SXT6282 [INTEL]

PCM Transceiver, 8-Func, PQFP144, LQFP-144;
SXT6282
型号: SXT6282
厂家: INTEL    INTEL
描述:

PCM Transceiver, 8-Func, PQFP144, LQFP-144

PC 电信 电信集成电路
文件: 总56页 (文件大小:773K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
SEPTEMBER, 1998  
Revision 1.1  
SXT6282  
Octal E1 Digital Interface with CRC-4 Monitoring and Jitter/Wander  
Suppression  
General Description  
Features  
SXT6282 is an eight-channel E1 digital interface. It inte-  
grates an E1 dejitter phase locked loop, an E1 retiming  
function and a CRC-4 monitor function for each E1 trans-  
mitter and a CRC-4 monitoring function for each E1  
receiver. It is optimized for SDH applications and can used  
in conjunction with the SXT6251 (21 E1 mapper).  
• Octal E1 transceiver digital interface  
• Performs the jitter attenuation function on a gapped  
clock supplied by a PDH or SDH multiplexer  
• Performs CRC4 performance monitoring on both  
transmit and receive sides  
• Provides a retiming function on the transmit side for  
SDH applications (demapped E1 tributaries)  
Applications  
• Built-in HDB3 encoder/decoder  
• Compatible with SXT6251 for STM-0/1 applications  
• SDH 21 or 63 E1 multiplexer  
• STM-0 and STM1 SDH add/drop multiplexer  
• PDH NxE1 multiplexer  
• DCS  
• Compatible with LXT334 and the Next Generation  
octal LIU  
• Microprocessor programmable  
• Low power, 3.3 Volt operation, 5 V tolerant i/o  
• IEEE 1149.1 (JTAG) compliant  
• Microwave radio  
• LQFP - 144 surface mount packaging  
• Satellite  
• Compatible with ITU G.703, G.704, G.706, G.707,  
G.775 (Draft 1996), G.783 and G.742  
• Test equipment  
• Protection Switch  
•Industrial temperature operating range -40°C to +85°C.  
SXT6282  
Block Diagram  
Retiming 2 MHz  
Clock  
High Speed Reference Clock  
SXT6282  
CLOCK  
REFERENCES  
E1 TRANSMITTER #0  
E1 TRANSMITTER #1  
E1 TRANSMITTER #2  
E1 TRANSMITTER #3  
E1 TRANSMITTER #4  
E1 TRANSMITTER #5  
E1 TRANSMITTER #6  
DEMUX  
up to 8 x E1 Tributaries (Tx)  
up to 8 x E1 Tributaries  
E1  
E1 TRANSMITTER #7  
& Monitoring  
SDH/PDH  
MULDEX  
up to  
8 x  
E1  
L
I
U
(s)  
(
SXT6051  
& 6251  
or  
G703  
E1 RECEIVER #0  
& Monitoring  
SXT6234)  
E1 RECEIVER #1  
E1 RECEIVER #2  
up to 8 x E1 Tributaries  
MUX  
up to 8 x E1 Tributaries (Rx)  
E1 RECEIVER #3  
E1 RECEIVER #4  
E1 RECEIVER #5  
E1 RECEIVER #6  
E1 RECEIVER #7  
Test Pattern Generator  
JTAG  
SCAN  
RESET&OEN 3Z  
Microprocessor Parallel Interface  
MICRO  
INTERFACE  
JTAG  
Interrupt  
SXT6282  
CONTENTS  
PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS ....................................................................................6  
GENERAL FUNCTIONAL DESCRIPTION....................................................................................................12  
INTRODUCTION...............................................................................................................................12  
TRANSMITTER DESCRIPTION.......................................................................................................12  
RECEIVE DATA FLOW DESCRIPTION............................................................................................13  
FUNCTIONAL DESCRIPTION PER E1 CHANNEL......................................................................................14  
TRANSMITTER DEFAULT OPERATION ..........................................................................................14  
Data Input Interface ....................................................................................................................14  
Frame Alignment ........................................................................................................................14  
CRC-4 Multiframe Alignment......................................................................................................14  
AIS Detection..............................................................................................................................16  
CRC-4 Multiframe Monitoring.....................................................................................................16  
Retiming Elastic Store Operation ...............................................................................................16  
De-jittering Circuitry....................................................................................................................18  
AIS Signal Insertion....................................................................................................................18  
Line Coding HDB3......................................................................................................................18  
Line decoding HDB3...................................................................................................................19  
AIS Detection..............................................................................................................................19  
AIS Insert/LOS Alarm filtering ....................................................................................................19  
Frame Alignment/Out Of Frame Alarm .......................................................................................19  
CRC-4 Multiframe Alignment/Out of CRC Multiframe Alarm......................................................20  
CRC-4 Multiframe Monitoring.....................................................................................................20  
Test Pattern Generator for Autotesting/Maintenance..................................................................20  
MICROCONTROLLER INTERFACE.................................................................................................20  
Intel Interface ..............................................................................................................................20  
Motorola Interface.......................................................................................................................21  
IINTERRUPT HANDLING.................................................................................................................21  
Interrupt Sources........................................................................................................................21  
Interrupt Enables ........................................................................................................................21  
Interrupt Clearing........................................................................................................................21  
Status Registers Access.............................................................................................................22  
Counter Reading ........................................................................................................................22  
MICROPROCESSOR REGISTER DESCRIPTION.................................................................................23  
GLOBAL REGISTERS......................................................................................................................24  
GLOB_CONF0 - Global Operational Configuration 0 (0FH).......................................................25  
BUFF_ALLCNT - Buffer All Counters (5FH)...............................................................................28  
E1_RCV_AISTAT - E1 Receivers AIS Status (8FH) ...................................................................28  
EI_XMT_AISTAT - E1 Transmitters AIS Status (9FH).................................................................28  
TRANSMIT SIDE REGISTERS.........................................................................................................30  
XMT_ALM_STAT - Transmitter Alarm Status (i3H).....................................................................33  
XMT_ALM_INTE0 - Transmitter Alarm Interrupt Enable 0 (i4H).................................................33  
2 of 56  
Contents  
XMT_RMT_ERC - Transmitter Remote CRC-4 Block Errors Counter (iB - iAH)........................ 35  
XMT_RTMBUF_STAT - Transmitter Retiming Buffer Status (iDH) ............................................. 36  
RECEIVE SIDE REGISTERS........................................................................................................... 36  
RCV_CONF- Receiver Configuration (jEH)................................................................................ 37  
RCV_ALRM_INT0 - Receiver Alarm Interrupt 0 (j1H)................................................................ 38  
RCV_ALRM_INT1 - Receiver Alarm Interrupt 1 (j2H)................................................................ 38  
RCV_BLCK_ERC - Receiver CRC-4 Block Error Counter (j9 - j8H).......................................... 40  
RCV_RMT_BLCK_ERC - Receiver Remote CRC-4 Block Error Counter (jB - jAH).................. 41  
RCV_CD_ERC - Receiver Code Errors Counter (jDH).............................................................. 41  
TEST SPECIFICATIONS............................................................................................................................... 42  
TESTABILITY................................................................................................................................................ 48  
IEEE 1149.1 BOUNDARY SCAN DESCRIPTION .................................................................................. 48  
INSTRUCTION REGISTER AND DEFINITIONS ............................................................................. 49  
EXTEST (‘b00)........................................................................................................................... 49  
SAMPLE/PRELOAD (‘b01) ........................................................................................................ 49  
BYPASS (‘b11)........................................................................................................................... 49  
IDCODE (‘b10)........................................................................................................................... 49  
BOUNDARY SCAN REGISTER ....................................................................................................... 49  
GLOSSARY................................................................................................................................................... 54  
PACKAGE INFORMATION ........................................................................................................................... 55  
3 of 56  
SXT6282  
Figure 1: SXT6282 Block Diagram  
DRETCKREF  
(external 2.048 MHz Retiming Clock)  
E1( #i) TRANSMITTER  
(i= ..0)  
DTC(i)  
7
Filtered  
Clock  
(2 M)  
(
High speed 65.536 MHz ADPLL reference Clock)  
DPLLCKREF  
Jitter Attenuator  
Phase  
error  
Config.  
Retiming/  
(second order ADPLL  
)
Pass Through/  
Dejitter/  
2Hz loop bandwidth  
Dejitter Fifo  
TCLK(i)  
DATA (Dejitter Mode)  
E1DATA (Pass Through Mode)  
TCLK(i)  
(Transmit Clock)  
DTC(i)  
DTC(i)  
DATAIN  
[7..0]  
(gapped Clock)  
TPOSD(i)  
(HDB3pos /NRZ data)  
Retiming  
Elastic Buffer  
DATAOUT[7..0]  
(Retiming Mode)  
Frame  
MultiFrame  
Recovery  
&
S
2
P
P
2
S
AIS  
Insert  
HDB3  
Encoder  
E1 DATA  
DTD(i)  
(Data)  
Read  
Enable  
TNEGD(i)  
(HDB3neg data)  
TCLK(i)  
Write  
Write  
Read  
Addresses  
(5..0)  
Adresses  
(5..0)  
AIS  
Detect  
Enable  
Config.  
Dejitter/  
Line CodeSelect  
Insert Code Errors  
Ais Force  
En  
Retiming elastic store Write  
Control Logic  
(Transmitter Timing gen.)  
Retiming elastic store  
Read Control Logic  
CRC4  
Monitoring  
Pass THrough/  
Retiming/  
DTC(i)  
TCLK(i)  
DTC(i)  
INIT  
AIS defect, CRC4 errors, Remote End crc-4 Block Errors, Remote Alarm  
Alarms (Out Of Frame, Loss Of Crc MultiFrame, errors in Frameword)  
Configuration  
Transmitter Monitoring Function  
WRB, RDB  
CSB, ASB  
MCUTYPE  
Transmit INTerrupt(i)  
INTerrupt  
INT  
A[7..0]  
Microcontroller Interface  
Global Registers  
Test Pattern Generator  
DATA[7..0]  
Test Pattern E1 data  
DRETCKREF  
Receive INTerrupt(i)  
Alarms,  
Frameword Errors  
(Blue Clock)  
LOS(i)  
RLOS(i)  
FILTER  
Receiver Monitoring Function  
(Los Of signal Alarm)  
LOS alarm  
Configurations  
AIS  
Detect  
Line Code  
Select  
AIS force& Enable  
Test Pattern Insert  
Bpv  
CRC4 errors, REBE, Remote Alarm  
MTC(i)  
(Clock)  
MCLK(i)  
DRETCKREF  
(Blue Clock)  
MCLK(i)  
MCLK(i)  
RCLKI(i)  
AIS  
or  
Test  
MCLK(i)  
HDB3  
Decoder  
AIS  
Detect  
(Receive Clock)  
CRC4  
Monitoring  
NRZ  
DATA  
E1DATA  
MTD(i)  
(Data)  
RPOSD(i)  
+
(HDB3/NRZ Data pos)  
Pattern  
Insert  
RNEGD(i)  
(HDB3 Data neg.)  
Test Pattern E1 data  
Enables  
Alarms(Out Of Frame,  
Loss Of Multiframe),  
Frameword errors  
MCLK(i)  
&
Frame  
(
MultiFrame recovery  
SXT6282  
Octal E1 Digital Interface  
(10/09/97)  
+ R
eceiver Timing Generator)  
E1( #i) RECEIVER  
(i= ..0)  
Configurations  
7
4 of 56  
Contents  
Figure 2: SXT6282 Block Diagram 2  
DRETCKREF  
DPLLCKREF  
TCLK0  
DTC0  
DTD0  
DTC1  
E1 TRANSMITTER #0  
E1 TRANSMITTER #1  
E1 TRANSMITTER #2  
E1 TRANSMITTER #3  
E1 TRANSMITTER #4  
E1 TRANSMITTER #5  
TPOSD0, TNEGD0  
TCLK1  
TPOSD1, TNEGD1  
TCLK2  
DTD1  
DTC2  
TPOSD2, TNEGD2  
DTD2  
E1 DATA  
&
TCLK3  
DTC3  
E1 HDB3  
DATA  
CLOCKS  
RECEIVED  
&
TPOSD3, TNEGD3  
TCLK4  
CLOCKS  
SENT TO  
FROM THE  
DEMULTIPLEXER  
DTD3  
THE E1 LIU  
(Bird Of Prey)  
(SXT6251)  
DTC4  
TPOSD4, TNEGD4  
TCLK5  
DTD4  
DTC5  
TPOSD5, TNEGD5  
TCLK6  
DTD5  
DTC6  
DTD6  
DTC7  
DTD7  
E1 TRANSMITTER #6  
E1 TRANSMITTER #7  
TPOSD6, TNEGD6  
TCLK7  
TPOSD7, TNEGD7  
DATA[7..0]  
AD[7..0]  
INT  
MICRO  
INTERFACE  
WRB/RWB, RDB/E, ASB  
MCUTYPE, CSB  
Test Pattern Generator  
MTC0  
MTD0  
MTC1  
RCLK0, RLOS0  
E1 RECEIVER #0  
E1 RECEIVER #1  
E1 RECEIVER #2  
E1 RECEIVER #3  
E1 RECEIVER #4  
E1 RECEIVER #5  
E1 RECEIVER #6  
E1 RECEIVER #7  
RPOSD0, RNEGD0  
RCLK1, RLOS1  
MTD1  
MTC2  
RPOSD1, RNEGD1  
RCLK2, RLOS2  
MTD2  
RPOSD2, RNEGD2  
E1 HDB3  
E1 DATA  
&
CLOCKS  
TRANSMITTED  
TO THE  
DATA  
&
MTC3  
CLOCKS  
RECEIVED  
FROM  
THE E1 LIU  
(Bird Of  
Prey)  
RCLK3, RLOS3  
