.500  
Transient Maximum  
1.450  
Static Maximum  
1.400  
1.350  
1.300  
1.250  
1.200  
1.150  
Static Typical  
Static Minimum  
Transient Minimum  
Icc (A)  
Mobile Intel® Pentium ® III Processor-M Datasheet  
31  
Electrical Specifications  
R
Table 11. VCC Tolerances for the Mobile Intel Pentium III Processor-M in the Deep Sleep State: VID  
= 1.40 V (Performance Mode) and 1.15 V (Battery Optimized Mode)  
Performance Mode  
Battery Optimized Mode  
ICC (A)  
VCC (V)  
ICC (A)  
VCC (V)  
Static  
Static  
Transient  
Transient  
Min  
Typ  
1.338  
1.334  
1.330  
1.326  
1.322  
1.318  
1.314  
1.310  
1.306  
Min  
1.313  
1.309  
1.305  
1.301  
1.297  
1.293  
1.289  
1.285  
1.281  
Max  
Min  
Max  
Typ  
1.084  
1.080  
1.076  
1.072  
1.068  
1.064  
1.060  
Min  
Max  
Max  
1.129  
1.125  
1.121  
1.117  
1.113  
1.109  
1.105  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
1.363  
1.359  
1.355  
1.351  
1.347  
1.343  
1.339  
1.335  
1.331  
1.293  
1.289  
1.285  
1.281  
1.277  
1.273  
1.269  
1.265  
1.261  
1.383  
1.379  
1.375  
1.371  
1.367  
1.363  
1.359  
1.355  
1.351  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
1.059  
1.055  
1.051  
1.047  
1.043  
1.039  
1.035  
1.109  
1.105  
1.101  
1.097  
1.093  
1.089  
1.085  
1.039  
1.035  
1.031  
1.027  
1.023  
1.019  
1.015  
Figure 5. Illustration of Deep Sleep VCC Static and Transient Tolerances (VID Setting = 1.40 V)  
1.430  
Transient Maximum  
Static Maximum  
Static Typical  
1.380  
1.330  
1.280  
1.230  
1.180  
Transient Minimum  
Static Minimum  
0
1
2
3
4
5
6
7
8
Icc (A)  
32  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Table 12. VCC Tolerances for the Low Voltage Mobile Intel Pentium III Processor-M: VID = 1.15 V  
(Performance Mode) and 1.05 V (Battery Optimized Mode)  
Performance Mode  
Battery Optimized Mode  
ICC (A)  
VCC (V)  
ICC (A)  
VCC (V)  
Static  
Static  
Transient  
Transient  
Typ  
1.150  
1.146  
1.142  
1.138  
1.134  
1.130  
1.126  
1.122  
1.118  
1.114  
1.110  
1.106  
1.102  
1.098  
1.094  
1.090  
Min  
1.125  
1.121  
1.117  
1.113  
1.109  
1.105  
1.101  
1.097  
1.093  
1.089  
1.085  
1.081  
1.077  
1.073  
1.069  
1.065  
Max  
Min  
Max  
Typ  
Min  
Max  
Min  
Max  
0.0  
1.0  
1.175  
1.171  
1.167  
1.163  
1.159  
1.155  
1.151  
1.147  
1.143  
1.139  
1.135  
1.131  
1.127  
1.123  
1.119  
1.115  
1.105  
1.101  
1.097  
1.093  
1.089  
1.085  
1.081  
1.077  
1.073  
1.069  
1.065  
1.061  
1.057  
1.053  
1.049  
1.045  
1.195  
1.191  
1.187  
1.183  
1.179  
1.175  
1.171  
1.167  
1.163  
1.159  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
1.036  
1.032  
1.028  
1.024  
1.020  
1.016  
1.012  
1.008  
1.004  
1.000  
0.996  
1.011  
1.007  
1.003  
0.999  
0.995  
0.991  
0.987  
0.983  
0.979  
0.975  
0.971  
1.061  
1.057  
1.053  
1.049  
1.045  
1.041  
1.037  
1.033  
1.029  
1.025  
1.021  
0.991  
0.987  
0.983  
0.979  
0.975  
0.971  
0.967  
0.963  
0.959  
0.955  
0.951  
1.081  
1.077  
1.073  
1.069  
1.065  
1.061  
1.057  
1.053  
1.049  
1.045  
1.041  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
1.155 10.0  
1.151  
1.147  
1.143  
1.139  
1.135  
Table 13. VCC Tolerances for the Low Voltage Mobile Intel Pentium III Processor-M in the Deep  
Sleep State: VID = 1.15 V (Performance Mode) and 1.05 V (Battery Optimized Mode)  
Performance Mode  
Battery Optimized Mode  
ICC (A)  
VCC (V)  
ICC (A)  
VCC (V)  
Static  
Static  
Transient  
Transient  
Typ  
1.114  
1.110  
1.106  
1.102  
1.098  
1.094  
1.090  
Min  
1.089  
1.085  
Max  
1.139  
1.135  
Min  
Max  
Typ  
1.016  
1.012  
1.008  
1.004  
1.000  
0.996  
Min  
Max  
Min  
Max  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
1.069  
1.065  
1.061  
1.057  
1.053  
1.049  
1.045  
1.159  
1.155  
1.151  
1.147  
1.143  
1.139  
1.135  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
0.991  
0.987  
0.983  
0.979  
0.975  
0.971  
1.041  
1.037  
1.033  
1.029  
1.025  
1.021  
0.958  
0.954  
0.950  
0.946  
0.942  
0.938  
1.061  
1.057  
1.053  
1.049  
1.045  
1.041  
1.081 1.131  
1.077  
1.073  
1.069  
1.065  
1.127  
1.123  
1.119  
1.115  
Mobile Intel® Pentium ® III Processor-M Datasheet  
33  
Electrical Specifications  
R
Table 14. VCC Tolerances for the Ultra Low Voltage Mobile Intel Pentium III Processor-M: VID = 1.1  
V (Performance Mode) and 0.95 V (Battery Optimized Mode)  
Performance Mode  
Battery Optimized Mode  
ICC (A)  
VCC (V)  
ICC (A)  
VCC (V)  
Static  
Static  
Transient  
Transient  
Typ  
1.100  
1.096  
1.092  
1.088  
1.084  
1.080  
1.076  
1.072  
1.068  
1.064  
1.060  
1.056  
1.052  
1.048  
Min  
Max  
Min  
Max  
Typ  
Min  
Max  
Min  
Max  
0.0  
1.0  
1.075  
1.071  
1.067  
1.063  
1.059  
1.055  
1.051  
1.047  
1.043  
1.039  
1.035  
1.031  
1.027  
1.023  
1.125  
1.121  
1.117  
1.113  
1.109  
1.105  
1.101  
1.097  
1.093  
1.089  
1.085  
1.081  
1.077  
1.073  
1.055  
1.051  
1.047  
1.043  
1.039  
1.035  
1.031  
1.027  
1.023  
1.019  
1.015  
1.011  
1.007  
1.003  
1.145  
1.141  
1.137  
1.133  
1.129  
1.125  
1.121  
1.117  
1.113  
1.109  
1.105  
1.101  
1.097  
1.093  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0.938  
0.934  
0.930  
0.926  
0.922  
0.918  
0.914  
0.910  
0.906  
0.913  
0.909  
0.905  
0.901  
0.897  
0.893  
0.889  
0.885  
0.881  
0.963  
0.959  
0.955  
0.951  
0.947  
0.943  
0.939  
0.935  
0.931  
0.893  
0.889  
0.885  
0.881  
0.877  
0.873  
0.869  
0.865  
0.861  
0.983  
0.979  
0.975  
0.971  
0.967  
0.963  
0.959  
0.955  
0.951  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
Table 15. VCC Tolerances for the Ultra Low Voltage Mobile Intel Pentium III Processor-M in the  
Deep Sleep State: VID = 1.1 V (Performance Mode) and 0.95 V (Battery Optimized Mode)  
Performance Mode  
Battery Optimized Mode  
ICC (A)  
VCC (V)  
ICC (A)  
VCC (V)  
Static  
Static  
Transient  
Transient  
Typ  
Min  
Max  
Min  
Max  
Typ  
Min  
Max  
Min  
Max  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
1.068  
1.064  
1.060  
1.056  
1.052  
1.048  
1.043  
1.039  
1.035  
1.031  
1.027  
1.023  
1.093  
1.089  
1.085  
1.081  
1.077  
1.073  
1.023  
1.019  
1.015  
1.011  
1.007  
1.003  
1.113  
1.109  
1.105  
1.101  
1.097  
1.093  
0.0  
1.0  
2.0  
3.0  
4.0  
0.922  
0.918  
0.914  
0.910  
0.906  
0.897  
0.893  
0.889  
0.885  
0.881  
0.947  
0.943  
0.939  
0.935  
0.931  
0.865  
0.861  
0.857  
0.853  
0.849  
0.967  
0.963  
0.959  
0.955  
0.951  
34  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Table 16. AGTL Signal Group DC Specifications  
Symbol  
Parameter  
Min  
-0.15  
Max  
Unit  
Notes  
VIL  
VIH  
Input Low Voltage  
VREF-0.2  
V
Input High Voltage  
VREF+0.2 VCCT  
V
See VCCT,max in Table 9  
See VCCT,max in Table 9  
Note 2  
VOH  
Output High Voltage  
V
RON  
IL  
Output Low Drive Strength  
Leakage Current for Inputs, Outputs and I/Os  
16.67  
100  
Note 1  
µA  
NOTES:  
1. Specification applies to leakage high only, for pins with on die RTT, (0 < VIN/OUT VCCT).  
2. Refer to IBIS models for I/V characteristics.  
Table 17. AGTL Bus DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Note 1  
VCCT  
Bus Termination Voltage  
1.25  
V
VREF  
RTT  
Input Reference Voltage  
Bus Termination Strength  
2/3VCCT – 2% 2/3VCCT 2/3VCCT + 2% V  
±2%, Note 2  
50  
56  
65  
On-die RTT, Note 3  
NOTES:  
1. Please refer to Table 9 for minimum and maximum values.  
2.  
3. The RESET# signal does not have an on-die RTT. It requires an off-die 56.2 ±1% terminating resistor  
connected to VCCT  
VREF should be created from VCCT by a voltage divider.  
.
Mobile Intel® Pentium ® III Processor-M Datasheet  
35  
Electrical Specifications  
R
Table 18. CLKREF, APIC, TAP, CMOS, and Open-drain Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
VIL15  
Input Low Voltage, 1.5 V CMOS  
–0.15  
VCMOSREFmin  
– 300 mV  
V
VIL18  
VIH15  
Input Low Voltage, 1.8 V CMOS  
Input High Voltage, 1.5 V CMOS  
–0.36  
0.36  
2.0  
V
V
Notes 1, 2  
VCMOSREFmax  
250 mV  
+
+
Note 11  
VIH15PICD  
Input High Voltage, 1.5 V PICD[1:0]  
VCMOSREFmax  
200 mV  
2.0  
V
Note 12  
VIH18  
VOH15  
VOH33  
VOL33  
VOL  
Input High Voltage, 1.8 V CMOS  
Output High Voltage, 1.5 V CMOS  
Output High Voltage, 3.3 V signals  
Output Low Voltage, 3.3 V signals  
Output Low Voltage  
1.44  
N/A  
2.0  
2.0  
V
Notes 1, 2  
1.615  
3.465  
0.8  
V
All outputs are Open-drain  
3.3V + 5%  
V
V
0.3  
V
Note 9  
Note 4  
Note 10  
Note 7  
Note 7  
Note 8  
Note 8  
Note 3  
Note 6  
Note 5  
VCMOSREF CMOSREF Voltage  
VCLKREF CLKREF Voltage  
0.90  
1.10  
1.312  
0.4  
V
1.187  
V
VILVTTPWR Input Low Voltage, VTTPWRGD  
VIHVTTPWR Input High Voltage, VTTPWRGD  
V
1.0  
1.0  
10  
V
VILGHI  
VIHGHI  
RON  
IOL  
Input Low Voltage, GHI#  
Input High Voltage, GHI#  
0.2  
V
V
30  
mA  
µA  
Output Low Current  
IL  
Leakage Current for Inputs, Outputs  
and I/Os  
±100  
NOTES:  
1. Parameter applies to the PWRGOOD signal only.  
2.  
V
ILx,min and VIHx,max only apply when BCLK, BCLK# and PICCLK are stopped. PICCLK should be stopped in the  
low state. See Table 30 and Table 31 for DC levels when BCLK and BCLK# are stopped.  
3. Measured at 9 mA.  
4.  
V
CMOSREF should be created from a stable 1.5-V supply using a voltage divider. It must track the voltage supply  
to maintain noise immunity. The same 1.5-V supply should be used to power the chipset CMOS I/O buffers that  
drive these signals.  
5. (0 VIN/OUT VIHx,max).  
6. Specified as the minimum amount of current that the output buffer must be able to sink. However, VOL,max cannot  
be guaranteed if this specification is exceeded.  
7. Parameter applies to VTTPWRGD signal only.  
8. Parameter applies to GHI# signal only.  
9. Applies to non-AGTL signals except BCLK, PWRGOOD, PICCLK, BSEL[1:0], VID[4:0].  
10. ±5% DC tolerance. CLKREF must be generated from the same 2.5-V supply used to generate the BCLK signal.  
AC Tolerance must be less than –40 dB at 1 MHz. The CLKREF DC spec only applies to platforms supporting  
single-ended clocking.  
11. Applies to all TAP and CMOS signals (not to APIC signals).  
12. Applies to PICD[1:0].  
36  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
3.7  
AC Specifications  
3.7.1  
System Bus, Clock, APIC, TAP, CMOS, and Open-  
drain AC Specifications  
All system bus AC specifications for the AGTL signal group are relative to the crossing point of the  
rising edge of the BCLK input and falling edge of the BCLK# input. All AGTL timings are referenced  
to VREF for both “0” and “1” logic levels unless otherwise specified. All APIC, TAP, CMOS, and  
Open-drain signals except PWRGOOD are referenced to 1.0 V. All minimum and maximum  
specifications are at points within the power supply ranges shown in Table 9 through Table 15 and  
junction temperatures (Tj) in the range 0°C to 100°C. Tj must be less than or equal to 100°C for all  
functional processor states.  
Table 19. System Bus Clock AC Specifications (Differential) 1  
Symbol  
Parameter  
Min  
Typ  
Max Unit Figure  
Notes  
System Bus Frequency  
133  
MH  
z
T1  
BCLK Period - average  
7.5  
7.3  
7.7  
ns  
ns  
ps  
ps  
8
8
8
8
Note 2  
T1abs  
T2  
BCLK Period – Instantaneous minimum  
BCLK Cycle to Cycle Jitter  
BCLK Rise Time  
Note 2  
200  
467  
550  
467  
550  
0.76  
325  
55%  
Notes 2, 3, 4  
Notes 2, 6, 8  
Notes 2, 6, 9  
Notes 2, 6, 8  
Notes 2, 6, 9  
Note 7  
T5  
175  
175  
175  
175  
0.51  
T6  
BCLK Fall Time  
ps  
8
Vcross for 1V swing  
Rise/Fall Time Matching  
BCLK Duty Cycle  
V
7
7
8
ps  
Note 5  
45%  
Note 2  
NOTES:  
1. All AC timings for AGTL and CMOS signals are referenced to the BCLK and BCLK# crossing point.  
2. Measured on differential waveform: defined as (BCLK - BCLK#).  
3. Not 100% tested. Specified by design/characterization.  
4. Due to the difficulty of accurately measuring clock jitter in a system, it is recommended that the clock driver be  
designed to meet a period stability specification into a test load of 10 to 20 pF. This should be measured on the  
rising edge of adjacent BCLKs at the BCLK, BCLK# crossing point. The jitter present must be accounted for as  
a component of BCLK skew between devices. Period difference is measured around 0 V crossing points.  
5. Measurement taken from common mode waveform, measure rise/fall time from 0.41 to 0.86 V. Rise/fall time  
matching is defined as “the instantaneous difference between maximum BCLK rise (fall) and minimum BCLK#  
fall (rise) time, or minimum BCLK rise (fall) and maximum BCLK# fall (rise) time ”. This parameter is designed to  
guard waveform symmetry.  
6. Rise time is measured from -0.35 V to 0.35 V and fall time is measured from 0.35 V to -0.35 V.  
7. Measured on common mode waveform - includes every rise/fall crossing.  
8. Measured at the package ball for the Micro-FCBGA package.  
9. Measured at the socket pin for the Micro-FCPGA package.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
37  
Electrical Specifications  
R
Table 20. System Bus Clock AC Specifications (133 MHz, Single Ended) 1  
Symbol  
Parameter  
Min  
Max Unit  
Figure  
Notes  
System Bus Frequency  
BCLK Period  
133  
MHz  
T1S  
7.5  
7.65  
ns  
6
Note 2  
Note 2  
T1Sabs BCLK Period – Instantaneous  
Minimum  
7.25  
T2S  
T3S  
BCLK Period Stability  
BCLK High Time  
BCLK Low Time  
BCLK Rise Time  
BCLK Fall Time  
±250 ps  
Notes 2, 3, 4  
at>2.0V  
at<0.5V  
Note 5  
1.4  
1.4  
0.4  
0.4  
ns  
ns  
6
6
6
6
T4S  
T5S  
1.6  
1.6  
ns  
ns  
T6S  
Note 5  
NOTES:  
1. All AC timings for GTL+ and CMOS signals are referenced to the BCLK rising edge at 1.25 V.  
2. Period, jitter, skew and offset measured at 1.25 V.  
3. Not 100% tested. Specified by design/characterization.  
4. Measured on the rising edge of adjacent BCLKs at 1.25 V. The jitter present must be accounted for as a  
component of BCLK skew between devices.  
5. Measured between 0.5 V and 2.0 V.  
Table 21. System Bus Clock AC Specifications (100 MHz, Single Ended)1  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Figure  
Notes  
System Bus Frequency  
BCLK Period  
100  
10  
MHz  
T1S1  
ns  
ns  
6
Note 2  
Note 2  
T1S1abs BCLK Period – Instantaneous  
Minimum  
9.75  
T2S1  
T3S1  
BCLK Period Stability  
BCLK High Time  
BCLK Low Time  
BCLK Rise Time  
BCLK Fall Time  
±250 ps  
Notes 2, 3, 4  
at>2.0 V  
at<0.5 V  
Note 5  
2.70  
2.45  
0.4  
ns  
ns  
6
6
6
6
T4S1  
T5S1  
1.6  
1.6  
ns  
ns  
T6S1  
0.4  
Note 5  
NOTES:  
1. All AC timings for AGTL and CMOS signals are referenced to the BCLK rising edge at 1.25 V.  
2. Period, jitter, skew and offset measured at 1.25 V.  
3. Not 100% tested. Specified by design/characterization.  
4. Measured on the rising edge of adjacent BCLKs at 1.25 V. The jitter present must be accounted for as a  
component of BCLK skew between devices.  
5. Measured between 0.5 V and 2.0 V.  
38  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Table 22. Valid Mobile Intel Pentium III Processor-M Frequencies  
BCLK Frequency  
(MHz)  
Frequency Multiplier  
Core Frequency  
(MHz)  
Power-on Configuration  
Bits [27,25:22]  
100  
100  
100  
100  
100  
100  
100  
100  
100  
133  
133  
133  
133  
133  
133  
133  
133  
133  
133  
133  
133  
133  
133  
3
3.5  
4
300  
350  
400  
450  
500  
700  
750  
800  
850  
400  
466  
533  
667  
733  
800  
866  
933  
1000  
1066  
1133  
1200  
1266  
1333  
0, 0001  
0, 0101  
0, 0010  
0, 0110  
0, 0000  
0, 1001  
0, 1101  
0, 1010  
1, 0110  
0, 0001  
0, 0101  
0, 0010  
0, 0000  
0, 0100  
0, 1011  
0, 1111  
0, 1001  
0, 1101  
0, 1010  
1, 0110  
1, 0000  
1, 0100  
1, 1011  
4.5  
5
7
7.5  
8
8.5  
3
3.5  
4
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5  
10.0  
NOTE: While other combinations of bus and core frequencies are defined, operation at frequencies other than  
those listed above will not be validated by Intel and are not guaranteed. The frequency multiplier is  
programmed into the processor when it is manufactured and it cannot be changed.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
39  
Electrical Specifications  
R
Table 23. AGTL Signal Groups AC Specifications1  
RTT = 56 Ω internally terminated to VCCT; VREF = 2/3VCCT; load = 50 ohms  
Symbol  
Parameter  
Min  
Max  
Unit  
Figure  
Notes  
T7  
AGTL Output Valid Delay  
AGTL Input Setup Time  
0.40  
3.25 ns  
ns  
9
T8  
0.95  
1.30  
1
10  
Notes 2, 3, 6  
Note 7  
T9  
AGTL Input Hold Time  
RESET# Pulse Width  
ns  
10  
Note 4  
T10  
1
ms  
11,12  
Note 5  
NOTES:  
1. All AC timings for AGTL signals are referenced to the crossing point of the BCLK rising edge and the BCLK#  
falling edge for Differential Clocking and to the BCLK rising edge at 1.25 V for Single Ended Clocking. All AGTL  
signals are referenced at V  
frequencies.  
. Unless other specified, all timings apply to both 100 and 133 MHz bus  
REF  
2. RESET# can be asserted (active) asynchronously, but must be deasserted synchronously.  
3. Specification is for a minimum 0.40-V swing from Vref-200 mV to Vref+200 mV.  
4. Specification is for a maximum 0.8-V swing from Vcct-0.8 V to Vcct.  
5. After V , V  
, and BCLK, BCLK# become stable and PWRGOOD is asserted.  
CC  
CCT  
6. Applies to processors supporting 133-MHz bus clock frequency except Ultra Low Voltage processors.  
7. Applies to processors supporting 100-MHz bus clock frequency and Ultra Low Voltage processors supporting  
133-MHz bus clock frequency.  
Table 24. CMOS and Open-drain Signal Groups AC Specifications1, 2  
Symbol  
Parameter  
Min Max Unit  
Figure  
Notes  
T14  
1.5V Input Pulse Width, except PWRGOOD and  
LINT[1:0]  
2
BCLKs 11  
Active and inactive  
states  
T14B  
T15  
LINT[1:0] Input Pulse Width  
6
2
BCLKs 11  
12  
Note 3  
PWRGOOD Inactive Pulse Width  
Note 4, 5  
µs  
NOTES:  
1. All AC timings for CMOS and Open-drain signals are referenced to the crossing point of the BCLK rising edge  
and BCLK# falling edge for Differential Clocking and to the rising edge of BCLK at 1.25V for Single Ended  
Clocking. All CMOS and Open-drain signals are referenced at 1.0 V.  
2. Minimum output pulse width on CMOS outputs is 2 BCLKs.  
3. This specification only applies when the APIC is enabled and the LINT1 or LINT0 signal is configured as an  
edge triggered interrupt with fixed delivery, otherwise specification T14 applies.  
4. When driven inactive, or after VCC, VCCT and BCLK, BCLK# become stable. PWRGOOD must remain below  
VIL18,MAX until all the voltage planes meet the voltage tolerance specifications in Table 9 through Table 15 and  
BCLK, BCLK# have met the BCLK, BCLK# AC specifications in Table 30 and Table 31 for at least 2 µs.  
PWRGOOD must rise error-free and monotonically to 1.8 V.  
5. If the BCLK Settling Time specification (T60) can be guaranteed at power-on reset then the PWRGOOD  
Inactive Pulse Width specification (T15) is waived and BCLK may start after PWRGOOD is asserted.  
PWRGOOD must still remain below VIL18,max until all the voltage planes meet the voltage tolerance  
specifications.  
40  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Table 25. Reset Configuration AC Specifications and Power On/Power Down Timings  
Symbol  
Parameter  
Min Typ Max Unit Figure  
Notes  
11  
T16  
Reset Configuration Signals (A[15:5]#,  
BREQ0#, FLUSH#, INIT#, PICD0) Setup  
Time  
4
BCLKs  
Before deassertion of  
RESET#  
11  
12  
T17  
T18  
Reset Configuration Signals (A[15:5]#,  
2
1
1
20  
BCLKs  
ms  
After clock that  
BREQ0#, FLUSH#, INIT#, PICD0) Hold Time  
deasserts RESET#  
RESET#/PWRGOOD Setup Time  
Before deassertion of  
RESET# 1  
T18A  
T18B  
T18C  
VCCT to VTTPWRGD Setup Time  
VCC to PWRGOOD Setup Time  
ms  
ms  
µs  
12  
12  
12  
10  
BSEL, VID valid time before VTTPWRGD  
assertion  
1
T18D  
T18E  
T19A  
RESET# inactive to Valid Outputs  
RESET# inactive to Drive Signals  
1
4
BCLK 11  
BCLKs 11  
Time from VCC(nominal)-12% to PWRGOOD  
low  
0
0
ns  
13  
VCC(nominal) is the VID  
voltage setting  
T19B  
T19C  
T20A  
T20B  
T20C  
T20D  
All outputs valid after PWRGOOD low  
0
ns  
ns  
ns  
ns  
ns  
ns  
13  
13  
14  
14  
14  
14  
All inputs required valid after PWRGOOD low 0  
Time from VCCT-12% to VTTPWRGD low  
All outputs valid after VTTPWRGD low  
0
All inputs required valid after VTTPWRGD low 0  
VID, BSEL signals valid after VTTPWRGD  
low  
0
T20E  
VTTPWRGD Transition Time  
100  
Measurement from 300  
mV to 900 mV. Amount  
of noise (glitch) less  
than 100 mV. See  
µs  
Section 4.3.1 for details  
NOTE: At least 1 ms must pass after PWRGOOD rises above VIH18min and BCLK, BCLK# meet their AC timing  
specification until RESET# may be deasserted.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
41  
Electrical Specifications  
R
Table 26. APIC Bus Signal AC Specifications 1  
Symbol  
Parameter  
Min  
Max  
33.3  
500  
Unit  
Figure  
Notes  
Note 2  
T21  
T22  
PICCLK Frequency  
PICCLK Period  
2
MHz  
ns  
30  
6
T23  
T24  
T25  
T26  
T27  
T28  
T29  
PICCLK High Time  
PICCLK Low Time  
PICCLK Rise Time  
PICCLK Fall Time  
PICD[1:0] Setup Time  
PICD[1:0] Hold Time  
10.5  
10.5  
0.25  
0.25  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
6
6
6
9
9
8
at>1.6 V  
at<0.4 V  
(0.4 V – 1.6 V)  
(1.6 V – 0.4 V)  
Note 3  
3.0  
3.0  
2.5  
1.5  
Note 3  
Notes 3, 4  
PICD[1:0] Valid Delay (Rising  
Edge)  
8.7  
PICD[1:0] Valid Delay (Falling  
1.5  
12.0  
Edge)  
NOTES:  
1. All AC timings for APIC signals are referenced to the PICCLK rising edge at 1.0 V. All CMOS signals are  
referenced at 1.0 V.  
2. The minimum frequency is 2 MHz when PICD0 is at 1.5 V at reset Referenced to PICCLK Rising Edge.  
3. For Open-drain signals, Valid Delay is synonymous with Float Delay.  
4. Valid delay timings for these signals are specified into 150 to 1.5 V and 0 pF of external load. For real system  
timings these specifications must be derated for external capacitance at 105 ps/pF.  
42  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Table 27. TAP Signal AC Specifications1  
Symbol  
Parameter  
Min Max Unit Figure  
Notes  
T30  
T31  
T32  
T33  
T34  
TCK Frequency  
16.67 MHz  
TCK Period  
60  
ns  
ns  
ns  
ns  
6
6
6
6
TCK High Time  
TCK Low Time  
TCK Rise Time  
25.0  
25.0  
VCMOSREF+0.2 V, Note 2  
VCMOSREF-0.2 V, Note 2  
(VCMOSREF-0.2 V) –  
(VCMOSREF+0.2 V),  
Notes 2, 3  
5.0  
5.0  
T35  
TCK Fall Time  
ns  
6
(VCMOSREF+0.2 V) –  
(VCMOSREF-0.2 V) ,  
Notes 2, 3  
T36  
T37  
TRST# Pulse Width  
40.0  
5.0  
ns  
ns  
ns  
16  
15  
15  
15  
15  
15  
15  
15  
15  
Asynchronous, Note 2  
Note 4  
TDI, TMS Setup Time  
T38  
TDI, TMS Hold Time  
14.0  
Note 4  
T39  
TDO Valid Delay  
1.0 10.0 ns  
25.0 ns  
Notes 5, 6  
T40  
TDO Float Delay  
Notes 2, 5, 6  
Notes 5, 7, 8  
Notes 2, 5, 7, 8  
Notes 4, 7, 8  
Notes 4, 7, 8  
T41  
All Non-Test Outputs Valid Delay  
All Non-Test Outputs Float Delay  
All Non-Test Inputs Setup Time  
All Non-Test Inputs Hold Time  
2.0 25.0 ns  
25.0 ns  
T42  
T43  
5.0  
ns  
ns  
T44  
13.0  
NOTES:  
1. All AC timings for TAP signals are referenced to the TCK rising edge at 1.0 V. All TAP and CMOS signals are  
referenced at 1.0 V.  
2. Not 100% tested. Specified by design/characterization.  
3. 1 ns can be added to the maximum TCK rise and fall times for every 1 MHz below 16 MHz.  
4. Referenced to TCK rising edge.  
5. Referenced to TCK falling edge.  
6. Valid delay timing for this signal is specified into 150 terminated to 1.5 V and 0 pF of external load. For real  
system timings these specifications must be derated for external capacitance at 105 ps/pF.  
7. Non-Test Outputs and Inputs are the normal output or input signals (except TCK, TRST#, TDI, TDO, and TMS).  
These timings correspond to the response of these signals due to boundary scan operations.  
8. During Debug Port operation use the normal specified timings rather than the TAP signal timings.  
Table 28. Quick Start/Deep Sleep AC Specifications1  
Symbol  
Parameter  
Min Max Unit  
Figure  
Notes  
T45  
Quick Start Cycle Completion to Clock Stop or  
DPSLP# assertion  
100  
BCLKs 17, 18  
T46  
T47  
Quick Start Cycle Completion to Input Signals Stable  
Deep Sleep PLL Lock Latency  
0
17, 18  
µs  
µs  
ns  
0
0
8
30  
17, 18  
17, 18  
Note 2  
T48  
STPCLK# Hold Time from PLL Lock  
T49  
Input Signal Hold Time from STPCLK# Deassertion  
BCLKs 17, 18  
NOTES:  
1. Input signals other than RESET# and BPRI# must be held constant in the Quick Start state.  
2. The BCLK, BCLK# Settling Time specification (T60) applies to Deep Sleep state exit under all conditions.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
43  
Electrical Specifications  
R
Table 29. Enhanced Intel SpeedStep Technology AC Specifications  
Symbol  
Parameter  
Min Max Unit Figure  
Notes  
T57  
GHI# Setup Time from BCLK Restart or DPSLP# 150  
deassertion  
ns  
19  
Note 1  
Note 1  
Note 1  
T58  
T59  
GHI# Hold Time from BCLK Restart or DPSLP# 30  
deassertion  
19  
µs  
GHI# Sample Delay  
BCLK Settling Time  
10  
19  
19  
µs  
T60  
150  
ns  
Notes 2, 3  
NOTES:  
1. GHI# is ignored until 10 µs after BCLK, BCLK# stop or DPSLP# assertion, the setup and hold window must  
occur after this time.  