MTD3  
RPOSD3, RNEGD3  
RCLK4, RLOS54  
MULTIPLEXER  
SXT6251)  
(
MTC4  
MTD4  
MTC5  
MTD5  
RPOSD4, RNEGD4  
RCLK5, RLOS5  
RPOSD5, RNEGD5  
RCLK6, RLOS6  
MTC6  
MTD6  
RPOSD6, RNEGD6  
RCLK7, RLOS7  
MTC7  
MTD7  
RPOSD7, RNEGD7  
JTDO  
JTCK, JTMS, JTRS, JTDI  
JTAG  
SCAN  
SCANTEST, SCANEN  
RSTB, OEN  
SXT6282  
(10/09/97)  
RESET&OEN 3Z  
VDD3, VSS3  
5 of 56  
SXT6282  
PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS  
Figure 3: SXT6282 Pin Assignment  
GND_3  
VCC_IO  
NC  
1
DATA7  
DATA6  
DATA5  
DATA4  
GND_IO  
VCC_IO  
DATA3  
DATA2  
DATA1  
DATA0  
GND_3  
VCC_3  
A7  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
2
3
OEN  
4
JTCK  
5
JTMS  
6
JTRS  
7
JTDI  
8
JTD0  
9
DRETCKREF  
SCANTEST  
SCANEN  
VCC_3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
98  
97  
96  
GND_3  
MCUTYPE  
DPLLCKREF  
VCC_3  
95  
A6  
94  
A5  
93  
A4  
92  
A3  
XXXX  
XXXX  
RLOS7  
RNEGD7  
RPOSD7  
RCLK7  
TNEGD7  
TPOSD7  
TCLK7  
91  
A2  
90  
A1  
(Date Code)  
(Trace Code)  
89  
A0  
88  
CSB  
87  
ASB  
86  
WRB/RWB  
SXT6282QE  
85  
RDB/E  
RSTB  
INT  
RLOS6  
RNEGD6  
RPOSD6  
RCLK6  
TNEGD6  
TPOSD6  
TCLK6  
84  
83  
XXXXXX  
VCC_3  
GND_3  
82  
(Lot#)  
81  
RLOS0  
80  
RNEGD0  
RPOSD0  
RCLK0  
79  
78  
RLOS4  
RNEGD4  
RPOSD4  
RCLK4  
VCC_IO  
77  
76  
TNEGD0  
TPOSD0  
TCLK0  
75  
74  
73  
GND_IO  
6 of 56  
PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS  
Table 1: Signal Descriptions  
Pin Name  
Pin  
PROP  
I/O  
Description  
E1 Transmitters (receive side of demultiplexer)  
E1 data and clocks transmitted to the LIU  
TPOSD<7...0> 86  
HiZ-4ma O  
HiZ-4ma O  
HiZ-8ma O  
Positive HDB3 or NRZ Data Transmit outputs. Eight E1 data chan-  
nel outputs (channel<i>, i=<7..0>) at 2.048 Mbit/s, in either NRZ or  
HDB3 format.  
79  
62  
69  
50  
59  
43  
34  
TNEGD<7...0> 87  
Negative HDB3 Data Transmit outputs. Eight E1 data channel out-  
puts (channel<i>, i=<7..0>) at 2.048 Mbit/s when HDB3 coding is  
used.  
80  
63  
70  
49  
58  
42  
33  
TCLK<7...0>  
85  
78  
61  
68  
51  
60  
44  
35  
Transmit clock outputs. The 2.048 MHz clock output of each of the  
eight independent transmitters (TCLK<i>, i=<7..0>) is to be used  
with the corresponding E1 data (TPOSD<i> and TNEGD<i>) signals  
when needed.  
E1 data and clocks received from the demultiplexer  
BUF-in  
Demultiplexed NRZ data inputs. Eight E1 data channel inputs  
DTD<7...0>  
111  
116  
119  
124  
129  
134  
137  
142  
I
(transmitters, channel<i>, i=<7..0>) at 2.048 Mbit/s received from the  
demultiplexer.  
1. Buf-in = CMOS Input buffer with switching threshold at 3.3V / 2 (V / 2)  
DD  
2. i = <7...0> which corresponds to the E1 channel number  
7 of 56  
SXT6282  
Table 1: Signal Descriptions  
Pin Name  
Pin  
PROP  
I/O  
Description  
DTC<7...0>  
110  
117  
118  
125  
128  
135  
136  
143  
BUF-in  
I
Demultiplexed Clock inputs. Eight E1 clock inputs (transmitters;  
channel <i>, i=<7..0>) at 2.048 MHz received from the demultiplexer.  
These clocks can be gapped due to the SDH frame structure and the  
justification process.  
External Clock References  
DRETCKREF 99  
BUF-in  
BUF-in  
I
Demultiplexer Re-timing Clock. This is an external 2.048 MHz ref-  
erence clock input that can be used in each E1 transmitter to retime  
the E1 data received from the demultiplexer (wander reduction if the  
E1 transmitter # i is configured in retiming mode). This clock is also  
used as a blue clock in each receiver to generate an AIS signal in case  
of RLOS.  
DPLLCKREF 93  
I
High speed PLL clock reference. This is an external 65.536 MHz (+  
/-50 ppm) reference clock that can be used in each E1 transmitter as  
the Digital Phase Locked Loop Clock input reference. Only needed if  
an E1 transmitter is configured in jitter attenuation mode.  
E1 Receivers (Transmit side of multiplexer)  
E1 Data and Clocks received from the LIU  
RPOSD<7...0> 89  
BUF-in  
I
Positive HDB3 or NRZ Data Receive. Eight E1 data channel inputs  
(channel <i>, i=<7..0>) at 2.048 Mbit/s supplied by the E1 line inter-  
face unit(s), in either NRZ or HDB3 format.  
82  
65  
75  
47  
56  
40  
31  
RNEGD<7...0> 90  
BUF-in  
I
Positive HDB3 Data Receive. Eight E1 data channel inputs (chan-  
nel<i>, i=<7..0>) at 2.048 Mbit/s supplied by the E1 line interface  
unit(s), when HDB3 coding is used. If HDB3 coding is not used, these  
inputs have to be grounded.  
83  
66  
76  
46  
55  
39  
30  
1. Buf-in = CMOS Input buffer with switching threshold at 3.3V / 2 (V / 2)  
DD  
2. i = <7...0> which corresponds to the E1 channel number  
8 of 56  
PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS  
Table 1: Signal Descriptions  
Pin Name  
Pin  
PROP  
I/O  
Description  
RLOS<7...0>  
91  
84  
67  
77  
45  
54  
38  
29  
BUF-in  
I
Loss of Signal from the external line interface unit(s). Eight input  
alarms from the E1 line interface circuits (channel<i>, i=<7..0>).  
RLOS alarm is active high.  
RCLK<7...0>  
88  
81  
64  
74  
48  
57  
41  
32  
BUF-in  
I
Receive clock inputs. Eight receive E1 clocks at 2.048 MHz provided  
by the E1 line interface unit(s).  
E1 Data and Clocks transmitted to the Multiplexer  
HiZ-4ma O  
NRZ Data outputs. Eight E1 data channel outputs of the receivers  
MTD<7...0>  
112  
115  
120  
123  
130  
133  
138  
141  
(channel<i>, i=<7..0>) at 2.048 Mbit/s transmitted to the multiplexer.  
MTC<7...0>  
113  
114  
121  
122  
131  
132  
139  
140  
HiZ-8ma O  
Clock outputs. Each one of these eight 2048 MHz clock outputs of  
the receivers is to be used with the corresponding E1 data (MTD<i>,  
i=<7..0>) signal transmitted to the multiplexer, if needed.  
Microprocessor Bus  
A<7..0>  
13-20  
BUF-in  
I
Address Bus 8 bits. Eight-bit address port for data, command and sta-  
tus addresses.  
DATA<7..0>  
1-4  
BUF-in/ I/O Data Bus 8 bits. Eight bits I/O to read and write data, commands and  
Hiz-  
10ma  
status to and from the device.  
7-10  
WRB/RWB  
RDB/E  
INT  
23  
24  
26  
BUF-in  
BUF-in  
Hiz-4ma  
I
Write-Bar Intel; Read/Write Bar Motorola  
Read-bar Intel; Enable Motorola  
Interrupt request. Active low  
I
O
1. Buf-in = CMOS Input buffer with switching threshold at 3.3V / 2 (V / 2)  
DD  
2. i = <7...0> which corresponds to the E1 channel number  
9 of 56  
SXT6282  
Table 1: Signal Descriptions  
Pin Name  
CSB  
Pin  
PROP  
I/O  
Description  
21  
22  
BUF-in  
BUF-in  
I
Chip Select. Active low  
ASB  
I
I
I
Address Strobe Enable. Indication that the address on the address  
bus is valid. Active high.  
MCUTYPE  
RSTB  
94  
25  
BUF-in  
Motorola/Intel Interface mode select. A High indicates a Motorola  
and a Low an Intel Microprocessor.  
BUF-in  
(60K  
Chip Master Reset. A low will reset all registers to default values.  
pull up)  
OEN  
105  
BUF-in  
(60K  
I
Master chip output enable. Active high (a low will set all outputs  
and bidirectionnal to 3Z)  
pull up)  
JTAG and SCAN test ports  
JTCK  
JTMS  
104  
103  
BUF-in  
I
I
JTAG Clock. Clock for all boundary scan circuitry.  
BUF-in  
(60K  
JTAG Test Mode Select. Determine state of TAP controller.  
pull up)  
JTRS  
JTDI  
102  
101  
BUF-in  
(60K  
pull  
I
I
JTAG Reset. Active low.  
down)  
BUF-in  
(60K  
JTAG Data Input. Input signal used to shift in instructions and data.  
pull up)  
JTDO  
100  
98  
2mA  
O
I
JTAG Data Output. Output signal used to shift out instructions and  
data.  
SCANTEST  
BUF-in  
(60K  
Scan test mode (active low)  
pull up)  
SCANEN  
97  
BUF-in  
(60K  
I
Scan enable (active low)  
pull up)  
Power Supply  
VCC_3  
GND_3  
12, 27, 52,  
71, 92, 96,  
109, 127  
3.3 V Core supply. (8 pins)  
11, 28, 53,  
95, 108,  
126  
GND-Core. Ground for 3.3 V supply. (6 pins)  
1. Buf-in = CMOS Input buffer with switching threshold at 3.3V / 2 (V / 2)  
DD  
2. i = <7...0> which corresponds to the E1 channel number  
10 of 56  
PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS  
Table 1: Signal Descriptions  
Pin Name  
VCC_IO  
Pin  
PROP  
I/O  
Description  
6, 37, 73,  
107, 144  
3.3V I/O ring supply. (5 pins)  
GND_IO  
NC  
5, 36, 72  
106  
GND-I/O Ring. Ground for I/O supply. (3 pins)  
This pin should be left unconnected.  
1. Buf-in = CMOS Input buffer with switching threshold at 3.3V / 2 (V / 2)  
DD  
2. i = <7...0> which corresponds to the E1 channel number  
11 of 56  
SXT6282  
GENERAL FUNCTIONAL DESCRIPTION  
Dejitter Mode  
In Dejitter mode, the transmitter filters jitter and elim-  
inates gaps in the incoming E1 clock and data.  
INTRODUCTION  
The SXT6282 integrates eight E1 transmitters and eight E1  
receivers that can operate independently. It performs jitter/  
wander filtering, CRC-4 monitoring and HDB3 encoding/  
decoding. It also includes a Motorola/Intel compatible  
microcontroller interface for alarm and performance moni-  
toring.  
The incoming E1 data is fed into a 32-bit FIFO. The  
write clock of the FIFO is the gapped input clock  
(DTC), which is also fed to the jitter attenuator consist-  
ing of a second order All Digital Phase Locked Loop  
(ADPLL) having a 2.0 Hz loop bandwidth. The fil-  
tered clock output of the ADPLL is the read clock of  
the FIFO. The transmitter can be configured to insert  
an AIS signal (data “all one” + blue clock) automati-  
cally when the FIFO overflows, underflows or the PLL  
is unlocked.  
The following description follows the simplified block dia-  
gram (refer to Figures 1 and 2).  
TRANSMITTER DESCRIPTION  
The eight fully independent E1 transmitter blocks can be  
configured for different applications.  
The degapped E1 output is emitted as NRZ data on  
TPOSD, or as HDB3 encoded data on TPOSD and  
TNEGD. The dejittered and degapped output clock of  
each transmitter is emitted on TCLK at the same fre-  
quency as the DTC input clock (TCLK clock is the  
ADPLL output). This working mode is fully transpar-  
ent - no data is lost or added in the transmission.  
Each transmitter input interface accepts an NRZ encoded  
E1 signal input (DTDx) and clock input (DTCx). The trans-  
mission frame structure and the justification process allow  
the incoming clock (DTCx) to be gapped and jittered. The  
E1 signal (DTDx) may have a CRC-4 multiframe structure  
according to recommendation ITU G.704 (refer to Table  
2).  
Retiming Mode  
In the Retiming mode, the transmitter eliminates wan-  
der and jitter in the incoming clock (DTC).  
The DTDx data is fed to the frame/multiframe recovery  
block. This block synchronizes the Transmitter Timing  
Generator to the incoming E1 data frame and provides Out  
Of Frame (OOF) and Loss Of Multiframe (LOMF) alarm  
indications. Remote End Block Errors (REBE) are also  
counted and stored in a set of microprocessor-accessible  
counters. The Remote alarm is monitored (but not inserted)  
for status changes.  
Incoming E1 data is converted to a byte parallel format  
and fed into a two frame-wide elastic buffer. The write  
and read control logic of this elastic store are initial-  
ized by the E1 frame acquisition process. The data is  
read out of the elastic buffer using an external clock  
reference input (DRETCKREF). DRETCKREF may  
or may not be at the same frequency as the DTC clock  
input. If the read and write frequencies are different,  
the elastic store will periodically overflow or under-  
flow. In either case, the read control logic will process  
a controlled slip of one complete frame in order to re-  
center the elastic buffer. This will result in the loss or  
repetition of one complete E1 frame.  
Once frame synchronization is achieved, any errors in the  
frame word are detected, counted and stored in a set of  
microprocessor-accessible counters. A CRC-4 calculation  
is also performed over the multiframe and compared with  
the incoming CRC-4 value. Again, any errors are counted  
and stored in a set of microprocessor-accessible counters.  
An AIS defect at the DTDx input is also detected and mon-  
itored. All framing, multiframing and CRC-4 monitoring  
functions can be bypassed if not needed.  
The retiming FIFO may also operate on an un-framed  
2.048 Mbit/s signal busy setting the transmitter to  
“Retiming Test Mode.” In this case, the read and write  
control logic of the elastic store is in full free running  
mode and independent of the framing algorithm. As  
the data is supposed to be un-framed in this test mode,  
CRC-4 error monitoring is not valid.  
The transmitter can be configured to operate in three differ-  
ent modes:  
12 of 56  
GENERAL FUNCTIONAL DESCRIPTION  
The output from the elastic buffer is converted to a  
serial format and emitted as NRZ data on TPOSD, or  
output as HDB3 encoded data on TPOSD and  
TNEGD, at the TCLK clock rate that is synchronous  
with the DRETCKREF clock input.  
detected, counted and stored in a set of microprocessor  
accessible counters. Remote End Block Errors (REBE) are  
also counted and stored in a set of microprocessor-accessi-  
ble counters. The Remote alarm is monitored (but not  
inserted) for status changes.  
This working mode may be non-transparent. It can  
handle a maximum of 26 time slots (208 UI) of wander  
or low frequency jitter before a frame slip occurs. This  
controlled frame slip assures that the time-slot assign-  
ment is not lost at the output of the chip. All the jitter  
and wander due to the multiplexing/demultiplexing  
process in the transmission is eliminated.  
A CRC-4 calculation is also performed over the multiframe  
and compared to the incoming CRC-4 value. Again, any  
errors are counted and stored in a set of microprocessor-  
accessible counters.  
The E1 signal is emitted as NRZ data on MTD and clock  
on MTC.  
All the AIS, framing, multiframing and CRC-4 monitoring  
functions can be independently bypassed in each receiver if  
not needed.  
Pass-Through Mode  
In the Pass-through mode no dejitter or retiming is per-  
formed on the input data.  
For testing and maintenance purposes, the receiver can be  
set via the microprocessor as a sequence pattern generator  
on MTD and MTC data and clock output pins (framed or  
unframed PRBS sequence).  