2. BCLK, BCLK# must meet the BCLK AC specification from within 150 ns of turning on (rising above VIL,BCLK).  
3. This specification applies to the exit from the Deep Sleep state whether or not an Enhanced Intel SpeedStep  
technology operating mode transition occurs.  
Figure 6. BCLK (Single Ended)/PICCLK/TCK Generic Clock Timing Waveform  
T
h
T
r
VH  
VTRIP  
CLK  
VL  
T
f
T
l
T
p
D0003-01  
NOTES:  
T =T5S, T5S1, T34, T25 (Rise Time)  
r
f
T =T6S, T6S1, T35, T26 (Fall Time)  
T =T3S, T3S1, T32, T23 (High Time)  
h
T =T4S, T4S1, T33, T24 (Low Time)  
l
T =T1S, T1S1, T31, T22 (Period)  
p
VTRIP=1.25V for BCLK (Single Ended);1.0V for PICCLK; 1.0V for TCK  
VL=0.5V for BCLK (Single Ended);0.4V for PICCLK; (VCMOSREF-0.2V) for TCK  
VH=2.0V for BCLK (Single Ended);1.6V for PICCLK; (VCMOSREF+0.2V) for TCK  
Figure 7. Differential BCLK/BCLK# Waveform (Common Mode)  
V2,V3 (max)  
BCLK#  
Vcross  
BCLK  
V1,V3 (min)  
44  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Figure 8. BCLK/BCLK# Waveform (Differential Mode)  
T1  
VIH_DIFF  
V4  
0V  
V5  
VIl_DIFF  
T5  
T6  
Figure 9. Valid Delay Timings  
Vc  
Vc  
Tx  
CLK  
TX  
V
Valid  
Valid  
Signal  
TPW  
D0004-00  
NOTES:  
T
T
= T7, T11, T29 (Valid Delay)  
= T14, T14B (Pulse Width)  
x
pw  
V
= V  
for AGTL signal group; 1.0 V for CMOS, Open-drain, APIC, and TAP signal groups  
REF  
Vc = Crossing point of BCLK rising edge and BCLK# falling edge for BCLK references (Differential Clock)  
1.25 V (Single Ended Clock)  
=
Mobile Intel® Pentium ® III Processor-M Datasheet  
45  
Electrical Specifications  
R
Figure 10. Setup and Hold Timings  
Vc  
CLK  
Ts  
T
h
V Valid  
Signal  
D0005-00  
NOTES:  
T = T8, T12, T27 (Setup Time)  
s
h
T = T9, T13, T28 (Hold Time)  
V = V  
for AGTL signals; 1.0V for CMOS, APIC, and TAP signals  
REF  
Vc = Crossing point of BCLK rising edge and BCLK# falling edge for BCLK references (Differential Clock)  
= 1.25V (Single Ended Clock)  
Figure 11. Cold/Warm Reset and Configuration Timings  
V
C
BCLK  
T
u
T
t
RESET#  
V
T
v
T
T
x
w
Configuration  
(A[15:5], BREQ0#,  
FLUSH#, INIT#,  
PICD0)  
Valid  
T
y
PICD[1:0]  
AGTL/non-AGTL  
outputs  
Valid  
T
z
Non-configuration  
inputs  
Active  
D0006-02  
NOTES:  
T = T9 (AGTL Input Hold Time)  
t
u
T = T8 (AGTL Input Setup Time)  
T = T10 (RESET# Pulse Width)  
v
T = T16 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0) Setup Time)  
w
T = T17 (Reset Configuration Signals (A[15:5]#, BREQ0#, FLUSH#, INIT#, PICD0) Hold Time)  
x
Ty = T18D (RESET# inactive to Valid Outputs)  
Tz = T18E (RESET# inactive to Drive Signals)  
Vc= Crossing point of BCLK rising edge and BCLK# falling edge (Differential Clock)  
= 1.25V (Single Ended Clock)  
46  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Figure 12. Power-on Sequence and Reset Timings  
BCLK/BCLK#  
VCCT  
T
d
VIHVTTPWR,min  
VTTPWRGD  
VILVTTPWR,max  
T
e
VID[4:0]/  
Valid  
BSEL[1:0]  
CMOSREF/  
CLKREF/VREF  
VCC  
PWRGOOD  
RESET#  
T
a
T
c
VIH18,min  
VIL18,max  
T
b
V0040-00  
NOTES:  
Ta = T15 (PWRGOOD Inactive Pulse Width)  
Tb = T18 (RESET#/PWRGOOD Setup Time)  
Tc = T18B (Setup time from V  
valid until PWRGOOD assertion)  
valid to VTTPWRGD assertion)  
CC  
Td = T18A (Setup time from V  
CCT  
Te = T18C(VID, BSEL valid time before VTTPWRGD assertion)  
Mobile Intel® Pentium ® III Processor-M Datasheet  
47  
Electrical Specifications  
R
Figure 13. Power Down Sequencing and Timings (VCC Leading)  
VCCT, VREF  
VCCMOS,  
CMOSREF,  
CLKREF  
VID[4:0]  
BSEL[1:0]  
VTTPWRGD  
VCC-12%  
VCC  
BCLK/BCLK#  
Valid  
Valid  
PICCLK  
Ta  
V
PWRGOOD  
RESET#  
IL18  
PICD[1:0]  
Valid  
Valid  
Valid  
Tb  
AGTL OUTPUTS  
OTHER CMOS OUTPUTS  
ALL INPUTS  
Tc  
V0044-00  
NOTES:  
Ta = T19A (Time from VCC(nominal)-12% to PWRGOOD low)  
Tb = T19B (All outputs valid after PWRGOOD low)  
Tc = T19C (All inputs required valid after PWRGOOD low)  
48  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Figure 14.Power Down Sequencing and Timings (VCCT Leading)  
VCCT-12%  
VCCT, VREF  
VCMOS,  
CMOSREF,  
CLKREF  
Ta  
VTTPWRGD  
V
ILVTTPWR  
VID[4:0]  
Valid  
BSEL[1:0]  
VCC  
Tb, T Td  
c,  
BCLK/BCLK#  
Valid  
Valid  
PICCLK  
PWRGOOD  
RESET#  
PICD[1:0]  
Valid  
Valid  
Valid  
AGTL OUTPUTS  
OTHER CMOS OUTPUTS  
ALL INPUTS  
V0045-00  
NOTES:  
Ta = T20A (Time from VCCT-12% to VTTPWRGD low)  
Tb = T20B (All outputs valid after VTTPWRGD low)  
Tc = T20C (All inputs required valid after VTTPWRGD low)  
Td = T20D (VID, BSEL signals valid after VTTPWRGD low)  
Mobile Intel® Pentium ® III Processor-M Datasheet  
49  
Electrical Specifications  
R
Figure 15.Test Timings (Boundary Scan)  
TCK  
T
v
T
w
0.75V  
TDI, TMS  
T
r
T
s
Input  
Signals  
T
x
T
u
TDO  
T
y
T
z
Output  
Signals  
D0008-01  
NOTES:  
T =T43 (All Non-Test Inputs Setup Time)  
r
s
T =T44 (All Non-Test Inputs Hold Time)  
T =T40 (TDO Float Delay)  
u
T =T37 (TDI, TMS Setup Time)  
v
T =T38 (TDI, TMS Hold Time)  
w
T =T39 (TDO Valid Delay)  
x
T =T41 (All Non-Test Outputs Valid Delay)  
y
T =T42 (All Non-Test Outputs Float Delay)  
z
Figure 16. Test Reset Timings  
0.75V  
TRST#  
T
q
D0009-01  
NOTE:  
T =T36 (TRST# Pulse Width)  
q
50  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Electrical Specifications  
R
Figure 17. Quick Start/Deep Sleep Timing (BCLK Stopping Method)  
Normal  
Quick Start  
Deep Sleep  
Stopped  
Normal  
Quick Start  
BCLK  
Tv  
STPCLK#  
Ty  
Tx  
CPU bus  
DPSLP#  
stpgnt  
Tz  
Tw  
Changing  
Compatibility  
Signals  
Frozen  
V00102-00  
NOTES:  
T =T45 (Stop Grant Acknowledge Bus Cycle Completion to Clock Shut Off Delay)  
v
w
T =T46 (Setup Time to Input Signal Hold Requirement)  
T =T47 (Deep Sleep PLL Lock Latency)  
x
T =T48 (PLL lock to STPCLK# Hold Time)  
y
T =T49 (Input Signal Hold Time)  
z
Figure 18. Quick Start/Deep Sleep Timing (DPSLP# Assertion Method)  
Normal  
Quick Start  
Deep Sleep  
Normal  
Quick Start  
BCLK  
Tv  
STPCLK#  
Ty  
Tx  
CPU bus  
DPSLP#  
stpgnt  
Tz  
Tw  
Changing  
Compatibility  
Signals  
Frozen  
V00103-00  
NOTES:  
T =T45 (Stop Grant Acknowledge Bus Cycle Completion to DPSLP# assertion)  
v
w
T =T46 (Setup Time to Input Signal Hold Requirement)  
T =T47 (Deep Sleep PLL Lock Latency)  
x
T =T48 (PLL lock to STPCLK# Hold Time)  
y
T =T49 (Input Signal Hold Time)  
z
Mobile Intel® Pentium ® III Processor-M Datasheet  
51  
Electrical Specifications  
R
Figure 19. Enhanced Intel SpeedStep Technology/Deep Sleep Timing  
BCLK on  
(in spec)  
BCLK on and DPSLP# de-asserted  
BCLK on  
BCLK off or  
DPSLP#  
(out of spec)  
asserted  
Vc  
Vc  
BCLK  
V
ILBC  
LK  
Tx  
Ts  
Vghi  
Ty  
Th  
GHI#  
V0036-00  
NOTES:  
T =T57 (GHI# Setup Time from BCLK Restart)  
s
h
T =T58 (GHI# Hold Time from BCLK Restart)  
T =T59 (GHI# Sample Delay)  
x
T =T60 (BCLK Settling Time)  
y
Vc = Crossing point of BCLK rising edge and BCLK# falling edge (Differential Clocking)  
= 1.25 V (Single Ended Clocking)  
Vghi = GHI# reference voltage = VCCT /2  
52  
Mobile Intel® Pentium ® III Processor-M Datasheet  
System Signal Simulations  
R
4. System Signal Simulations  
Systems must be simulated using IBIS models to determine if they are compliant with this  
specification. All references to BCLK signal quality also apply to BCLK# for Differential Clocking.  
4.1  
System Bus Clock (BCLK) and PICCLK DC  
Specifications and AC Signal Quality  
Specifications  
Table 30. BCLK (Differential) DC Specifications and AC Signal Quality Specifications  
Symbol  
Parameter  
Min  
-0.2  
0.92 1.45  
Max  
Unit Figure  
Notes  
V1  
VIL,BCLK  
VIH,BCLK  
0.35  
V
V
V
V
V
V
7
7
7
8
8
Note 1  
Note 1  
V2  
V3  
V4  
V5  
VIN Absolute Voltage Range  
BCLK Rising Edge Ringback  
BCLK Falling Edge Ringback  
-0.2  
1.45  
Undershoot/Overshoot, Note 2  
0.35  
Note 3  
Note 3  
Note 4  
-0.35  
1.45  
VBCLK_DPSLP BCLK Voltage in Deep Sleep  
State  
0.4  
0
VBCLK#_DPSLP BCLK# Voltage in Deep Sleep  
State  
VBCLK_DPSLP  
- 0.2V  
V
Note 4  
NOTES:  
1. The clock must rise/fall monotonically between VIL,BCLK and VIH,BCLK .  
2. These specifications apply only when BCLK, BCLK# are running.  
3. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) voltage the  
differential waveform can go to after passing the VIH_DIFF (rising) or VIL_DIFF (falling) levels. VIL_DIFF (max)  
= -0.57 V, VIH_DIFF (min) = 0.57 V.  
4.  
Applies when BCLK and BCLK# are stopped in Deep Sleep State.  
Table 31. BCLK (Single Ended) DC Specifications and AC Signal Quality Specifications  
Symbol  
Parameter  
Min Max Unit  
Figure  
Notes  
V1  
VIL,BCLK  
VIH,BCLK  
0.3  
3.1  
0.5  
V
V
V
V
V
20  
Note 1  
Note 1  
V2  
V3  
2.2  
-0.5  
2.0  
20  
20  
20  
20  
VIN Absolute Voltage Range  
BCLK Rising Edge Ringback  
BCLK Falling Edge Ringback  
Undershoot/Overshoot, Note 2  
Absolute Value, Note 3  
Absolute Value, Note 3  
V4  
V5  
NOTES:  
1. The clock must rise/fall monotonically between VIL,BCLK and VIH,BCLK . BCLK must be stopped in the low state.  
2. These specifications apply only when BCLK is running. BCLK may not be above VIH,BCLK,max or below VIL,BCLK,min  
for more than 50% of the clock cycle.  
3. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) absolute  
voltage the BCLK signal can go to after passing the VIH,BCLK (rising) or VIL,BCLK (falling) voltage limits.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
53  
System Signal Simulations  
R
Table 32. PICCLK DC Specifications and AC Signal Quality Specifications  
Symbol  
Parameter  
Min Max Unit Figure  
Notes  
V1  
VIL20  
VIH20  
0.4  
V
V
V
V
V
20  
20  
20  
20  
20  
Note 1  
V2  
V3  
1.6  
-0.5 2.4  
Note 1  
VIN Absolute Voltage Range  
Undershoot, Overshoot, Note 2  
Absolute Value, Note 3  
Absolute Value, Note 3  
V4  
V5  
PICCLK Rising Edge Ringback 1.6  
PICCLK Falling Edge Ringback  
0.4  
NOTES:  
1. The clock must rise/fall monotonically between VIL20 and VIH20  
.
2. These specifications apply only when PICCLK is running. See the DC specifications for when PICCLK is  
stopped. PICCLK may not be above VIH20,max or below VIL20,min for more than 50% of the clock cycle.  
3. The rising and falling edge ringback voltage specified is the minimum (rising) or maximum (falling) absolute  
voltage the PICCLK signal can go to after passing the VIH20 (rising) or VIL20 (falling) voltage limits.  
Figure 20. BCLK (Single Ended)/PICCLK Generic Clock Waveform  
V3max  
V4  
V2  
V1  
V5  
V3min  
V0012-01  
54  
Mobile Intel® Pentium ® III Processor-M Datasheet  
System Signal Simulations  
R
4.2  
AGTL AC Signal Quality Specifications  
Ringback specifications for the AGTL signals are as follows:  
Ringback below VREF,max + 200 mV is not authorized during low to high transitions. Ringback above  
VREF,min – 200 mV is not authorized during high to low transitions.  
Overshoot and undershoot specifications are documented in Table 33 and Table 34 and illustrated in  
Figure 21.  
Figure 21. Maximum Acceptable Overshoot/Undershoot Waveform  
Time Dependant Overshoot  
Max  
Vss  
Min  
Time Dependant Undershoot  
Mobile Intel® Pentium ® III Processor-M Datasheet  
55  
System Signal Simulations  
R
Table 33. 133-MHz AGTL Signal Group Overshoot/Undershoot Tolerance at the Processor Core  
Allowed Pulse Duration (ns) [Tj=100C]  
Max VCCT + Overshoot/Undershoot  
Magnitude (volts)  
Activity Factor = 0.01 Activity Factor = 0.1  
Activity Factor = 1  
1.78  
1.73  
1.68  
1.63  
1.58  
1.53  
1.48  
1.5  
3.5  
7.2  
15  
0.15  
0.35  
0.72  
1.5  
0.015  
0.035  
0.072  
0.15  
15  
15  
3.2  
6.5  
0.32  
0.65  
15  
14  
1.40  
NOTES:  
1. Under no circumstances should the sum of the Max VCCT and absolute value of the Overshoot/Undershoot  
voltage exceed 1.78 V.  