The input clock (DTC) is shunted to the output clock  
(TCLK). CRC-4 monitoring and HDB3 encoding can  
be performed if so configured.  
RECEIVE DATA FLOW  
DESCRIPTION  
The Receiver consists in eight fully independent E1  
receiver blocks.  
Each receiver input interface includes an NRZ encoded E1  
signal input on RPOSDx or HDB3 encoded data on  
RPOSDx and RNEGDx, a serial clock RCLKx, and a Loss  
Of Signal (RLOSx) alarm indication coming from the out-  
put of an E1 Line Interface Unit Receiver. The E1 input  
data RPOSD/RNEGD may have a CRC-4 multiframe  
structure according to recommendation ITU G.704 (refer to  
Figure 3). HDB3 code errors (Bipolar Violations) are  
detected and stored in a set of microprocessor-accessible  
counters.  
An AIS defect is detected according to recommendation  
ITU G.775 for the E1 incoming signal after HDB3 decod-  
ing, and the corresponding alarm is accessible to the micro-  
processor.  
If the Loss Of Signal alarm is active, the receiver may  
insert an AIS signal (all ones in the data), using the DRET-  
CLK clock reference input as a blue clock.  
Data is fed to the framing/multiframing block that synchro-  
nizes the Receiver Timing Generator to the incoming E1  
data frame, and provides Out Of Frame (OOF) and Out Of  
Multiframe (OOMF) alarm indications. Once the frame  
synchronization is acquired, frame word errors are  
13 of 56  
SXT6282  
FUNCTIONAL DESCRIPTION PER E1 CHANNEL  
to four consecutive frame alignment signals received that  
contain single or multiple errors, or four consecutive bit 2  
of the non-frame alignment signal not one (if so config-  
ured).  
TRANSMITTER DEFAULT  
OPERATION  
Data Input Interface  
The Out Of Frame (OOF) alarm status is accessible to the  
microprocessor via the status registers.  
The relative phase between E1 NRZ data (on DTDx pin)  
and clock (on DTCx pin) inputs can be configured via  
microprocessor (DTDx data input may be sampled in the  
transmitter by the rising or falling edge of the input clock  
DTCx: see global register AFH).  
CRC-4 Multiframe Alignment  
CRC-4 multiframe alignment is used for immunity against  
false framing and also provides non-intrusive error moni-  
toring capabilities for the E1 payload.  
Frame Alignment  
The framing method follows the rules set forth in CCITT/  
ITU recommendations G.704 and G.706.  
When CRC-4 is selected as the E1 framing option the trans-  
mitter attempts to synchronize to a 16 frame multiframe  
structure illustrated in Table 1.  
The frame alignment circuit searches for the first frame  
alignment signal (“0011011” frameword, bit 2-8 in time  
slot 0) within the incoming E1 data (DTDx). Once  
detected, the frame acquisition counter is set to check bit 2  
in the non-frame alignment signal (time slot 0) of the next  
frame. If bit 2 is one, a second un-errored frame alignment  
signal is checked one frame later. Next, the timing genera-  
tor counters are set and frame synchronization is declared.  
If bit 2 in the non-frame alignment signal is not one, or the  
frame alignment signal is not found in the third frame, then  
a new search is initiated.  
The multiframe consists of 16 basic E1 frames (eight dou-  
ble frames), numbered 0-15, that are further divided into  
two 8-frame sub-multiframes (SMF I and SMF II). Bit 1 of  
each frame is used to transport the Cyclic Redundancy  
Check bits, multiframe sync word and Remote End Block  
Errors (REBE) in the following manner:  
• In the four frames of each SMF that include the FAS  
word, bit 1 contains the four CRC bits, numbered C1-  
C4.  
• In the eight frames of the entire multiframe that  
include the NFAS word, bit 1 contains a 6-bit CRC-4  
multiframe alignment signal as well as two REBE  
indication bits.  
If CRC-4 multiframing is configured (see paragraph below  
and Figure 3-2), two correct multiframes within 8 ms are  
used for immunity against false framing.  
Once the E1 frame is synchronized, the framer will go out  
of synchronization after three consecutive frame alignment  
signals containing single or multiple errors are received. In  
addition, it is possible to configure the framing algorithm  
via register 0FH, so that the framer will also go out of syn-  
chronization if three consecutive bit 2 of the non- frame  
alignment signal are not one. A 12-bit microprocessor-  
accessible counter can be configured (see global register  
0FH) to count either the errored FAS, the errored NFAS, or  
the FAS and the NFAS with single or multiple errors.  
If the CRC-4 multiframing is not configured, it is possible  
to strengthen the frame acquisition algorithm to five con-  
secutive frames (three FAS and two NFAS with no error)  
by programming global register 0FH. This will minimize  
the probability of incorrect synchronization. In this case,  
the frame desynchronization algorithm is also strengthened  
14 of 56  
FUNCTIONAL DESCRIPTION PER E1 CHANNEL  
Table 2: Multiframe TimeSlot 0 Signaling Description  
Frame #  
1
2
3
4
5
6
7
8
SMF I  
0
1
2
3
4
5
6
7
C1  
0
0
F
0
F
0
F
0
F
0
1
1
0
1
1
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C2  
0
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C3  
1
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C4  
0
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
Frame #  
1
2
3
4
5
6
7
8
SMF II  
8
C1  
1
0
F
0
F
0
F
0
F
0
1
1
0
1
1
9
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
10  
11  
12  
13  
14  
15  
C2  
1
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C3  
RE1  
C4  
RE2  
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
Legend:  
RE: Remote End CRC-4 Block Error indicator bits (REBE)  
Sa4-Sa8: Spare bits for national use  
C1-C4: CRC-4 Bits  
A: Remote Alarm Indication  
F: NFAS Framing Bit (normally = 1 to avoid spurious frame sync)  
15 of 56  
SXT6282  
After FAS/NFAS frame synchronization is acquired, the  
CRC-4 multiframe alignment is declared when two correct  
CRC-4 MultiFrame Alignment signals are detected within  
8 ms (one complete multiframe lasts two ms). If CRC-4  
multiframe alignment is not achieved within 8 ms after  
frame alignment, a new search will be initiated for valid  
FAS/NFAS.  
Retiming Elastic Store Operation  
This block is used to eliminate the wander and the jitter in  
the incoming clock and data (DTC and DTD). It may be  
non-transparent for the incoming data (see frame slips,  
below), but it keeps the time slot alignment in the E1 frame.  
The incoming data is converted to a byte parallel format  
and clocked into a 2 frame wide elastic buffer. The write  
and read control logic of this elastic store are initialized by  
the frame synchronization process. Once the frame is  
acquired, the Elastic Store is centered and the data is read  
out of the elastic buffer and re-converted to a serial format  
using an external system clock reference input (DRETCK-  
REF).  
Once the CRC-4 Multiframe is acquired, a Loss Of CRC-4  
Multiframe (LOMF) is declared when the frame synchroni-  
zation is lost, or the CRC-4 error rate is greater or equal to  
915 block/s. The Loss Of CRC-4 Multiframe alarm is  
accessible to the microprocessor via the status registers.  
AIS Detection  
If the incoming clock DTC and the system clock  
DRETCKREF are synchronous and phase-locked (i.e., in  
the case of a synchronous network), the elastic buffer will  
never overflow or underflow.  
An AIS defect is detected in the DTDx input data when the  
incoming signal has two or less ZEROs in each of two con-  
secutive double frame periods (512 bits). This defect alarm  
is cleared when each of two consecutive double frame peri-  
ods contain three or more ZEROs or when the frame align-  
ment signal has been found.  
If these two clocks, (DRETCKREF and DTC) do not have  
the same frequency, the elastic store will overflow or  
underflow repetitively, depending on the frequency offset.  
The AIS defect alarm status is accessible to the micropro-  
cessor via the status registers.  
If the read system clock (DRETCKREF) frequency is  
higher than the write incoming clock (DTC) frequency,  
then when the FIFO is close to underflowing, the read con-  
trol logic will perform a slip of one complete frame. This  
results in the repetition of the last received frame (“positive  
slip”).  
CRC-4 Multiframe Monitoring  
CRC-4 Block Errors Calculation  
When the CRC-4 multiframe is synchronized, the  
CRC-4 bits are calculated internally based on a sub-  
multiframe (as specified in recommendation ITU  
G704) and compared to the incoming CRC-4 value in  
the next sub-multiframe. The block errors are stored in  
a 10-bit counter that can be read by the microproces-  
sor. A maskable interrupt is provided for counter over-  
flows.  
If the read system clock (DRETCKREF) frequency is  
lower than the write incoming clock (DTCx) frequency,  
then when the FIFO is close to overflow, the read control  
logic will perform a slip of one complete frame. This  
results in the loss of the last received frame (“negative  
slip”).  
Positive and negative slips in the elastic store are indicated  
via two maskable interrupts, and counted in two different  
4-bit counters accessible via the microprocessor. A  
maskable interrupt is provided to indicate counter over-  
flows.  
Remote End Block Errors  
Two bits per multiframe (RE1 and RE2) are allocated  
for the CRC-4 Remote End Block Errors (REBE) indi-  
cation. These errors are counted and stored in a 10 bit  
counter that can be read by the microprocessor. A  
maskable interrupt is provided for counter overflows.  
For FIFO and Wander monitoring, or delay calculation, the  
relative difference between FIFO write and read pointers is  
indicated in register iCH (6 bits used), accessible via the  
microprocessor.  
Remote Alarm  
The Remote alarm bit (bit 3 in the NFAS) is used to tell  
the transmit end that the receive end has detected a loss  
of signal or loss of frame. The remote alarm is filtered  
for three consecutive frames before being declared a  
new value. Changes in its status is indicated to the  
microprocessor via a maskable interrupt.  
For testing and debugging, this two-frame-wide elastic  
buffer may be reset via the microprocessor to its center  
point (see register iEH).  
16 of 56  
FUNCTIONAL DESCRIPTION PER E1 CHANNEL  
Figure 4: Frame and Multiframe Acquisition  
Frame Acquisition  
Incorrect  
FAS  
Out Of  
Frame  
STate  
(OOF)  
incorrect  
NFAS  
correct FAS  
=> Reset Frame Acquisition  
Counter  
incorrect  
NFAS or  
Desync CRC MF  
ST1  
(OOF)  
incorrect  
FAS or  
Desync CRC MF  
correct NFAS (bit 2)  
ST6  
(OOF)  
4
consecutive  
Correct FAS and  
CRC MF Disabled  
and StrgFA  
incorrect NFAS  
and  
CnfFaOp[1,0]=11  
3
consecutive  
incorrect NFAS  
and  
CnfFaOp[1,0]=01  
3
consecutive  
4
consecutive  
incorrect FAS  
and  
CnfFaOp[1,0]=0X  
incorrect FAS  
and  
CnfFaOp[1,0]=1X  
correct NFAS (bit 2)  
ST2  
(OOF)  
Desync CRC MF  
ST7  
(OOF)  
correct FAS and  
(not StrgFA or CRC MF  
Enbl)  
IN FRAME  
STate  
correct FAS  
=> /OOF  
=> Reset Timing Generator Counter  
=> Start TIME OUT DECOUNTER FOR MF Search(8 ms)  
Note  
:
.For CRC MF Enabled/Disabled Configuration Condition  
see register definition.  
OUT OF  
MULTIFRAME  
ST  
.FAS  
.NFAS  
.CnfFaOp[1,0]  
register (see global registers definition)  
.Desync CRC MF Desynchronized CRC MultiFrame  
initiates new frame search if CRC MF is enabled.  
.OOF means Out Of Frame Alarm  
.LOMF means Loss Of MultiFrame Alarm.  
:
means Frame Alignment Signal  
means Not Frame Alignment Signal  
Configure Frame Acquisition Operation  
:
:
(LOMF Alm)  
MFAS Word found,  
no OOF Alm.,  
and Time Out decounter /=  
:
0
a
=> Desync CRC MF  
(if CRC MF is Enabled)  
=> LOMF  
:
:
Time out (>8ms)  
or  
CRC Block error rate  
914 block/s  
OOF Alm  
CRC MF  
ACQUISITION  
STate  
>
or  
OOF Alm.  
(LOMF Alm)  
CRC-4 MultiFrame Acquisition  
MFAS word found  
IN CRC  
MultiFrame  
STate  
=> /OOMF  
Frame and CRC MultiFrame Recovery  
(05/19/97)  
17 of 56  
SXT6282  
A maskable interrupt is also provided to indicate the inop-  
erability of the elastic store. This alarm indicates that the  
clock frequencies are so different that slippage is continual.  
When the transmitter is configured to operate in dejitter  
mode, an AIS signal may be automatically hardware  
inserted when enabled (see registers iEH and AFH), if the  
dejitter ADPLL is unlocked and the FIFO crashed. In this  
case, the AIS blue clock is derived from the high-speed  
PLL reference clock (+/- 50 ppm), and the transition from  
non-AIS clock to AIS blue clock (and the inverse) is  
always smooth. The AIS state is accessible to the micropro-  
cessor via the global status register 9FH.  
By setting a special configuration in register iEH, the trans-  
mit retiming 2 frame-wide elastic store (512 bits) may be  
used to retime an un-framed 2.048 Mbit/s signal for wander  
elimination. In this case, the read and write pointer of the  
FIFO are independent of the framing algorithm and operate  
in complete free running mode, but the CRC-4, REBE and  
remote alarm monitoring are un-valid, as the 2.048 Mbit/s  
input signal is considered un-framed.  
Line Coding HDB3  
The serial E1 output is a HDB3 signal output on TPOSD  
and TNEGD. The output clock is TCLK (2.048 MHz). For  
testing, it is possible to insert (microprocessor config-  
urable) BPV errors on TPOSD and TNEGD output data. A  
single code error, one error every 1024 bits (BER 10-3),  
one error every multiframe, or one error every second may  
be inserted.  
The retiming elastic store can be bypassed by using the  
dejittering circuitry or configuring the data path in pass-  
through mode (see register iEH).  
De-jittering Circuitry  
The de-jittering circuitry consists of the dejitter FIFO and a  
jitter attenuator or phase lock loop. This function can be  
bypassed by using the retiming function or configuring the  
data path in pass-through mode (see register iEH).  
If the HDB3 encoder is not used, TPOSD is used as an NRZ  
output.  
The relative phase between output data and clock can be  