2. Activity factor of 1 represents the same toggle rate as the 133-MHz clock.  
3. Ringbacks below VCCT cannot be subtracted from overshoots. Lesser undershoot does not allocate longer or  
larger overshoot.  
4. Ringbacks above ground cannot be subtracted from undershoots. Lesser overshoot does not allocate longer or  
larger undershoot.  
5. System designers are encouraged to follow Intel provided AGTL layout guidelines.  
6. All values are specified by design characterization and are not tested.  
Table 34. 100-MHz AGTL Signal Group Overshoot/Undershoot Tolerance at the Processor Core  
Allowed Pulse Duration (ns) [Tj=100C]  
Max VCCT + Overshoot/Undershoot  
Magnitude (volts)  
Activity Factor = 0.01 Activity Factor = 0.1  
Activity Factor = 1  
1.78  
1.73  
1.68  
1.63  
1.58  
1.53  
1.48  
1.6  
4.5  
9.5  
20  
0.16  
0.45  
0.95  
2.0  
0.016  
0.045  
0.095  
0.2  
20  
20  
4.2  
8.5  
0.42  
0.85  
1.9  
20  
19  
NOTES:  
1. Under no circumstances should the sum of the Max VCCT and absolute value of the Overshoot/Undershoot  
voltage exceed 1.78 V.  
2. Activity factor of 1 represents the same toggle rate as the 100-MHz clock.  
3. Ringbacks below VCCT cannot be subtracted from overshoots. Lesser undershoot does not allocate longer or  
larger overshoot.  
4. Ringbacks above ground cannot be subtracted from undershoots. Lesser overshoot does not allocate longer or  
larger undershoot.  
5. System designers are encouraged to follow Intel provided AGTL layout guidelines.  
6. All values are specified by design characterization and are not tested.  
4.3  
Non-AGTL Signal Quality Specifications  
Signals driven to the Mobile Intel Pentium III Processor-M should meet signal quality specifications to  
ensure that the processor reads data properly and that incoming signals do not affect the long-term  
56  
Mobile Intel® Pentium ® III Processor-M Datasheet  
System Signal Simulations  
R
reliability of the processor. The overshoot and undershoot specifications for non-AGTL signals are  
shown in Table 35. Ringback must not exceed the CMOS VIH and VIL specification levels in Table 18.  
Table 35. Non-AGTL Signal Group Overshoot/Undershoot Tolerance at the Processor Core  
Allowed Pulse Duration (ns) [Tj=100C]  
Max VCmos + Overshoot/Undershoot  
Magnitude (volts)  
Activity Factor = 0.01 Activity Factor = 0.1 Activity Factor = 1  
2.38  
2.33  
2.28  
2.23  
2.18  
2.13  
2.08  
6.5  
13  
29  
60  
60  
60  
60  
0.65  
1.3  
2.9  
6
0.065  
0.13  
0.29  
0.6  
12  
26  
1.2  
2.6  
56  
5.6  
NOTES:  
1. VCMOS(nominal) = 1.5 V.  
2. Under no circumstances should the sum of the Max VCMOS and absolute value of the Overshoot/Undershoot  
voltage exceed 2.38 V.  
3. Activity factor of 1 represents a toggle rate of 33 MHz.  
4. System designers are encouraged to follow Intel provided non-AGTL layout guidelines.  
5. All values are specified by design characterization, and are not tested.  
4.3.1  
PWRGOOD, VTTPWRGD Signal Quality Specifications  
The processor requires PWRGOOD to be a clean indication that clocks and the power supplies (VCC,  
V
V
CCT, etc.) are stable and within their specifications. Clean implies that the signal will remain below  
IL18 and without errors from the time that the power supplies are turned on, until they come within  
specification. The signal will then transition monotonically to a high (1.8 V) state. The VTTPWRGD  
signal must also transition monotonically.  
The VTTPWRGD signal is an input to the processor used to determine that the VTT power is stable  
and the VID and BSEL signals should be driven to their final state by the processor. To ensure the  
processor correctly reads this signal, it must meet the requirements shown in Table 36 while the signal  
is in its transition region of 300 mV to 900 mV. Also, VTTPWRGD should only enter the transition  
region once, after VTT is at nominal values, for the assertion of the signal.  
4.3.1.1.1  
VTTPWRGD Noise Parameter Specification  
Table 36. VTTPWRGD Noise Parameter Specification  
Parameter  
Specification  
Amount of noise (glitch)  
Less than 100 mV  
In addition, the VTTPWRGD signal should have reasonable transition time through the transition  
region. A sharp edge on the signal transition will minimize the chance of noise causing a glitch on this  
signal. Intel recommends the following transition time for the VTTPWRGD signal.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
57  
System Signal Simulations  
R
4.3.1.2  
VTTPWRGD Transition Parameter Recommendation  
Table 37. VTTPWRGD Transition Parameter Recommendation  
Parameter  
Recommendation  
Transition time (300 mV to 900 mV)  
Less than or equal to 100 µs  
In addition, the VTT_PWRGD signal should have reasonable transition time through the transition  
region. A sharp edge on the signal transition will minimize the chance of noise causing a glitch on this  
signal. Intel recommends the following transition time for the VTT_PWRGD signal.  
4.3.1.2.1  
Transition Region  
The transition region covered by this requirement is 300 mV to 900 mV. Once the VTTPWRGD signal  
is in that voltage range, the processor is more sensitive to noise, which may be present on the signal.  
The transition region when the signal first crosses the 300 mV voltage level and continues until the last  
time it is below 900 mV.  
4.3.1.2.2  
4.3.1.2.3  
Transition Time  
The transition time is defined as the time the signal takes to move through the transition region. A  
100-µs transition time will ensure that the processor receives a good transition edge.  
Noise  
The signal quality of the VTTPWRGD signal is critical to the correct operation of the processor. Every  
effort should be made to ensure this signal is monotonic in the transition region. If noise or glitches are  
present on this signal, the noise or glitches must be kept to less than 100 mV of a voltage drop from the  
highest voltage level received to that point. This glitch must remain less than 100 mV until the  
excursion ends by the voltage returning to the highest voltage previously received. Please see Figure  
22 for an example graph of this situation and requirements.  
58  
Mobile Intel® Pentium ® III Processor-M Datasheet  
System Signal Simulations  
R
Figure 22. VTTPWRGD Noise Specification  
Mobile Intel® Pentium ® III Processor-M Datasheet  
59  
Mechanical Specifications  
R
5. Mechanical Specifications  
5.1  
Socketable Micro-FCPGA Package  
The Mobile Intel Pentium III Processor-M is packaged in a 478-pin Micro-FCPGA package. The Low  
Voltage and Ultra Low Voltage processors will not be available in this package. The mechanical  
specifications for the socketable package are provided in Table 38. Figure 23 through Figure 25  
illustrate different views of the package.  
Table 38. Socketable Micro-FCPGA Package Specification  
Symbol  
Parameter  
Min  
1.81  
4.69  
1.95  
Max  
2.03  
5.15  
2.11  
Unit  
A
Overall height, top of die to package seating plane  
Overall height, top of die to PCB surface, including socket(1)  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
-
A1  
A2  
A3  
B
D
E
Pin length  
Die height  
0.854  
Pin-side capacitor height  
Pin diameter  
Package substrate length  
Package substrate width  
Die length  
-
1.25  
0.36  
35.1  
35.1  
3
0.28  
34.9  
34.9  
D1  
11.18  
10.82  
4
3
E1  
Die width  
mm  
7.20  
6.85  
4
e
K
K1  
Pin pitch  
Package edge keep-out  
Package corner keep-out  
1.27  
5
7
mm  
mm  
mm  
K3  
-
N
Pdie  
W
Pin-side capacitor boundary  
Pin tip radial true position  
Pin count  
Allowable pressure on the die for thermal solution  
Package weight  
14  
<=0.254  
478  
mm  
mm  
each  
kPa  
g
-
689  
4.5  
Package Surface Flatness  
0.286  
mm  
NOTES:  
1. All dimensions are subject to change.  
2. Overall height with socket is based on design dimensions of the Micro-FCPGA package and socket with no  
thermal solution attached. Values were based on design specifications and tolerances. This dimension is  
subject to change based on socket design, OEM motherboard design, or OEM SMT process.  
3. Dimension for CPUID = 0x06B1.  
4. Dimension for CPUID = 0x06B4.  
60  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mechanical Specifications  
R
Figure 23. Socketable Micro-FCPGA Package - Top and Bottom Isometric Views  
PACKAGE KEEPOUT  
CAPACITOR AREA  
DIE  
LABEL  
TOP VIEW  
BOTTOM VIEW  
Mobile Intel® Pentium ® III Processor-M Datasheet  
61  
Mechanical Specifications  
R
Figure 24. Socketable Micro-FCPGA Package - Top and Side View  
SUBSTRATE KEEPOUT ZONE  
DO NOT CONTACT PACKAGE  
INSIDE THIS LINE  
7 (K1)  
8 places  
0.286  
5 (K)  
4 places  
A
1.25 MAX  
(A3)  
D1  
35 (D)  
Ø 0.32 (B)  
478 places  
A2  
E1  
2.03 0.08  
±
35 (E)  
(A1)  
PIN A1 CORNER  
NOTE: All dimensions in millimeters. Values shown are for reference only. See Table 36 for specific details.  
62  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mechanical Specifications  
R
Figure 25. Socketable Micro-FCPGA Package - Bottom View  
14 (K3)  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
14 (K3)  
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23  
25  
25X 1.27  
(e)  
2
4
6
8
10 12 14 16 18 20 22 24 26  
25X 1.27  
(e)  
NOTE: All dimensions in millimeters. Values shown are for reference only. See Table 36 for specific details.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
63  
Mechanical Specifications  
R
5.2  
Surface Mount Micro-FCBGA Package  
The Mobile Intel Pentium III Processor-M will also be available in a surface mount, 479-ball Micro-  
FCBGA package. The Low Voltage and Ultra Low Voltage processors will be available only in this  
package. Mechanical specifications are shown in Table 39. Figure 26 through Figure 28 illustrate  
different views of the package.  
The Micro-FCBGA package may have capacitors placed in the area surrounding the die. Since the die-  
side capacitors are electrically conductive, and only slightly shorter than the die height, care should be  
taken to avoid contacting the capacitors with electrically conductive materials. Doing so may short the  
capacitors and possibly damage the device or render it inactive. The use of an insulating material  
between the capacitors and any thermal solution should be considered to prevent capacitor shorting.  
Table 39. Micro-FCBGA Package Mechanical Specifications  
Symbol  
Parameter  
Min  
2.27  
Max  
2.77  
0.854  
0.78  
35.1  
Unit  
A
A2  
b
D
E
Overall height, as delivered (1)  
Die height  
mm  
mm  
mm  
mm  
mm  
mm  
Ball diameter  
Package substrate length  
Package substrate width  
Die length  
34.9  
34.9  
35.1  
3
D1  
11.18  
4
10.82  
3
E1  
Die width  
mm  
7.20  
6.85  
4
e
N
K
K1  
K2  
S
--  
Pdie  
Ball pitch  
Ball count  
1.27  
479  
5
mm  
each  
mm  
mm  
mm  
mm  
mm  
kPa  
g
Keep-out outline from edge of package  
Keep-out outline at corner of package  
Capacitor keep-out height  
Package edge to first ball center  
Solder ball coplanarity  
7
-
0.7  
1.625  
0.2  
Allowable pressure on the die for thermal solution  
Package weight  
-
689  
W
4.5  
NOTES:  
1. All dimensions are subject to change.  
2. Overall height as delivered. Values were based on design specifications and tolerances. Final height after  
surface mount depends on OEM motherboard design and SMT process.  
3. Dimension for CPUID = 0x06B1.  
4. Dimension for CPUID = 0x06B4.  
64  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mechanical Specifications  
R
Figure 26. Micro-FCBGA Package – Top and Bottom Isometric Views  
PACKAGE KEEPOUT  
CAPACITOR AREA  
DIE  
LABEL  
TOP VIEW  
BOTTOM VIEW  
Mobile Intel® Pentium ® III Processor-M Datasheet  
65  
Mechanical Specifications  
R
Figure 27. Micro-FCBGA Package – Top and Side Views  
SUBSTRATE KEEPOUT ZONE  
7 (K1)  
8 places  
DO NOT CONTACT PACKAGE  
INSIDE THIS LINE  
0.20  
A
5 (K)  
4 places  
A2  
D1  
35 (D)  
Ø 0.78 (b)  
479 places  
K2  
E1  
35 (E)  
PIN A1 CORNER  
NOTE: All dimensions in millimeters. Values shown are for reference only. See Table 37 for specific details.  
66  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mechanical Specifications  
R
Figure 28. Micro-FCBGA Package - Bottom View  
1.625 (S)  
4 places  
AF  
AE  
AD  
AC  
AB  
AA  
Y
1.625 (S)  
4 places  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
13 15 17  
11  
10 12 14 16 18  
5
7
9
19 21 23 25  
22 24 26  
25X 1.27  
(e)  
2
4
6
8
20  
25X 1.27  
(e)  
NOTE: All dimensions in millimeters. Values shown are for reference only. See Table 37 for specific details.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
67  
Mechanical Specifications  
R
5.3  
Signal Listings  
Figure 29 is a top-side view of the ball or pin map of the Mobile Intel Pentium III Processor-M with the  
voltage balls/pins called out. Table 40 lists the signals in ball/pin number order. Table 41 lists the  
signals in signal name order.  
Figure 29. Pin/Ball Map - Top View  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
A
B
A
B
A10# VREF  
NC  
A31# BREQ0# A23#  
A27#  
A20#  
A24#  
VSS  
NC  
A35#  
VSS  
A26#  
A34#  
A33#  
A32#  
D0#  
D2#  
D1#  
D15#  
VSS  
D9#  
D4#  
D7#  
VSS  
D5#  
VREF  
D17#  
VCCT  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
D8#  
VSS  
NC  
D10#  
D18#  
VSS  
D3#  
D11#  
D14#  
D20#  
D13#  
D23#  
D21#  
VSS  
D24#  
VSS  
D22#  
VSS  
D36#  
VSS  
VCCT  
VSS  
NC  
VSS  
A16#  
VSS  
NC  
NC  
NC  
A25#  
A28#  
A13#  
VSS  
NC  
A17#  
VSS  
A21#  
VSS  
A18#  
VSS RESET# VSS  
C
C
VCCT A19# VCCT A22# VCCT A30# VCCT A29# VCCT BERR# VCCT  
D6#  
VCC  
VSS  
VCC  
VCCT D12# VCCT  
D30#  
NC  
D
D
VSS  
VCCT  
VSS  
VCCT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCCT  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT  
INIT#  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
E
E
VTT  
NC TESTHI  
D16#  
VSS  
D19#  
D27#  
D32#  
PWRGD  
F
F
NC  
A9#  
A12#  
A4#  
A3#  
VSS  
A5#  
VSS  
A7#  
VSS  
A14#  
G
G
A15# VCCT  
VCCT D25#  
H
H
A8#  
VSS  
VSS  
D26#  
D29# VREF  
J
J
A11# VCCT  
VCCT D34#  
VSS  
D33#  
VSS  
D45#  
VSS  
D41#  
VSS  
D57#  
VSS  
D46#  
VSS  
D53#  
VSS  
D38#  
D35#  
D42#  
D48#  
D37#  
NC  
K
K
A6#  
VSS  
VSS  
D31#  
L
L
REQ4# BNR# REQ1# VCCT GHI#  
VCCT D28#  
M
N
M
N
VSS  
VSS  
PLL1  
API#  
VSS  
NC  
RSP#  
VCC  
NC  
VSS  
VCCT  
VSS  
D39#  
NC  
TESTLO  
VREF PLL2  
P
P
NC  
VSS  
NC  
D49#  
R
R
REQ0# BPRI# VID4  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VCCT D43#  
D44#  
D51#  
D40#  
D55#  
D54#  
D60#  
D50#  
T
T
REQ2# VSS DEFER# RP#  
VSS  
D47#  
U
U
REQ3# HITM# RS2#  
VSS  
VCCT D52#  
V
V
RS1#  
VSS LOCK# VCCT  
VSS  
D63#  
W
Y
W
Y
TRDY# AERR# DBSY# VSS  
VCCT D59#  
DRDY# VSS  
RS0#  
VSS  
D58#  
TESTLO  
AA  
AB  
AC  
AD  
AE  
AF  
AA  
AB  
AC  
AD  
AE  
AF  
VREF  
VID0  
HIT#  
VSS  
ADS# VCCT  
VCC  
VSS  
VCC  
TDI  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
NC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT D62#  
PWR  
AP0#  
VSS  
D61#  
D56# VREF  
GOOD  
BCLK VID1 A20M# VCCT  
VCCT DEP3# VSS DEP6#  
BCLK# /  
CMOS  
REF  
VSS  
SMI#  
NC  
VCCT IGNNE# TCK  
TDO VCCT  
VCCT LINT0 NCTRL PICD1 VCCT PICD0 VCCT BPM1# BPM0#  
NC  
DEP7# DEP1# DEP5#  
CLKREF  
VSS  
RTT  
VID2 VCCT STPCLK# VSS  
VSS  
NC  
VSS  
NC  
VSS BSEL0 VSS  
CMOS  
LINT1  
VSS  
VSS  
NC  
VCCT  
NC  
VSS  
BP3#  
VSS PRDY# VSS DEP0# DEP2# VSS  
IMPEDP  
EDGE  
VCCT VCCT  
VID3 IERR# FLUSH# FERR# TMS DPSLP# VREF BSEL1 TESTHI  
THRMDATHRMDC TRST#  
PREQ# PICCLK VREF BP2# BINIT# DEP4# VSS  
VSS  
REF  
CTRLP  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
NOTE: A2 pin is de-populated on Micro-FCPGA package.  
VCC  
VSS VCCT Other  
68  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mechanical Specifications  
R
Table 40. Signal Listing in Order by Pin/Ball Number  
No.  
Signal Name  
No.  
Signal Name  
No.  
D7  
Signal Name  
VSS  
No.  
E22  
Signal Name  
VSS  
A3  
A10#  
B18  
VSS  
A4  
A5  
VREF  
NC  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
D4#  
VSS  
D8  
D9  
VCC  
VSS  
E23  
E24  
E25  
E26  
F1  
D16#  
D23#  
VSS  
D19#  
NC  
A6  
A7  
A31#  
BREQ0#  
A23#  
A27#  
A24#  
NC  
D17#  
VSS  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
VCC  
VSS  
A8  
A9  
D18#  
D14#  
D24#  
VSS  
VCC  
VSS  
F2  
VSS  
A14#  
VSS  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
D21#  
D36#  
D27#  
A9#  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
B1  
VCC  
VSS  
F3  
F4  
A35#  
A26#  
A33#  
A32#  
D0#  
NC  
VCC  
VSS  
F5  
F6  
C2  
A16#  
A28#  
NC  
C3  
C4  
C5  
VCC  
VSS  
VCC  
VSS  
VCC  
D3#  
D13#  
D22#  
NC  
F7  
F8  
F9  
VCCT  
A19#  
VCCT  
A22#  
VCCT  
A30#  
VCCT  
A29#  
VCCT  
BERR#  
VCCT  
D6#  
VCCT  
D12#  
VCCT  
D5#  
VCCT  
NC  
D2#  
D15#  
D9#  
C6  
C7  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
G1  
C8  
C9  
D7#  
VREF  
D8#  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
D10#  
D11#  
VSS  
VCCT  
NC  
NC  
E2  
TESTHI  
VTTPWRGD  
VCCT  
VCC  
VCCT  
VCC  
VSS  
E3  
E4  
E5  
E6  
B2  
VSS  
B3  
B4  
A25#  
VSS  
E7  
E8  
B5  
B6  
A17#  
VSS  
E9  
VCC  
VSS  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
B7  
B8  
A21#  
VSS  
VCC  
VSS  
VSS  
B9  
A20#  
VSS  
D20#  
VSS  
VCC  
VSS  
G2  
G3  
A5#  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
A15#  
VCCT  
VCC  
VSS  
VCC  
VSS  
VCCT  
D25#  
A18#  
VSS  
D30#  
NC  
VCC  
VSS  
G4  
G5  
A34#  
VSS  
D2  
D3  
VSS  
A13#  
VSS  
VCCT  
VCC  
VCC  
VSS  
G6  
G21  
G22  
G23  
G24  
RESET#  
VSS  
D4  
D5  
VCC  
VSS  
D1#  
D6  
VCC  
Mobile Intel® Pentium ® III Processor-M Datasheet  
69  
Mechanical Specifications  
R
No.  
G25  
Signal Name  
VSS  
No.  
L4  
Signal Name  
No.  
P23  
Signal Name  
VSS  
No.  
V2  
Signal Name  
VSS  
VCCT  
GHI#  
VSS  
VCC  
VSS  
VCCT  
D28#  
VSS  
D42#  
TESTLO  
VSS  
VSS  
VSS  
RSP#  
VCC  
VSS  
VCC  
VSS  
D39#  
D45#  
D48#  
VREF  
PLL2  
PLL1  
NC  
G26  
H1  
D32#  
A12#  
VSS  
L5  
L6  
P24  
P25  
P26  
R1  
D49#  
D41#  
NC  
REQ0#  
BPRI#  
VID4  
VSS  
V3  
V4  
LOCK#  
VCCT  
VSS  
H2  
H3  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
V5  
V6  
A8#  
VCC  
H4  
H5  
VSS  
VSS  
R2  
R3  
V21  
V22  
V23  
V24  
V25  
V26  
W1  
VSS  
VCC  
H6  
VCC  
VSS  
R4  
R5  
VSS  
H21  
H22  
H23  
H24  
H25  
H26  
J1  
VCC  
D63#  
D46#  
D55#  
TRDY#  
AERR#  
DBSY#  
VSS  
VCC  
VSS  
R6  
VSS  
VCC  
M2  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
D26#  
D29#  
VREF  
A4#  
M3  
M4  
M5  
VSS  
VCCT  
D43#  
VSS  
D44#  
REQ2#  
VSS  
W2  
W3  
M6  
W4  
W5  
J2  
A7#  
M21  
M22  
M23  
M24  
M25  
M26  
N1  
VCC  
J3  
J4  
A11#  
VCCT  
VCC  
VSS  
W6  
VSS  
VCC  
T2  
W21  
W22  
W23  
W24  
W25  
W26  
Y1  
J5  
J6  
T3  
T4  
DEFER#  
RP#  
VSS  
VCCT  
D59#  
VSS  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
VCC  
VSS  
T5  
T6  
VSS  
VCC  
VCCT  
D34#  
VSS  
D38#  
A3#  
N2  
N3  
T21  
T22  
T23  
T24  
T25  
T26  
U1  
VSS  
VCC  
D54#  
DRDY#  
VSS  
RS0#  
TESTLO  
VSS  
N4  
N5  
VSS  
Y2  
Y3  
VCC  
VSS  
VCC  
VSS  
VCCT  
NC  
VSS  
D37#  
NC  
D47#  
D57#  
D51#  
REQ3#  
HITM#  
RS2#  
VSS  
N6  
Y4  
Y5  
K2  
VSS  
N21  
N22  
N23  
N24  
N25  
N26  
P1  
K3  
K4  
A6#  
VSS  
Y6  
VCC  
VSS  
U2  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
K5  
K6  
VSS  
VCC  
VSS  
VCC  
VSS  
D31#  
D33#  
D35#  
REQ4#  
BNR#  
REQ1#  
U3  
U4  
VCC  
VSS  
K21  
K22  
K23  
K24  
K25  
K26  
L1  
U5  
U6  
VCC  
VSS  
D58#  
D53#  
D60#  
VREF  
HIT#  
ADS#  
VCCT  
VCC  
P2  
P3  
VSS  
API#  
NC  
U21  
U22  
U23  
U24  
U25  
U26  
V1  
VCC  
VSS  
P4  
P5  
VCCT  
D52#  
VSS  
D40#  
RS1#  
NC  
P6  
P21  
P22  
VCC  
VSS  
VCC  
L2  
L3  
VSS  
70  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mechanical Specifications  
R
No.  
AA7  
Signal Name  
VCC  
No.  
Signal Name  
No.  
Signal Name  
TDO  
No.  
Signal Name  
AB22 VCC  
AB23 VSS  
AB24 D61#  
AB25 D56#  
AB26 VREF  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
AE26 VSS  
AA8  
AA9  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT  
D62#  
VSS  
D50#  
VID0  
VSS  
AP0#  
PWRGOOD  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCC  
VSS  
VCCT  
NC  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
VCCT  
VCCT  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
VCCT  
LINT0  
NCTRL  
PICD1  
VCCT  
PICD0  
VCCT  
BPM1#  
BPM0#  
NC  
VID3  
IERR#  
FLUSH#  
FERR#  
TMS  
DPSLP#  
VREF  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC7  
AC8  
AC9  
BCLK  
VID1  
A20M#  
VCCT  
VCC  
VSS  
BSEL1  
TESTHI  
VCC  
VSS  
VCC  
AF12 CMOSREF  
DEP7#  
DEP1#  
DEP5#  
VSS  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
THRMDA  
THRMDC  
TRST#  
EDGECTRLP  
NC  
AC10 VSS  
AC11 VCC  
AC12 VSS  
AC13 VCC  
AC14 VSS  
AC15 VCC  
AC16 VSS  
AC17 VCC  
AC18 VSS  
AC19 VCC  
AC20 VSS  
AC21 VCC  
AC22 VSS  
AC23 VCCT  
AC24 DEP3#  
AC25 VSS  
AC26 DEP6#  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
AE2  
VID2  
AE3  
AE4  
VCCT  
STPCLK#  
VSS  
INIT#  
VSS  
NC  
PREQ#  
PICCLK  
VREF  
AE5  
AE6  
AB2  
AB3  
AB4  
AE7  
AE8  
BP2#  
NC  
BINIT#  
DEP4#  
VSS  
AB5  
AB6  
AE9  
VSS  
NC  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AB7  
AB8  
VSS  
BSEL0  
VSS  
LINT1  
VSS  
RTTIMPEDP  
VSS  
VCCT  
VSS  
BP3#  
VSS  
PRDY#  
VSS  
DEP0#  
DEP2#  
VSS  
AB9  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
BCLK#/CLKREF AE16  
VSS  
SMI#  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
NC  
CMOSREF  
VCCT  
TDI  
VCCT  
IGNNE#  
AD10 TCK  
Mobile Intel® Pentium ® III Processor-M Datasheet  
71  
Mechanical Specifications  
R
Table 41. Signal Listing in Order by Signal Name  
No.  
Signal Name  
Signal Buffer Type  
No.  
Signal Name  
BINIT#  
Signal Buffer Type  
K1  
A3#  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
1.5V CMOS Input  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
Clock Input  
AF23  
L2  
AF22  
AGTL I/O  
J1  
G2  
A4#  
A5#  
BNR#  
BP2#  
AGTL I/O  
AGTL I/O  
K3  
J2  
A6#  
A7#  
AE20 BP3#  
AD22 BPM0#  
AD21 BPM1#  
R2  
A7  
AGTL I/O  
AGTL I/O  
H3  
G1  
A8#  
A9#  
AGTL I/O  
AGTL Input  
AGTL I/O  
3.3V CMOS Output  
3.3V CMOS Output  
CMOS Reference Voltage  
CMOS Reference Voltage  
AGTL I/O  
BPRI#  
A3  
J3  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
A33#  
A34#  
A35#  
A20M#  
ADS#  
AERR#  
AP0#  
AP1#  
BCLK  
BREQ0#  
AE12 BSEL0  
H1  
D3  
AF10  
AD5  
AF12  
A16  
B17  
A17  
D23  
B19  
C20  
C16  
A20  
A22  
A19  
A23  
A24  
C18  
D24  
B24  
A18  
E23  
B21  
B23  
E26  
C24  
F24  
D25  
E24  
B25  
G24  
H24  
F26  
L24  
BSEL1  
CMOSREF  
CMOSREF  
D0#  
F3  
G3  
C2  
D1#  
AGTL I/O  
B5  
B11  
C6  
D2#  
D3#  
AGTL I/O  
AGTL I/O  
D4#  
D5#  
AGTL I/O  
AGTL I/O  
B9  
B7  
C8  
D6#  
D7#  
AGTL I/O  
AGTL I/O  
A8  
A10  
B3  
A13  
A9  
C3  
D8#  
D9#  
AGTL I/O  
AGTL I/O  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
C12  
C10  
A6  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
A15  
A14  
B13  
A12  
AC3  
AA3  
W2  
AB3  
P3  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AC1  
AD1  
C14  
AGTL I/O  
AGTL I/O  
BCLK#/CLKREF Clock Input  
BERR# AGTL I/O  
AGTL I/O  
72  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Mechanical Specifications  
R
No.  
H25  
Signal Name  
D29#  
Signal Buffer Type  
No.  
Signal Name  
DEP4#  
Signal Buffer Type  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL Input  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AF24  
AGTL I/O  
C26  
K24  
G26  
K25  
J24  
K26  
F25  
N26  
J26  
M24  
U26  
P25  
L26  
R24  
R26  
M25  
V25  
T24  
M26  
P24  
D30#  
D31#  
D32#  
D33#  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
AD26 DEP5#  
AC26 DEP6#  
AD24 DEP7#  
AGTL I/O  
AGTL I/O  
AGTL I/O  
AGTL I/O  
Y1  
DRDY#  
DPSLP#  
EDGECTRLP  
FERR#  
FLUSH#  
GHI#  
AF8  
AF16  
AF6  
AF5  
L5  
AA2  
U2  
AF4  
AD9  
AE6  
1.5V CMOS Input  
AGTL Control  
1.5V Open Drain Output  
1.5V CMOS Input  
1.25V CMOS Input  
AGTL I/O  
HIT#  
HITM#  
IERR#  
IGNNE#  
INIT#  
AGTL I/O  
1.5V Open Drain Output  
1.5V CMOS Input  
1.5V CMOS Input  
1.5V CMOS Input  
AGTL I/O  
1.5V CMOS Input  
AGTL impedance control  
2.0V APIC Clock Input  
1.5V Open Drain I/O  
1.5V Open Drain I/O  
PLL Analog Voltage  
PLL Analog Voltage  
AGTL Output  
AD15 INTR/LINT0  
V3 LOCK#  
AE14 NMI/LINT1  
AD16 NCTRL  
AF20  
PICCLK  
AD19 PICD0  
AD17 PICD1  
AA26 D50#  
T26  
U24  
Y25  
W26  
V26  
D51#  
D52#  
D53#  
D54#  
D55#  
N3  
N2  
PLL1  
PLL2  
AE22 PRDY#  
AF19  
AB4  
R1  
PREQ#  
PWRGOOD  
REQ0#  
REQ1#  
REQ2#  
REQ3#  
REQ4#  
RESET#  
RP#  
1.5V CMOS Input  
1.8V CMOS Input  
AGTL I/O  
AB25 D56#  
T25  
Y24  
W24  
Y26  
D57#  
D58#  
D59#  
D60#  
L3  
T1  
AGTL I/O  
AGTL I/O  
U1  
L1  
AGTL I/O  
AGTL I/O  
AB24 D61#  
AA24 D62#  
B15  
T4  
AGTL Input  
AGTL I/O  
V24  
W3  
T3  
AE24 DEP0#  
AD25 DEP1#  
AE25 DEP2#  
AC24 DEP3#  
D63#  
DBSY#  
DEFER#  
Y3  
V1  
RS0#  
RS1#  
AGTL I/O  
AGTL I/O  
U3  
M5  
RS2#  
RSP#  
AGTL I/O  
AGTL Input  
AE16 RTTIMPEDP  
AD3  
AE4  
AGTL Pull-up Control  
1.5V CMOS Input  
1.5V CMOS Input  
SMI#  
STPCLK#  
Mobile Intel® Pentium ® III Processor-M Datasheet  
73  
Mechanical Specifications  
R
No.  