configured via microprocessor (TPOSDx/TNEGDx data  
outputs emitted on rising or falling edge of the output clock  
TCLKx: see global register AFH).  
The dejitter FIFO is a 32-bit asynchronous FIFO, whose  
write clock is the input gapped clock (DTCx) at 2.048MHz  
+/- 50 ppm average frequency, and whose read clock is the  
phase-locked and filtered output of the jitter attenuator (the  
ADPLL).  
Depending on the transmitter configuration, TCLK trans-  
mit clock output may be provided by different sources:  
The jitter attenuator is a second order All Digital Phase  
Lock Loop with a 2.0 Hz loop bandwidth. The reference  
and sample clock of the digital PLL is provided by the high  
speed clock input pin DPLLCKREF at 65.536 MHz +/- 50  
ppm. DPLLCKREF reference clock is provided by an  
external crystal oscillator. When the de-jittering circuitry is  
not selected in a transmitter, the high speed clock is shut  
down in this specific transmitter to save power consump-  
tion.  
A maskable interrupt is provided to indicate dejitter FIFO  
overflows.  
AIS Signal Insertion  
An AIS signal (unframed all ones signal) can be generated  
using the external clock input DRETCKREF at 2.048 MHz  
+/- 50 ppm (if the transmitter is configured to operate in  
retiming or passed through mode) or using the high-speed  
ADPLL reference clock at 65.536 MHz +/- 50 ppm divided  
by 32 (if the transmitter is configured to operate in dejitter  
mode), as a blue clock on the E1 transmitter output.  
18 of 56  
FUNCTIONAL DESCRIPTION PER E1 CHANNEL  
Table 3: Transmitter clock output scheme  
TCLK clock sources  
Synchronous with  
Clock source  
DRETCKREF  
Retiming Mode (No AIS or AIS)  
Dejitter Mode (No AIS)  
DRETCKREF input  
DTC input  
ADPLL filtered output  
DPLLCKREF/32  
DTC  
Dejitter Mode (AIS insert)  
DPLLCKREF input/32  
DTC input  
Pass Through Mode (No AIS)  
Pass Through Mode (AIS insert)  
DRETCKREF input  
DRETCKREF  
AIS Detection  
RECEIVER OPERATION  
After HDB3 decoding, an AIS detection is performed  
on the incoming data according to recommendation  
ITU G.775.  
Line decoding HDB3  
The HDB3 decoder is microprocessor selectable.  
When selected, this block accepts an HDB3 encoded  
E1 signal via data inputs RPOSDx and RNEGDx and  
clock RCLKx. A bipolar violation (or code error)  
detector is implemented in the HDB3 decoder. The  
Bipolar Violation (BPV) Errors Detector can be con-  
figured for all the E1 HDB3 receivers via the micro-  
processor. The detector can:  
AIS defect alarm is declared when each of two consec-  
utive double frame periods (512 bits) has two or less  
ZEROs, and the alarm is cleared when three or more  
ZEROs or when the Frame Alignment Signal has been  
found in each of two consecutive double frame peri-  
ods.  
The AIS defect alarm status is accessible to the micro-  
processor via the status registers.  
• be disabled  
• detect two consecutive ‘1’s’ with the same polar-  
ity (except when it is used as part of a valid  
HDB3 substitution)  
AIS Insert/LOS Alarm filtering  
This block includes a filter for Loss Of Signal Alarm  
input on RLOS pin from the external LIU. The filter-  
ing on the LOS can be integrated over 128 clock cycles  
or disabled via microprocessor.  
• detect BPV that do not alternate polarity (recom-  
mendation ITU O161)  
• detect two consecutive ‘1’ with the same polarity,  
or BPV that do not alternate polarity, or four con-  
secutive ‘0’ badly encoded.  
An AIS signal (unframed all ones in the data) can be  
inserted on the incoming data RPOSD and RNEGD  
after decoding in case of LOS alarm. DRETCKREF  
clock reference input (2.048 MHz +/- 50 ppm) may be  
used as a blue clock for AIS generation, if the receiver  
is so configured. The AIS insert can also be disabled or  
forced via microprocessor (see configuration register  
jEH). The AIS state for every receiver is reported in  
the global status registers.  
BPV errors are accumulated in a 16-bit counter that  
can be read by the microprocessor. A maskable inter-  
rupt is provided to indicate counter overflows.  
If the HDB3 decoder is not used, the E1 NRZ data is  
input on RPOSD. In this case, RNEGD input pin has  
to be grounded, and the BPV error detection is invalid.  
The relative phase between E1 data (on RPOSDx/  
RNEGDx pins) and clock (on RCLKx pin) inputs can  
be configured via microprocessor (RPOSDx/  
RNEGDx data inputs may be sampled, in the transmit-  
ter, by rising or falling edge of the input clock RCLKx:  
see global register AFH).  
Frame Alignment/Out Of Frame Alarm  
The framing method follows the rules set forth in  
CCITT/ITU recommendations G.704 and G.706 and is  
the same as the one described in the transmitter. Refer  
to Frame Alignment section on page 14 and Figure 1  
on page 18.  
Out Of Frame status changes are indicated via a  
maskable interrupt, and errored FAS/NFAS (see glo-  
19 of 56  
SXT6282  
bal configuration register 0FH) are counted via a 13-  
bit microprocessor-accessible counter.  
Test Pattern Generator for Autotesting/  
Maintenance  
CRC-4 Multiframe Alignment/Out of  
CRC Multiframe Alarm  
The multiframe acquisition is the same as in the trans-  
mitter. Refer to CRC-4 Multiframe Alignment on page  
14.  
CRC-4 E1 Framed Test Pattern  
An internal E1 framed pattern generator may be  
enabled via the microprocessor for autotesting and  
maintenance purposes. The sequence consists of an E1  
CRC-4 framed signal with the FAS, NFAS, MFAS  
and CRC-4 bits in the time slots 0 and a PRBS 2E15-  
1 sequence in the time slots 1 ->31.  
Loss Of CRC-4 Multiframe status changes are indi-  
cated via a maskable interrupt.  
If enabled (see registers 1FH and jEH), the E1 framed  
test pattern sequence is sent to the receiver input and  
then emitted on MTD data output pin, with the associ-  
ated DRETCKREF blue clock emitted on MTC clock  
output pin. So, by looping back externally, the MTC/  
MTD output signals to the DTC/DTD input signals,  
the chip can be autotested without any external test  
equipment.  
CRC-4 Multiframe Monitoring  
CRC-4 Block Errors Calculation  
Once the CRC-4 multiframe is acquired, the CRC-4  
bits are calculated internally based on a sub-multi-  
frame (as specified in recommendation ITU G704) and  
compared to the incoming CRC-4 value in the next  
sub-multiframe. The block errors are accumulated in a  
10-bit counter that can be read by the microprocessor.  
A maskable interrupt is provided to indicate counter  
overflows.  
PRBS Unframed Test Pattern  
If enabled (see registers 1FH and jEH), the internal test  
pattern generator can also generate the standard  
pseudo-random (2E15-1 sequence) unframed test sig-  
nal used for E1 jitter analysis (Recommendation ITU-  
T O171) emitted on MTD data output pin, with the  
associated DRETCKREF blue clock emitted on MTC  
clock output pin.  
Remote End Block Errors  
Two bits per multiframe (RE1 and RE2) are allocated  
for the CRC-4 Remote End Block Error (REBE) indi-  
cation. REBEs are accumulated in a 10-bit counter that  
can be read by the microprocessor. A maskable inter-  
rupt is provided to indicate counter overflows.  
MICROCONTROLLER INTERFACE  
This section contains a description of the asynchronous  
microprocessor interface. A microprocessor should be con-  
nected to the SXT6282 for reading and writing data via the  
microprocessor interface pins.  
Remote Alarm  
The Remote alarm bit (bit 3 in the NFAS) is used to tell  
the transmit end that the received end has detected a  
loss of signal or loss of frame. The remote alarm is fil-  
tered for three consecutive frames before being  
declared a new value. A change in its status is indi-  
cated to the microprocessor via a maskable interrupt.  
The microprocessor interface is a generic asynchronous  
interface, including an address bus (A [7..0]), data bus  
(DATA [7..0]) and handshaking pins (WRB/RWB, RDB/  
E, CSB, and ALE). The MCUTYPE input pin indicates the  
type of microprocessor interface to be used – Intel or  
Motorola. There is also an INT output pin that indicates sta-  
tus changes to the microprocessor.  
Output Interface  
NRZ receive data and clock are emitted on MTDx and  
MTCx pins. MTCx clock is synchronous with an  
RCLKx input clock or DRETCKREF blue clock if  
AIS is inserted in the receiver or if in Autotest Mode.  
The relative phase between output data and clock can  
be configured via the microprocessor (MTDx data out-  
puts emitted on the rising or falling edge of the output  
clock MTCx: see global register AFH).  
This interface has the same features as SFT’s SXT6051 and  
SXT6251 chips.  
Intel Interface  
The Intel interface is indicated by driving the MCU-  
TYPE input pin HIGH. It uses the WRB/RWB input  
pin as WRB and the RDB/E input pin as RDB.  
20 of 56  
FUNCTIONAL DESCRIPTION PER E1 CHANNEL  
A read cycle is indicated to the SXT6282 by the uP  
forcing a LOW on the RDB pin with the WRB pin held  
HIGH.  
1) Status change of a monitoring process: For exam-  
ple, the SXT6282 monitors the incoming E1 frame for  
the correct framing pattern and updates the OofSt and  
LofSt status bits to indicate presence or absence of Out  
Of Frame and Loss Of Frame conditions. When the  
value of these status bits change an interrupt is gener-  
ated if enabled.  
A write cycle is indicated to the SXT6282 by the uP  
forcing a LOW on the WRB pin with the RDB pin held  
HIGH.  
Both cycles require the CSB pin to be LOW and the uP  
to drive the A[7..0] address pins. In the case of the  
write cycle, the uP is also required to drive the DATA  
[7..0] data pins. In the case of the read cycle, the  
SXT6282 drives the DATA [7..0] data pins.  
2) Event Occurrence: For example, positive and nega-  
tive slips as well as FIFO overflows are considered  
“events” and can generate interrupts if enabled.  
3) Counter overflows: For example, the SXT6282  
monitors the E1 frame structure for framing errors.  
These errors are recorded in a counter whose overflow  
can cause an interrupt if enabled.  
When a multiplexed data/address bus is used, the fall-  
ing edge of the ALE input latches the address provided  
on the muxed bus (the muxed bus will be connected to  
both the A[7..0] and DATA[7..0]). If the address and  
data are not multiplexed the ALE pin should be tied  
HIGH.  
Interrupt Enables  
In order for an interrupt source to affect the state of the  
INT output pin its associated interrupt enable bit must  
be SET. The setting (whether it is 0 or 1) of the inter-  
rupt enables does not affect the updating of the status  
registers or counters.  
Motorola Interface  
The Motorola interface is indicated by driving the  
MCUTYPE input pin LOW. It uses the WRB/RWB  
input pin as RWB and the RDB/E input pin as E.  
Assuming the interrupt enable for a particular interrupt  
source is SET and the interrupt source is active, its  
interrupt bit will be SET. The primary difference  
between each interrupt type is the way its respective  
interrupt bit is cleared.  
A read cycle is indicated to the SXT6282 by the uP  
forcing a HIGH on the RWB pin. A write cycle is indi-  
cated to the SXT6282 by the uP forcing a LOW on the  
RWR pin.  
Interrupt Clearing  
In the discussion below it is assumed that the example  
interrupt sources have their interrupt enable bits SET.  
A LOW on the E input initiates both cycles. The E  
input is connected to the E output from the Motorola  
uP and is typically a 50% duty cycle waveform with a  
frequency derived from the uP clock.  
Status change interrupt sources have their interrupt  
bits cleared when their status is read. For example, say  
the OofSt bit changes from zero to one (in frame to out  
of frame). Its interrupt bit is SET by this event. When  
the microprocessor reads the register containing the  
OofSt bit its interrupt bit will be CLEARED. If the  
OofSt bit subsequently changes from one to zero (out  
of frame to in frame) again its interrupt bit is SET by  
this event and then CLEARED when the status is read.  
Both cycles require the CSB pin to be LOW and the uP  
to drive the A[7..0] address pins. In the case of the  
write cycle, the uP is also required to drive the DATA  
[7..0] data pins. In the case of the read cycle, the  
SXT6282 drives the DATA [7..0] data pins.  
When a multiplexed data/address bus is used, the fall-  
ing edge of the ALE input latches the address provided  
on the muxed bus (the muxed bus will be connected to  
both the A[7..0] and DATA[7..0]). If the address and  
data are not multiplexed the ALE pin should be tied  
HIGH.  
The interrupt register can be read again only after three  
interval clock cycles (1.47) have completed since it  
has been cleared (by reading its associated status reg-  
isters).  
IINTERRUPT HANDLING  
It should be noted that updates to status bits are not  
affected by the interrupt bit state. For example, the  
OofSt bit could change from a one to zero (generating  
an interrupt) and then before the microprocessor reads  
Interrupt Sources  
There are three types of interrupt sources:  
21 of 56  
SXT6282  
OofSt it could change back to one. This would have no  
affect on its interrupt bit since it would already be  
SET. When the microprocessor reads the OofSt bit it  
would read a one.  
Both event interrupts and counter overflow interrupts  
are cleared when the interrupt register containing these  
bits is read (since event and counters do not have any  
associated status registers).  
Status Registers Access  
Due to the asynchronous nature of the microprocessor  
interface and timing differences during interrupt bit  
updates, it is possible that a status bit change can fail  
to SET its associated interrupt bit if the AlmUpdDsbl  
bit is not SET during a read of the status registers by  
the microprocessor. This situation is very difficult to  
achieve however, it can happen.  
For this reason we encourage programmers to SET the  
AlmUpdDsbl bit before accessing the status registers  
during alarm processing. This effectively locks out  
internal processes that wish to access the status and  
interrupt bits during the time that the microprocessor is  
accessing these bits. After the microprocessor is done  
accessing the status registers it should CLEAR the  
AlmUpdDsbl bit so that internal processes may again  
update the status and interrupt bits.  
Counter Reading  
Counters are read by first buffering their contents and  
then reading the buffer. They can be individually buff-  
ered or group buffered. They are group buffered by  
writing to register BfrAllCntrs (5FH). They are indi-  
vidually buffered by writing to the most significant  
byte of a particular buffer. After buffering the counter,  
the contents of the buffer are read at the address spec-  
ified in the register definition.  
For example, to read the contents of the transmitter #1  
FrameWord counter a write to register 07H will buffer  
only the contents of transmitter #1’s frame word  
counter. A read of registers 06H and 07H will give the  
counter value. Alternatively, all of the frame word  
counters for all 8 transmitters and receivers can be  
buffered by writing a 02H to register 5FH.  
A counter can be read only after three interval clock  
cycles (1.47) have completed since it has been buff-  
ered (previous write operation. (JCC)  
22 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
MICROPROCESSOR REGISTER DESCRIPTION  
The address mapping (8 address bits) is the following:  
• addresses 0FH -> AFH: Global registers  
• addresses i1H -> iEH: transmitter registers (i = {0 to 7} and i = E1 channel number)  
• addresses j1H -> jEH: receiver registers (j = {8 to 15} and (j-8) = E1 channel number)  
Page  
#
Address  
Mnemonic  
Register Name  
Type  
Global Registers  
0FH  
0FH  
2FH  
3FH  
4FH  
5FH  
8FH  
9FH  
AFH  
GLOP_CONF0  
Operational Configuration 0  
Operational Configuration 1  
Individual Transmit E1 Channel Interrupt  
Individual Receive E1 Channel Interrupt  
Chip ID Number  
R/W  
R/W  
R
25  
26  
27  
27  
27  
28  
28  
28  
29  
GLOP_CONF1  
IND_TRNSE1_CHN  
IND_RECE1_CHN  
CHIP_ID_NMB  
BUFF_ALLCNT  
E1_REC_AISTAT  
E1_TRNS_AISTAT  
GLOP_CONF  
R
R
Buffer All Counters  
W
E1 Receivers AIS Status  
R
E1 Transmitters AIS Status  
Operational Configuration 3  
R
R/W  
Transmitter Alarm Status and Configuration Registers (E1 channel #i, i = {0 to 7})  
iEH  
TRAMS_CONF  
Transmitter Configuration  
R/W  
R
31  
32  
32  
33  
33  
34  
34  
34  
35  
35  
i1H  
TRAN_ALRMIN0  
TRAN_ALRMIN1  
TRAN_ALRM_STAT  
TRAN_ALRM_INTE0  
TRAN_ALRM_INTE1  
TRAN_FRMWD_ERC  
TRAN_BLCK_ECR  
TRAN_RMT_ERC  
TRAN-RETMBUF  
Transmitter Alarm Interrupt 0  
i2H  
Transmitter Alarm Interrupt 1  
R
i3H  
Transmitter Alarm Status  
R
i4H  
Transmitter Alarm Interrupt Enable 0  
Transmitter Alarm Interrupt Enable 1  
Transmitter FrameWord Error Counter  
Transmitter CRC-4 Block Errors Counter  
Transmitter Remote CRC-4 Block Errors Counter  
R/W  
R/W  
R
i5H  
i7-i6H  
i9-i8H  
iB-iAH  
iCH  
R
R
Transmitter Retiming Buffer Pos. & Neg. Slip  
Counters  
R
iDH  
TRAN_RTMBUF_STAT  
Transmitter Retiming Buffer Status  
R
36  
Receivers Alarm Status and Configuration Registers (E1 channel #i = j - 8, j = {8 to 15})  
jEH  
j1H  
REC_CONF  
Receiver Configuration  
R/W  
R
37  
38  
REC_ALRMIN0  
Receiver Alarm Interrupt 0  
23 of 56  
SXT6282  
Page  
#
Address  
Mnemonic  
Register Name  
Type  
j2H  
REC_ALRMIN1  
REC_ALRMS  
Receiver Alarm Interrupt 1  
Receiver Alarm Status  
R
R
38  
39  
39  
40  
40  
40  
41  
41  
j3H  
j4H  
REC_ALRM_INTEREG0 Receiver Alarm Interrupt Enable Register 0  
REC_ALRM_INTEREG1 Receiver Alarm Interrupt Enable Register 1  
R/W  
R/W  
R
j5H  
j7-j6H  
j9-j8H  
jB-jAH  
jD-jCH  
REC_FRMWD_ERC  
REC_BLCK_ERC  
REC_RMT_BLCK_ERC  
REC-CD_ERC  
Receiver FrameWord Error Counter  
Receiver CRC-4 Block Error Counter  
Receiver Remote CRC-4 Block Error Counter  
Receiver Code Errors Counter  
R
R
R
GLOBAL REGISTERS  
The registers described in this section are related to global configuration, tests and alarms.  
24 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
GLOB_CONF0 - Global Operational Configuration 0 (0FH)  
Configures high level operational characteristics of the chip.  
Bit Name Label  
Type Default  
0
Bit  
CnfBpvIns[1..0] These bits configure the code errors (Bipolar Violation) inserted in all R/W  
the E1 HDB3 transmitter outputs (TPOSD and TNEGD, to the LIU)  
<7:6>  
when the BpvInsert is enabled (see register iEH) - (used for testing)  
00 - Insert a single code error  
01 - Insert one code error per second (used for testing)  
10 - Insert one code error per multiframe (used for testing)  
11 - Insert one code error per 1000 bits (BER 10-3) (used for testing)  
Bit  
<5:4>  
CnfBpvDet[1..0] These bits configure the Bipolar Violation Errors Detection in all the R/W  
E1 HDB3 receivers (on RPOSD and RNEGD inputs, from the LIU).  
1
00 - Disable Bpv Detection  
01 - 2 consecutive ‘1’ with the same polarity  
10 - BPV do not alternate polarity (recommendation ITU O161)  
11 - two consecutive ‘1’ with the same polarity, BPV do not alternate  
polarity, or four consecutive’0’ badly encoded  
Bit  
<3:2>  
CnfFeCnt[1..0]  
CnfFaOp[1..0]  
These bits configure the FrameWord (FAS/NFAS) error counters in all R/W  
the E1 transmitters and receivers.  
0
0
00 - Disable FrameWord error counter  
01 - Count only FAS with single or multiple errors  
10 - Count only errored NFAS (bit 2)  
11 - Count both errored FAS and NFAS  
Bit  
<1:0>  
These bits configure the Frame Acquisition Algorithm in all transmit- R/W  
ters and receivers. The robust acquisition modes are only relevant if  
CRC-4 multiframing is disabled (see registers iEH and jEH). CRC-4  
Multiframing selected always uses normal acquisition modes.  
00 - Normal Acquisition: During acquisition, check three consecutive  
frames with two correct FAS and one correct NFAS. De-synchroniza-  
tion caused by three consecutive incorrect FAS.  
01 - Normal Acquisition/de-synchronization using both FAS/NFAS:  
During acquisition, check three consecutive frames with two correct  
FAS and one correct NFAS. De-synchronization caused by three con-  
secutive incorrect FAS or by three consecutive bit 2 of NFAS, not 1.  
10 - Robust Acquisition: During acquisition, check five consecutive  
frames with three correct FAS and two correct NFAS. De-synchroni-  
zation caused by four consecutive incorrect FAS.  
11 - Robust Acquisition/de-synchronization using both FAS/NFAS:  
During acquisition, check five consecutive frames with three cor-  
rect NFAS. De-synchronization caused by four consecutive incorrect  
FAS or by four consecutive incorrect NFAS.  
25 of 56  
SXT6282  
GLOB_CONF1- Global Operational Configuration 1 (1FH)  
Bit  
Name  
Label  
Type  
R/W  
Default  
Bit 7  
AlmUpdDsbl This bit enables/disables updates to status registers.  
0 - Enable status updates when alarm interrupt is active  
1 - Disable status updates when alarm interrupt is active  
0
0
Bit 6  
MastIntEn  
Enables/disables the chip interrupt pin.  
R/W  
0 - Disable  
1 - Enable  
Bit  
Unused  
<5:4>  
Bit 3  
TestTBR  
Test Bit: has to be set to 0  
0 - Normal operation  
R/W  
R/W  
0
1
1 - Test Only - non-working mode  
Bit 2  
AutotestCnfg This bit configures the generation of the test pattern sequence as  
framed or unframed (both test pattern sequences are described in  
0.151)  
0 - Unframed (PBRS2E15-1 sequence).  
1 - CRC-4 framed sequence. The PRBS2E15-1 sequence is transmit-  
ted in time slot 1 to 31 (and stopped during timeslot 0.)  
Bit 1  
Bit 0  
ADPLLTest  
CntrTest  
This bit should always be set to 0 during normal operation. It allows R/W  
faster testing of the eight digital PLLs during simulation.  
0
0
0 - Normal operation  
1 - Very fast tracking PLLs  
This bit should always be set to 0 during normal operation. It allows R/W  
faster testing of the overflow interrupt functionality during simula-  
tion.  
0 - Normal operation  
1 - set overflow count: error counter 4; retiming slip counters: 2  
26 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
These next two registers (2FH and 3FH) indicate which channel (receiver or transmitter) has caused an interrupt.  
For example, when a channel incurs a receive LOS alarm event, if the interrupt is enabled, the LosInt bit in the interrupt  
register will be set and causing the device interrupt pin to become active. The microcontroller would then read the Receive  
E1 Channel interrupt register 3FH to determine the channel in alarm. Next the Channel Interrupt Registers Receive j1H  
would be read to identify the alarm. Finally, the status register j3H is read to determine the current alarm state. This last  
read would also clear the corresponding interrupt register.  
IND_XMTE1_CHN - Individual Transmit E1 Channel Interrupt (2FH)  
Bit  
Name  
Label  
Type  
RO  
Default  
Bit  
XmtChannel  
This register indicates which E1 channel transmitter has  
caused an interrupt.  
0
<7:0> XMTINT <7:0>  
IND_RCVE1_CHN - Individual Receive E1 Channel Interrupt (3FH)  
Bit  
Name  
Label  
Type  
RO  
Default  
Bit  
<7:0>  
RcvChannel  
RCVINT <7:0>  
This register indicates which E1 channel receiver has  
caused an interrupt.  
0
CHIP_ID_NMB - Chip ID Number (4FH)  
This register can only be read. It is used to identify the version of the chip.  
Bit  
Name  
Label  
Type  
RO  
Default  
Bit  
<7:0>  
ChipID [7:0] This field contains the chip identification value  
01H  
27 of 56  
SXT6282  
BUFF_ALLCNT - Buffer All Counters (5FH)  
A write to this location causes all of the counters of the same type to be loaded into buffers and then cleared. This  
operation assumes that those counters can be monitored in the same second. The contents of an individual counter  
buffer can then be read at the addresses specified for the counters in this document. Counters can be individually buff-  
ered by writing to the specified MSByt of the counter of interest.  
Bit  
Bit  
Name  
Unused  
Label  
Type  
Default  
<7:2>  
Bit  
<1:0>  
BfrAllCntrs[1:0]  
A write to these bits selects the counters to be loaded at the WO  
same time.  
0
00 - all CRC-4 Block Error counters both transmit and  
receive (16 x 10-bit counters) plus all Positive and Negative  
Frame Slip Counters (transmit side: 16 x 4-bit counters)  
01 - all REBE Counters both transmit and receive (16x 10-  
bit counters) plus all Retiming FIFO Status Bits (transmit  
side: 8 x 6-bits, 8 registers iDH)  
10 - all FrameWord Error Counters both receive and trans-  
mit (16 x 13-bit counters)  
11 - all Code Errors counters (receive side) (8 x 16-bit  
counters)  
E1_RCV_AISTAT - E1 Receivers AIS Status (8FH)  
This register indicates the status of internal chip logic for AIS generation processes in each of the eight E1 receivers.  
Bit  
Bit  
Name  
Label  
Type  
RO  
Default  
GenRcvAISCh<7:0> Present status of E1 receiver #n (n= <7..0>) AIS generator.  
0
<7:0>  
0 - No AIS  
1 - AIS  
EI_XMT_AISTAT - E1 Transmitters AIS Status (9FH)  
This register indicates the status of internal chip logic for AIS generation processes in each of the eight E1 transmitters.  
Bit  
Bit  
Name  
Label  
Type  
RO  
Default  
GenXmtAISCh<7:0> Present status of E1 transmitter #n (n=<7..0>) AIS genera-  
tor.  
0
<7:0>  
0 - No AIS  
1 - AIS  
28 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
GLOB_CONF - Global Operational Configuration 3 (AFH)  
Bit  
Name  
Label  
Type  
Default  
Bit 7 CnfTxClkIn  
Clock Edges specification at the data interfaces:  
R/W  
0
This bit Configures the phase relation between clock and data  
at the transmitter inputs (DTCx and DTDx input pins).  
0 - DTDx input data is sampled in the chip by the falling edge  
of DTCx clock.  
1 - DTDx input data is sampled in the chip by the rising edge  
of DTCx clock.  
Bit 6 CnfTxClkOut  
Bit 5 CnfRxClkIn  
Bit 4 CnfRxClkOut  
This bit configures the phase relation between clock and data R/W  
at the transmitters outputs (TCLKx and TPOSDx/TNEGDx  
output pins).  
0
0
0 - TPOSDx/TNEGDx output data are sampled by the rising  
edge of TCLKx clock.  
1- TPOSDx/TNEGDx output data are sampled by the falling  
edge of TCLKx clock.  
This bit configures the phase relation between clock and data R/W  
at the receivers inputs (RCLKx and RPOSDx/RNEGDx  
input pins).  
0 - RPOSDx/RNEGDx input data are sampled in the chip by  
the rising edge of RCLKx clock.  
1 - RPOSDx/RNEGDx input data is sampled in the chip by  
the falling edge of RCLKx clock.  
This bit configures the phase relation between clock and data R/W  
at the receivers outputs (MTCx and MTDx output pins).  
0
0
0 - MTDx output data are sampled by the falling edge of  
MTCx clock.  
1- MTDx output data are sampled by the rising edge of  
MTCx clock.  
Bit  
DjtAisSetWinNum[3:0]  
Consecutive windows for setting AIS in the transmitters  
(dejitter mode):  
R/W  
<3:0>  
These bits are only relevant in dejitter mode (Transmitter)  
and are common for the eight transmitters when hardware  
AIS is enabled (see register iEH).  
Number of consecutive 200 ms windows that must detect  
dejitter ADPLL unlocked and dejitter FIFO crash to insert  
AIS and switch to the blue clock on the transmitter output.  
(Detection time = DjtAisSetWinNum *200 ms.)  
(Note: DjtAisSetWineNum = 0 => immediate insertion of  
AIS after detection of dejitter FIFO crash alarm)  
29 of 56  
SXT6282  
TRANSMIT SIDE REGISTERS  
The registers described in this section are related to the E1 transmitters alarm status and configuration.  
There are eight E1 transmitters in the chip, and 14 registers per E1 transmitter. The 4 MSB bits of the register addresses  
indicate the E1 channel number (from 0 to 7). The eight transmitters are each capable of generating 12 alarm types. Any  
one of these alarms (if enabled) can cause the device interrupt pin to become active.  
Each E1 transmitter alarm has three registers associated with it:  
• Interrupt source: This register set will identify the alarm(s) that triggered the interrupt.  
• Alarm status: This register contains the current status of the alarm. When this register is read, the corresponding inter-  
rupt will be cleared.  
• Interrupt Enable: This register contains the interrupt enable for all alarms.  