AD10 TCK  
AD7 TDI  
AD11 TDO  
Signal Name  
Signal Buffer Type  
No.  
Signal Name  
VID1  
Signal Buffer Type  
1.5V JTAG Clock Input AC2  
Voltage Identification  
JTAG Input  
JTAG Output  
AE2  
AF3  
R3  
VID2  
VID3  
Voltage Identification  
Voltage Identification  
E2  
TESTHI  
Test Use Only  
Test Use Only  
Test Use Only  
Test Use Only  
Thermal Diode Anode  
VID4  
Voltage Identification  
AF11  
M1  
Y4  
TESTHI  
TESTLO  
TESTLO  
THERMDA  
THERMDC  
TMS  
TRDY#  
TRST#  
VID0  
A4  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
AGTL Reference Voltage  
AGTL Reference Voltage  
AGTL Reference Voltage  
AGTL Reference Voltage  
AGTL Reference Voltage  
AGTL Reference Voltage  
AGTL Reference Voltage  
AGTL Reference Voltage  
VCCT power good signal  
A21  
N1  
AF13  
AF14  
AF7  
W1  
AF9  
Thermal Diode Cathode AF21  
JTAG Input  
AGTL I/O  
AA1  
AB26 VREF  
AF15  
AB1  
JTAG Input  
Voltage Identification  
H26  
E3  
VREF  
VTTPWRGD  
Table 42. Voltage and No-Connect Pin/Ball Locations  
Signal  
Name  
Pin/Ball Numbers  
NC  
A2, A5, A11, B1, C1, C4, C22, D1, D26, E1, F1, N4, N24, P1, P4, P5, P26, AD4, AD13, AD23,  
AE8, AE10, AF17, AF18  
VCC  
D6, D8, D10, D12, D14, D16, D18, D20, D22, E5, E7, E9, E11, E13, E15, E17, E19, E21, F6, F8,  
F10, F12, F14, F16, F18, F20, F22, G5, G21, H6, H22, J5, J21, K6, K22, L21, M6, M22, N5, N21,  
P6, P22, R5, R21, T6, T22, U5, U21, V6, V22, W5, W21, Y6, Y22, AA5, AA7, AA9, AA11, AA13,  
AA15, AA17, AA19, AA21, AB6, AB8, AB10, AB12, AB14, AB16, AB18, AB20, AB22, AC5,  
AC7, AC9, AC11, AC13, AC15, AC17, AC19, AC21  
VCCT  
VSS  
A26, C5, C7, C9, C11, C13, C15, C17, C19, C21, D5, E4, E6, G4, G23, J4, J23, L4, L23, N23,  
R23, U23, V4, W23, AA4, AA23, AC4, AC23, AD6, AD8, AD12, AD14, AD18, AD20, AE3, AE18,  
AF1, AF2  
A25, B2, B4, B6, B8, B10, B12, B14, B16, B18, B20, B22, B26, C23, C25, D2, D4, D7, D9, D11,  
D13, D15, D17, D19, D21, E8, E10, E12, E14, E16, E18, E20, E22, E25, F2, F4, F5, F7, F9, F11,  
F13, F15, F17, F19, F21, F23, G6, G22, G25, H2, H4, H5, H21, H23, J6, J22, J25, K2, K4, K5,  
K21, K23, L6, L22, L25, M2, M3, M4, M21, M23, N6, N22, N25, P2, P21, P23, R4, R6, R22, R25,  
T2, T5, T21, T23, U4, U6, U22, U25, V2, V5, V21, V23, W4, W6, W22, W25, Y2, Y5, Y21, Y23,  
AA6, AA8, AA10, AA12, AA14, AA16, AA18, AA20, AA22, AA25, AB2, AB5, AB7, AB9, AB11,  
AB13, AB15, AB17, AB19, AB21, AB23, AC6, AC8, AC10, AC12, AC14, AC16, AC18, AC20,  
AC22, AC25, AD2, AE1, AE5, AE7, AE9, AE11, AE13, AE15, AE17, AE19, AE21, AE23, AE26,  
AF25, AF26  
NOTE: A2 pin is de-populated on the Micro-FCPGA package.  
74  
Mobile Intel® Pentium ® III Processor-M Datasheet  
VCC Thermal Specifications  
R
6. VCC Thermal Specifications  
In order to achieve proper cooling of the processor, a thermal solution (e.g., heat spreader, heat pipe, or  
other heat transfer system) must make firm contact to the exposed processor die. The processor die  
must be clean before the thermal solution is attached or the processor may be damaged.  
Table 43 provides the Thermal Design Power (TDP) dissipation and the minimum and maximum TJ  
temperatures for the Mobile Intel Pentium III Processor-M. The thermal solution should be designed to  
ensure the junction temperature never exceeds the 100°C TJ specification while operating at the  
Thermal Design Power. Additionally, a secondary failsafe mechanism in hardware should be provided  
to shutdown the processor at 101°C to prevent permanent damage, as described in Section 3.1.3. TDP  
is a thermal design power specification based on the worst case power dissipation of the processor  
while executing publicly available software under normal operating conditions at nominal voltages.  
Contact your Intel Field Sales Representative for further information.  
Table 43. Power Specifications for Mobile Intel Pentium III Processor-M  
Symbol  
Core Frequency/Voltage  
Thermal Design Power  
Unit  
Notes  
TDP  
Thermal Design Power at  
W
At 100°C, Note 1  
300 MHz & 0.95 V  
350 MHz & 0.95 V  
400 MHz & 0.95 V  
450 MHz & 1.05 V  
466 MHz & 1.05 V  
500 MHz & 1.05 V  
533 MHz & 1.05 V  
700 MHz & 1.10 V  
733 MHz & 1.10 V  
750 MHz & 1.10 V  
800 MHz & 1.10 V  
850 MHz & 1.10 V  
866 MHz & 1.10 V  
900 MHz & 1.10 V  
933 MHz & 1.10 V  
667 MHz & 1.15 V  
733 MHz & 1.15 V  
750 MHz & 1.15 V  
800 MHz & 1.15 V  
850 MHz & 1.15 V  
866 MHz & 1.15 V  
933 MHz & 1.15 V  
1.000 GHz & 1.15 V  
866 MHz & 1.40 V  
933 MHz & 1.40 V  
1.000 GHz & 1.40 V  
1.066 GHz & 1.40 V  
1.133 GHz & 1.40 V  
1.200 GHz & 1.40 V  
1.266 GHz & 1.40V  
1.333 GHz & 1.40V  
3.3  
3.5  
Notes 1, 4  
Notes 1, 4  
Notes 1, 4  
3.8  
5.7  
5.8  
5.9  
6.1  
7.0  
Notes 1, 4  
Notes 1, 4  
Notes 1, 4  
Notes 1, 4  
Notes 1, 4  
Notes 1, 4  
Notes 1, 4  
Notes 1, 4  
7.0  
7.0  
7.0  
7.0  
7.0  
7.0  
7.0  
8.9  
9.3  
9.4  
9.25  
10.0  
10.1  
10.5  
11.0  
19.5  
20.1  
20.5  
21.0  
21.8  
22.0  
22.0  
22.0  
Mobile Intel® Pentium ® III Processor-M Datasheet  
75  
VCC Thermal Specifications  
R
Symbol  
PAH  
Parameter  
Auto Halt power at  
Min  
Max  
Unit  
Notes  
W
At 50°C, Note 2  
0.95 V  
1.05 V  
1.10 V  
1.15 V  
1.40 V  
1.0  
2.0  
1.9  
3.0  
7.0  
Notes 2, 4  
Notes 2, 4  
Notes 2, 4  
PQS  
Quick Start power at  
W
W
At 50°C, Note 2  
0.95 V  
1.05 V  
1.10 V  
1.15 V  
1.40 V  
0.9  
1.8  
1.7  
2.7  
6.5  
Notes 2, 4  
Notes 2, 4  
Notes 2, 4  
PDSLP  
Deep Sleep power at  
0.95 V  
At 35°C, Note 2  
Notes 2, 4  
0.7  
1.3  
1.6  
2.0  
4.8  
1.05 V  
Notes 2, 4  
1.10 V  
Notes 2, 4  
1.15 V  
1.40 V  
PDPRSLP  
Deeper Sleep power  
at 0.85 V  
At 35°C, Note 2  
At 35°C, Notes 2, 4  
Note 3  
0.62  
W
PDPRSLPULV Deeper Sleep power  
at 0.85 V  
TJ  
0.47  
100  
W
°C  
Junction Temperature  
0
NOTES:  
1. TDP is defined as the worst case power dissipated by the processor while executing publicly available software  
under normal operating conditions at nominal voltages that meet the load line specifications. The TDP number  
shown is a specification based on Icc(maximum) and indirectly tested by Icc(maximum) testing. TDP definition  
is synonymous with the Thermal Design Power (typical) specification referred to in previous Intel datasheets.  
The Intel TDP specification is a recommended design point and is not representative of the absolute maximum  
power the processor may dissipate under worst case conditions.  
2. Not 100% tested. These power specifications are determined by characterization of the processor currents at  
higher temperatures and extrapolating the values for the temperature indicated.  
3. TJ is measured with the on-die thermal diode.  
4. This specification applies only to the Ultra Low Voltage Mobile Intel Pentium III Processor-M.  
6.1  
Thermal Diode  
The Mobile Intel Pentium III Processor-M has an on-die thermal diode that can be used to monitor the  
die temperature (TJ). A thermal sensor located on the motherboard, or a stand-alone measurement kit,  
may monitor the die temperature of the processor for thermal management or instrumentation  
purposes. Table 44 and Table 45 provide the diode interface and specifications.  
Note:  
The reading of the thermal sensor connected to the thermal diode will not necessarily reflect the  
temperature of the hottest location on the die. This is due to inaccuracies in the thermal sensor, on-die  
temperature gradients between the location of the thermal diode and the hottest location on the die, and  
time based variations in the die temperature measurement. Time based variations can occur when the  
sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at which the TJ  
temperature can change.  
76  
Mobile Intel® Pentium ® III Processor-M Datasheet  
VCC Thermal Specifications  
R
Table 44. Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
AF13  
AF14  
Thermal diode anode  
Thermal diode cathode  
Table 45. Thermal Diode Specifications  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
Notes  
n
n
Diode Ideality Factor (5-150uA)  
Diode Ideality Factor (5-300uA)  
1.0011 1.0067 1.0122  
1.0003 1.0091 1.0178  
Notes 1, 2, 3, 4, 6  
Notes 1, 2, 3, 5, 6  
NOTES:  
1. Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not support  
or recommend operation of the thermal diode when the processor power supplies are not within their specified  
tolerance range.  
2. Characterized at 100°C.  
3. Not 100% tested. Specified by design/characterization.  
4. Specified for Forward Bias Current = 5 µA (min) and 150 µA (max).  
5. Specified for Forward Bias Current = 5 µA (min) and 300 µA (max).  
6. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:  
Where Is = saturation current, q = electronic charge, Vd = voltage across the diode, k = Boltzmann Constant,  
and T = absolute temperature (Kelvin).  
qVD  
nkT  
I
FW = I  
S
e  
1  
Mobile Intel® Pentium ® III Processor-M Datasheet  
77  
Processor Initialization and Configuration  
R
7. Processor Initialization and  
Configuration  
7.1  
Description  
The Mobile Intel Pentium III Processor-M has some configuration options that are determined by  
hardware and some that are determined by software. The processor samples its hardware configuration  
at reset on the active-to-inactive transition of RESET#. The P6 Family of Processors Developer’s  
Manual describes these configuration options. Some of the configuration options for the Mobile Intel  
Pentium III Processor-M are described in the remainder of this section.  
7.1.1  
Quick Start Enable  
Quick Start enabling is mandatory on the Mobile Intel Pentium III Processor-M by strapping A15# low.  
When the STPCLK# signal is asserted it will enter the Quick Start state when A15# is sampled active  
on the RESET# signal’s active-to-inactive transition. The Quick Start state supports snoops from the  
bus priority device but it does not support symmetric master snoops nor is the latching of interrupts  
supported. A “1” in bit position 5 of the Power-on Configuration register indicates that the Quick Start  
state has been enabled.  
7.1.2  
System Bus Frequency  
The current generation Mobile Intel Pentium III Processor-M will only function with a system bus  
frequency of 133 MHz. The Low Voltage Mobile Intel Pentium III Processor-M will support both 100-  
MHz and 133-MHz bus frequencies. The Ultra Low Voltage Mobile Intel Pentium III Processor-M  
will support both 100-MHz and 133-MHz bus frequencies (see product features section for specific  
supported frequencies). Bit positions 18 to 19 of the Power-on Configuration register indicates at  
which speed a processor will run.  
7.1.3  
APIC Enable  
The processor APIC must be hardware enabled by pulling the PICD[1:0] signals separately up to 1.5 V  
and supplying an active PICCLK to the processor. Software can be used to disable the APIC if it is not  
being used, after PICD[1:0] are sampled high when RESET# is deasserted and the processor has  
started executing instructions.  
7.2  
Clock Frequencies and Ratios  
The Mobile Intel Pentium III Processor-M uses a clock design in which the bus clock is multiplied by a  
ratio to produce the processor’s internal (or “core”) clock. The ratio used is programmed into the  
processor during manufacturing. The bus ratio programmed into the processor is visible in bit positions  
22 to 25 and 27 of the Power-on Configuration register. Table 22 shows the 5-bit codes in the Power-  
on Configuration register and their corresponding bus ratios.  
78  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Processor Interface  
R
8. Processor Interface  
8.1  
Alphabetical Signal Reference  
A[35:3]# (I/O – AGTL)  
The A[35:3]# (Address) signals define a 236-byte physical memory address space. When ADS# is  
active, these signals transmit the address of a transaction; when ADS# is inactive, these signals  
transmit transaction information. These signals must be connected to the appropriate pins/balls of both  
agents on the system bus. The A[35:24]# signals are protected with the AP1# parity signal, and the  
A[23:3]# signals are protected with the AP0# parity signal.  
On the active-to-inactive transition of RESET#, each processor bus agent samples A[35:3]# signals to  
determine its power-on configuration. See P6 Family of Processors Developer’s Manual for details.  
A20M# (I - 1.5 V Tolerant)  
If the A20M# (Address-20 Mask) input signal is asserted, the processor masks physical address bit 20  
(A20#) before looking up a line in any internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address wrap-around at the 1-Mbyte boundary.  
Assertion of A20M# is only supported in Real mode.  
ADS# (I/O - AGTL)  
The ADS# (Address Strobe) signal is asserted to indicate the validity of a transaction address on the  
A[35:3]# signals. Both bus agents observe the ADS# activation to begin parity checking, protocol  
checking, address decode, internal snoop or deferred reply ID match operations associated with the  
new transaction. This signal must be connected to the appropriate pins/balls on both agents on the  
system bus.  
AERR# (I/O - AGTL)  
The AERR# (Address Parity Error) signal is observed and driven by both system bus agents, and if  
used, must be connected to the appropriate pins/balls of both agents on the system bus. AERR#  
observation is optionally enabled during power-on configuration; if enabled, a valid assertion of  
AERR# aborts the current transaction.  
If AERR# observation is disabled during power-on configuration, a central agent may handle an  
assertion of AERR# as appropriate to the error handling architecture of the system.  