Status alarms will generate an interrupt when the alarm changes from inactive to active or active to inactive. The event and  
overflow alarms generate an interrupt when detected.  
Updating the status register is controlled by the AlmUp-dateDsbl configuration bit in global register 0FH. When low, status  
register are updated once every frame, regardless of the interrupt state. When high, status alarm memory updates will be  
disabled. When accessing status alarm memory, the microprocessor should SET AlmUpdateDsbl so that the microproces-  
sor will have uncontested access to this memory.  
30 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
XMT_CONF - Transmitter Configuration (iEH)  
(i = [0 to 7] and corresponds to the eight different E1 channel numbers)  
This register configures a particular E1 channel transmitter’s parameters.  
Bit  
Name  
Label  
Type Default  
Bit 7  
CenterRetFifo A transition from 0 to 1 in this bit sets the two frame-wide retiming elas- W  
tic store to its center point (only relevant in retiming mode).  
0
0
Bit 6  
XmtDjtAisEn Enable/disable hardware AIS generation on the transmit data and clock R/W  
outputs (to the LIU) via software (only relevant in dejitter mode). This  
bit should be set to 0 before changing the mode from dejitter.  
0 - Disable AIS generation because of unlocked PLL  
1 - Enable AIS generation because of unlocked PLL  
Bit 5  
InsBpv  
Inserts a code error (Bipolar Violation) in the transmitter HDB3 output  
(TPOSD and TNEGD, to the LIU). See CnfBpvIns[1..0] configuration  
bits in global register 0FH for the error repetition.  
R/W  
0
0 - Normal operation  
1 - Insert Bpv errors (see register 0FH)  
Bit 4  
Bit 3  
XmtAisFrc  
Forces AIS generation on the transmit data and clock outputs (to the  
LIU).  
R/W  
R/W  
0
0
0 - Disable  
1 - Enable  
XmtCrc-4En  
Enable/disable G704 CRC-4 monitoring and multiframing in the E1  
transmitter (on DTD data input).  
0 - Disable. In this case, the E1 transmitter checks the errors in the E1  
frameword (every two frames) and counts them in the XmtErrCnt errors  
counter. No CRC multiframing  
1 - Enable. The chip performs a CRC-4 check on the incoming E1. The  
blocks in error is counted in the XmtErrCnt errors counter  
Bit  
<2:1>  
OpCnf <1..0> Each E1 Transmitter can be configured for the following operational  
modes.  
R/W  
0
00 - Passed through mode: no dejitter, no retiming in the transmitter  
01 - Dejitter mode  
10 - Retiming mode: normal configuration (operates on an E1 framed  
signal)  
11 - Retiming mode: test configuration (operates on a 2.048 Mbit/s un-  
framed signal; in this mode the CRC-4, REBE and remote alarm moni-  
toring functions are irrelevant since the incoming data is supposed to be  
un-framed.)  
(Note: When not in dejitter mode, the High Speed ADPLL reference  
Clock is shut down in the transmitter to save power consumption.)  
Bit 0  
XmtLnCode-  
Sel  
Line Interface coding (on TPOSD/TNEGD transmit data).  
R/W  
0
0 - HDB3  
1 - NRZ  
31 of 56  
SXT6282  
XMT_ALRM_INTO - Transmitter Alarm Interrupt 0 (i1H)  
(i = [0 to 7] and corresponds to the E1 channel number)  
This register identifies the interrupt source for a particular E1 Channel Transmitter. Each of these bits can cause the  
chip interrupt pin to become active if enabled via the bits in the Transmit Interrupt Enable Register 0 (i4H).  
Bit  
Bit  
Name  
Unused  
Label  
Type  
Default  
<7:5>  
Bit 4  
XmtRmtAlm This bit is set when there is a change in the XmtRmtAlmSt bit  
(i3H). It is cleared when status register (i3H) is read.  
RO  
0
0
0
0
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XmtLomf  
This bit is set when there is a change in the XmtLomfSt bit (i3H). RO  
It is cleared when status register (i3H) is read.  
XmtOof  
This bit is set when there is a change in the XmtOofSt bit (i3H). It RO  
is cleared when status register (i3H) is read.  
XmtAisDet  
Unused  
This bit is set when there is a change in the XmtAisDetSt bit  
(i3H). It is cleared when status register (i3H) is read.  
RO  
XMT_ALRM_INT1 - Transmitter Alarm Interrupt 1(i2H)  
(i = [0 to 7] and corresponds to the E1 channel number)  
This register identifies the interrupt source for a particular E1 Channel Transmitter. Each of these bits can cause the  
chip interrupt pin to become active if enabled via the bits in the Transmit Interrupt Enable Register 1 (i5H).  
Bit  
Name  
Label  
Type  
RO  
Default  
Bit 7  
XmtPosSlip  
Indicates that a positive frame slip has occurred in the retiming  
elastic buffer. It is cleared when this register is read.  
0
Bit 6  
Bit 5  
XmtNegSlip  
Indicates that a negative frame slip has occurred in the retiming  
elastic buffer. It is cleared when this register is read.  
RO  
0
0
XmtFifofAlm  
Indicates that the transmit FIFO has overflowed (depending on the RO  
OpCnf bits setting, this can be either the dejitter FIFO, or the  
retiming elastic buffer). It is cleared when register is read.  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XmtRetNegOvrFlw This bit is set when the RetNegCnt[] retiming positive slip counter RO  
rollover occurs. It is cleared when this register is read.  
0
0
0
0
0
XmtRetPosOvrFlw This bit is set when the RetPosCnt[] retiming positive slip counter RO  
rollover occurs. It is cleared when this register is read.  
XmtRbeOvrFlw  
This bit is set when the RbeCnt[] Remote Block error counter roll- RO  
over occurs. It is cleared when this register is read.  
XmtCrc4ErrOvrFlw This bit is set when the Crc4ErrCnt[] error counter rollover occurs. RO  
It is cleared when this register is read.  
XmtFasErrOvrFlw  
This bit is set when the FasErrCnt[] Frame Alignment Signal error RO  
counter rollover occurs. It is cleared when this register is read.  
32 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
XMT_ALM_STAT - Transmitter Alarm Status (i3H)  
(i = [0 to 7] and corresponds to the E1 channel number)  
This register gives the present status of each alarm source for a particular E1 channel transmitter.  
These registers are associated with the interrupt source registers. Status the interrupt source bits have an associated  
status bit. Generally, when an interrupt is being acknowledged, the status bit will be checked to see the present status  
of the interrupt-generating source. Overflow event interrupt sources do not have status bits.  
Bit  
Bit  
Name  
Unused  
Label  
Type  
Default  
<7:5>  
Bit 4  
XmtRmAlmSt  
Present status of Remote Alarm detect on DTDx input data.  
0 - No Remote Alarm  
RO  
0
0
1 - Remote Alarm  
Bit 3  
XmtLomfSt  
Present status of Out Of E1 CRC-4 MultiFrame detect on  
DTDx input data.  
RO  
0 - No LOMF  
1 - LOMF  
Bit 2  
Bit 1  
Bit 0  
XmtOofSt  
XmtAisDetSt  
Unused  
Present status of Out Of E1 Frame detect on DTDx input data. RO  
0
0
0 - No OOF  
1 - OOF  
Present status of AIS defect detect on DTDx input data.  
0 - No AIS defect  
RO  
1 - AIS defect detected  
XMT_ALM_INTE0 - Transmitter Alarm Interrupt Enable 0 (i4H)  
(i = [0 to 7] and corresponds to the E1 channel number)  
This register can be used to enable an interrupt source for a particular E1 channel interrupt source. The reset default is  
disabled (‘0’). All of the interrupt registers in the above section are capable of activating the chip interrupt pin if their  
corresponding interrupt enable bits are set to 1.  
Bit  
Name  
Unused  
Label  
Type  
Default  
Bit 7:5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XmtRmtAlmIntEn  
XmtLomfIntEn  
XmtOofIntEn  
XmtAisDetIntEn  
Unused  
R/W  
0
0
0
0
R/W  
R/W  
R/W  
33 of 56  
SXT6282  
XMT_ALM_INTE1 - Transmitter Alarm Interrupt Enable 1 (i5H)  
(i = [0 to 7] and corresponds to the E1 channel number)  
This register can be used to enable an interrupt source for a particular E1 channel interrupt source. The reset default is  
disabled (‘0’). All of the interrupt registers in the above section are capable of activating the chip interrupt pin if their  
corresponding interrupt enable bits are set to 1.  
Bit  
Name  
Label  
Type  
R/W  
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XmtPosSlipEn  
0
0
0
0
0
0
0
0
XmtNegSlipEn  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
XmtFifofAlmIntEn  
XmtRetNOvrFlwEn  
XmtRetPOvrFlwEn  
XmtRbeOvrFlwEn  
XmtCrcErrOvrFlwEn  
XmtFasErrOvrFlwEn  
XMT_FRMWD_ERC - Transmitter FrameWord Error Counter (i7- i6H)  
(i = [0 to 7] and corresponds to the E1 channel number)  
(i7H = bits <15:8>, i6H = bits <7:0>  
This counter increments each time an errored E1 frameword (FAS and/or NFAS: see global configuration register  
0FH: bits CnfFeCnt[1..0]) is detected. A write to the MSByte of the counter (register i7H) causes the entire counter to  
be buffered and then cleared. The contents of the buffer can then be read.  
Bit  
Bit  
Name  
Label  
Type  
Default  
Unused  
XmtFasErrCnt[12:0]  
<15:13>  
Bit  
RO  
00H  
<12:0>  
XMT_BLCK_ERC - Transmitter CRC-4 Block Errors Counter (i9H - i8H)  
(i = [0 to 7] and corresponds to the E1 channel number)  
(i9H = bits<15:8>, i6H = bits<7:0>  
This counter increments each time a CRC-4 Block error is detected. A write to the MSByte of the counter (register  
i9H) causes the entire counter to be buffered and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Label  
Type  
Default  
Bit  
<15:10>  
Unused  
XmtCrc4ErrCnt[9:0]  
Bit  
RO  
00H  
<9:0>  
34 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
XMT_RMT_ERC - Transmitter Remote CRC-4 Block Errors Counter (iB - iAH)  
(i = [0 to 7] and corresponds to the E1 channel number)  
(iBH = bits<15:8>, iAH = bits<7:0>)  
This counter increments each time a Remote CRC-4 Block error is detected. A write to the MSByte of the counter  
(register iBH) causes the entire counter to be buffered and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Label  
Type  
Default  
Bit < 15:10> Unused  
Bit <9:0>  
XmtRbeCnt[9:0]  
RO  
0
XMT_RETMBUF - Transmitter Retiming Buffer Positive & Negative Slip Counters  
(iCH)  
(i = [0 to 7] and corresponds to the E1 channel number)  
A write to the register (register iC) causes both counters to be buffered and then cleared. The contents of the buffer can  
then be read.  
Bit  
Name  
Label  
Type  
Default  
Bit <7:4>  
RetNegCnt[3:0]  
The RetNegCnt[3..0] counter (4 MSB bits  
of register iCH) counter increments each  
time a negative slip is detected in the retim-  
ing elastic buffer (one complete frame is  
lost).  
RO  
0
0
Bit <3:0>  
RetPosCnt[3:0]  
The RetPosCnt[3..0] counter (4 LSB bits of RO  
register iCH) increments each time a posi-  
tive slip is detected in the retiming elastic  
buffer (one complete frame is repeated).  
35 of 56  
SXT6282  
XMT_RTMBUF_STAT - Transmitter Retiming Buffer Status (iDH)  
(i = [0 to 7] and corresponds to the E1 channel number)  
A write to the register (register iDH) causes the Retiming elastic store status bits to be buffered. The contents of the  
buffer can then be read.  
Bit  
Name  
Label  
Type  
Default  
Bit <7:6> Unused  
Bit <5:0> RetFifoStatus<5:0>  
The RetFifoStatus[5..0] bits make an indication  
of the content of the Retiming 2 frame-wide elas-  
tic store. This value, coded on 6 bits, corresponds  
to the difference between the read and the write  
pointer of the FIFO and may be used for wander  
monitoring and delay calculation.  
RO  
<0, 1, 0, 1, 0,  
0>  
If WritePointerValue < ReadPointerValue then  
RetFifoStatus[5..0] = 64 + WritePointerValue - ReadPointerValue  
else  
RetFifoStatus[5..0] = WritePointerValue - ReadPointerValue  
RECEIVE SIDE REGISTERS  
The registers described in this section are related to the E1 receivers alarm status and configuration.  
There are eight E1 receivers in the chip, and 14 registers per E1 receiver. The 4 MSB bits of the register addresses indicate  
the E1 channel number (4 MSB bits [from 8 to 15] minus 8 correspond to the E1 channel number: from 0 to 7)  
The eight receivers are each capable of generating nine alarm types. Any one of these alarms (if enabled) can cause the  
device interrupt pin to become active.  
Each E1 receiver alarm has three registers associated with it:  
• Interrupt source: This register set will identify the alarm(s) that triggered the interrupt  
• Alarm status: This register contains the current status of the alarms. When this register is read, the corresponding  
interrupts will be cleared  
• Interrupt Enable: This register contains the interrupt enables for all alarms  
Status alarms will generate an interrupt both when the alarm changes from inactive to active or active to inactive. The over-  
flow alarms generate an interrupt when detected.  
Updating the status register is controlled with the AlmUpdsbl bit in global register 0FH. When low, the status registers are  
updated once every frame, regardless of the interrupt state. When high, status alarm memory updates will be disabled.  
When accessing status alarm memory, the microprocessor should SET AlmUpdateDsbl so that the microprocessor will  
have uncontested access to this memory.  
36 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
RCV_CONF- Receiver Configuration (jEH)  
(j =[8 to F] and corresponds to the eight different E1 channel numbers)  
This register configures a particular E1 channel receiver parameters.  
Bit  
Bit 7  
Name  
Unused  
Label  
Type  
Default  
Bit 6  
Bit 5  
Bit 4  
AutoTestEn  
RcvBclkEn  
RcvCrc-4En  
Enable/disable test pattern generator (the contents of the  
sequence is configured in global register 1FH).  
R/W  
0
0
0
0 - Normal mode (disable autotest)  
1 - Enable autotest  
Enable/disable hardware switches to blue clock during Loss Of R/W  
Signal condition.  
0 - Disable hardware clock switch because of LOS  
1 - Enable hardware clock switch because of LOS  
Enable/disable CRC-4 monitoring and multiframing in the E1 R/W  
receiver (on RPOSD/RNEGD data input from the LIU).  
0 - Disable. In this case, the receiver checks the errors in the  
receive E1 frameword (every two frames) and counts them in  
the RxErrCnt error counter. CRC multiframing is also disabled  
1 - Enable. The chip performs a CRC-4 check on the incoming  
E1. The blocks in error are counted in the RxErrCnt errors  
counter. CRC multiframing is also enabled.  
Bit 3  
Bit 2  
RcvLosFlt  
RcvAisFrc  
Configure LOS alarm filtering (on RLOS input signal).  
0 - No filtering  
R/W  
R/W  
0
0
1 - LOS filtering. The LOS condition must be maintained for  
128 clock cycles  
Force AIS generation from the receive data and clock inputs  
(from the LIU) to the receiver output (to the multiplexer) via  
software.  
0 - Disable  
1 - Enable  
Bit 1  
Bit 0  
RcvAisEn  
Enable/disable hardware AIS generation from the receive data R/W  
and clock inputs (from the LIU) to the receiver output (to the  
PDH/SDH multiplexer).  
0
0
0 - Disable AIS generation because of LOS  
1 - Enable AIS generation because of LOS  
RcvLnCodeSel Line interface coding (on RPOSD/RNEGD receive data)  
R/W  
0 - HDB3  
1 - NRZ  
37 of 56  
SXT6282  
RCV_ALRM_INT0 - Receiver Alarm Interrupt 0 (j1H)  
(j =[8 to F] and corresponds to the E1 channel number)  
This register identifies the interrupt source for a particular E1 channel receiver. Each of these bits can cause the chip  
interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable Register j4H.  
Bit  
Bit  
Name  
Unused  
Label  
Type  
Default  
<7:5>  
Bit 4  
RcvRmtAlm This bit is set when there is a change in the RcvRmAlmSt Receive RO  
0
Remote Alarm bit (j3H). It is cleared when status register (j3H) is  
read.  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RcvLomf  
RcvOof  
RcvAisDet  
Los  
This bit is set when there is a change in the RcvLomfSt bit (j3H). RO  
It is cleared when status register (j3H) is read.  
0
0
0
0
This bit is set when there is a change in the RcvOofSt bit (j3H). It RO  
is cleared when status register (j3H) is read.  
This bit is set when there is a change in the RcvAisDetSt bit (j3H). RO  
It is cleared when status register (j3H) is read.  
This bit is set when there is a change in the LosSt bit (j3H). It is  
cleared when status register (i3H) is read.  
RO  
RCV_ALRM_INT1 - Receiver Alarm Interrupt 1 (j2H)  
(j =[8 to F] and corresponds to the E1 channel number)  
This register identifies the interrupt source for a particular E1 channel receiver. Each of these bits can cause the chip  
interrupt pin to become active if enabled via the bits in the Receive Interrupt Enable Register j5H.  
Bit  
Bit  
Name  
Unused  
Label  
Type  
Default  
<7:4>  
Bit 3  
BpvOvrFlw  
This bit is set when the BpvCnt[] Code error counter rollover  
occurs. It is cleared when this register is read.  
RO  
RO  
RO  
0
0
0
Bit 2  
Bit 1  
RcvRbeOvrFlw  
This bit is set when the RbeCnt[] Remote Block error counter  
rollover occurs. It is cleared when this register is read.  
RcvCrc4ErrOvrFlw This bit is set when the RcvCrc4ErrCnt[] Receive CRC-4 block  
error counter rollover occurs. It is cleared when this register is  
read.  
Bit 0  
RcvFasErrOvrFlw  
This bit is set when the RcvFasErrCnt[] Receive Frame Align-  
ment Signal error counter rollover occurs. It is cleared when this  
register is read.  
RO  
0
38 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
REC_ALRMS - Receiver Alarm Status (j3H)  
(j =[8 to F] and corresponds to the E1 channel number)  
This register gives the present status of each alarm source for a particular E1 channel receiver.  
These registers are associated with the interrupt source registers. Status interrupt source bits have an associated status  
bit. Generally, when an interrupt is being acknowledged, the status bit will be checked to see the present status of the  
interrupt-generating source. Overflow interrupt sources do not have status bits associated with them since the counter  
value fulfills this purpose.  
Bit  
Bit  
Name  
Unused  
Label  
Type  
Default  
<7:5>  
Bit 4  
RcvRmtAlmSt Present status of Receive Remote Alarm detect.  
0 - No Remote Alarm  
RO  
0
0
0
0
1 - Remote Alarm  
Bit 3  
Bit 2  
Bit 1  
RcvLomfSt  
RcvOofSt  
Present status of Out Of E1 CRC-4 MultiFrame detect.  
0 - No LOMF  
1 - LOMF  
RO  
RO  
RO  
Present status of Out Of E1 Frame detect.  
0 - No OOF  
1 - OOF  
RcvAisDetSt  
Present status of AIS defect detect on the incoming E1 data  
(ITU G.775).  
0 - No AIS  
1 - AIS defect detected  
Bit 0  
LosSt  
Present status of Loss of Signal detect.  
RO  
0
0 - No LOS  
1 - LOS  
RCE_ALM_INTE0 - Receiver Alarm Interrupt Enable Register 0 (j4H)  
(j =[8 to F] and corresponds to the E1 channel number)  
This register can be used to enable an interrupt source for a particular E1 channel. The reset default is not enabled (‘0’).  
All of the interrupt registers in the above section are capable of activating the chip interrupt pin if their corresponding  
interrupt enable bits are set to 1.  
Bit  
Name  
Label  
Type  
Default  
Bit <7:5>  
Bit 4  
Unused  
RcvRmtAlmEn  
RcvLomfIntEn  
RcvOofIntEn  
RcvAisDetIntEn  
LosIntEn  
R/W  
0
0
0
0
0
Bit 3  
R/W  
R/W  
R/W  
R/W  
Bit 2  
Bit 1  
Bit 0  
39 of 56  
SXT6282  
RCV_ALM_INTE1 - Receiver Alarm Interrupt Enable Register 1 (j5H)  
(j =[8 to F] and corresponds to the E1 channel number)  
This register can be used to enable an interrupt source for a particular E1 channel. The reset default is disabled (‘0’).  
All of the interrupt registers in the above section are capable of activating the chip interrupt pin if their corresponding  
interrupt enable bits are set to 1.  
Bit  
Bit  
Name  
Unused  
Label  
Type  
Default  
<7:4>  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BpvOvrFlwIntEn  
R/W  
0
0
0
0
RcvRbeOvrFlwEn  
RcvCrcOvrFlwIntEn  
RcvFasErrOvrFlwEn  
R/W  
R/W  
R/W  
RCV_FRMWD_ERC - Receiver FrameWord Error Counter (j7 - j6H)  
(j =[8 to F] and corresponds to the E1 channel number)  
(j7H = bits <15:8>, j6H = bits <7:0>)  
This counter increments each time an errored E1 frameword (FAS and/or NFAS: see global configuration register  
0FH: bits CnfFeCnt[1..0]) is detected. A write to the MSByte of the counter (Register j7H) causes the entire counter  
to be buffered and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Label  
Type  
Default  
Bit  
<15:13>  
Bit <12:0> RcvFasErrCnt[12:0]  
Unused  
RO  
0
RCV_BLCK_ERC - Receiver CRC-4 Block Error Counter (j9 - j8H)  
(j =[8 to F] and corresponds to the E1 channel number)  
(j9H = bits<15:8>, j8H = bits <7:0>  
This counter increments each time either a CRC Block error event is selected. A write to the MSByte of the counter  
(Register j9H) causes the entire counter to be buffered and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Label  
Type  
Default  
Bit  
<15:10>  
Unused  
RcvCrc4ErrCnt[9:0]  
Bit <9:0>  
RO  
0
40 of 56  
MICROPROCESSOR REGISTER DESCRIPTION  
RCV_RMT_BLCK_ERC - Receiver Remote CRC-4 Block Error Counter (jB - jAH)  
(j =[8 to F] and corresponds to the E1 channel number)  
(jBH = bits<15:8>, jAH = bits<7:0>)  
This counter increments each time a remote CRC-4 block error is detected. A write to the MSByte of the counter (Reg-  
ister jBH) causes the entire counter to be buffered and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Label  
Type  
Default  
Bit <15:10> Unused  
Bit <9:0>  
RcvRbeCnt[9:0]  
RO  
0
RCV_CD_ERC - Receiver Code Errors Counter (jDH)  
(j =[8 to F] and corresponds to the E1 channel number)  
(jDH = bits <15:8>, jCH = bits<7:0>)  
This counter increments each time a code error (Bipolar Violation) is detected, according to cnfBpvDet[1,0] configu-  
ration bits in global register 0FH. A write to the MSByte of the counter (register jDH) causes the entire counter to be  
buffered and then cleared. The contents of the buffer can then be read.  
Bit  
Name  
Label  
Type  
Default  
Bit <15:0> BpvCnt[15:0]  
RO  
0
41 of 56  
SXT6282  
TEST SPECIFICATIONS  
Table 4: Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Unit  
Supply Voltage  
VDD  
VIN  
3.6  
5.5  
V
V
DC Voltage on any pin1  
-1.0  
Ambient operating temperature  
Storage temperature range  
TOP  
TST  
-40  
-65  
+85  
C
C
+150  
1. Minimum voltage is -0.6V dc which may undershoot to -1.0 V for pulses of less than 20 ns  
CAUTION  
Exceeding these values may cause permanent damage.  
Functional operation under these conditions is not implied  
Exposure to maximum rating conditions for extended periods may affect device reliability  
Table 5: Operating Conditions  
Typ1  
Parameter  
Symbol  
Min  
Max  
Unit  
Recommended Operating Temperature  
Supply Voltage - I/O Ring and Core  
TOP  
VDDr  
IDDrja  
-40  
3.0  
-
-
+85  
3.6  
-
C
V
3.3  
65  
Supply Current 3 (8 channels in jitter attenuation mode)  
Supply Current - Core 3 (8 channels in retiming mode)  
mA  
IDDrret  
-
15  
-
mA  
1. Typical values are at 25C and nominal voltage and are provided for design aid only; not guaranteed nor subject to production testing  
2. Voltages with respect to ground unless otherwise specified  
3. Core +I/O (outputs loaded with 30pF).  
Table 6: 5 V Tolerant Digital I/O Characteristics  
Parameter  
Input Low Voltage  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
VT  
0.5  
5.5  
V
V
Input High Voltage  
2.0  
5.0  
1.4  
Switching Threshold  
Input Leakage High  
Output Low Voltage  
Output High Voltage  
Output Leakage (no pull up)  
V
VDD=3.3V, 25C  
VIN=VDD=3.6V  
VDD=3.0V  
IIH  
5
uA  
V
VOL  
VOH  
IOZ  
0.4  
VDD-0.6V  
-10  
V
10  
uA  
Vin=VDD or VSS, VDD=  
3.6V, No pull up  
1. All values applicable over recommended Voltage and Temperature operating range unless otherwise noted  
42 of 56  
TEST SPECIFICATIONS  
Figure 5: E1 outputs, transmitted to the LIUs, Timing  
DRETCKREF  
tTCKOpd  
tTCKOpd  
TCLKi  
tTDOpd  
tTDOpd  
TPOSDi  
TNEGDi  
DRAWING  
1 - 10/21/98  
Global Conf. Register @ 0xAF / bit #6 :  
CnfTxClkOut = 1  
CnfTxClkOut = 0  
Table 7: E1 outputs, transmitted to the LIUs, Timing Parameters  
Parameter  
Symbol  
Min  
3
Typ  
Max  
11  
Unit  
ns  
ns  
2
DRETCKREF rising edge to TCLKi rising/falling edge  
tTCKOpd  
2
TCLKi rising/falling edge to TPOSDi and TNEGDi1  
tTDOpd  
1
8
1. i = [0 to 7] and corresponds to the eight different E1 channel numbers  
2. Considering outputs with a 25pF load  
Figure 6: E1 inputs, received from the LIUs, Timing  
RCLKi  
tRDIsu  
tRDIh  
tRDIsu  
tRDIh  
RPOSDi  
RNEGDi  
GIBRALTAR DS R  
_ _ 1.0.FM - 6/15/98  
Global Conf. Register @ AFH / bit #5 :  
CnfRxClkIn = 1  
CnfRxClkIn = 0  
Table 8: E1 inputs, received from the LIUs,Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
RPOSDi and RNEGDi setup time  
to RCLKi rising/falling edge  
tRDIsu  
1
ns  
ns  
RPOSDi and RNEGDi hold time  
from RCLKi rising/falling edge  
tRDIh  
4
1. i = [0 to 7] and corresponds to the eight different E1 channel numbers  
43 of 56  
SXT6282  
Figure 7: E1 inputs, received from the demultiplexer, Timing  
DTCi  
tRDIsu  
tRDIh  
tRDIsu  
tRDIh  
DTDi  
AC_TRANSMIT _FMAP .VSD - 2/19/98  
Global Conf. Register @ 0xAF / bit #7 :  
CnfTxClkIn = 1  
CnfTxClkIn = 0  
Table 9: E1 inputs, received from the demultiplexer, Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
ns  
ns  
DTDi setup time to DTCi falling/rising edge  
DTDi hold time from DTCi falling/rising edge  
tRDIsu  
tRDIh  
1
3
1. i = [0 to 7] and corresponds to the eight different E1 channel numbers  
2. Considering outputs with a 25pF load  
Figure 8: E1 outputs, transmitted to the multiplexer, Timing  
RCLKi (with CnfRxClkIn = 1  
Conf. Register @ 0xAF / bit #5)  
RCLKi (with CnfRxClkIn = 0  
Conf. Register @ 0xAF /bit #5)  
tRCKOpd  
tRCKOpd  
MTCi  
MTDi  
tRDOpd  
tRDOpd  
GIBRALTAR  
DS R  
_ _ 1.0.FM - 6/15/98  
Global Conf. Register @ AFH / bit #4 :  
CnfRxClkOut = 1  
CnfRxClkOut = 0  
Table 10: E1 outputs, transmitted to the multiplexer, Timing  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
RCLKi rising/falling edge to MTCi rising/falling edge  
MTCi falling/rising edge to MTDi  
tRCKOpd  
tRDOpd  
3
1
12  
7
ns  
ns  
1. i = [0 to 7] and corresponds to the eight different E1 channel numbers  
2. Considering outputs with a 25pF load  
44 of 56  
TEST SPECIFICATIONS  
Figure 9: Microprocessor Read Timing  
MicroProcessor Read Timing (Intel Mode)  
MicroProcessor Read Timing (Motorola Mode)  
tSAR  
tSAR  
A<7:0>  
A<7:0>  
tHAR  
tHAR  
tSALR  
tSALR  
tVL  
tHALR  
tHALR  
tVL  
ASB  
ASB  
tSCR  
tHCR  
tSLR  
CSB  
R W B  
tSLR  
tSRWB  
tHRWB  
tVRD  
RDB  
INT  
CS  
tINTH  
tSCR  
tHCR  
E
tDDR  
tZDR  
tVRD  
tINTH  
INT  
DATA<7:0>  
tDDR  
tZDR  
tADR  
tAAC  
tAAC  
tHDR  
DATA<7:0>  
tADR  
tHDR  
tAAC  
tAAC  
Table 11: Microprocessor Data Read Timing Parameters (considering outputs with a 50pF  
load)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
A<7:0> setup time to read cycle end  
A<7:0> hold time from inactive read  
tSAR  
5
1
ns  
ns  
1
tHAR  
2
A<7:0> setup time to latch  
A<7:0> hold time from latch  
Valid latch pulse width  
4
2
5
6
ns  
ns  
ns  
ns  
tSALR  
2
tHALR  
2
tVL  
2
AS rising edge to read cycle end setup  
tSLR  
RWB setup to active read  
RWB hold from inactive read  
CSB setup to active read  
CSB hold from inactive read  
tSRWB  
tHRWB  
tSCR  
1
1
1
1
ns  
ns  
ns  
ns  
tHCR  
1. For non-multiplexed Address and Data bus (ASB tied high)  
2. For multiplexed Address and Data bus (ASB used as address latch enable)  
3. T is the minimum cycle time of either DTCi, either, DRETCKREF, or MTCi (typically 488 ns for E1)  
45 of 56  
SXT6282  
Table 11: Microprocessor Data Read Timing Parameters (considering outputs with a 50pF  
load)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DATA<7:0> access time from valid address  
(or ASB whichever comes last for muxed AD bus)  
DATA<7:0> bus driven from active read  
tAAC  
20  
ns  
tDDR  
tADR  
tHDR  
tZDR  
tVRD  
5
4
ns  
ns  
ns  
ns  
ns  
ns  
DATA<7:0> access time from active read  
DATA<7:0> hold from inactive read  
DATA<7:0> High impedance from inactive read  
Valid read pulse width  
15  
13  
20  
3
Inactive read to inactive INT (due to reset on read  
feature)  
T + 6  
2*T + 21  
tINTH  
1. For non-multiplexed Address and Data bus (ASB tied high)  
2. For multiplexed Address and Data bus (ASB used as address latch enable)  
3. T is the minimum cycle time of either DTCi, either, DRETCKREF, or MTCi (typically 488 ns for E1)  
Figure 10: Microprocessor Write Timing  
MicroProcessor Write Timing (Intel Mode)  
MicroProcessor Write Timing (Motorola Mode)  
tS A W  
tS A W  
A<7:0>  
A<7:0>  
tH A W  
tH A W  
tS A L W  
tS A L W  
tH A L W  
tH A L W  
tVL  
tVL  
ASB  
CSB  
ASB  
tS C W  
tH C W  
tS L W  
tH R W B  
R W B  
tS R W B  
tS L W  
tH C W  
tS C W  
W R B  
INT  
CSB  
E
tINTH  
tV W R  
tV W R  
tS D W  
tINTH  
tH D W  
INT  
DATA<7:0>  
tS D W  
tH D W  
DATA<7:0>  
46 of 56  
TEST SPECIFICATIONS  
Table 12: Microprocessor Data Write Timing Parameters  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
A<7:0> setup time to write cycle end  
A<7:0> hold time from inactive write  
tSAW  
6
2
ns  
ns  
1
tHAW  
2
A<7:0> setup time to latch  
4
2
5
7
ns  
ns  
ns  
ns  
tSALW  
2
A<7:0> hold time from latch  
Valid latch pulse width  
tHALW  
2
tVL  
2
ASB rising edge to write cycle end setup  
tSLW  
RWB setup to active write  
tSRWB  
tHRWB  
tSCW  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RWB hold from inactive write  
CSB setup to active write  
1
1
CSB hold from inactive write  
DATA<7:0> setup to inactive write  
DATA<7:0> hold from inactive write  
Valid write pulse width  
tHCW  
tSDW  
tHDW  
tVWR  
1
2
2
20  
T + 6  
3
Inactive write to inactive INT (due to interrupt  
masking)  
2*T + 21  
tVWR  
1. For non-multiplexed Address and Data bus (AS tied high)  
2. For multiplexed Address and Data bus (AS used as address latch enable)  
3. T is the minimum cycle time of either DTCi, either, DRETCKREF, or MTCi (typically 488 ns for E1)  
47 of 56  
SXT6282  
TESTABILITY  
The SXT6282 provides a method for enhancing testability:  
IEEE1149.1 Boundary Scan (JTAG) is used for testing of  
the interconnect.  
.
Table 13: JTAG Pin Description  
Pin #  
Name  
I/O  
Function  
IEEE 1149.1 BOUNDARY SCAN  
DESCRIPTION  
103  
JTMS_P  
I
Test Mode Select:  
Determines state of  
TAP Controller. Pull  
up 48k  
The boundary scan circuitry allows the user to test the  
interconnection between the SXT6282 and the circuit  
board. The boundary scan port consists of 5 pins as shown  
in Table 13. The heart of the scan circuitry is the Test  
Access Port controller (TAP). The TAP controller is a 16  
state machine that controls the function of the boundary  
scan circuitry. Inputs of the TAP controller are the Test  
Mode Select (JTMS) and the Test Clock (JTCK) signals.  
Data and instructions are shifted into the SXT6282 through  
the Test Data In pin (JTDI). Data and instructions are  
shifted out through the Test Data Out pin (JTDO). An asyn-  
chronous reset pin (JTRS) allows to reset the boundary  
scan circuitry  
104  
102  
JTCK_P  
JTRS_P  
I
I
Test Clock: Clock for  
all boundary scan  
circuitry  
Test Reset: Active  
low asynchronous  
signal that causes  
the TAP controller to  
reset. Pull down 35k  
101  
100  
JTDI_P  
I
Test Data In: Input  
signal used to shift in  
instructions and  
data. Pull up 48k  
JTDO_P  
O
Test data Out: Output  
signal used to shift  
out instructions and  
data.  
Figure 11: Test Access Port  
Boundary Scan  
Bypass Register  
JTDI  
Device ID Register  
Instruction Register  
JTDO  
JTMS  
JTCK  
JTRS  
Test Access Port Controller  
48 of 56  
TESTABILITY  
shifts while this instruction is active. All BSR cells  
capture data present at their inputs on the rising edge  
of JTCK during the CAPTURE-DR state. No action is  
taken during the UPDATE-DR state.  
INSTRUCTION REGISTER AND  
DEFINITIONS  
The SXT6282 supports the following instructions  
IEEE1149.1: EXTEST, SAMPLE/PRELOAD, BYPASS  
and IDCODE. Instructions are shifted into the instruction  
register during the SHIFT-IR state and become active upon  
exiting the UPDATE-IR state. The instruction register def-  
inition is shown in the following figure.  
BYPASS (‘b11)  
This instruction allows a device to be effectively  
removed from the scan chain by inserting a one-bit  
shift register stage between TDI and TDO during data  
shifts. When the instruction is active, the test logic has  
no impact upon the system logic performing its system  
function. When selected, the shift-register is set to a  
logic zero on the rising edge of the JTCK during the  
CAPTURE-DR state.  
TDI  
TDO  
IDCODE (‘b10)  
MSB  
LSB  
This instruction allows the reading of component types  
via the scan chain. During this instruction, the 32-bit  
Device Identification Register (ID-Register) is placed  
between TDI and TDO. The ID Register captures a  
fixed value of (‘h 1188A0FD) on the rising edge of  
JTCK during the CAPTURE-DR state. The Device  
Identification Register contains the following informa-  
tion: Manufacturer ID: ‘d126; Design Part Number: ‘d  
SXT6282; Design Version Number: ‘d1.  
EXTEST (‘b00)  
This instruction allows the testing of circuitry external  
to the package, typically the board interconnect, to be  
tested. While the instruction is active, the boundary  
scan register is connected between TDI and TDO for  
any data shifts. Boundary scan cells at the output pins  
are used to apply test stimuli, while those at input pins  
capture test results. Signals present on input pins are  
loaded into the BSR inputs cells on the rising edge of  
JTCK during CAPTURE-DR state. BSR contains are  
shifted one bit location on each rising edge of JTCK  
during the SHIFT-DR state. BSR output cell contents  
appear at output pins on the falling edge of JTCK dur-  
ing the UPDATE-IR state.  
BOUNDARY SCAN REGISTER  
The Boundary Scan Register is a 126 bit shift register,  
made of two types of 4 types of shift-register cells. Accord-  
ing to the Boundary Scan Description Language (BSDL)  
JTAG_BSRINBOTH,  
JTAG_BSRCTL  
JTAG_BSROUTBOTH  
designated  
and  
TYPE2,  
are  
JTAG_BSRINCLKOBS are designated TYPE1.  
Description  
• Length: 126 BSR cells  
One test cycle is:  
• JTCK_P Jtag Test Clock  
• JTDI_P Jtag Test Data Input  
1. A test stimuli pattern is shifted into the BSR during  
SHIFT-DR state  
• JTDO_C Jtag Test Data Output Control enable  
• JTDO_P Jtag Test Data Output  
• JTMS_P Jtag Test Mode Select  
• JTRS_P Jtag Test Reset  
2. This pattern is applied to output pins during the  
UPDATE-DR state  
3. The response is loaded into input BSR cells during the  
CAPTURE-DR state  
4. The results are shifted out and next test stimuli shifted  
in to the BSR  
SAMPLE/PRELOAD (‘b01)  
This instruction allows a snapshot of the normal oper-  
ation of the SXT6282. The boundary scan register is  
connected between the TDI and TDO for any data  
49 of 56  
SXT6282  
Figure 12: Boundary Scan Cell  
Data in  
Data out  
Scan out  
Scan in  
Shift dr  
Clock dr  
TYPE 1  
Scan out  
Data out  
Data in  
Scan in  
Shift dr  
Clock dr  
Update dr  
Mode  
TYPE 2  
Table 14: Boundary Scan Order  
dpllckref  
mcutype  
scanen  
scantest  
dretckref  
oen  
Clock  
Data  
Data  
Data  
Clock  
Data  
Data  
Data  
Data  
Data  
Data  
1
JTAG_BSRINCLKOBS  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINCLKOBS  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
2
3
4
5
6
dtc[7]  
7
dtd[7]  
8
mtd[7]  
mtc[7]  
mtc[6]  
9
10  
11  
oen_c  
oen_c  
50 of 56  
TESTABILITY  
Table 14: Boundary Scan Order  
mtd[6]  
dtd[6]  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
oen_c  
dtc[6]  
dtc[5]  
dtd[5]  
mtd[5]  
mtc[5]  
mtc[4]  
mtd[4]  
dtd[4]  
oen_c  
oen_c  
oen_c  
oen_c  
dtc[4]  
dtc[3]  
dtd[3]  
mtd[3]  
mtc[3]  
mtc[2]  
mtd[2]  
dtd[2]  
oen_c  
oen_c  
oen_c  
oen_c  
dtc[2]  
dtc[1]  
dtd[1]  
mtd[1]  
mtc[1]  
mtc[0]  
mtd[0]  
dtd[0]  
oen_c  
oen_c  
oen_c  
oen_c  
dtc[0]  
data/i[7]  
data/o[7]  
data/i[6]  
data/o[6]  
data/i[5]  
data/o[5]  
data/i[4]  
data/o[4]  
data/i[3]  
data/o[3]  
rdb_c  
rdb_c  
rdb_c  
rdb_c  
rdb_c  
51 of 56  
SXT6282  
Table 14: Boundary Scan Order  
data/i[2]  
data/o[2]  
data/i[1]  
data/o[1]  
data/i[0]  
data/o[0]  
oen_c  
rdb_c  
a[7]  
Data  
Data  
Data  
Data  
Data  
Data  
Enble  
Enble  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Enble  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRCTL  
rdb_c  
rdb_c  
rdb_c  
JTAG_BSRCTL  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRCTL  
a[6]  
a[5]  
a[4]  
a[3]  
a[2]  
a[1]  
a[0]  
csb  
asb  
wrb  
rdb  
reset  
int  
int  
rlos[0]  
rnegd[0]  
rposd[0]  
rclk[0]  
tnegd[0]  
tposd[0]  
tclk[0]  
rlos[1]  
rnegd[1]  
rposd[1]  
rclk[1]  
tnegd[1]  
tposd[1]  
tclk[1]  
rlos[3]  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
oen_c  
oen_c  
oen_c  
oen_c  
oen_c  
oen_c  
52 of 56  
TESTABILITY  
Table 14: Boundary Scan Order  
rnegd[3]  
rposd[3]  
rclk[3]  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
86  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
JTAG_BSROUTBOTH  
87  
88  
tnegd[3]  
tposd[3]  
tclk[3]  
89  
oen_c  
oen_c  
oen_c  
90  
91  
rlos[2]  
92  
rnegd[2]  
rposd[2]  
rclk[2]  
93  
94  
95  
tnegd[2]  
tposd[2]  
tclk[2]  
96  
oen_c  
oen_c  
oen_c  
oen_c  
oen_c  
oen_c  
97  
98  
tclk[5]  
99  
tposd[5]  
tnegd[5]  
rclk[5]  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
rposd[5]  
rnegd[5]  
rlos[5]  
tclk[4]  
oen_c  
oen_c  
oen_c  
tposd[4]  
tnegd[4]  
rclk[4]  
rposd[4]  
rnegd[4]  
rlos[4]  
tclk[6]  
oen_c  
oen_c  
oen_c  
tposd[6]  
tnegd[6]  
rclk[6]  
rposd[6]  
rnegd[6]  
rlos[6]  
tclk[7]  
oen_c  
oen_c  
oen_c  
tposd[7]  
tnegd[7]  
53 of 56  
SXT6282  
Table 14: Boundary Scan Order  
rclk[7]  
Data  
Data  
Data  
Data  
123  
124  
125  
126  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
JTAG_BSRINBOTH  
rposd[7]  
rnegd[7]  
rlos[7]  
GLOSSARY  
AIS  
Alarm Indication Signal  
E-1 Frame Alignment Signal  
First in/First Out Memory  
FAS  
FIFO  
MFAS  
NFAS  
PDH  
SDH  
E1 CRC-4 Multiframe Alignment Signal  
E1 Non-Frame Alignment Signal  
Synchronous Digital Hierarchy  
Synchronous Digital Hierarchy  
54 of 56  
PACKAGE INFORMATION  
PACKAGE INFORMATION  
D
NOTE: All dimensions in millimeters.  
b
D/2  
e
E/2  
E1/2  
e/2  
E1  
E
M
0
DEG. MIN.  
A2  
0.08  
/ 0.20 R.  
D1/2  
A1  
D1  
0.08 R. MIN.  
0.25  
L
A
0
- 7 DEG.  
1.00  
REF.  
144-pin L Quad Flat Pack package (1.40 mm body thickness)  
Millimeters  
Dimension1  
Minimum  
Nominal  
Maximum  
A
A1  
A2  
b
-
-
1.60  
0.15  
1.45  
0.27  
0.05  
1.35  
0.17  
0.10  
1.40  
0.22  
D
22.00 B.S.C.  
20.00 B.S.C.  
22.00 B.S.C.  
20.00 B.S.C.  
0.50 B.S.C.  
0.60  
D1  
E
E1  
e
L
0.45  
0.14  
0.75  
-
M
-
1. See JEDEC Publication for additional specifications.  
55 of 56  
Corporate Headquarters  
9750 Goethe Road  
Sacramento, California 95827  
Telephone (916) 855-5000  
Fax: (916) 854-1101  
The Americas  
International  
EAST  
WEST  
ASIA/PACIFIC  
EUROPE  
European Area  
Eastern Area Headquarters & Western Area  
Northeastern Regional Office Headquarters  
Asia / Pacific Area  
Headquarters  
Headquarters  
234 Littleton Road, Unit 1A  
Westford, MA 01886  
USA  
Tel: (978) 692-1193  
Fax: (978) 692-1124  
3375 Scott Blvd., #110  
Santa Clara, CA 95054  
USA  
Tel: (408) 496-1950  
Fax: (408) 496-1955  
101 Thomson Road  
United Square #08-01  
Singapore 307591  
Thailand  
Tel: +65 353 6722  
Fax: +65 353 6711  
Parc Technopolis-Bat. Zeta 3,  
avenue du Canada -  
Z.A. de Courtaboeuf  
Les Ulis Cedex 91974  
France  
Tel: +33 1 64 86 2828  
Fax: +33 1 60 92 0608  
North Central  
Regional Office  
South Central  
Regional Office  
Central Asia/Pacific  
Regional Office  
Central and Southern  
Europe Regional Office  
One Pierce Place  
Suite 500E  
Itasca, IL 60143  
USA  
Tel: (630) 250-6044  
Fax: (630) 250-6045  
2340 E. Trinity Mills Road Suite 305, 4F-3, No. 75, “Regus”  
Suite 306  
Carrollton, TX 75006  
USA  
Tel: (972) 418-2956  
Fax: (972) 418-2985  
Hsin Tai Wu Road  
Sec. 1, Hsi-Chih,  
Taipei County, Taiwan  
Tel: +886 22 698 2525  
Feringastrasse 6  
D-85774 Muenchen-  
Unterfoerhring, Germany  
Tel: +49 89 99 216 375  
Fax: +886 22 698 3017 Fax: +49 89 99 216 319  
Southeastern  
Regional Office  
Southwestern  
Regional Office  
Northern Asia/Pacific  
Regional Office  
Northern Europe  
Regional Office  
4020 WestChase Blvd  
Suite 100  
Raleigh, NC 27607  
USA  
28203 Cabot Road  
Suite 300  
Laguna Niguel, CA 92677  
USA  
Nishi-Shinjuku, Mizuma Torshamnsgatan 35  
Building 8F 164/40 Kista/Stockholm,  
3-3-13, Nishi-Shinjuku, Sweden  
Shinjuku-Ku  
Tel: +46 8 750 3980  
Tel: (919) 836-9798  
Fax: (919) 836-9818  
Tel: (714) 365-5655  
Fax: (714) 365-5653  
Tokyo, 160-0023 Japan Fax: +46 8 750 3982  
Tel: +81 3 3347-8630  
Fax: +81 3 3347-8635  
Latin/South  
America  
9750 Goethe Road  
Sacramento, CA 95827  
USA  
Tel: (916) 855-5000  
Fax: (916) 854-1102  
Revision  
Date  
Status  
0.0  
1.0  
1.1  
03/98  
06/98  
09/98  
Advance Information, limited distribution  
Product Release  
Remove 5V VDDP pin reference and associated DC characteristics, other minor changes  
The products listed in this publication are covered by one or more of the following patents. Additional patents pending.  
5,008,637; 5,028,888; 5,057,794; 5,059,924; 5,068,628; 5,077,529; 5,084,866; 5,148,427; 5,153,875; 5,157,690; 5,159,291; 5,162,746; 5,166,635; 5,181,228;  
5,204,880; 5,249,183; 5,257,286; 5,267,269; 5,267,746; 5,461,661; 5,493,243; 5,534,863; 5,574,726; 5,581,585; 5,608,341; 5,671,249; 5,666,129; 5,701,099  
Copyright © 1998 Level One Communications, Inc. Specifications subject to change without notice.  
All rights reserved. Printed in the United States of America.  
PDS-6282-R1.1-9/98  

相关型号:

SXT6282QE

PCM Transceiver, 8-Func, PQFP144, 1.40 MM HEIGHT, LQFP-144
INTEL

SXT6A-12SA

SIP Non-Isolated Power Module
BOURNS

SXT6A-12SA-P

SIP Non-Isolated Power Module
BOURNS

SXT6A-3-5SA

SIP Non-Isolated Power Module
BOURNS

SXT6A-3-5SA-P

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, ROHS COMPLIANT, SIP-5
BOURNS

SXTA42

NPN SILICON PLANAR HIGH VOLTAGE TRANSISTOR
ZETEX

SXTA42

NPN Silicon High Voltage Transistors
INFINEON

SXTA42

SOT89 NPN SILICON PLANAR HIGH VOLTAGE TRANSISTOR
DIODES

SXTA42TA

Small Signal Bipolar Transistor, 0.5A I(C), 300V V(BR)CEO, 1-Element, NPN, Silicon
ZETEX

SXTA42TC

暂无描述
DIODES

SXTA43

NPN Silicon High Voltage Transistors
INFINEON

SXTA92

PNP SILICON PLANAR HIGH VOLTAGE TRANSISTOR
ZETEX