AP[1:0]# (I/O - AGTL)  
The AP[1:0]# (Address Parity) signals are driven by the request initiator along with ADS#, A[35:3]#,  
REQ[4:0]# and RP#. AP1# covers A[35:24]#. AP0# covers A[23:3]#. A correct parity signal is high if  
an even number of covered signals is low and low if an odd number of covered signals are low. This  
allows parity to be high when all the covered signals are high. AP[1:0]# should be connected to the  
appropriate pins/balls on both agents on the system bus.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
79  
Processor Interface  
R
BCLK, BCLK# (I)  
The BCLK and BCLK# signals determines the system bus frequency.  
On systems with Differential Clocking, both system bus agents must receive these signals to drive their  
outputs and latch their inputs on the BCLK rising edge and BCLK# falling edge. All external timing  
parameters are specified with respect to the crossing point of the BCLK rising edge and BCLK# falling  
edge.  
On systems with Single Ended Clocking, both system bus agents must receive the BCLK signal to  
drive their outputs and latch their inputs on the BCLK rising edge. All external timing parameters are  
specified with respect to the BCLK signal. The BCLK# signal functions as the CLKREF input.  
BERR# (I/O - AGTL)  
The BERR# (Bus Error) signal is asserted to indicate an unrecoverable error without a bus protocol  
violation. It may be driven by either system bus agent and must be connected to the appropriate  
pins/balls of both agents, if used. However, the Mobile Intel Pentium III Processor-Ms do not observe  
assertions of the BERR# signal.  
BERR# assertion conditions are defined by the system configuration. Configuration options enable the  
BERR# driver as follows:  
Enabled or disabled  
Asserted optionally for internal errors along with IERR#  
Asserted optionally by the request initiator of a bus transaction after it observes an error  
Asserted by any bus agent when it observes an error in a bus transaction  
BINIT# (I/O - AGTL)  
The BINIT# (Bus Initialization) signal may be observed and driven by both system bus agents and  
must be connected to the appropriate pins/balls of both agents, if used. If the BINIT# driver is enabled  
during the power-on configuration, BINIT# is asserted to signal any bus condition that prevents  
reliable future information.  
If BINIT# is enabled during power-on configuration, and BINIT# is sampled asserted, all bus state  
machines are reset and any data which was in transit is lost. All agents reset their rotating ID for bus  
arbitration to the state after reset, and internal count information is lost. The L1 and L2 caches are not  
affected.  
If BINIT# is disabled during power-on configuration, a central agent may handle an assertion of  
BINIT# as appropriate to the Machine Check Architecture (MCA) of the system.  
BNR# (I/O - AGTL)  
The BNR# (Block Next Request) signal is used to assert a bus stall by any bus agent that is unable to  
accept new bus transactions. During a bus stall, the current bus owner cannot issue any new  
transactions.  
Since multiple agents may need to request a bus stall simultaneously, BNR# is a wired-OR signal that  
must be connected to the appropriate pins/balls of both agents on the system bus. In order to avoid  
80  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Processor Interface  
R
wire-OR glitches associated with simultaneous edge transitions driven by multiple drivers, BNR# is  
activated on specific clock edges and sampled on specific clock edges.  
BP[3:2]# (I/O - AGTL)  
The BP[3:2]# (Breakpoint) signals are the System Support group Breakpoint signals. They are outputs  
from the processor that indicate the status of breakpoints.  
BPM[1:0]# (I/O - AGTL)  
The BPM[1:0]# (Breakpoint Monitor) signals are breakpoint and performance monitor signals. They  
are outputs from the processor that indicate the status of breakpoints and programmable counters used  
for monitoring processor performance.  
BPRI# (I - AGTL)  
The BPRI# (Bus Priority Request) signal is used to arbitrate for ownership of the system bus. It must  
be connected to the appropriate pins/balls on both agents on the system bus. Observing BPRI# active  
(as asserted by the priority agent) causes the processor to stop issuing new requests, unless such  
requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of  
its requests are completed and then releases the bus by deasserting BPRI#.  
BREQ0# (I/O - AGTL)  
The BREQ0# (Bus Request) signal is a processor Arbitration Bus signal. The processor indicates that it  
wants ownership of the system bus by asserting the BREQ0# signal.  
During power-up configuration, the central agent must assert the BREQ0# bus signal. The processor  
samples BREQ0# on the active-to-inactive transition of RESET#. Optionally, this signal may be  
grounded with a 10-resistor.  
BSEL[1:0] (O – 3.3 V Tolerant)  
The BSEL[1:0] (Select Processor System Bus Speed) signal is used to configure the processor for the  
system bus frequency. The chipset and system clock generator also uses the BSEL signals. The  
VTTPWRGD signal informs the processor to output the BSEL signals. During power up the BSEL  
signals will be indeterminate for a small period of time. The chipset and clock generator should not  
sample the BSEL signals until the VTTPWRGD signal is asserted. The assertion of the VTTPWRGD  
signal indicates that the BSEL signals are stable and driven to a final state by the processor. Please  
refer to Figure 12 for the timing relationship between the BSEL and VTTPWRGD signals.  
Table 46 shows the encoding scheme for BSEL[1:0]. The only supported system bus frequency for the  
Mobile Intel Pentium III Processor-M is 133 MHz. The Low Voltage Mobile Intel Pentium III  
Processor-M will support both 100-MHz and 133-MHz bus frequencies. The Ultra Low Voltage  
Mobile Intel Pentium III Processor-M will support both 100-MHz and 133-MHz bus frequencies (see  
product features for specific supported frequencies). If another frequency is used then the processor is  
not guaranteed to function properly.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
81  
Processor Interface  
R
Table 46. BSEL[1:0] Encoding  
BSEL[1:0]  
System Bus Frequency  
01  
11  
100 MHz  
133 MHz  
CLKREF (Analog)  
The CLKREF (System Bus Clock Reference) signal provides a reference voltage to define the trip  
point for the BCLK signal on platforms supporting Single Ended Clocking. This signal should be  
connected to a resistor divider to generate 1.25 V from the 2.5-V supply. A minimum of 1-uF  
decoupling capacitance is recommended on CLKREF. On systems with Differential Clocking, the  
CLKREF pin functions as the BCLK# input.  
CMOSREF (Analog)  
The CMOSREF (CMOS Reference Voltage) signal provides a DC level reference voltage for the  
CMOS input buffers. CMOSREF must be generated from a stable 1.5-V supply (830 chipset family),  
2.5 V (440MX chipset family) and must meet the VCMOSREF specification. The same 1.5V (830  
chipset family) or 2.5 V (440MX chipset family) supply should be used to power the chipset CMOS  
I/O buffers that drive the CMOS signals. The Thevenin equivalent impedance of the VCMOSREF  
generation circuits must be less than 0.5 K/1 K(i.e., top resistor 500 , bottom resistor 1 K) for  
830 chipset family. The Thevenin equivalent impedance of the VCMOSREF generation circuits must  
be less than 0.75 K/0.5 K(i.e., top resistor 750 , bottom resistor 500 ) for Intel 440MX chipset  
family. Please refer to the platform design guidelines for other resistor divider recommendations.  
D[63:0]# (I/O - AGTL)  
The D[63:0]# (Data) signals are the data signals. These signals provide a 64-bit data path between both  
system bus agents, and must be connected to the appropriate pins/balls on both agents. The data driver  
asserts DRDY# to indicate a valid data transfer.  
DBSY# (I/O - AGTL)  
The DBSY# (Data Bus Busy) signal is asserted by the agent responsible for driving data on the system  
bus to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This  
signal must be connected to the appropriate pins/balls on both agents on the system bus.  
DEFER# (I - AGTL)  
The DEFER# (Defer) signal is asserted by an agent to indicate that the transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the responsibility of the addressed  
memory agent or I/O agent. This signal must be connected to the appropriate pins/balls on both agents  
on the system bus.  
DEP[7:0]# (I/O - AGTL)  
The DEP[7:0]# (Data Bus ECC Protection) signals provide optional ECC protection for the data bus.  
They are driven by the agent responsible for driving D[63:0]#, and must be connected to the  
appropriate pins/balls on both agents on the system bus if they are used. During power-on  
configuration, DEP[7:0]# signals can be enabled for ECC checking or disabled for no checking.  
82  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Processor Interface  
R
DRDY# (I/O - AGTL)  
The DRDY# (Data Ready) signal is asserted by the data driver on each data transfer, indicating valid  
data on the data bus. In a multi-cycle data transfer, DRDY# can be deasserted to insert idle clocks.  
This signal must be connected to the appropriate pins/balls on both agents on the system bus.  
DPSLP# (I - 1.5 V Tolerant)  
The DPSLP# (Deep Sleep) signal, when asserted in the Quick Start state, causes the processor to enter  
the Deep Sleep state. In order to return to the Quick Start state BCLK, BCLK# must be running and  
the DPSLP# pin must be deasserted.  
EDGCTRLP (I-Analog)  
The EDGCTRLP (Edge Rate Control) signal is used to configure the edge rate of the AGTL output  
buffers. Connect the signal to VSS with a 110-, 1% resistor.  
FERR# (O - 1.5 V Tolerant Open-drain)  
The FERR# (Floating-point Error) signal is asserted when the processor detects an unmasked floating-  
point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and it is included for  
compatibility with systems using DOS-type floating-point error reporting.  
FLUSH# (I - 1.5 V Tolerant)  
When the FLUSH# (Flush) input signal is asserted, the processor writes back all internal cache lines in  
the Modified state and invalidates all internal cache lines. At the completion of a flush operation, the  
processor issues a Flush Acknowledge transaction. The processor stops caching any new data while the  
FLUSH# signal remains asserted.  
On the active-to-inactive transition of RESET#, each processor bus agent samples FLUSH# to  
determine its power-on configuration.  
GHI# (I - 1.25 V)  
The GHI# signal controls the selection of the operating mode bus ratio in a Mobile Intel Pentium III  
Processor-M. This signal is latched on exit from the Deep Sleep state and determines which of two bus  
ratios is selected for operation. This signal is ignored when the processor is not in the Deep Sleep state.  
This signal has an on-die pull-up to VCCT and should be driven with an Open-drain driver with no  
external pull-up.  
HIT# (I/O - AGTL), HITM# (I/O - AGTL)  
The HIT# (Snoop Hit) and HITM# (Hit Modified) signals convey transaction snoop operation results,  
and must be connected to the appropriate pins/balls on both agents on the system bus. Either bus agent  
can assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be  
continued by reasserting HIT# and HITM# together.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
83  
Processor Interface  
R
IERR# (O - 1.5 V Tolerant Open-drain)  
The IERR# (Internal Error) signal is asserted by the processor as the result of an internal error.  
Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the system bus. This  
transaction may optionally be converted to an external error signal (e.g., NMI) by system logic. The  
processor will keep IERR# asserted until it is handled in software or with the assertion of RESET#,  
BINIT, or INIT#.  
IGNNE# (I - 1.5 V Tolerant)  
The IGNNE# (Ignore Numeric Error) signal is asserted to force the processor to ignore a numeric error  
and continue to execute non-control floating-point instructions. If IGNNE# is deasserted, the processor  
freezes on a non-control floating-point instruction if a previous instruction caused an error. IGNNE#  
has no affect when the NE bit in control register 0 (CR0) is set.  
INIT# (I - 1.5 V Tolerant)  
The INIT# (Initialization) signal is asserted to reset integer registers inside the processor without  
affecting the internal (L1 or L2) caches or the floating-point registers. The processor begins execution  
at the power-on reset vector configured during power-on configuration. The processor continues to  
handle snoop requests during INIT# assertion. INIT# is an asynchronous input.  
If INIT# is sampled active on RESET#'s active-to-inactive transition, then the processor executes its  
built-in self test (BIST).  
INTR (I - 1.5 V Tolerant)  
The INTR (Interrupt) signal indicates that an external interrupt has been generated. INTR becomes the  
LINT0 signal when the APIC is enabled. The interrupt is maskable using the IF bit in the EFLAGS  
register. If the IF bit is set, the processor vectors to the interrupt handler after completing the current  
instruction execution. Upon recognizing the interrupt request, the processor issues a single Interrupt  
Acknowledge (INTA) bus transaction. INTR must remain active until the INTA bus transaction to  
guarantee its recognition.  
LINT[1:0] (I - 1.5 V Tolerant)  
The LINT[1:0] (Local APIC Interrupt) signals must be connected to the appropriate pins/balls of all  
APIC bus agents, including the processor and the system logic or I/O APIC component. When APIC is  
disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes  
NMI, a non-maskable interrupt. INTR and NMI are backward compatible with the same signals for the  
Pentium processor. Both signals are asynchronous inputs.  
Both of these signals must be software configured by programming the APIC register space to be used  
either as NMI/INTR or LINT[1:0] in the BIOS. If the APIC is enabled at reset, then LINT[1:0] is the  
default configuration.  
LOCK# (I/O - AGTL)  
The LOCK# (Lock) signal indicates to the system that a sequence of transactions must occur  
atomically. This signal must be connected to the appropriate pins/balls on both agents on the system  
bus. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first  
transaction through the end of the last transaction.  
84  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Processor Interface  
R
When the priority agent asserts BPRI# to arbitrate for bus ownership, it waits until it observes LOCK#  
deasserted. This enables the processor to retain bus ownership throughout the bus locked operation and  
guarantee the atomicity of lock.  
NC (No Connect)  
All signals named NC (No Connect) must be left unconnected.  
NCTRL (I - Analog)  
The NCTRL signal provides the AGTL pull down impedance control. The processor samples this  
input to determine the N-channel pull-down device strength when it is the driving agent. An external  
14 (1% tolerance) pull-up resistor to VCCT is required for this signal. Please refer to platform design  
guide for implementation details.  
NMI (I - 1.5 V Tolerant)  
The NMI (Non-Maskable Interrupt) indicates that an external interrupt has been generated. NMI  
becomes the LINT1 signal when the APIC is disabled. Asserting NMI causes an interrupt with an  
internally supplied vector value of 2. An external interrupt-acknowledge transaction is not generated. If  
NMI is asserted during the execution of an NMI service routine, it remains pending and is recognized  
after the IRET is executed by the NMI service routine. At most, one assertion of NMI is held pending.  
NMI is rising edge sensitive.  
PICCLK (I – 2.0 V Tolerant)  
The PICCLK (APIC Clock) signal is an input clock to the processor and system logic or I/O APIC that  
is required for operation of the processor, system logic, and I/O APIC components on the APIC bus.  
PICD[1:0] (I/O - 1.5 V Tolerant Open-drain)  
The PICD[1:0] (APIC Data) signals are used for bi-directional serial message passing on the APIC  
bus. They must be connected to the appropriate pins/balls of all APIC bus agents, including the  
processor and the system logic or I/O APIC components. If the PICD0 signal is sampled low on the  
active-to-inactive transition of the RESET# signal, then the APIC is hardware disabled. For the  
Mobile Intel Pentium III Processor-M, the APIC is required to be hardware enabled as described in  
Section 7.1.3  
PLL1, PLL2 (Analog)  
The PLL1 and PLL2 signals provide isolated analog decoupling is required for the internal PLL. See  
Section 3.2.2 for a description of the analog decoupling circuit.  
PRDY# (O - AGTL)  
The PRDY# (Probe Ready) signal is a processor output used by debug tools to determine processor  
debug readiness.  
PREQ# (I - 1.5 V Tolerant)  
The PREQ# (Probe Request) signal is used by debug tools to request debug operation of the processor.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
85  
Processor Interface  
R
PWRGOOD (I – 1.8 V Tolerant)  
PWRGOOD (Power Good) is a 1.8-V tolerant input. The processor requires this signal to be a clean  
indication that clocks and the power supplies (VCC, VCCT, etc.) are stable and within their  
specifications. Clean implies that the signal will remain low, (capable of sinking leakage current) and  
without glitches, from the time that the power supplies are turned on, until they come within  
specification. The signal will then transition monotonically to a high (1.8V) state. Figure 12 through  
Figure 14 illustrate the relationship of PWRGOOD to other system signals. PWRGOOD can be driven  
inactive at any time, but clocks and power must again be stable before the rising edge of PWRGOOD.  
It must also meet the minimum pulse width specified in Table 24 (Section 3.7) and be followed by a  
1 ms RESET# pulse. PWRGOOD may be asserted before BCLK is active (please refer to Table 24,  
Note 5).  
The PWRGOOD signal, which must be supplied to the processor, is used to protect internal circuits  
against voltage sequencing issues. The PWRGOOD signal should be driven high throughout boundary  
scan operation.  
REQ[4:0]# (I/O - AGTL)  
The REQ[4:0]# (Request Command) signals must be connected to the appropriate pins/balls on both  
agents on the system bus. They are asserted by the current bus owner when it drives A[35:3]# to define  
the currently active transaction type.  
RESET# (I - AGTL)  
Asserting the RESET# signal resets the processor to a known state and invalidates the L1 and L2  
caches without writing back Modified (M state) lines. For a power-on type reset, RESET# must stay  
active for at least 1 ms after VCC and BCLK, BCLK# have reached their proper DC and AC  
specifications and after PWRGOOD has been asserted. When observing active RESET#, all bus agents  
will deassert their outputs within two clocks. RESET# is the only AGTL signal that does not have on-  
die AGTL termination. A 56.2-Ω, 1% terminating resistor connected to VCCT is required.  
A number of bus signals are sampled at the active-to-inactive transition of RESET# for the power-on  
configuration. The configuration options are described in Section 4 and in the P6 Family of Processors  
Developer’s Manual.  
Unless its outputs are tri-stated during power-on configuration, after an active-to-inactive transition of  
RESET#, the processor optionally executes its built-in self-test (BIST) and begins program execution  
at reset-vector 000FFFF0H or FFFFFFF0H. RESET# must be connected to the appropriate pins/balls  
on both agents on the system bus.  
RP# (I/O - AGTL)  
The RP# (Request Parity) signal is driven by the request initiator and provides parity protection on  
ADS# and REQ[4:0]#. RP# should be connected to the appropriate pins/balls on both agents on the  
system bus.  
A correct parity signal is high if an even number of covered signals is low and low if an odd number of  
covered signals are low. This definition allows parity to be high when all covered signals are high.  
86  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Processor Interface  
R
RS[2:0]# (I/O - AGTL)  
The RS[2:0]# (Response Status) signals are driven by the response agent (the agent responsible for  
completion of the current transaction) and must be connected to the appropriate pins/balls on both  
agents on the system bus.  
RSP# (I - AGTL)  
The RSP# (Response Parity) signal is driven by the response agent (the agent responsible for  
completion of the current transaction) during assertion of RS[2:0]#. RSP# provides parity protection  
for RS[2:0]#. RSP# should be connected to the appropriate pins/balls on both agents on the system bus.  
A correct parity signal is high if an even number of covered signals are low, and it is low if an odd  
number of covered signals are low. During Idle state of RS[2:0]# (RS[2:0]#=000), RSP# is also high  
since it is not driven by any agent guaranteeing correct parity.  
RTTIMPEDP (I-Analog)  
The RTTIMPEDP (RTT Impedance/PMOS) signal is used to configure the on-die AGTL termination.  
Connect the RTTIMPEDP signal to VSS with a 56.2-, 1% resistor.  
SMI# (I - 1.5 V Tolerant)  
The SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a  
System Management Interrupt, the processor saves the current state and enters System Management  
Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program  
execution from the SMM handler.  
STPCLK# (I - 1.5 V Tolerant)  
The STPCLK# (Stop Clock) signal, when asserted, causes the processor to enter a low-power Quick  
Start state. The processor issues a Stop Grant Acknowledge special transaction and stops providing  
internal clock signals to all units except the bus and APIC units. The processor continues to snoop bus  
transactions and service interrupts while in the Quick Start state. When STPCLK# is deasserted and  
other conditions in are met, the processor restarts its internal clock to all units and resumes execution.  
The assertion of STPCLK# has no affect on the bus clock.  
TCK (I - 1.5 V Tolerant)  
The TCK (Test Clock) signal provides the clock input for the test bus (also known as the test access  
port).  
TDI (I - 1.5 V Tolerant)  
The TDI (Test Data In) signal transfers serial test data to the processor. TDI provides the serial input  
needed for JTAG support.  
TDO (O - 1.5 V Tolerant Open-drain)  
The TDO (Test Data Out) signal transfers serial test data from the processor. TDO provides the serial  
output needed for JTAG support.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
87  
Processor Interface  
R
TESTHI[2:1] (I - 1.25 V Tolerant)  
The TESTHI[2:1] (Test input High) signals are used during processor test and need to be pulled high  
during normal operation.  
TESTLO[2:1] (I - 1.5 V Tolerant)  
The TESTLO[2:1] (Test input Low) signals are used during processor test and needs to be pulled to  
ground during normal operation.  
THERMDA, THERMDC (Analog)  
The THERMDA (Thermal Diode Anode) and THERMDC (Thermal Diode Cathode) signals connect  
to the anode and cathode of the on-die thermal diode.  
TMS (I - 1.5 V Tolerant)  
The TMS (Test Mode Select) signal is a JTAG support signal used by debug tools.  
TRDY# (I/O - AGTL)  
The TRDY# (Target Ready) signal is asserted by the target to indicate that the target is ready to receive  
write or implicit write-back data transfer. TRDY# must be connected to the appropriate pins/balls on  
both agents on the system bus.  
TRST# (I - 1.5 V Tolerant)  
The TRST# (Test Reset) signal resets the Test Access Port (TAP) logic. The Mobile Intel Pentium III  
Processor-M does not self-reset during power on; therefore, it is necessary to drive this signal low  
during power-on reset.  
VID[4:0] (O – Open-drain)  
The VID[4:0] (Voltage ID) pins/balls can be used to support automatic selection of power supply  
voltages. Please refer to Section 3.2.2 for details.  
VREF (Analog)  
The VREF (AGTL Reference Voltage) signal provides a DC level reference voltage for the AGTL  
input buffers. A voltage divider should be used to divide VCCT by 2/3. Resistor values of 1.00 kand  
2.00 kare recommended. Decouple the VREF signal with three 0.1-µF high-frequency capacitors  
close to the processor.  
VTTPWRGD (I – 1.25 V)  
The VTTPWRGD signal informs the processor to output the VID signals. During power up, the VID  
signals will be in an indeterminate state for a small period of time. The voltage regulator should not  
sample and/or latch the VID signals until the VTTPWRGD signal is asserted. The assertion of the  
VTTPWRGD signal indicates that the VID signals are stable and are driven to the final state by the  
processor. Please refer to Figure 12 for the power up sequence, Table 25 for VTTPWRGD transition  
time and Section 4.3.1 for VTTPWRGD signal quality specifications.  
88  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Processor Interface  
R
8.2  
Signal Summaries  
Table 47. Input Signals  
Name  
Active Level  
Clock  
Signal Group  
Qualified  
A20M#  
BCLK  
BCLK#  
BPRI#  
DEFER#  
DPSLP#  
FLUSH#  
GHI#  
IGNNE#  
INIT#  
INTR  
LINT[1:0]  
NMI  
NCTRL  
PICCLK  
PREQ#  
PWRGOOD  
RESET#  
RSP#  
Low  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
High  
Low  
High  
Low  
Low  
Low  
Low  
High  
Asynch  
CMOS  
Always  
System Bus  
System Bus  
System Bus  
System Bus  
Implementation  
CMOS  
Always  
Always  
BCLK  
BCLK  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
Asynch  
BCLK  
BCLK  
Asynch  
Asynch  
Always  
Always  
Quick Start state  
Always  
CMOS  
CMOS  
Deep Sleep state  
Always  
System Bus  
CMOS  
APIC  
Always  
APIC disabled mode  
APIC enabled mode  
APIC disabled mode  
CMOS  
APIC  
Always  
Always  
Always  
Always  
Always  
Always  
Always  
Implementation  
Implementation  
System Bus  
System Bus  
CMOS  
SMI#  
STPCLK#  
TCK  
Implementation  
JTAG  
TDI  
TCK  
JTAG  
TMS  
TCK  
JTAG  
TRST#  
VTTPWRGD  
Low  
High  
Asynch  
Asynch  
JTAG  
Power/Other  
Table 48. Output Signals  
Name  
Active Level  
Clock  
Signal Group  
BSEL[1:0]  
FERR#  
IERR#  
High  
Low  
Low  
Low  
High  
High  
Asynch  
Asynch  
Asynch  
BCLK  
Open-drain  
Open-drain  
Open-drain  
Implementation  
JTAG  
PRDY#  
TDO  
TCK  
VID[4:0]  
Asynch  
Power/Other  
Mobile Intel® Pentium ® III Processor-M Datasheet  
89  
Processor Interface  
R
Table 49. Input/Output Signals (Single Driver)  
Name  
Active Level  
Clock  
Signal Group  
Qualified  
A[35:3]#  
ADS#  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
ADS#, ADS#+1  
Always  
ADS#, ADS#+1  
Always  
AP[1:0]#  
BREQ0#  
BP[3:2]#  
BPM[1:0]#  
D[63:0]#  
DBSY#  
DEP[7:0]#  
DRDY#  
LOCK#  
Always  
Always  
DRDY#  
Always  
DRDY#  
Always  
Always  
REQ[4:0]#  
RP#  
RS[2:0]#  
TRDY#  
ADS#, ADS#+1  
ADS#, ADS#+1  
Always  
Response phase  
Table 50. Input/Output Signals (Multiple Driver)  
Name  
Active Level  
Clock  
Signal Group  
Qualified  
AERR#  
BERR#  
BINIT#  
BNR#  
Low  
Low  
Low  
Low  
Low  
Low  
High  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
PICCLK  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
System Bus  
APIC  
ADS#+3  
Always  
Always  
Always  
Always  
Always  
Always  
HIT#  
HITM#  
PICD[1:0]  
90  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Appendix A. PLL RLC Filter Specification  
R
Appendix A. PLL RLC Filter Specification  
A1.  
Introduction  
All Mobile Intel Pentium III Processor-Ms have internal PLL clock generators, which are analog in  
nature and require quiet power supplies for minimum jitter. Jitter is detrimental to a system; it  
degrades external I/O timings as well as internal core timings (i.e. maximum frequency). The PLL  
RLC filter specifications for the Mobile Intel Pentium III Processor-M are the same as those for the  
Mobile Pentium III Processor. The general desired topology is shown in Figure 2. Excluded from the  
external circuitry are parasitics associated with each component.  
A2.  
Filter Specification  
The function of the filter is two fold. It protects the PLL from external noise through low-pass  
attenuation. It also protects the PLL from internal noise through high-pass filtering. In general, the  
low-pass description forms an adequate description for the filter.  
The AC low-pass specification, with input at VCCT and output measured across the capacitor, is as  
follows:  
< 0.2-dB gain in pass band  
< 0.5-dB attenuation in pass band < 1 Hz (see DC drop in next set of requirements)  
34-dB attenuation from 1 MHz to 66 MHz  
28-dB attenuation from 66 MHz to core frequency  
The filter specification (AC) is graphically shown in Figure 29.  
Other requirements:  
Use a shielded type inductor to minimize magnetic pickup  
The filter should support a DC current of at least 30 mA  
The DC voltage drop from VCCT to PLL1 should be less than 60 mV, which in practice implies  
series resistance of less than 2 . This also means that the pass band (from DC to 1 Hz)  
attenuation below 0.43 dB for VCCT = 1.25 V.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
91  
Appendix A. PLL RLC Filter Specification  
R
Figure 30. PLL Filter Specifications  
0.2 dB  
0 dB  
x dB  
Forbidden  
zone  
-28 dB  
Forbidden  
zone  
-34 dB  
DC  
Passband  
x = 20.log[(Vcct-60 mV)/ Vcct]  
1 Hz  
fpeak  
1 MHz  
66 MHz  
fcore  
High Frequency  
Band  
NOTES:  
Diagram is not to scale  
No specification for frequencies beyond fcore.  
Fpeak, if existent, should be less than 0.05 MHz.  
A3.  
Recommendation for Mobile Systems  
The following LC components are recommended. The tables will be updated as other suitable  
components and specifications are identified.  
Table 51. PLL Filter Inductor Recommendations  
Inductor  
Part Number  
Value Tol  
SRF Rated I  
DCR  
Min Damping R Needed  
L1  
TDK MLF2012A4R7KT  
10% 35 MHz 30 mA  
4.7 µH  
0.56 (1Ω  
0 Ω  
max)  
L2  
L3  
Murata LQG21N4R7K10  
Murata LQG21C4R7N00  
10% 47 MHz 30 mA  
30% 35 MHz 30 mA  
4.7 µH  
4.7 µH  
0.7 (+/-50%)  
0.3 max  
0 Ω  
0.2 (assumed)  
NOTE: Minimum damping resistance is calculated from 0.35 – DCRmin. From vendor provided data, L1 and L2  
DCRmin is 0.4 and 0.5 respectively, qualifying them for zero required trace resistance. DCRmin for L3 is  
not known and is assumed to be 0.15 . Products with equivalent specifications may also be used.  
Table 52. PLL Filter Capacitor Recommendations  
Capacitor  
Part Number  
Value  
33 µF  
33 µF  
Tolerance  
20%  
20%  
ESL  
2.5 nH  
Unknown  
ESR  
C1  
C2  
Kemet T495D336M016AS  
AVX TPSD336M020S0200  
0.225 Ω  
0.2 Ω  
92  
Mobile Intel® Pentium ® III Processor-M Datasheet  
Appendix A. PLL RLC Filter Specification  
R
Table 53. PLL Filter Resistor Recommendations  
Resistor  
Part Number  
Value  
Tolerance  
Power  
R1  
Various  
10%  
1/16 W  
1 Ω  
To satisfy damping requirements, total series resistance in the filter (from VCCT to the top plate of the  
capacitor) must be at least 0.35 . This resistor can be in the form of a discrete component, or routing,  
or both. For example, if the picked inductor has minimum DCR of 0.25 , then a routing resistance of  
at least 0.10 is required. Be careful not to exceed the maximum resistance rule (2 ). For example,  
if using discrete R1, the maximum DCR of the L should be less than 2.0 - 1.1 = 0.9 , which precludes  
using L2 and possibly L1.  
Other routing requirements include:  
The capacitor should be close to the PLL1 and PLL2 pins, with less than 0.1 per route (These  
routes do not count towards the minimum damping resistance requirement).  
The PLL2 route should be parallel and next to the PLL1 route (minimize loop area).  
The inductor should be close to the capacitor; any routing resistance should be inserted between  
VCCT and the inductor.  
Any discrete resistor should be inserted between VCCT and the inductor.  
A4.  
Comments  
A magnetically shielded inductor protects the circuit from picking up external flux noise. This  
should provide better timing margins than with an unshielded inductor.  
A discrete or routed resistor is required because the LC filter by nature has an under-damped  
response, which can cause resonance at the LC pole. Noise amplification at this band, although  
not in the PLL-sensitive spectrum, could cause a fatal headroom reduction for analog circuitry.  
The resistor serves to dampen the response. Systems with tight space constraints should consider  
a discrete resistor to provide the required damping resistance. Too large of a damping resistance  
can cause a large IR drop, which means less analog headroom and lower frequency.  
Ceramic capacitors have very high self-resonance frequencies, but they are not available in large  
capacitance values. A high self-resonant frequency coupled with low ESL/ESR is crucial for  
sufficient rejection in the PLL and high frequency band. The recommended tantalum capacitors  
have acceptably low ESR and ESL.  
The capacitor must be close to the PLL1 and PLL2 pins; otherwise the value of the low ESR  
tantalum capacitor is wasted. Note the distance constraint should be translated from the 0.1-Ω  
requirement.  
Mobile Intel® Pentium ® III Processor-M Datasheet  
93  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY