T8100 [INTEL]

Core2 Duo Processor and Core2 Extreme Processor on 45-nm Process; 酷睿2双核处理器和酷睿2至尊处理器45纳米工艺
T8100
型号: T8100
厂家: INTEL    INTEL
描述:

Core2 Duo Processor and Core2 Extreme Processor on 45-nm Process
酷睿2双核处理器和酷睿2至尊处理器45纳米工艺

文件: 总77页 (文件大小:1031K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Core™2 Duo Processor and  
Intel® Core™2 Extreme Processor on  
45-nm Process for Platforms Based  
on Mobile Intel® 965 Express  
Chipset Family  
Datasheet  
January 2008  
Document Number: 318914-001  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE  
FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.  
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics  
of any features or instructions marked “reserved” or “undefined.Intel reserves these for future definition and shall have no responsibility whatsoever for  
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with  
this information.  
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications  
enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for  
more information.  
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check  
with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.  
Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some  
uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations  
and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.  
45-nm products are manufactured on a lead-free process. Lead-free per EU RoHS directive July, 2006. Some E.U. RoHS exemptions may apply to other  
components used in the product package. Residual amounts of halogens are below November, 2007 proposed IPC/JEDEC J-STD-709 standards.  
This device is protected by U.S. patent numbers 5,315,448 and 6,516,132, and other intellectual property rights. The use of Macrovision's copy  
protection technology in the device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless  
otherwise authorized in writing by Macrovision. Devices incorporating Macrovision's copy protection technology can only be sold or distributed to  
companies appearing on Macrovision's list of “Authorized Buyers” at: www.macrovision.com. Reverse engineering or disassembly is prohibited.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Intel, Pentium, Intel Core, Intel Core Duo, Intel SpeedStep, MMX and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.  
* Other names and brands may be claimed as the property of others.  
Copyright © 2008, Intel Corporation. All rights reserved.  
2
Datasheet  
Contents  
1
Introduction..............................................................................................................7  
1.1  
1.2  
Terminology .......................................................................................................8  
References .........................................................................................................9  
2
Low Power Features................................................................................................ 11  
2.1  
Clock Control and Low-Power States .................................................................... 11  
2.1.1 Core Low-Power State Descriptions........................................................... 13  
2.1.2 Package Low-Power State Descriptions...................................................... 15  
Enhanced Intel SpeedStep® Technology .............................................................. 19  
Extended Low-Power States................................................................................ 20  
FSB Low-Power Enhancements............................................................................ 21  
2.4.1 Dynamic FSB Frequency Switching ........................................................... 21  
2.4.2 Intel® Dynamic Acceleration Technology................................................... 22  
VID-x .............................................................................................................. 22  
Processor Power Status Indicator (PSI-2) Signal.................................................... 22  
2.2  
2.3  
2.4  
2.5  
2.6  
3
Electrical Specifications........................................................................................... 23  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Power and Ground Pins ...................................................................................... 23  
FSB Clock (BCLK[1:0]) and Processor Clocking...................................................... 23  
Voltage Identification......................................................................................... 23  
Catastrophic Thermal Protection.......................................................................... 26  
Reserved and Unused Pins.................................................................................. 27  
FSB Frequency Select Signals (BSEL[2:0])............................................................ 27  
FSB Signal Groups............................................................................................. 27  
CMOS Signals ................................................................................................... 29  
Maximum Ratings.............................................................................................. 29  
3.10 Processor DC Specifications ................................................................................ 30  
4
5
Package Mechanical Specifications and Pin Information.......................................... 37  
4.1  
4.2  
Package Mechanical Specifications....................................................................... 37  
Processor Pinout and Pin List .............................................................................. 46  
Thermal Specifications ............................................................................................ 71  
5.1  
Thermal Features .............................................................................................. 73  
5.1.1 Thermal Diode ....................................................................................... 73  
5.1.2 Intel® Thermal Monitor........................................................................... 74  
5.1.3 Digital Thermal Sensor............................................................................ 76  
Out of Specification Detection ............................................................................. 77  
PROCHOT# Signal Pin........................................................................................ 77  
5.2  
5.3  
Datasheet  
3
Figures  
1
2
3
4
5
6
7
8
9
Core Low-Power States .............................................................................................12  
Package Low-Power States ........................................................................................13  
C6 Entry Sequence ...................................................................................................18  
C6 Exit Sequence .....................................................................................................18  
Active VCC and ICC Loadline Standard Voltage and Extreme Edition Processors ................33  
Deeper Sleep VCC and ICC Loadline Standard Voltage and Extreme Edition Processors ......34  
6-MB and 3-MB on 6-MB Die Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)........38  
6-MB and 3-MB on 6-MB Die Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)........39  
6-MB and 3-MB on 6-MB Die Micro-FCBGA Processor Package Drawing (Sheet 1 of 2)........40  
10 6-MB and 3-MB on 6-MB die Micro-FCBGA Processor Package Drawing (Sheet 2 of 2) ........41  
11 3-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) ........................................42  
12 3-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) ........................................43  
13 3-MB Micro-FCBGA Processor Package Drawing (Sheet 1 of 2)........................................44  
14 3-MB Micro-FCBGA Processor Package Drawing (Sheet 2 of 2)........................................45  
15 Processor Pinout (Top Package View, Left Side) ............................................................46  
16 Processor Pinout (Top Package View, Right Side) ..........................................................47  
Tables  
1
Coordination of Core Low-Power States at the Package Level..........................................13  
2
3
4
5
6
7
8
9
Voltage Identification Definition..................................................................................23  
BSEL[2:0] Encoding for BCLK Frequency......................................................................27  
FSB Pin Groups ........................................................................................................28  
Processor Absolute Maximum Ratings..........................................................................29  
Voltage and Current Specifications for the Extreme Edition Processors.............................30  
Voltage and Current Specifications for the Dual-Core Standard Voltage Processors ............32  
FSB Differential BCLK Specifications............................................................................34  
AGTL+ Signal Group DC Specifications ........................................................................35  
10 CMOS Signal Group DC Specifications..........................................................................36  
11 Open Drain Signal Group DC Specifications ..................................................................36  
12 Pin Listing by Pin Name.............................................................................................48  
13 Pin Listing by Pin Number..........................................................................................55  
14 Signal Description.....................................................................................................62  
15 Power Specifications for the Extreme Edition Processor..................................................71  
16 Power Specifications for Dual-Core Standard Voltage Processors.....................................72  
17 Thermal Diode Interface............................................................................................73  
18 Thermal Diode Parameters using Transistor Model ........................................................74  
4
Datasheet  
Revision History  
Document  
Number  
Revision  
Number  
Description  
Date  
318914  
-001  
Initial release  
January 2008  
§
Datasheet  
5
6
Datasheet  
Introduction  
1 Introduction  
The Intel® Core™2 Duo processor and Intel® Core™2 Extreme processor built on 45-  
nanometer process technology are the next generation high-performance, low-power  
mobile processors based on the Intel® Core™ microarchitecture. The Intel Core 2 Duo  
processor and Intel Core 2 Extreme processor support the Mobile Intel® 965 Express  
Chipset and Intel® 82801HBM ICH8 Controller Hub-Based Systems. The document  
contains electrical, mechanical and thermal specifications for the following processors:  
• Intel Core 2 Duo processor - Standard Voltage  
• Intel Core 2 Extreme processor  
Note:  
In this document, the Intel Core 2 Duo processor and Intel Core 2 Extreme mobile  
processor built on 45-nm process technology are referred to as the processor. The  
Mobile Intel® 965 Express Chipset family is referred to as the (G)MCH.  
The following list provides some of the key features on this processor:  
• Dual-core processor for mobile with enhanced performance.  
• Supports Intel® architecture with Intel® Wide Dynamic Execution.  
• Supports L1 cache-to-cache (C2C) transfer.  
• Supports PSI2 functionality.  
• Supports Enhanced Intel® Virtualization Technology.  
• On-die, primary 32-KB instruction cache and 32-KB write-back data cache in each  
core.  
• On-die, up to 6-MB second-level shared cache with Advanced Transfer Cache  
Architecture.  
• Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3),  
Supplemental Streaming SIMD Extensions 3 (SSSE3) and SSE4.1 Instruction Sets.  
• 800-MHz Source-Synchronous front side bus (FSB).  
• Advanced power management features including Enhanced Intel SpeedStep®  
Technology and Dynamic FSB frequency switching.  
• Digital Thermal Sensor (DTS).  
• Intel® 64 architecture.  
• Intel® Dynamic Acceleration Technology and Enhanced Multi-Threaded Thermal  
Management (EMTTM).  
• Micro-FCPGA and Micro-FCBGA packaging technologies (Extreme Edition only  
available in Micro-FCPGA).  
• Execute Disable Bit support for enhanced security.  
• Deep Power-Down Technology with P_LVL6 I/O Support.  
• Half-ratio support (N/2) for Core-to-Bus ratio.  
Datasheet  
7
Introduction  
1.1  
Terminology  
Term  
Definition  
A “#” symbol after a signal name refers to an active low signal, indicating a  
signal is in the active state when driven to a low level. For example, when  
RESET# is low, a reset has been requested. Conversely, when NMI is high,  
a nonmaskable interrupt has occurred. In the case of signals where the  
name does not imply an active state but describes part of a binary  
sequence (such as address or data), the “#” symbol implies that the signal  
is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A’, and D[3:0]#  
= “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level).  
#
Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+  
signaling technology on some Intel® processors.  
AGTL+  
Enhanced Intel  
SpeedStep®  
Technology  
Technology that provides power management capabilities to laptops.  
The Execute Disable bit allows memory to be marked as executable or non-  
executable, when combined with a supporting operating system. If code  
attempts to run in non-executable memory the processor raises an error to  
the operating system. This feature can prevent some classes of viruses or  
worms that exploit buffer overrun vulnerabilities and can thus help improve  
the overall security of the system. See the Intel® Architecture Software  
Developer's Manual for more detailed information.  
Execute Disable  
Bit  
Front Side Bus  
(FSB)  
Refers to the interface between the processor and system core logic (also  
known as the chipset components).  
Half ratio support Penryn processor support the N/2 feature which allows having fractional  
core to bus ratios. This feature provides the flexibility of having more  
frequency options and be able to have products with smaller frequency  
steps.  
(N/2) for Core to  
Bus ratio  
Intel® 64  
Technology  
64-bit memory extensions to the IA-32 architecture.  
Intel®  
Virtualization  
Technology  
Processor virtualization which, when used in conjunction with Virtual  
Machine Monitor software enables multiple, robust independent software  
environments inside a single platform.  
Processor core die with integrated L1 and L2 cache. All AC timing and  
signal integrity specifications are at the pads of the processor core.  
Processor Core  
Refers to a non-operational state. The processor may be installed in a  
platform, in a tray, or loose. Processors may be sealed in packaging or  
exposed to free air. Under these conditions, processor landings should not  
be connected to any supply voltages, have any I/Os biased or receive any  
clocks. Upon exposure to “free air” (i.e., unsealed packaging or a device  
removed from packaging material) the processor must be handled in  
accordance with moisture sensitivity labeling (MSL) as indicated on the  
packaging material.  
Storage  
Conditions  
TDP  
VCC  
VSS  
Thermal Design Power.  
The processor core power supply.  
The processor ground.  
8
Datasheet  
Introduction  
1.2  
References  
Document  
Document Number  
Intel® Core™2 Duo Mobile Processor and Intel® Core™2 Extreme  
Processor on 45-nm Technology Specification Update  
318915  
Mobile Intel® 965 Express Chipset Family Datasheet  
316273  
316274  
Mobile Intel® 965 Express Chipset Family Specification Update  
See http://www.intel.com/  
design/chipsets/datashts/  
313056.htm  
Intel® I/O Controller Hub 8 (ICH8)/ I/O Controller Hub 8M  
(ICH8M) Datasheet  
See http://www.intel.com/  
design/chipsets/specupdt/  
313057.htm  
Intel® I/O Controller Hub 8 (ICH8)/ I/O Controller Hub 8M  
(ICH8M) Specification Update  
See http://www.intel.com/  
design/pentium4/manuals/  
index_new.htm  
Intel® 64 and IA-32 Architectures Software Developer’s Manual  
See http://  
developer.intel.com/design/  
processor/specupdt/  
252046.htm  
Intel® 64 and IA-32 Architectures Software Developer's Manuals  
Documentation Change  
Volume 1: Basic Architecture  
253665  
253666  
253667  
253668  
253669  
Volume 2A: Instruction Set Reference, A-M  
Volume 2B: Instruction Set Reference, N-Z  
Volume 3A: System Programming Guide  
Volume 3B: System Programming Guide  
§
Datasheet  
9
Introduction  
10  
Datasheet  
Low Power Features  
2 Low Power Features  
2.1  
Clock Control and Low-Power States  
The processor supports low-power states both at the individual core level and the  
package level for optimal power management.  
A core may independently enter the C1/AutoHALT, C1/MWAIT, C2, C3, C4, Intel®  
Enhanced Deeper Sleep, and Intel Deep Power-Down low-power states. When both  
cores coincide in a common core low-power state, the central power management logic  
ensures the entire processor enters the respective package low-power state by  
initiating a P_LVLx (P_LVL2, P_LVL3, P_LVL4, P_LVL5,P_LVL6) I/O read to the (G)MCH.  
The processor implements two software interfaces for requesting low-power states:  
MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK  
register block mapped in the processor’s I/O address space. The P_LVLx I/O reads are  
converted to equivalent MWAIT C-state requests inside the processor and do not  
directly result in I/O reads on the processor FSB. The P_LVLx I/O Monitor address does  
not need to be set up before using the P_LVLx I/O read interface. The sub-state hints  
used for each P_LVLx read can be configured through the IA32_MISC_ENABLES model-  
specific register (MSR).  
If a core encounters a chipset break event while STPCLK# is asserted, it then asserts  
the PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to the  
system logic that individual cores should return to the C0 state and the processor  
should return to the Normal state.  
Figure 1 shows the core low-power states and Figure 2 shows the package low-power  
states for the processor. Table 1 maps the core low-power states to package low-power  
states.  
Datasheet  
11  
Low Power Features  
Figure 1.  
Core Low-Power States  
Stop  
Grant  
STPCLK#  
asserted  
STPCLK#  
de-asserted  
STPCLK#  
STPCLK#  
de-asserted  
asserted  
STPCLK#  
de-asserted  
STPCLK#  
asserted  
C1/  
MWAIT  
C1/Auto  
Halt  
Core state  
break  
HLT instruction  
MWAIT(C1)  
Halt break  
P_LVL2 or  
MWAIT(C2)  
C0  
Core State  
break  
Core state  
break  
C2†  
P_LVL4 or  
P_LVL5/P_LVL6  
MWAIT(C4/C6)  
ø
P_LVL3 or  
Core  
MWAIT(C3)  
state  
break  
C4† ‡/C6  
C3†  
halt break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt  
core state break = (halt break OR Monitor event) AND STPCLK# high (not asserted)  
† — STPCLK# assertion and de-assertion have no effect if a core is in C2, C3, or C4.  
‡ — Core C4 state supports the package level Intel Enhanced Deeper Sleep state.  
Ø — P_LVL5/P_LVL6 read is issued once the L2 cache is reduced to zero.  
12  
Datasheet  
Low Power Features  
Figure 2.  
Package Low-Power States  
SLP# asserted  
DPSLP# asserted  
DPRSTP# asserted  
STPCLK# asserted  
Deeper  
Sleep†  
Stop  
Grant  
Deep  
Sleep  
Normal  
Sleep  
STPCLK# de-asserted  
SLP# de-asserted  
DPSLP# de-asserted  
DPRSTP# de-asserted  
Snoop  
Snoop  
serviced occurs  
Stop  
Grant  
Snoop  
† — Deeper Sleep includes the Deeper Sleep state, Intel Enhanced Deeper Sleep state, and C6 state  
Table 1.  
Coordination of Core Low-Power States at the Package Level  
Package State  
Core 0 State  
Core 1 State  
C0  
C1  
C2  
C3  
C4/C6  
C0  
C11  
C2  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Stop-Grant  
Stop-Grant  
Stop-Grant  
Deep Sleep  
Stop-Grant  
Deep Sleep  
C3  
Deeper Sleep/Intel®  
Enhanced Deeper Sleep/  
Intel® Deep Power-Down  
C4/C6  
Normal  
Normal  
Stop-Grant  
Deep Sleep  
NOTES:  
1.  
AutoHALT or MWAIT/C1.  
2.1.1  
Core Low-Power State Descriptions  
2.1.1.1  
Core C0 State  
This is the normal operating state for cores in the processor.  
2.1.1.2  
Core C1/AutoHALT Power-Down State  
C1/AutoHALT is a low-power state entered when a core executes the HALT instruction.  
The processor core will transition to the C0 state upon occurrence of SMI#, INIT#,  
LINT[1:0] (NMI, INTR), or FSB interrupt messages. RESET# will cause the processor to  
immediately initialize itself.  
A System Management Interrupt (SMI) handler will return execution to either Normal  
state or the AutoHALT power-down state. See the Intel® 64 and IA-32 Architectures  
Software Developer's Manuals, Volume 3A/3B: System Programmer's Guide for more  
information.  
The system can generate a STPCLK# while the processor is in the AutoHALT power-  
down state. When the system deasserts the STPCLK# interrupt, the processor will  
return execution to the HALT state.  
Datasheet  
13  
Low Power Features  
While in AutoHALT power-down state, the dual-core processor will process bus snoops  
and snoops from the other core. The processor core will enter a snoopable sub-state  
(not shown in Figure 1) to process the snoop and then return to the AutoHALT power-  
down state.  
2.1.1.3  
2.1.1.4  
Core C1/MWAIT Power-Down State  
C1/MWAIT is a low-power state entered when the processor core executes the  
MWAIT(C1) instruction. Processor behavior in the MWAIT state is identical to the  
AutoHALT state except that Monitor events can cause the processor core to return to  
the C0 state. See the Intel® 64 and IA-32 Architectures Software Developer's Manuals,  
Volume 2A: Instruction Set Reference, A-M and Volume 2B: Instruction Set Reference,  
N-Z, for more information.  
Core C2 State  
Individual cores of the dual-core processor can enter the C2 state by initiating a P_LVL2  
I/O read to the P_BLK or an MWAIT(C2) instruction, but the processor will not issue a  
Stop-Grant Acknowledge special bus cycle unless the STPCLK# pin is also asserted.  
While in the C2 state, the dual-core processor will process bus snoops and snoops from  
the other core. The processor core will enter a snoopable sub-state (not shown in  
Figure 1) to process the snoop and then return to the C2 state.  
2.1.1.5  
Core C3 State  
Individual cores of the dual-core processor can enter the C3 state by initiating a P_LVL3  
I/O read to the P_BLK or an MWAIT(C3) instruction. Before entering C3, the processor  
core flushes the contents of its L1 caches into the processor’s L2 cache. Except for the  
caches, the processor core maintains all its architecture in the C3 state. The monitor  
remains armed if it is configured. All of the clocks in the processor core are stopped in  
the C3 state.  
Because the core’s caches are flushed the processor keeps the core in the C3 state  
when the processor detects a snoop on the FSB or when the other core of the dual-core  
processor accesses cacheable memory. The processor core will transition to the C0  
state upon occurrence of a Monitor event, SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB  
interrupt message. RESET# will cause the processor core to immediately initialize itself.  
2.1.1.6  
Core C4 State  
Individual cores of the dual-core processor can enter the C4 state by initiating a P_LVL4  
or P_LVL5 I/O read to the P_BLK or an MWAIT(C4) instruction. The processor core  
behavior in the C4 state is nearly identical to the behavior in the C3 state. The only  
difference is that if both processor cores are in C4, the central power management logic  
will request that the entire processor enter the Deeper Sleep package low-power state  
(see Section 2.1.2.6).  
To enable the package-level Intel Enhanced Deeper Sleep state, Dynamic Cache Sizing  
and Intel Enhanced Deeper Sleep state fields must be configured in the  
PMG_CST_CONFIG_CONTROL MSR. Refer to Section 2.1.2.6 for further details on Intel  
Enhanced Deeper Sleep state.  
14  
Datasheet  
Low Power Features  
2.1.1.7  
Core C6 State  
C6 is a radical, new, power-saving state which is being implemented on this processor.  
In C6 the processor saves its entire architectural state onto an on-die SRAM, hence  
allowing it to run at a voltage VC6 that is lower than Enhanced Deeper Sleep voltage.  
An individual core of the dual-core processor can enter the C6 state by initiating a  
P_LVL6 I/O read to the P_BLK or an MWAIT(C6) instruction. The primary method to  
enter C6 used by newer operating systems (that support MWAIT) will be through the  
MWAIT instruction.  
When the core enters C6, it saves the processor state that is relevant to the processor  
context in an on-die SRAM that resides on a separate power plane VCCP (I/O power  
supply). This allows the main core VCC to be lowered to a very low-voltage VC6. The on-  
die storage for saving the processor state is implemented as a per-core SRAM. The  
microcode performs the save and restore of the processor state on entry and exit from  
C6, respectively.  
2.1.2  
Package Low-Power State Descriptions  
2.1.2.1  
Normal State  
This is the normal operating state for the processor. The processor remains in the  
Normal state when at least one of its cores is in the C0, C1/AutoHALT, or C1/MWAIT  
state.  
2.1.2.2  
Stop-Grant State  
When the STPCLK# pin is asserted, each core of the dual-core processor enters the  
Stop-Grant state within 20 bus clocks after the response phase of the processor-issued  
Stop-Grant Acknowledge special bus cycle. Processor cores that are already in the C2,  
C3, or C4 state remain in their current low-power state. When the STPCLK# pin is  
deasserted, each core returns to its previous core low-power state.  
Since the AGTL+ signal pins receive power from the FSB, these pins should not be  
driven (allowing the level to return to VCCP) for minimum power drawn by the  
termination resistors in this state. In addition, all other input pins on the FSB should be  
driven to the inactive state.  
RESET# causes the processor to immediately initialize itself, but the processor will stay  
in Stop-Grant state. When RESET# is asserted by the system, the STPCLK#, SLP#,  
DPSLP#, and DPRSTP# pins must be deasserted prior to RESET# deassertion as per AC  
Specification T45. When re-entering the Stop-Grant state from the Sleep state,  
STPCLK# should be deasserted after the deassertion of SLP#, as per AC Specification  
T75.  
While in Stop-Grant state, the processor will service snoops and latch interrupts  
delivered on the FSB. The processor will latch SMI#, INIT# and LINT[1:0] interrupts  
and will service only one of each upon return to the Normal state.  
The PBE# signal may be driven when the processor is in the Stop-Grant state. PBE#  
will be asserted if there is any pending interrupt or Monitor event latched within the  
processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still  
cause assertion of PBE#. Assertion of PBE# indicates to system logic that the entire  
processor should return to the Normal state.  
A transition to the Stop-Grant Snoop state occurs when the processor detects a snoop  
on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see Section 2.1.2.4)  
occurs with the assertion of the SLP# signal.  
Datasheet  
15  
Low Power Features  
2.1.2.3  
2.1.2.4  
Stop-Grant Snoop State  
The processor responds to snoop or interrupt transactions on the FSB while in Stop-  
Grant state by entering the Stop-Grant Snoop state. The processor will stay in this  
state until the snoop on the FSB has been serviced (whether by the processor or  
another agent on the FSB) or the interrupt has been latched. The processor returns to  
the Stop-Grant state once the snoop has been serviced or the interrupt has been  
latched.  
Sleep State  
The Sleep state is a low-power state in which the processor maintains its context,  
maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is  
entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP#  
pin should only be asserted when the processor is in the Stop-Grant state. SLP#  
assertions while the processor is not in the Stop-Grant state is out of specification and  
may result in unapproved operation.  
In the Sleep state, the processor is incapable of responding to snoop transactions or  
latching interrupt signals. No transitions or assertions of signals (with the exception of  
SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep  
state. Snoop events that occur while in Sleep state or during a transition into or out of  
Sleep state will cause unpredictable behavior. Any transition on an input signal before  
the processor has returned to the Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state, and held active as  
specified in the RESET# pin specification, then the processor will reset itself, ignoring  
the transition through the Stop-Grant state. If RESET# is driven active while the  
processor is in the Sleep state, the SLP# and STPCLK# signals should be deasserted  
immediately after RESET# is asserted to ensure the processor correctly executes the  
Reset sequence.  
While in the Sleep state, the processor is capable of entering an even lower power  
state, the Deep Sleep state, by asserting the DPSLP# pin (See Section 2.1.2.5). While  
the processor is in the Sleep state, the SLP# pin must be deasserted if another  
asynchronous FSB event needs to occur.  
2.1.2.5  
Deep Sleep State  
The Deep Sleep state is entered through assertion of the DPSLP# pin while in the Sleep  
state. BCLK may be stopped during the Deep Sleep state for additional platform level  
power savings. BCLK stop/restart timings on appropriate chipset-based platforms are  
as follows:  
Deep Sleep entry: the system clock chip may stop/tristate BCLK within two BCLKs  
of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.  
Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels  
within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK  
periods.  
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be re-  
started after DPSLP# deassertion as described above. A period of 15 microseconds (to  
allow for PLL stabilization) must occur before the processor can be considered to be in  
the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter  
the Stop-Grant state.  
While in the Deep Sleep state, the processor is incapable of responding to snoop  
transactions or latching interrupt signals. No transitions of signals are allowed on the  
FSB while the processor is in the Deep Sleep state. When the processor is in the Deep  
Sleep state it will not respond to interrupts or snoop transactions.  
16  
Datasheet  
Low Power Features  
Warning:  
Any transition on an input signal before the processor has returned to the Stop-Grant  
state will result in unpredictable behavior.  
2.1.2.6  
Deeper Sleep State  
The Deeper Sleep state is similar to the Deep Sleep state but further reduces core  
voltage levels. One of the potential lower core voltage levels is achieved by entering the  
base Deeper Sleep state. The Deeper Sleep state is entered through assertion of the  
DPRSTP# pin while in the Deep Sleep state. The following lower core voltage level is  
achieved by entering the Intel Enhanced Deeper Sleep state, which is a sub-state of the  
Deeper Sleep state. Intel Enhanced Deeper Sleep state is entered through assertion of  
the DPRSTP# pin while in the Deep Sleep only when the L2 cache has been completely  
shut down. Refer to Section 2.1.2.6.1 and Section 2.1.2.6.3 for further details on  
reducing the L2 cache and entering the Intel Enhanced Deeper Sleep state.  
In response to entering Deeper Sleep, the processor drives the VID code corresponding  
to the Deeper Sleep core voltage on the VID[6:0] pins. Refer to the platform design  
guides for further details.  
Exit from Deeper Sleep or the Intel Enhanced Deeper Sleep state is initiated by  
DPRSTP# deassertion when either core requests a core state other than C4 or either  
core requests a processor performance state other than the lowest operating point.  
2.1.2.6.1  
Intel® Enhanced Deeper Sleep State  
Intel Enhanced Deeper Sleep state is a sub-state of Deeper Sleep that extends power  
saving capabilities by allowing the processor to further reduce core voltage once the L2  
cache has been reduced to zero ways and completely shut down. The following events  
occur when the processor enters the Intel Enhanced Deeper Sleep state:  
• The last core entering C4 issues a P_LVL4 or P_LVL5 I/O read or an MWAIT(C4)  
instruction and then progressively reduces the L2 cache to zero.  
• Once the L2 cache has been reduced to zero, the processor triggers a special  
chipset sequence to notify the chipset to redirect all FSB traffic, except APIC  
messages, to memory. The snoops are replied as misses by the chipset and are  
directed to main memory instead of the L2 cache. This allows for higher residency  
of the processor’s Intel Enhanced Deeper Sleep state.  
• The processor drives the VID code corresponding to the Intel Enhanced Deeper  
Sleep state core voltage on the VID[6:0] pins.  
2.1.2.6.2  
Intel® Deep Power-Down State (Previously known as Package C6 State)  
When both cores have entered the CC6 state and the L2 cache has been shrunk down  
to zero ways, the processor will enter the Intel Deep Power-Down state or C6 state. To  
do so both cores save their architectural states in the on-die SRAM that resides in the  
V
CCP domain. At this point, the core VCC will be dropped to the lowest core voltage VC6.  
The processor is now in an extremely low-power state.  
In the Intel Deep Power-Down state, the processor does not need to be snooped, as all  
the caches are flushed before entering C6.  
C6 exit is triggered by the chipset when it detects a break event. It deasserts the  
DPRSTP#, DPSLP#, SLP#, and STPCLK# pins to exit the processor out of the C6 state.  
At DPSLP# deassertion, the core VCC ramps up to the LFM value and the processor  
starts up its internal PLLs. At SLP# deassertion the processor is reset and the  
architectural state is read back into the cores from an on-die SRAM. The restore will be  
done in both cores irrespective of the break event and which core it is directed to. The  
C6 exit event will put both cores in CC0.  
Refer to Figure 3 and Figure 4 for C6 entry sequence and exit sequence.  
Datasheet  
17  
Low Power Features  
Figure 3.  
C6 Entry Sequence  
Core1  
mwait C6  
or Level 6  
I/O Read  
State  
Save  
CC0  
CC6  
Package  
C6  
slp  
assert  
dpslp  
assert  
dprstp  
assert  
Level 6  
I/O Read  
stpclk  
assert  
Core0  
mwait C6  
or Level 6  
I/O Read  
State  
Save  
L2  
Shrink  
CC0  
CC6  
Figure 4.  
C6 Exit Sequence  
Core 0  
CC0  
State  
Restore  
ucode  
reset  
Package  
C6  
dpsl  
deassert  
dprst  
deassert  
sl  
deassert  
H/W  
Reset  
stpclk  
deassert  
State  
Restore  
ucode  
reset  
CC0  
Core 1  
2.1.2.6.3  
Dynamic Cache Sizing  
Dynamic Cache Sizing allows the processor to flush and disable a programmable  
number of L2 cache ways upon each Deeper Sleep entry under the following  
conditions:  
• The second core is already in C4 and Intel Enhanced Deeper Sleep state or C6 state  
is enabled (as specified in Section 2.1.1.6).  
• The C0 timer that tracks continuous residency in the Normal package state has not  
expired. This timer is cleared during the first entry into Deeper Sleep to allow  
consecutive Deeper Sleep entries to shrink the L2 cache as needed.  
• The FSB speed to processor core speed ratio is below the predefined L2 shrink  
threshold.  
If the FSB speed-to-processor core speed ratio is above the predefined L2 shrink  
threshold, then L2 cache expansion will be requested. If the ratio is zero, then the ratio  
will not be taken into account for Dynamic Cache Sizing decisions.  
18  
Datasheet  
Low Power Features  
Upon STPCLK# deassertion, the first core exiting the Intel Enhanced Deeper Sleep  
state or C6 will expand the L2 cache to two ways and invalidate previously disabled  
cache ways. If the L2 cache reduction conditions stated above still exist when the last  
core returns to C4 and the package enters the Intel Enhanced Deeper Sleep state or  
C6, then the L2 will be shrunk to zero again. If a core requests a processor  
performance state resulting in a higher ratio than the predefined L2 shrink threshold,  
the C0 timer expires, or the second core (not the one currently entering the interrupt  
routine) requests the C1, C2, or C3 states, then the whole L2 will be expanded upon  
the next interrupt event.  
In addition, the processor supports Full Shrink on L2 cache. When the MWAIT C6  
instruction is executed with a hint=0x2 in ECX[3:0], the micro code will shrink all the  
active ways of the L2 cache in one step. This ensures that the package enters C6  
immediately when both cores are in CC6 instead of iterating till the cache is reduced to  
zero. The operating system (OS) is expected to use this hint when it wants to enter the  
lowest power state and can tolerate the longer entry latency.  
L2 cache shrink prevention may be enabled as needed on occasion through an  
MWAIT(C4) sub-state field. If shrink prevention is enabled, the processor does not  
enter Intel Enhanced Deeper Sleep state or C6 since the L2 cache remains valid and in  
full size.  
2.2  
Enhanced Intel SpeedStep® Technology  
The processor features Enhanced Intel SpeedStep Technology. The key features of  
Enhanced Intel SpeedStep Technology follow:  
• Multiple voltage and frequency operating points provide optimal performance at the  
lowest power.  
• Voltage and frequency selection is software controlled by writing to processor  
MSRs:  
— If the target frequency is higher than the current frequency, VCC is ramped up  
in steps by placing new values on the VID pins, and the PLL then locks to the  
new frequency.  
— If the target frequency is lower than the current frequency, the PLL locks to the  
new frequency, and the VCC is changed through the VID pin mechanism.  
— Software transitions are accepted at any time. If a previous transition is in  
progress the new transition is deferred until the previous transition completes.  
• The processor controls voltage ramp rates internally to ensure glitch-free  
transitions.  
• Low transition latency and large number of transitions possible per second:  
— Processor core (including L2 cache) is unavailable for up to 10 μs during the  
frequency transition.  
— The bus protocol (BNR# mechanism) is used to block snooping.  
Datasheet  
19  
Low Power Features  
• Improved Intel® Thermal Monitor mode:  
— When the on-die thermal sensor indicates that the die temperature is too high,  
the processor can automatically perform a transition to a lower frequency and  
voltage specified in a software-programmable MSR.  
— The processor waits for a fixed time period. If the die temperature is down to  
acceptable levels, an up-transition to the previous frequency and voltage point  
occurs.  
— An interrupt is generated for the up and down Intel Thermal Monitor transitions  
enabling better system-level thermal management.  
• Enhanced thermal management features:  
— Digital Thermal Sensor and Out of Specification detection  
— Intel® Thermal Monitor 1 (TM1) in addition to Intel Thermal Monitor 2 (TM2) in  
case of unsuccessful TM2 transition.  
— Dual-core thermal management synchronization.  
Each core in the dual processor implements an independent MSR for controlling  
Enhanced Intel SpeedStep Technology, but both cores must operate at the same  
frequency and voltage. The processor has performance state coordination logic to  
resolve frequency and voltage requests from the two cores into a single frequency and  
voltage request for the package as a whole. If both cores request the same frequency  
and voltage, then the processor will transition to the requested common frequency and  
voltage. If the two cores have different frequency and voltage requests, then the  
processor will take the highest of the two frequencies and voltages as the resolved  
request and transition to that frequency and voltage.  
The processor also supports Dynamic FSB Frequency Switching and Intel Dynamic  
Acceleration Technology mode on select SKUS. The operating system can take  
advantage of these features and request a lower operating point called SuperLFM (due  
to Dynamic FSB Frequency Switching) and a higher operating point Intel Dynamic  
Acceleration Technology mode.  
2.3  
Extended Low-Power States  
Extended low-power states (C1E, C2E, C3E, C4E, C6E) optimize for power by forcibly  
reducing the performance state of the processor when it enters a package low-power  
state. Instead of directly transitioning into the package low-power state, the enhanced  
package low-power state first reduces the performance state of the processor by  
performing an Enhanced Intel SpeedStep Technology transition down to the lowest  
operating point. Upon receiving a break event from the package low-power state,  
control will be returned to software while an Enhanced Intel SpeedStep Technology  
transition up to the initial operating point occurs. The advantage of this feature is that it  
significantly reduces leakage while in low-power states.  
C6 is always enabled in the extended low-power state, as described above.  
Note:  
Long-term reliability cannot be assured unless all the extended low power states are  
enabled.  
The processor implements two software interfaces for requesting extended package  
low-power states: MWAIT instruction extensions with sub-state hints and via BIOS by  
configuring IA32_MISC_ENABLES MSR bits to automatically promote package low-  
power states to extended package low-power states.  
20  
Datasheet  
Low Power Features  
Extended Stop-Grant and Enhanced Deeper Sleep must be enabled via the  
BIOS for the processor to remain within specification. Any attempt to operate the  
processor outside these operating limits may result in permanent damage to the  
processor. As processor technology changes, enabling the extended low-power states  
becomes increasingly crucial when building computer systems. Maintaining the proper  
BIOS configuration is key to reliable, long-term system operation. Not complying to this  
guideline may affect the long-term reliability of the processor.  
Caution:  
Enhanced Intel SpeedStep Technology transitions are multi-step processes that require  
clocked control. These transitions cannot occur when the processor is in the Sleep or  
Deep Sleep package low-power states since processor clocks are not active in these  
states. Extended Deeper Sleep is an exception to this rule when the Hard C4E  
configuration is enabled in the IA32_MISC_ENABLES MSR. This Extended Deeper Sleep  
state configuration will lower core voltage to the Deeper Sleep level while in Deeper  
Sleep and, upon exit, will automatically transition to the lowest operating voltage and  
frequency to reduce snoop service latency. The transition to the lowest operating point  
or back to the original software requested point may not be instantaneous.  
Furthermore, upon very frequent transitions between active and idle states, the  
transitions may lag behind the idle state entry resulting in the processor either  
executing for a longer time at the lowest operating point or running idle at a high  
operating point. Observations and analyses show this behavior should not significantly  
impact total power savings or performance score while providing power benefits in  
most other cases.  
2.4  
FSB Low-Power Enhancements  
The processor incorporates FSB low-power enhancements:  
• Dynamic FSB Power-Down  
• BPRI# control for address and control input buffers  
• Dynamic Bus Parking  
• Dynamic On-Die Termination disabling  
• Low VCCP (I/O termination voltage)  
• Dynamic FSB frequency switching  
The processor incorporates the DPWR# signal that controls the data bus input buffers  
on the processor. The DPWR# signal disables the buffers when not used and activates  
them only when data bus activity occurs, resulting in significant power savings with no  
performance impact. BPRI# control also allows the processor address and control input  
buffers to be turned off when the BPRI# signal is inactive. Dynamic Bus Parking allows  
a reciprocal power reduction in chipset address and control input buffers when the  
processor deasserts its BR0# pin. The On-Die Termination on the processor FSB buffers  
is disabled when the signals are driven low, resulting in additional power savings. The  
low I/O termination voltage is on a dedicated voltage plane independent of the core  
voltage, enabling low I/O switching power at all times.  
2.4.1  
Dynamic FSB Frequency Switching  
Dynamic FSB frequency switching effectively reduces the internal bus clock frequency  
in half to further decrease the minimum processor operating frequency from the  
Enhanced Intel SpeedStep Technology performance states and achieve the Super Low  
Frequency Mode (SuperLFM). This feature is supported at FSB frequencies of 800-MHz  
on the Santa Rosa platform and does not entail a change in the external bus signal  
(BCLK) frequency. Instead, both the processor and (G)MCH internally lower their BCLK  
reference frequency to 50% of the externally visible frequency. Both the processor and  
(G)MCH maintain a virtual BCLK signal (“VBCLK”) that is aligned to the external BCLK,  
Datasheet  
21  
Low Power Features  
but at half the frequency. After a downward shift, it would appear externally as if the  
bus is running with a 100-MHz base clock in all aspects except that the actual external  
BCLK remains at 200 MHz. The transition into Super LFM, a “down-shift,is done  
following a handshake between the processor and (G)MCH. A similar handshake is used  
to indicate an “up-shift,” a change back to normal operating mode. Ensure this feature  
is enabled and supported in the BIOS.  
2.4.2  
Intel® Dynamic Acceleration Technology  
The processor supports the Intel Dynamic Acceleration Technology mode. The Intel  
Dynamic Acceleration Technology feature allows one core of the processor to operate at  
a higher frequency point when the other core is inactive and the operating system  
requests increased performance. This higher frequency is called the “opportunistic  
frequency” and the maximum rated operating frequency is the “guaranteed frequency.”  
Note:  
Extreme Edition processors do not support Intel Dynamic Acceleration Technology.  
Intel Dynamic Acceleration Technology mode enabling requires:  
• Exposure, via BIOS, of the opportunistic frequency as the highest ACPI P state  
• Enhanced Multi-Threaded Thermal Management (EMTTM)  
• Intel Dynamic Acceleration Technology mode and EMTTM MSR configuration via  
BIOS.  
When in Intel Dynamic Acceleration Technology mode, it is possible for both cores to be  
active under certain internal conditions. In such a scenario the processor may draw an  
Instantaneous current (ICC_CORE_INST) for a short duration of tINST; however, the average  
ICC current will be “lesser then” or “equal” to ICCDES current specification. Please refer  
to the Processor DC Specifications section for more details.  
2.5  
2.6  
VID-x  
The processor implements the VID-x feature for improved control of core voltage levels  
when the processor enters a reduced power consumption state. VID-x applies only  
when the processor is in the Intel Dynamic Acceleration Technology performance state  
and one or more cores are in low-power state (i.e., CC3/CC4/CC6). VID-x provides the  
ability for the processor to request core voltage level reductions greater than one VID  
tick. The amount of VID tick reduction is fixed and only occurs while the processor is in  
the Intel Dynamic Acceleration Technology mode. This improved voltage regulator  
efficiency, during periods of reduced power consumption, allows for leakage reduction  
that results in platform power savings and extended battery life.  
Processor Power Status Indicator (PSI-2) Signal  
The processor incorporates the PSI# signal that is asserted when the processor is in a  
reduced power consumption state. PSI# can be used to improve intermediate and light  
load efficiency of the voltage regulator, resulting in platform power savings and  
extended battery life. The algorithm that the processor uses for determining when to  
assert PSI# is different from the algorithm used in previous mobile processors. For  
details, refer to the platform design guide for PSI-2. Functionality is expanded further  
to support three processor states when:  
• Both cores are in idle state.  
• Only one core is in active state.  
• Both cores are in active state.  
22  
Datasheet  
Electrical Specifications  
3 Electrical Specifications  
3.1  
Power and Ground Pins  
For clean, on-chip power distribution, the processor will have a large number of VCC  
(power) and VSS (ground) inputs. All power pins must be connected to VCC power  
planes while all VSS pins must be connected to system ground planes. Use of multiple  
power and ground planes is recommended to reduce I*R drop. Refer to the platform  
design guide for more details. The processor VCC pins must be supplied the voltage  
determined by the VID (Voltage ID) pins.  
3.2  
FSB Clock (BCLK[1:0]) and Processor Clocking  
BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the  
processor. As in previous-generation processors, the processor core frequency is a  
multiple of the BCLK[1:0] frequency. The processor uses a differential clocking  
implementation.  
3.3  
Voltage Identification  
The processor uses seven voltage identification pins,VID[6:0], to support automatic  
selection of power supply voltages. The VID pins for processor are CMOS outputs  
driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding  
to the state of VID[6:0]. A 1 refers to a high-voltage level and a 0 refers to low-voltage  
level.  
Table 2.  
Voltage Identification Definition (Sheet 1 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
Datasheet  
23  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 2 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
24  
Datasheet  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 3 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
Datasheet  
25  
Electrical Specifications  
Table 2.  
Voltage Identification Definition (Sheet 4 of 4)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
VCC (V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
3.4  
Catastrophic Thermal Protection  
The processor supports the THERMTRIP# signal for catastrophic thermal protection. An  
external thermal sensor should also be used to protect the processor and the system  
against excessive temperatures. Even with the activation of THERMTRIP#, which halts  
all processor internal clocks and activity, leakage current can be high enough that the  
processor cannot be protected in all conditions without the removal of power to the  
processor. If the external thermal sensor detects a catastrophic processor temperature  
of 125°C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the  
processor must be turned off within 500 ms to prevent permanent silicon damage due  
to thermal runaway of the processor. THERMTRIP# functionality is not ensured if the  
PWRGOOD signal is not asserted, and during package C6.  
26  
Datasheet  
Electrical Specifications  
3.5  
Reserved and Unused Pins  
All RESERVED (RSVD) pins must remain unconnected. Connection of these pins to VCC,  
VSS, or to any other signal (including each other) can result in component malfunction  
or incompatibility with future processors. See Section 4.2 for a pin listing of the  
processor and the location of all RSVD pins.  
For reliable operation, always connect unused inputs or bidirectional signals to an  
appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if  
AGTL+ termination is provided on the processor silicon. Unused active high inputs  
should be connected through a resistor to ground (VSS). Unused outputs can be left  
unconnected.  
The TEST1,TEST2,TEST3,TEST4,TEST5,TEST6,TEST7 pins are used for test purposes  
internally and can be left as “No Connects.  
3.6  
FSB Frequency Select Signals (BSEL[2:0])  
The BSEL[2:0] signals are used to select the frequency of the processor input clock  
(BCLK[1:0]). These signals should be connected to the clock chip and the appropriate  
chipset on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 3.  
Table 3.  
BSEL[2:0] Encoding for BCLK Frequency  
BSEL[2]  
BSEL[1] BSEL[0]  
BCLK Frequency  
L
L
L
L
L
H
H
L
RESERVED  
RESERVED  
166 MHz  
L
H
H
H
H
L
L
200 MHz  
H
H
H
H
L
RESERVED  
RESERVED  
RESERVED  
RESERVED  
H
H
L
L
3.7  
FSB Signal Groups  
The FSB signals have been combined into groups by buffer type in the following  
sections. AGTL+ input signals have differential input buffers that use GTLREF as a  
reference level. In this document, the term “AGTL+ Input” refers to the AGTL+ input  
group as well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers  
to the AGTL+ output group as well as the AGTL+ I/O group when driving. With the  
implementation of a source synchronous data bus comes the need to specify two sets  
of timing parameters. One set is for common clock signals which are dependent upon  
the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the  
source synchronous signals which are relative to their respective strobe lines (data and  
address) as well as the rising edge of BCLK0. Asychronous signals are still present  
(A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle.  
Table 4 identifies which signals are common clock, source synchronous, and  
asynchronous.  
Datasheet  
27  
Electrical Specifications  
Table 4.  
FSB Pin Groups  
Signal Group  
Type  
Signals1  
AGTL+ Common Clock  
Input  
Synchronous  
to BCLK[1:0]  
BPRI#, DEFER#, PREQ#5, RESET#, RS[2:0]#,  
TRDY#  
Synchronous  
to BCLK[1:0]  
ADS#, BNR#, BPM[3:0]#3, BR0#, DBSY#,  
AGTL+ Common Clock I/O  
DRDY#, HIT#, HITM#, LOCK#, PRDY#3, DPWR#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]# ADSTB[0]#  
A[35:17]#  
ADSTB[1]#  
Synchronous  
to assoc.  
strobe  
AGTL+ Source  
Synchronous I/O  
D[15:0]#, DINV0#  
D[31:16]#, DINV1#  
D[47:32]#, DINV2#  
D[63:48]#, DINV3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
Synchronous  
to BCLK[1:0]  
AGTL+ Strobes  
CMOS Input  
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, DPRSTP#, DPSLP#, IGNNE#, INIT#,  
Asynchronous LINT0/INTR, LINT1/NMI, PWRGOOD, SMI#, SLP#,  
STPCLK#  
Open Drain Output  
Open Drain I/O  
CMOS Output  
Asynchronous FERR#, IERR#, THERMTRIP#  
Asynchronous PROCHOT#4  
Asynchronous PSI#, VID[6:0], BSEL[2:0]  
Synchronous  
TCK, TDI, TMS, TRST#  
to TCK  
CMOS Input  
Synchronous  
TDO  
Open Drain Output  
FSB Clock  
to TCK  
Clock  
BCLK[1:0]  
COMP[3:0], DBR#2, GTLREF, RSVD, TEST2,  
Power/Other  
TEST1, THERMDA, THERMDC, VCC, VCCA, VCCP  
,
V
CC_SENSE, VSS, VSS_SENSE  
NOTES:  
1.  
2.  
Refer to Chapter 4 for signal descriptions and termination requirements.  
In processor systems where there is no debug port implemented on the system board,  
these signals are used to support a debug port interposer. In systems with the debug port  
implemented on the system board, these signals are no-connects.  
BPM[2:1]# and PRDY# are AGTL+ output-only signals.  
3.  
4.  
5.  
PROCHOT# signal type is open drain output and CMOS input.  
On-die termination differs from other AGTL+ signals.  
28  
Datasheet  
Electrical Specifications  
3.8  
3.9  
CMOS Signals  
CMOS input signals are shown in Table 4. Legacy output FERR#, IERR# and other non-  
AGTL+ signals (THERMTRIP# and PROCHOT#) use Open Drain output buffers. These  
signals do not have setup or hold time specifications in relation to BCLK[1:0]. However,  
all of the CMOS signals are required to be asserted for more than four BCLKs for the  
processor to recognize them. See Section 3.10 for the DC specifications for the CMOS  
signal groups.  
Maximum Ratings  
Table 5 specifies absolute maximum and minimum ratings. Within functional operation  
limits, functionality and long-term reliability can be expected.  
At conditions exceeding absolute maximum and minimum ratings, neither functionality  
nor long-term reliability can be expected. Moreover, if a device is subjected to these  
conditions for any length of time then, when returned to conditions within the  
functional operating condition limits, it will either not function or its reliability will be  
severely degraded.  
Caution:  
Although the processor contains protective circuitry to resist damage from static  
electric discharge, precautions should always be taken to avoid high static voltages or  
electric fields.  
Table 5.  
Processor Absolute Maximum Ratings  
Symbol  
TSTORAGE  
Parameter  
Min  
Max  
Unit  
Notes1  
Processor storage temperature  
-40  
85  
°C  
2, 3, 4  
Any processor supply voltage with  
respect to VSS  
VCC  
-0.3  
-0.1  
-0.1  
1.45  
1.45  
1.45  
V
V
V
AGTL+ buffer DC input voltage with  
respect to VSS  
VinAGTL+  
VinAsynch_CMOS  
NOTES:  
CMOS buffer DC input voltage with  
respect to VSS  
1.  
For functional operation, all processor electrical, signal quality, mechanical and thermal  
specifications must be met.  
2.  
Storage temperature is applicable to storage conditions only. In this scenario, the  
processor must not receive a clock, and no lands can be connected to a voltage bias.  
Storage within these limits will not affect the long term reliability of the device. For  
functional operation, please refer to the processor case temperature specifications.  
This rating applies to the processor and does not include any tray or packaging.  
Failure to adhere to this specification can affect the long term reliability of the processor.  
3.  
4.  
Datasheet  
29  
Electrical Specifications  
3.10  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor  
core (pads) unless noted otherwise. See Table 4 for the pin signal definitions and  
signal pin assignments.  
Table 6 through Table 11 list the DC specifications for the processor and are valid only  
while meeting specifications for junction temperature, clock frequency, and input  
voltages. The Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer  
to the highest and lowest core operating frequencies supported on the processor. Active  
mode load line specifications apply in all states except in the Deep Sleep and Deeper  
Sleep states. VCC,BOOT is the default voltage driven by the voltage regulator at power  
up in order to set the VID values. Unless specified otherwise, all specifications for the  
processor are at TJ = 105°C. Read all notes associated with each parameter.  
Table 6.  
Symbol  
Voltage and Current Specifications for the Extreme Edition Processors (Sheet  
1 of 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCCHFM  
VCCLFM  
VCCSLFM  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
VCC at Super Low Frequency Mode (Super LFM)  
1.0  
0.85  
0.8  
1.275  
1.10  
1.0  
V
V
V
1, 2  
1, 2  
1, 2  
2, 5, 6,  
7
VCC,BOOT  
Default VCC Voltage for Initial Power-Up  
1.200  
V
VCCP  
AGTL+ Termination Voltage  
1.000  
1.425  
0.65  
0.60  
0.35  
1.050  
1.500  
1.100  
1.575  
0.85  
0.85  
0.70  
59  
V
V
V
V
V
A
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VDC4  
VCC at Deeper Sleep  
1, 2  
1, 2  
1, 2  
VCC at Intel® Enhanced Deeper Sleep state  
VCC at Deep Power-Down Technology  
ICC for Processors Recommended Design Target  
ICC for Processors  
VC6  
ICCDES  
Processor  
Core Frequency/Voltage  
Number  
ICC  
X9000  
2.8 GHz & VCCHFM  
1.2 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
57  
34  
26  
3, 4,  
10, 12  
A
A
A
A
ICC Auto-Halt & Stop-Grant  
HFM  
SuperLFM  
IAH,  
ISGNT  
3, 4,  
10  
27.3  
18.3  
ICC Sleep  
HFM  
SuperLFM  
3, 4,  
10  
ISLP  
26.5  
18.1  
ICC Deep Sleep  
HFM  
SuperLFM  
3, 4,  
10  
IDSLP  
24.5  
17.6  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
12.2  
11.7  
11.0  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep  
ICC Deep Power-Down Technology  
IC6  
30  
Datasheet  
Electrical Specifications  
Table 6.  
Symbol  
Voltage and Current Specifications for the Extreme Edition Processors (Sheet  
2 of 2)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
A/µs  
mA  
5, 9  
ICC for VCCA Supply  
8
9
ICC for VCCP Supply before VCC Stable  
4.5  
2.5  
A
A
ICCP  
I
CC for VCCP Supply after VCC Stable  
NOTES:  
1.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt State).  
2.  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 105°C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 5 and Figure 6.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
11.  
This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state ICC current specification, which is applicable when both VCCP and VCC_CORE are high.  
Processor ICC requirements in Intel Dynamic Acceleration Technology mode is lesser than ICC in HFM  
The maximum delta between Intel Enhanced Deeper Sleep and LFM on the processor will be lesser than or  
equal to 300 mV.  
12.  
Intel Dynamic Acceleration Technology is not supported.  
Datasheet  
31  
Electrical Specifications  
Table 7.  
Voltage and Current Specifications for the Dual-Core Standard Voltage  
Processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VCC in Intel Dynamic Acceleration Technology  
Mode  
VCCDAM  
1.000  
1.300  
V
1, 2  
VCCHFM  
VCCLFM  
VCCSLFM  
VCC,BOOT  
VCCP  
VCC at Highest Frequency Mode (HFM)  
VCC at Lowest Frequency Mode (LFM)  
VCC at Super Low Frequency Mode (Super LFM)  
Default VCC Voltage for Initial Power-Up  
AGTL+ Termination Voltage  
1.000  
0.850  
0.750  
1.250  
1.025  
0.95  
V
V
V
V
V
V
V
V
V
A
1, 2  
1, 2  
1, 2  
1.200  
1.050  
1.500  
2, 5, 7  
1.000  
1.425  
0.650  
0.600  
0.35  
1.100  
1.575  
0.850  
0.850  
0.70  
44  
VCCA  
PLL Supply Voltage  
VCCDPRSLP  
VDC4  
VCC at Deeper Sleep  
1, 2  
1, 2  
1, 2  
13  
VCC at Intel® Enhanced Deeper Sleep State  
VCC at Deep Power-Down Technology  
ICC for LV Processors Recommended Design Target  
ICC for Processors  
VC6  
ICCDES  
Processor  
Core Frequency/Voltage  
Number  
T9500  
T9300  
T8300  
T8100  
2.6 GHz & VCCHFM  
2.5 GHz & VCCHFM  
2.4 GHz & VCCHFM  
2.1 GHz & VCCHFM  
1.2 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
44  
44  
44  
44  
28.6  
22.4  
ICC  
A
3, 4, 11  
ICC Auto-Halt & Stop-Grant  
HFM  
SuperLFM  
IAH,  
ISGNT  
23.3  
13.7  
A
A
A
3, 4, 11  
3, 4, 11  
3, 4, 11  
ICC Sleep  
HFM  
SuperLFM  
ISLP  
22.7  
13.5  
ICC Deep Sleep  
HFM  
SuperLFM  
IDSLP  
21.0  
13.0  
IDPRSLP  
IDC4  
ICC Deeper Sleep  
11.7  
10.5  
5.7  
A
A
A
3, 4  
3, 4  
3, 4  
ICC Intel Enhanced Deeper Sleep  
ICC Deep Power-Down Technology  
IC6  
VCC Power Supply Current Slew Rate at Processor  
Package Pin  
dICC/DT  
ICCA  
600  
130  
A/µs  
mA  
6, 8  
ICC for VCCA Supply  
9
ICC for VCCP Supply before VCC Stable  
4.5  
2.5  
A
A
ICCP  
I
CC for VCCP Supply after VCC Stable  
10  
NOTES:(Begin on next page.)  
32  
Datasheet  
Electrical Specifications  
1.  
2.  
Each processor is programmed with a maximum valid voltage identification value (VID), which is set at  
manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing  
such that two processors at the same frequency may have different settings within the VID range. Note  
that this differs from the VID employed by the processor during a power management event (Intel Thermal  
Monitor 2, Enhanced Intel SpeedStep Technology, or Enhanced Halt State).  
The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with  
a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-MΩ minimum impedance.  
The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from  
the system is not coupled in the scope probe.  
3.  
4.  
5.  
6.  
7.  
Specified at 105°C TJ.  
Specified at the nominal VCC  
Measured at the bulk capacitors on the motherboard.  
CC,BOOT tolerance shown in Figure 5 and Figure 6.  
.
V
Based on simulations and averaged over the duration of any change in current. Specified by design/  
characterization at nominal VCC. Not 100% tested.  
8.  
9.  
10.  
11.  
This is a power-up peak current specification that is applicable when VCCP is high and VCC_CORE is low.  
This is a steady-state Icc current specification that is applicable when both VCCP and VCC_CORE are high.  
Processor ICC requirements in Intel Dynamic Acceleration Technology mode is lesser than ICC in HFM  
The maximum delta between Intel Enhanced Deeper Sleep and LFM on the processor will be lesser than or  
equal to 300 mV.  
12.  
Instantaneous current ICC_CORE_INST of 55 A has to be sustained for short time (tINST) of 10 µs. Average  
current will be less than maximum specified ICCDES. VR OCP threshold should be high enough to support  
current levels described herein.  
Figure 5.  
Active VCC and ICC Loadline Standard Voltage and Extreme Edition Processors  
VCC-CORE [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
V
CC-CORE, DC max {HFM|LFM}  
10mV= RIPPLE  
VCC-CORE nom {HFM|LFM}  
V
CC-CORE, DC min {HFM|LFM}  
VCC-CORE min {HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{HFM|LFM}  
Note 1/ VC C -C O R E Set Point Error Tolerance is per below :  
Tolerance VC C -C O R E VID Voltage Range  
--------------- --------------------------------------------------------  
+/-1.5% VC C -C O R E > 0.7500V  
+/-11.5mV 0.5000V </= Vcc_core </= 0.75000V  
Datasheet  
33  
Electrical Specifications  
Figure 6.  
Deeper Sleep VCC and ICC Loadline Standard Voltage and Extreme Edition  
Processors  
VCC-CORE [V]  
Slope = -2.1 mV/A at package  
VccSense, VssSense pins.  
Differential Remote Sense required.  
VCC-CORE max {HFM|LFM}  
VCC-CORE, DC max {HFM|LFM}  
13mV= RIPPLE  
VCC-CORE nom {HFM|LFM}  
VCC-CORE, DC min {HFM|LFM}  
VCC-CORE min {HFM|LFM}  
+/-VCC-CORE Tolerance  
= VR St. Pt. Error 1/  
ICC-CORE  
[A]  
0
ICC-CORE max  
{HFM|LFM}  
Note 1/ VCC-CORE Set Point Error Tolerance is per below:  
Tolerance VCC-CORE VID Voltage Range  
--------------- --------------------------------------------------------  
+/-[(VID*1.5%)-3mV]  
VCC-CORE > 0.7500V  
+/-(11.5mV-3mV)  
0.5000V </= VCC-CORE </= 0.7500V  
Total tolerance window  
including ripple is +/-35mV for C6  
0.3000V </= VCC-CORE < 0.5000V  
NOTE: Deeper Sleep mode tolerance depends on VID value.  
Table 8.  
FSB Differential BCLK Specifications  
Symbol  
VCROSS  
Parameter  
Crossing Voltage  
Min  
Typ  
Max  
Unit  
Notes1  
0.3  
0.55  
140  
V
2, 7, 8  
ΔVCROSS  
VSWING  
ILI  
Range of Crossing Points  
Differential Output Swing  
Input Leakage Current  
Pad Capacitance  
mV  
mV  
µA  
pF  
2, 7, 5  
300  
-5  
6
3
4
+5  
Cpad  
0.95  
1.2  
1.45  
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the  
falling edge of BCLK1.  
3.  
4.  
5.  
6.  
7.  
8.  
For Vin between 0 V and VIH.  
Cpad includes die capacitance only. No package parasitics are included.  
ΔVCROSS is defined as the total variation of all crossing voltages as defined in note 2.  
Measurement taken from differential waveform.  
Measurement taken from single-ended waveform.  
Only applies to the differential rising edge (Clock rising and Clock# falling).  
34  
Datasheet  
Electrical Specifications  
Table 9.  
AGTL+ Signal Group DC Specifications  
Symbol  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit Notes1  
VCCP  
1.00  
0.65  
27.23  
48  
1.05  
0.70  
27.5  
55  
1.10  
0.72  
27.78  
65  
V
GTLREF  
RCOMP  
RODT/A  
RODT/D  
Reference Voltage  
V
Ω
Ω
Ω
Ω
V
6
Compensation Resistor  
Termination Resistor Address  
Termination Resistor Data  
10  
11, 12  
11, 13  
11, 14  
3, 6  
2, 4  
6
48  
55  
64  
RODT/Cntrl Termination Resistor Control  
48  
55  
65  
VIH  
Input High Voltage  
0.82  
-0.10  
0.90  
48  
1.05  
0
1.20  
0.55  
1.10  
65  
VIL  
Input Low Voltage  
V
VOH  
Output High Voltage  
VCCP  
55  
V
RTT/A  
RTT/D  
RTT/Cntrl  
RON/A  
RON/D  
RON/Cntrl  
ILI  
Termination Resistance Address  
Termination Resistance Data  
Termination Resistance Control  
Buffer On Resistance Address  
Buffer On Resistance Data  
Buffer On Resistance Control  
Input Leakage Current  
Pad Capacitance  
Ω
Ω
Ω
Ω
Ω
Ω
µA  
pF  
7, 12  
7, 13  
7, 14  
5, 12  
5, 13  
5, 14  
8
48  
55  
64  
48  
55  
65  
22  
25  
30  
22  
25  
29.5  
30  
22  
25  
±100  
2.75  
Cpad  
1.80  
2.30  
9
NOTES:  
1.  
2.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
IL is defined as the maximum voltage level at a receiving agent that will be interpreted as  
a logical low value.  
IH is defined as the minimum voltage level at a receiving agent that will be interpreted as  
a logical high value.  
IH and VOH may experience excursions above VCCP. However, input signal drivers must  
comply with the signal quality specifications.  
This is the pull-down driver resistance. Refer to processor I/O Buffer Models for I/V  
characteristics. Measured at 0.31*VCCP. RON (min) = 0.4*RTT, RON (typ) = 0.455*RTT,  
V
3.  
4.  
5.  
V
V
R
ON (max) = 0.51*RTT. RTT typical value of 55 Ω is used for RON typ/min/max calculations.  
GTLREF should be generated from VCCP with a 1% tolerance resistor divider. The VCCP  
referred to in these specifications is the instantaneous VCCP  
TT is the on-die termination resistance measured at VOL of the AGTL+ output driver.  
6.  
7.  
.
R
Measured at 0.31*VCCP. RTT is connected to VCCP on die. Refer to processor I/O buffer  
models for I/V characteristics.  
8.  
Specified with on die RTT and RON are turned off. Vin between 0 and VCCP.  
9.  
Cpad includes die capacitance only. No package parasitics are included.  
This is the external resistor on the comp pins.  
10.  
11.  
12.  
13.  
14.  
On-die termination resistance, measured at 0.33*VCCP  
.
Applies to Signals A[35:3].  
Applies to Signals D[63:0].  
Applies to Signals BPRI#,DEFER#,PREQ#, RESET#, RS[2:0]#, TRDY#, ADS#, BNR#,  
BPM[3:0], BR0#, DBSY#, DRDY#, DRDY#, HIT#, HITM#, LOCK#, PRDY#, DPWR#,  
ADSTB[1:0]#, DSTBP[3:0] and DSTBN[3:0]#.  
Datasheet  
35  
Electrical Specifications  
Table 10.  
CMOS Signal Group DC Specifications  
Symbol  
Parameter  
I/O Voltage  
Min  
Typ  
Max  
Unit Notes1  
VCCP  
VIH  
1.00  
0.7 * VCCP  
-0.10  
0.9 * VCCP  
-0.10  
1.5  
1.05  
VCCP  
0.00  
VCCP  
0
1.10  
VCCP+0.1  
0.3 * VCCP  
VCCP+0.1  
0.1 * VCCP  
4.1  
V
Input High Voltage  
Input Low Voltage CMOS  
Output High Voltage  
Output Low Voltage  
Output High Current  
Output Low Current  
Input Leakage Current  
Pad Capacitance  
V
V
2
2, 3  
2
VIL  
VOH  
VOL  
IOH  
V
V
2
mA  
mA  
µA  
pF  
5
IOL  
1.5  
4.1  
4
ILI  
±100  
6
Cpad1  
1.80  
2.30  
2.75  
7
Pad Capacitance for CMOS  
Input  
Cpad2  
0.95  
1.2  
1.45  
pF  
8
NOTES:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
The VCCP referred to in these specifications refers to instantaneous VCCP  
Refer to the processor I/O Buffer Models for I/V characteristics.  
Measured at 0.1*VCCP  
Measured at 0.9*VCCP  
For Vin between 0 V and VCCP. Measured when the driver is tristated.z  
Cpad1 includes die capacitance only for DPRSTP#, DPSLP#, PWRGOOD. No package  
parasitics are included.  
.
.
.
8.  
Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are  
included.  
Table 11.  
Open Drain Signal Group DC Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes1  
VOH  
VOL  
IOL  
Output High Voltage  
Output Low Voltage  
Output Low Current  
Output Leakage Current  
Pad Capacitance  
VCCP – 5%  
VCCP  
VCCP + 5%  
0.20  
V
V
3
0
16  
50  
mA  
µA  
pF  
2
4
5
ILO  
±200  
2.75  
Cpad  
1.80  
2.30  
NOTES:  
1.  
2.  
3.  
Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
Measured at 0.2 V.  
V
OH is determined by value of the external pull-up resistor to VCCP. Refer to the appropriate  
platform design guide for details.  
For Vin between 0 V and VOH  
4.  
5.  
.
Cpad includes die capacitance only. No package parasitics are included.  
§
36  
Datasheet  
Package Mechanical Specifications and Pin Information  
4 Package Mechanical  
Specifications and Pin  
Information  
4.1  
Package Mechanical Specifications  
The processor is available in 6-MB and 3-MB, 478-pin Micro-FCPGA packages as well as  
6-MB and 3-MB, 479-ball Micro-FCBGA packages. The package mechanical dimensions  
are shown in Figure 7 through Figure 10.  
The mechanical package pressure specifications are in a direction normal to the surface  
of the processor. This requirement is to protect the processor die from fracture risk due  
to uneven die pressure distribution under tilt, stack-up tolerances and other similar  
conditions. These specifications assume that a mechanical attach is designed  
specifically to load one type of processor.  
Intel also specifies that 15-lbf load limit should not be exceeded on any of Intel’s BGA  
packages so as to not impact solder joint reliability after reflow. This load limit ensures  
that impact to the package solder joints due to transient bend, shock, or tensile loading  
is minimized. The 15-lbf metric should be used in parallel with the 689 kPa (100 psi)  
pressure limit as long as neither limits are exceeded. In some cases, designing to  
15-lbf will exceed the pressure specification of 689 kPa (100 psi) and therefore should  
be reduced to ensure both limits are maintained.  
Moreover, the processor package substrate should not be used as a mechanical  
reference or load-bearing surface for the thermal or mechanical solution. Refer to the  
Santa Rosa Platform Mechanical Design Guide for details.  
Caution:  
The Micro-FCBGA package incorporates land-side capacitors. The land-side capacitors  
are electrically conductive so care should be taken to avoid contacting the capacitors  
with other electrically conductive materials on the motherboard. Doing so may short  
the capacitors and possibly damage the device or render it inactive.  
Datasheet  
37  
Package Mechanical Specifications and Pin Information  
Figure 7.  
6-MB and 3-MB on 6-MB Die Micro-FCPGA Processor Package Drawing (Sheet  
1 of 2)  
h
38  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 8.  
6-MB and 3-MB on 6-MB Die Micro-FCPGA Processor Package Drawing (Sheet  
2 of 2)  
Datasheet  
39  
Package Mechanical Specifications and Pin Information  
Figure 9.  
6-MB and 3-MB on 6-MB Die Micro-FCBGA Processor Package Drawing (Sheet  
1 of 2)  
40  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 10.  
6-MB and 3-MB on 6-MB die Micro-FCBGA Processor Package Drawing (Sheet  
2 of 2)  
Datasheet  
41  
Package Mechanical Specifications and Pin Information  
Figure 11.  
3-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)  
42  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 12.  
3-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)  
Datasheet  
43  
Package Mechanical Specifications and Pin Information  
Figure 13.  
3-MB Micro-FCBGA Processor Package Drawing (Sheet 1 of 2)  
44  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 14.  
3-MB Micro-FCBGA Processor Package Drawing (Sheet 2 of 2)  
Datasheet  
45  
Package Mechanical Specifications and Pin Information  
4.2  
Processor Pinout and Pin List  
Figure 15 and Figure 16 show the processor pinout as viewed from the top of the  
package. Table 12 provides the pin list, arranged numerically by pin number.  
Figure 15.  
Processor Pinout (Top Package View, Left Side)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
1
A
VSS  
RSVD  
SMI#  
INIT#  
VSS  
LINT1  
FERR#  
DPSLP#  
A20M#  
VSS  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
A
B
1
B
THERM  
TRIP#  
C
RESET#  
VSS  
VSS  
TEST7  
RSVD  
IGNNE#  
VSS  
VSS  
LINT0  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
C
PWRGO  
OD  
D
RSVD  
STPCLK#  
SLP#  
D
E
F
DBSY#  
BR0#  
BNR#  
VSS  
VSS  
RS[0]#  
RS[2]#  
VSS  
HITM#  
RS[1]#  
VSS  
DPRSTP#  
VSS  
VSS  
RSVD  
HIT#  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VSS  
E
F
G
VSS  
TRDY#  
REQ[1]#  
VSS  
BPRI#  
DEFER#  
VSS  
G
H
ADS#  
LOCK#  
A[3]#  
VSS  
H
J
A[9]#  
REQ[3]#  
REQ[0]#  
VSS  
VCCP  
VCCP  
VSS  
J
K
VSS  
REQ[2]#  
A[13]#  
VSS  
VSS  
A[6]#  
K
L
REQ[4]#  
ADSTB[0]#  
VSS  
A[5]#  
A[4]#  
VSS  
L
M
N
A[7]#  
RSVD  
VSS  
VCCP  
VCCP  
VSS  
M
N
A[8]#  
A[10]#  
VSS  
RSVD  
A[11]#  
VSS  
P
A[15]#  
A[16]#  
VSS  
A[12]#  
VSS  
A[14]#  
A[24]#  
VSS  
P
R
A[19]#  
A[26]#  
VSS  
VCCP  
VCCP  
VSS  
R
T
RSVD  
A[30]#  
VSS  
A[25]#  
A[18]#  
VSS  
T
U
A[23]#  
ADSTB[1]#  
VSS  
A[21]#  
A[31]#  
VSS  
U
V
RSVD  
A[32]#  
VSS  
VCCP  
A[20]#  
VSS  
V
W
Y
A[27]#  
A[17]#  
VSS  
A[28]#  
A[22]#  
VSS  
W
Y
COMP[3]  
COMP[2]  
VSS  
A[29]#  
A[33]#  
VSS  
AA  
AB  
AC  
AD  
A[35]#  
TDO  
TDI  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VCC  
VSS  
AA  
AB  
AC  
AD  
A[34]#  
PRDY#  
VSS  
TMS  
TRST#  
VSS  
PREQ#  
BPM[2]#  
VSS  
BPM[3]#  
BPM[0]#  
TCK  
BPM[1]#  
VSS  
VID[0]  
VSS  
AE  
AF  
VSS  
VID[6]  
VID[4]  
VSS  
VID[2]  
PSI#  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
AE  
AF  
SENSE  
VCC  
SENSE  
TEST5  
VSS  
VID[5]  
VID[3]  
VID[1]  
VSS  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
NOTES:  
1.  
2.  
Keying option for µFCPGA, A1 and B1 are depopulated.  
Keying option for µFCBGA, A1 is depopulated and B1 is VSS.  
46  
Datasheet  
Package Mechanical Specifications and Pin Information  
Figure 16.  
Processor Pinout (Top Package View, Right Side)  
14  
15  
16  
17  
18  
19  
20  
VCC  
VCC  
DBR#  
21  
22  
23  
24  
THRMDA  
VSS  
25  
VSS  
26  
A
B
C
VSS  
VCC  
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
BCLK[1]  
VSS  
BCLK[0]  
BSEL[0]  
VSS  
VSS  
TEST6  
VCCA  
VCCA  
A
B
C
BSEL[1]  
TEST1  
THRMDC  
VSS  
BSEL[2]  
TEST3  
PROCHOT  
#
D
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
IERR#  
RSVD  
VSS  
DPWR#  
TEST2  
VSS  
D
E
F
VSS  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VCC  
VCC  
VSS  
DRDY#  
VCCP  
D[0]#  
VSS  
D[7]#  
D[4]#  
VSS  
VSS  
D[1]#  
D[9]#  
D[6]#  
VSS  
D[2]#  
D[13]#  
VSS  
E
F
G
D[3]#  
D[5]#  
G
DSTBP[  
0]#  
H
VSS  
D[12]#  
D[15]#  
VSS  
DINV[0]#  
H
DSTBN[  
0]#  
J
K
L
VCCP  
VCCP  
VSS  
VSS  
D[11]#  
VSS  
D[10]#  
D[8]#  
VSS  
VSS  
J
K
L
D[14]#  
D[22]#  
D[17]#  
D[29]#  
VSS  
DSTBN[  
1]#  
D[20]#  
DSTBP[  
1]#  
M
VCCP  
VSS  
D[23]#  
D[21]#  
VSS  
M
N
P
VCCP  
VSS  
D[16]#  
D[26]#  
VSS  
DINV[1]#  
VSS  
D[31]#  
D[24]#  
VSS  
N
P
D[25]#  
D[18]#  
COMP[0  
]
R
T
VCCP  
VCCP  
VSS  
VSS  
D[19]#  
VSS  
D[28]#  
D[27]#  
VSS  
VSS  
R
T
D[37]#  
D[30]#  
D[38]#  
VSS  
COMP[1  
]
U
DINV[2]#  
D[39]#  
U
V
VCCP  
VCCP  
VSS  
D[36]#  
VSS  
D[34]#  
D[43]#  
VSS  
D[35]#  
VSS  
V
W
D[41]#  
D[44]#  
W
DSTBN[  
2]#  
Y
VSS  
D[32]#  
VSS  
D[42]#  
D[45]#  
VSS  
D[40]#  
VSS  
Y
DSTBP[  
2]#  
A
A
AA  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
D[50]#  
D[46]#  
A
B
AB  
AC  
VCC  
VSS  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VSS  
VSS  
VSS  
VCC  
DINV[3]#  
D[54]#  
D[52]#  
VSS  
D[51]#  
D[60]#  
VSS  
VSS  
D[33]#  
VSS  
D[47]#  
D[57]#  
VSS  
VSS  
D[63]#  
D[61]#  
D[53]#  
AC  
A
D
A
D
D[59]#  
D[49]#  
GTLREF  
AE  
AF  
VSS  
VCC  
14  
VCC  
VCC  
15  
VSS  
VSS  
16  
VCC  
VCC  
17  
VCC  
VCC  
18  
VSS  
VSS  
19  
VCC  
VCC  
20  
D[58]#  
VSS  
21  
D[55]#  
D[62]#  
22  
VSS  
D[56]#  
23  
D[48]#  
DSTBP[3]#  
24  
DSTBN[3]#  
VSS  
VSS  
TEST4  
26  
AE  
AF  
25  
Datasheet  
47  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Pin  
#
Signal  
Buffer Type  
Direction  
Pin  
#
Signal  
Buffer Type  
Direction  
Input/  
Output  
A[27]#  
A[28]#  
A[29]#  
A[30]#  
A[31]#  
A[32]#  
A[33]#  
A[34]#  
W2  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
A[3]#  
J4  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
W5  
Y4  
Input/  
Output  
A[4]#  
L5  
L4  
K5  
M3  
N2  
J1  
Input/  
Output  
Input/  
Output  
A[5]#  
Input/  
Output  
U2  
Input/  
Output  
A[6]#  
Input/  
Output  
V4  
Input/  
Output  
A[7]#  
Input/  
Output  
W3  
AA4  
AB2  
Input/  
Output  
A[8]#  
Input/  
Output  
Input/  
Output  
A[9]#  
Input/  
Output  
Input/  
Output  
A[10]#  
A[11]#  
A[12]#  
A[13]#  
A[14]#  
A[15]#  
A[16]#  
A[17]#  
A[18]#  
A[19]#  
A[20]#  
A[21]#  
A[22]#  
A[23]#  
A[24]#  
A[25]#  
A[26]#  
N3  
P5  
P2  
L2  
P4  
P1  
R1  
Y2  
U5  
R3  
W6  
U4  
Y5  
U1  
R4  
T5  
T3  
Input/  
Output  
A[35]#  
A20M#  
ADS#  
AA3  
A6  
Source Synch  
CMOS  
Input/  
Output  
Input  
Input/  
Output  
Input/  
Output  
H1  
Common Clock  
Input/  
Output  
Input/  
Output  
ADSTB[0]#  
ADSTB[1]#  
M1  
V1  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
BCLK[0]  
BCLK[1]  
A22  
A21  
Bus Clock  
Bus Clock  
Input  
Input  
Input/  
Output  
Input/  
Output  
Input/  
Output  
BNR#  
E2  
Common Clock  
Common Clock  
Input/  
Output  
Input/  
Output  
BPM[0]#  
AD4  
Input/  
Output  
BPM[1]#  
BPM[2]#  
AD3  
AD1  
Common Clock Output  
Common Clock Output  
Input/  
Output  
Input/  
Common Clock  
Output  
BPM[3]#  
BPRI#  
BR0#  
AC4  
G5  
Input/  
Output  
Common Clock Input  
Input/  
Output  
Input/  
Common Clock  
Output  
F1  
Input/  
Output  
BSEL[0]  
BSEL[1]  
BSEL[2]  
B22  
B23  
C21  
CMOS  
CMOS  
CMOS  
Output  
Output  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
COMP[0]  
COMP[1]  
COMP[2]  
R26  
U26  
AA1  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Datasheet  
48  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Pin  
#
Signal  
Buffer Type  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
Input/  
Output  
Input/  
Output  
COMP[3]  
D[0]#  
Y1  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
D[24]#  
D[25]#  
D[26]#  
D[27]#  
D[28]#  
D[29]#  
D[30]#  
D[31]#  
D[32]#  
D[33]#  
D[34]#  
D[35]#  
D[36]#  
D[37]#  
D[38]#  
D[39]#  
D[40]#  
D[41]#  
D[42]#  
D[43]#  
D[44]#  
D[45]#  
D[46]#  
D[47]#  
D[48]#  
P25  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
E22  
F24  
E26  
G22  
F23  
G25  
E25  
E23  
K24  
G24  
J24  
P23  
Input/  
Output  
Input/  
Output  
D[1]#  
P22  
Input/  
Output  
Input/  
Output  
D[2]#  
T24  
Input/  
Output  
Input/  
Output  
D[3]#  
R24  
L25  
Input/  
Output  
Input/  
Output  
D[4]#  
Input/  
Output  
Input/  
Output  
D[5]#  
T25  
Input/  
Output  
Input/  
Output  
D[6]#  
N25  
Y22  
Input/  
Output  
Input/  
Output  
D[7]#  
Input/  
Output  
Input/  
Output  
D[8]#  
AB24  
V24  
V26  
V23  
T22  
Input/  
Output  
Input/  
Output  
D[9]#  
Input/  
Output  
Input/  
Output  
D[10]#  
D[11]#  
D[12]#  
D[13]#  
D[14]#  
D[15]#  
D[16]#  
D[17]#  
D[18]#  
D[19]#  
D[20]#  
D[21]#  
D[22]#  
D[23]#  
Input/  
Output  
Input/  
Output  
J23  
Input/  
Output  
Input/  
Output  
H22  
F26  
K22  
H23  
N22  
K25  
P26  
R23  
L23  
M24  
L22  
M23  
Input/  
Output  
Input/  
Output  
U25  
U23  
Y25  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
W22  
Y23  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
W24  
W25  
AA23  
AA24  
AB25  
AE24  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Datasheet  
49  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Pin  
#
Signal  
Buffer Type  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
Input/  
Output  
Input/  
Output  
D[49]#  
D[50]#  
D[51]#  
D[52]#  
D[53]#  
D[54]#  
D[55]#  
D[56]#  
D[57]#  
D[58]#  
D[59]#  
D[60]#  
D[61]#  
D[62]#  
AD24 Source Synch  
DSTBN[1]#  
DSTBN[2]#  
DSTBN[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
DSTBP[3]#  
L26  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Output  
Input/  
Output  
AA21  
AB22  
AB21  
AC26  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Y26  
Input/  
Output  
Input/  
Output  
AE25  
H26  
Input/  
Output  
Input/  
Output  
Input/  
Output  
Input/  
Output  
M26  
AA26  
Input/  
Output  
Input/  
Output  
AD20 Source Synch  
Input/  
Output  
Input/  
Output  
AE22  
AF23  
AC25  
AE21  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
AF24  
A5  
Source Synch  
Open Drain  
Input/  
Output  
FERR#  
Output  
Input  
GTLREF  
AD26 Power/Other  
Input/  
Output  
Input/  
Output  
HIT#  
G6  
E4  
Common Clock  
Common Clock  
Input/  
Output  
Input/  
Output  
HITM#  
Input/  
Output  
AD21 Source Synch  
AC22 Source Synch  
AD23 Source Synch  
IERR#  
IGNNE#  
INIT#  
LINT0  
LINT1  
D20  
C4  
Open Drain  
CMOS  
Output  
Input  
Input  
Input  
Input  
Input/  
Output  
B3  
CMOS  
Input/  
Output  
C6  
CMOS  
B4  
CMOS  
Input/  
Output  
AF22  
Source Synch  
Input/  
Output  
LOCK#  
H4  
Common Clock  
Input/  
Output  
D[63]#  
DBR#  
AC23  
C20  
E1  
Source Synch  
CMOS  
PRDY#  
PREQ#  
AC2  
AC1  
Common Clock Output  
Common Clock Input  
Output  
Input/  
Output  
Input/  
Open Drain  
DBSY#  
DEFER#  
DINV[0]#  
Common Clock  
PROCHOT#  
D21  
Output  
H5  
Common Clock Input  
PSI#  
AE6  
D6  
CMOS  
CMOS  
Output  
Input  
Input/  
Source Synch  
Output  
PWRGOOD  
H25  
Input/  
Output  
REQ[0]#  
REQ[1]#  
REQ[2]#  
REQ[3]#  
REQ[4]#  
K3  
H2  
K2  
J3  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/  
Source Synch  
Output  
DINV[1]#  
DINV[2]#  
DINV[3]#  
N24  
Input/  
Output  
Input/  
Source Synch  
Output  
U22  
Input/  
Output  
Input/  
Source Synch  
Output  
AC20  
Input/  
Output  
DPRSTP#  
DPSLP#  
E5  
B5  
CMOS  
CMOS  
Input  
Input  
Input/  
Output  
L1  
Input/  
Output  
DPWR#  
D24  
F21  
J26  
Common Clock  
Common Clock  
Source Synch  
RESET#  
RS[0]#  
RS[1]#  
RS[2]#  
C1  
F3  
F4  
G3  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Common Clock Input  
Input/  
Output  
DRDY#  
Input/  
Output  
DSTBN[0]#  
50  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Pin  
#
Signal  
Buffer Type  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
SLP#  
SMI#  
STPCLK#  
TCK  
B2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CMOS  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AA12  
AA13  
AA15  
AA17  
AA18  
AA20  
AB7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
D2  
D3  
D22  
F6  
M4  
N5  
T2  
AB9  
V3  
AB10  
AB12  
AB14  
AB15  
AB17  
AB18  
AB20  
AC7  
D7  
Input  
Input  
Input  
Input  
Input  
Output  
A3  
CMOS  
D5  
CMOS  
AC5  
AA6  
AB3  
C23  
D25  
C24  
AF26  
AF1  
A26  
C3  
CMOS  
TDI  
CMOS  
TDO  
Open Drain  
Test  
TEST1  
TEST2  
TEST3  
TEST4  
TEST5  
TEST6  
TEST7  
Test  
AC9  
Test  
AC10  
AC12  
AC13  
AC15  
AC17  
AC18  
AD7  
Test  
Test  
Test  
Test  
THERMTRIP# C7  
Open Drain  
Power/Other  
Power/Other  
CMOS  
Output  
Input  
THRMDA  
THRMDC  
TMS  
A24  
B25  
AB5  
G2  
AD9  
AD10 Power/Other  
AD12 Power/Other  
AD14 Power/Other  
AD15 Power/Other  
AD17 Power/Other  
AD18 Power/Other  
TRDY#  
TRST#  
VCC  
Common Clock Input  
AB6  
A7  
CMOS  
Input  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
A9  
VCC  
A10  
A12  
A13  
A15  
A17  
A18  
A20  
AA7  
AA9  
AA10  
VCC  
AE9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
AE10  
AE12  
AE13  
AE15  
AE17  
AE18  
AE20  
AF9  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Datasheet  
51  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Pin  
#
Signal  
Buffer Type  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AF10  
AF12  
AF14  
AF15  
AF17  
AF18  
AF20  
B7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
F9  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
VCC  
F10  
F12  
F14  
F15  
F17  
F18  
F20  
B26  
C26  
G21  
J6  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
B9  
VCCA  
VCCA  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCP  
VCCSENSE  
VID[0]  
VID[1]  
VID[2]  
VID[3]  
VID[4]  
VID[5]  
VID[6]  
VSS  
B10  
B12  
B14  
B15  
B17  
B18  
B20  
C9  
J21  
K6  
K21  
M6  
M21  
N6  
C10  
C12  
C13  
C15  
C17  
C18  
D9  
N21  
R6  
R21  
T6  
T21  
V6  
D10  
D12  
D14  
D15  
D17  
D18  
E7  
V21  
W21  
AF7  
AD6  
AF5  
AE5  
AF4  
AE3  
AF3  
AE2  
A2  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
CMOS  
CMOS  
CMOS  
E9  
CMOS  
E10  
E12  
E13  
E15  
E17  
E18  
E20  
F7  
CMOS  
CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
A4  
VSS  
A8  
VSS  
A11  
A14  
A16  
VSS  
VSS  
52  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Pin  
#
Signal  
Buffer Type  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A19  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AE4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A23  
AE8  
AE11  
AE14  
AE16  
AE19  
AE23  
AE26  
AF2  
AF6  
AF8  
AF11  
AF13  
AF16  
AF19  
AF21  
AF25  
B6  
A25  
AA2  
AA5  
AA8  
AA11  
AA14  
AA16  
AA19  
AA22  
AA25  
AB1  
AB4  
AB8  
AB11  
AB13  
AB16  
AB19  
AB23  
AB26  
AC3  
B8  
B11  
B13  
B16  
B19  
B21  
B24  
C2  
AC6  
AC8  
AC11  
AC14  
AC16  
AC19  
AC21  
AC24  
AD2  
C5  
C8  
C11  
C14  
C16  
C19  
C22  
C25  
D1  
AD5  
AD8  
AD11 Power/Other  
AD13 Power/Other  
AD16 Power/Other  
AD19 Power/Other  
AD22 Power/Other  
AD25 Power/Other  
D4  
D8  
D11  
D13  
D16  
AE1  
Power/Other  
Datasheet  
53  
Package Mechanical Specifications and Pin Information  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Table 12.  
Pin Name  
Pin Listing by Pin Name  
Pin  
#
Signal  
Buffer Type  
Pin  
#
Signal  
Buffer Type  
Direction  
Direction  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D19  
D23  
D26  
E3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSSSENSE  
L24  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M2  
M5  
M22  
M25  
N1  
E6  
E8  
E11  
E14  
E16  
E19  
E21  
E24  
F2  
N4  
N23  
N26  
P3  
P6  
P21  
P24  
R2  
F5  
F8  
R5  
F11  
F13  
F16  
F19  
F22  
F25  
G1  
R22  
R25  
T1  
T4  
T23  
T26  
U3  
G4  
U6  
G23  
G26  
H3  
U21  
U24  
V2  
H6  
V5  
H21  
H24  
J2  
V22  
V25  
W1  
W4  
W23  
W26  
Y3  
J5  
J22  
J25  
K1  
K4  
Y6  
K23  
K26  
L3  
Y21  
Y24  
AE7  
Output  
L6  
L21  
54  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal Buffer  
Type  
Signal Buffer  
Type  
Pin # Pin Name  
Direction  
Pin # Pin Name  
Direction  
A1  
Depopulated  
VSS  
keying option  
Power/Other  
CMOS  
AA15 VCC  
AA16 VSS  
AA17 VCC  
AA18 VCC  
AA19 VSS  
AA20 VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A2  
A3  
SMI#  
VSS  
Input  
A4  
Power/Other  
Open Drain  
CMOS  
A5  
FERR#  
A20M#  
VCC  
Output  
Input  
A6  
A7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Bus Clock  
Input/  
Output  
AA21 D[50]#  
AA22 VSS  
Source Synch  
Power/Other  
Source Synch  
A8  
VSS  
A9  
VCC  
Input/  
Output  
AA23 D[45]#  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
VCC  
VSS  
Input/  
Output  
AA24 D[46]#  
AA25 VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
VCC  
VCC  
Input/  
Output  
VSS  
AA26 DSTBP[2]#  
VCC  
AB1  
AB2  
VSS  
VSS  
Input/  
Output  
A[34]#  
VCC  
VCC  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
AB9  
TDO  
VSS  
Open Drain  
Power/Other  
CMOS  
Output  
VSS  
VCC  
TMS  
TRST#  
VCC  
VSS  
Input  
Input  
BCLK[1]  
BCLK[0]  
VSS  
Input  
Input  
CMOS  
Bus Clock  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Test  
THRMDA  
VSS  
VCC  
AB10 VCC  
AB11 VSS  
AB12 VCC  
AB13 VSS  
AB14 VCC  
AB15 VCC  
AB16 VSS  
AB17 VCC  
AB18 VCC  
AB19 VSS  
AB20 VCC  
TEST6  
Input/  
Output  
AA1  
AA2  
AA3  
COMP[2]  
VSS  
Power/Other  
Power/Other  
Source Synch  
Input/  
Output  
A[35]#  
Input/  
Output  
AA4  
A[33]#  
Source Synch  
AA5  
AA6  
AA7  
AA8  
AA9  
VSS  
TDI  
Power/Other  
CMOS  
Input  
VCC  
VSS  
VCC  
Power/Other  
Power/other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
AB21 D[52]#  
Source Synch  
Input/  
Output  
AA10 VCC  
AA11 VSS  
AA12 VCC  
AA13 VCC  
AA14 VSS  
AB22 D[51]#  
AB23 VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
AB24 D[33]#  
Input/  
Output  
AB25 D[47]#  
Source Synch  
Datasheet  
55  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal Buffer  
Type  
Signal Buffer  
Type  
Pin # Pin Name  
Direction  
Pin # Pin Name  
Direction  
AB26 VSS  
Power/Other  
AD12 VCC  
AD13 VSS  
AD14 VCC  
AD15 VCC  
AD16 VSS  
AD17 VCC  
AD18 VCC  
AD19 VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AC1  
AC2  
AC3  
PREQ#  
PRDY#  
VSS  
Common Clock Input  
Common Clock Output  
Power/Other  
Input/  
Common Clock  
Output  
AC4  
BPM[3]#  
AC5  
AC6  
AC7  
AC8  
AC9  
TCK  
VSS  
VCC  
VSS  
VCC  
CMOS  
Input  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
AD20 D[54]#  
Source Synch  
Input/  
Output  
AD21 D[59]#  
AD22 VSS  
Source Synch  
Power/Other  
Source Synch  
AC10 VCC  
AC11 VSS  
AC12 VCC  
AC13 VCC  
AC14 VSS  
AC15 VCC  
AC16 VSS  
AC17 VCC  
AC18 VCC  
AC19 VSS  
Input/  
Output  
AD23 D[61]#  
Input/  
Output  
AD24 D[49]#  
Source Synch  
AD25 VSS  
Power/Other  
Power/Other  
Power/Other  
CMOS  
AD26 GTLREF  
Input  
AE1  
AE2  
AE3  
AE4  
AE5  
AE6  
AE7  
AE8  
AE9  
VSS  
VID[6]  
VID[4]  
VSS  
Output  
Output  
CMOS  
Power/Other  
CMOS  
Input/  
Output  
AC20 DINV[3]#  
AC21 VSS  
Source Synch  
Power/Other  
Source Synch  
VID[2]  
PSI#  
Output  
Output  
Output  
CMOS  
Input/  
Output  
VSSSENSE  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
AC22 D[60]#  
Input/  
Output  
AC23 D[63]#  
AC24 VSS  
Source Synch  
Power/Other  
Source Synch  
VCC  
AE10 VCC  
AE11 VSS  
AE12 VCC  
AE13 VCC  
AE14 VSS  
AE15 VCC  
AE16 VSS  
AE17 VCC  
AE18 VCC  
AE19 VSS  
AE20 VCC  
Input/  
Output  
AC25 D[57]#  
Input/  
Output  
AC26 D[53]#  
Source Synch  
AD1  
AD2  
AD3  
BPM[2]#  
VSS  
Common Clock Output  
Power/Other  
BPM[1]#  
Common Clock Output  
Input/  
Common Clock  
Output  
AD4  
BPM[0]#  
AD5  
AD6  
AD7  
AD8  
AD9  
VSS  
Power/Other  
VID[0]  
VCC  
CMOS  
Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
AE21 D[58]#  
Source Synch  
VSS  
Input/  
Output  
VCC  
AE22 D[55]#  
AE23 VSS  
Source Synch  
Power/Other  
AD10 VCC  
AD11 VSS  
56  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal Buffer  
Type  
Signal Buffer  
Type  
Pin # Pin Name  
Direction  
Pin # Pin Name  
Direction  
Input/  
Output  
B9  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
AE24 D[48]#  
Source Synch  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
VCC  
Input/  
Output  
AE25 DSTBN[3]#  
AE26 VSS  
Source Synch  
VSS  
VCC  
Power/Other  
Test  
VSS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
TEST5  
VSS  
VCC  
Power/Other  
CMOS  
VCC  
VID[5]  
VID[3]  
VID[1]  
VSS  
Output  
Output  
Output  
VSS  
CMOS  
VCC  
CMOS  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VCCSENSE  
VSS  
VCC  
VSS  
VCC  
BSEL[0]  
BSEL[1]  
VSS  
Output  
Output  
AF10 VCC  
AF11 VSS  
AF12 VCC  
AF13 VSS  
AF14 VCC  
AF15 VCC  
AF16 VSS  
AF17 VCC  
AF18 VCC  
AF19 VSS  
AF20 VCC  
AF21 VSS  
CMOS  
Power/Other  
Power/Other  
Power/Other  
THRMDC  
VCCA  
RESET#  
VSS  
Common Clock Input  
Power/Other  
TEST  
C2  
C3  
TEST7  
IGNNE#  
VSS  
C4  
CMOS  
Input  
C5  
Power/Other  
CMOS  
C6  
LINT0  
THERMTRIP#  
VSS  
Input  
C7  
Open Drain  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
CMOS  
Output  
C8  
Input/  
Output  
AF22 D[62]#  
AF23 D[56]#  
AF24 DSTBP[3]#  
Source Synch  
Source Synch  
Source Synch  
C9  
VCC  
Input/  
Output  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
VCC  
VSS  
Input/  
Output  
VCC  
VCC  
AF25 VSS  
AF26 TEST4  
Depopulated  
Power/Other  
Test  
VSS  
VCC  
for µFCPGA  
VSS for  
µFCBGA  
VSS  
B1  
Keying option  
VCC  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
RSVD  
INIT#  
LINT1  
DPSLP#  
VSS  
Reserved  
CMOS  
VCC  
Input  
Input  
Input  
VSS  
CMOS  
DBR#  
BSEL[2]  
VSS  
Output  
Output  
CMOS  
CMOS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Test  
VCC  
TEST1  
TEST3  
VSS  
Test  
Datasheet  
57  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal Buffer  
Type  
Signal Buffer  
Type  
Pin # Pin Name  
Direction  
Pin # Pin Name  
Direction  
C25  
C26  
D1  
VSS  
Power/Other  
Power/Other  
Power/Other  
Reserved  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
VCC  
VCC  
VSS  
VCC  
VSS  
VCC  
VCC  
VSS  
VCC  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCCA  
VSS  
D2  
RSVD  
RSVD  
VSS  
D3  
Reserved  
D4  
Power/Other  
CMOS  
D5  
STPCLK#  
PWRGOOD  
SLP#  
VSS  
Input  
Input  
Input  
D6  
CMOS  
D7  
CMOS  
D8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Open Drain  
D9  
VCC  
Input/  
Output  
E22  
D[0]#  
Source Synch  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
VCC  
Input/  
Output  
E23  
E24  
E25  
D[7]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
VSS  
VCC  
VSS  
Input/  
Output  
D[6]#  
VCC  
Input/  
Output  
VCC  
E26  
F1  
D[2]#  
BR0#  
Source Synch  
VSS  
Input/  
Output  
Common Clock  
Power/Other  
VCC  
VCC  
F2  
VSS  
VSS  
F3  
RS[0]#  
RS[1]#  
VSS  
Common Clock Input  
Common Clock Input  
Power/Other  
Reserved  
IERR#  
Output  
F4  
Input/  
Output  
F5  
D21  
PROCHOT#  
Open Drain  
F6  
RSVD  
VCC  
VSS  
D22  
D23  
RSVD  
VSS  
Reserved  
F7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
F8  
Input/  
Output  
D24  
DPWR#  
Common Clock  
F9  
VCC  
VCC  
VSS  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
D25  
D26  
TEST2  
VSS  
Test  
Power/Other  
VCC  
VSS  
Input/  
Output  
E1  
DBSY#  
Common Clock  
Input/  
Output  
VCC  
VCC  
VSS  
E2  
E3  
E4  
BNR#  
VSS  
Common Clock  
Power/Other  
Input/  
Output  
HITM#  
Common Clock  
VCC  
VCC  
VSS  
E5  
DPRSTP#  
VSS  
CMOS  
Input  
E6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
E7  
VCC  
VCC  
E8  
VSS  
Input/  
Common Clock  
Output  
F21  
F22  
F23  
DRDY#  
VSS  
E9  
VCC  
Power/Other  
E10  
E11  
VCC  
Input/  
Source Synch  
Output  
D[4]#  
VSS  
58  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal Buffer  
Type  
Signal Buffer  
Type  
Pin # Pin Name  
Direction  
Pin # Pin Name  
Direction  
Input/  
Output  
J21  
J22  
VCCP  
VSS  
Power/Other  
Power/Other  
F24  
F25  
F26  
D[1]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/  
Output  
J23  
D[11]#  
Source Synch  
Input/  
Output  
D[13]#  
Input/  
Output  
J24  
J25  
J26  
K1  
D[10]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
G1  
G2  
G3  
G4  
G5  
VSS  
TRDY#  
RS[2]#  
VSS  
Common Clock Input  
Common Clock Input  
Power/Other  
Input/  
Output  
DSTBN[0]#  
VSS  
BPRI#  
Common Clock Input  
Input/  
Output  
K2  
REQ[2]#  
Input/  
Common Clock  
Output  
G6  
HIT#  
VCCP  
D[3]#  
VSS  
Input/  
Output  
K3  
K4  
K5  
REQ[0]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
G21  
G22  
G23  
G24  
Power/Other  
Input/  
Source Synch  
Output  
Input/  
Output  
A[6]#  
Power/Other  
Input/  
Source Synch  
Output  
K6  
VCCP  
VCCP  
Power/Other  
Power/Other  
D[9]#  
K21  
Input/  
Source Synch  
Output  
G25  
G26  
H1  
D[5]#  
VSS  
Input/  
Output  
K22  
K23  
K24  
D[14]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/  
Common Clock  
Output  
ADS#  
Input/  
Output  
D[8]#  
Input/  
Source Synch  
Output  
H2  
H3  
H4  
REQ[1]#  
VSS  
Input/  
Output  
K25  
K26  
L1  
D[17]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Input/  
Common Clock  
Output  
LOCK#  
Input/  
Output  
REQ[4]#  
H5  
DEFER#  
VSS  
Common Clock Input  
Power/Other  
Input/  
Output  
L2  
L3  
L4  
A[13]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
H6  
H21  
VSS  
Power/Other  
Input/  
Source Synch  
Output  
Input/  
Output  
H22  
D[12]#  
A[5]#  
Input/  
Source Synch  
Output  
Input/  
Output  
H23  
H24  
H25  
D[15]#  
VSS  
L5  
A[4]#  
Source Synch  
Power/Other  
L6  
VSS  
VSS  
Power/Other  
Power/Other  
Input/  
Source Synch  
Output  
L21  
DINV[0]#  
Input/  
Output  
L22  
D[22]#  
Source Synch  
Input/  
Source Synch  
Output  
H26  
DSTBP[0]#  
Input/  
Output  
L23  
L24  
L25  
D[20]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Source Synch  
Output  
J1  
J2  
J3  
A[9]#  
VSS  
Power/Other  
Input/  
Output  
D[29]#  
Input/  
Source Synch  
Output  
REQ[3]#  
Input/  
Output  
L26  
M1  
DSTBN[1]#  
ADSTB[0]#  
Source Synch  
Source Synch  
Input/  
Source Synch  
Output  
J4  
A[3]#  
Input/  
Output  
J5  
J6  
VSS  
Power/Other  
Power/Other  
VCCP  
59  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal Buffer  
Type  
Signal Buffer  
Type  
Pin # Pin Name  
Direction  
Pin # Pin Name  
Direction  
M2  
M3  
VSS  
Power/Other  
Input/  
Output  
P25  
P26  
D[24]#  
D[18]#  
Source Synch  
Input/  
Output  
A[7]#  
Source Synch  
Input/  
Output  
Source Synch  
M4  
RSVD  
VSS  
Reserved  
Input/  
Output  
R1  
R2  
R3  
A[16]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
M5  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
M6  
VCCP  
VCCP  
VSS  
M21  
M22  
Input/  
Output  
A[19]#  
Input/  
Output  
Input/  
Output  
R4  
A[24]#  
Source Synch  
M23  
D[23]#  
Source Synch  
R5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
M24  
M25  
M26  
N1  
D[21]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
R6  
VCCP  
VCCP  
VSS  
R21  
R22  
Input/  
Output  
DSTBP[1]#  
VSS  
Input/  
Output  
R23  
D[19]#  
Source Synch  
Input/  
Output  
Input/  
Output  
N2  
A[8]#  
R24  
R25  
R26  
D[28]#  
VSS  
Source Synch  
Power/Other  
Power/Other  
Input/  
Output  
N3  
A[10]#  
Source Synch  
Input/  
Output  
COMP[0]  
N4  
VSS  
Power/Other  
Reserved  
N5  
RSVD  
VCCP  
VCCP  
T1  
T2  
VSS  
Power/Other  
Reserved  
N6  
Power/Other  
Power/Other  
RSVD  
N21  
Input/  
Output  
T3  
T4  
T5  
A[26]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
N22  
N23  
N24  
D[16]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[25]#  
Input/  
Output  
DINV[1]#  
T6  
VCCP  
VCCP  
Power/Other  
Power/Other  
Input/  
Output  
T21  
N25  
N26  
P1  
D[31]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
T22  
T23  
T24  
D[37]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[15]#  
Input/  
Output  
D[27]#  
Input/  
Output  
P2  
P3  
P4  
A[12]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
T25  
T26  
U1  
D[30]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[14]#  
Input/  
Output  
A[23]#  
Input/  
Output  
P5  
A[11]#  
Source Synch  
Input/  
Output  
U2  
U3  
U4  
A[30]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
P6  
VSS  
VSS  
Power/Other  
Power/Other  
P21  
Input/  
Output  
Input/  
Output  
P22  
D[26]#  
Source Synch  
A[21]#  
Input/  
Output  
Input/  
Output  
P23  
P24  
D[25]#  
VSS  
Source Synch  
Power/Other  
U5  
U6  
A[18]#  
VSS  
Source Synch  
Power/Other  
60  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 13.  
Pin Listing by Pin  
Number  
Table 13.  
Pin Listing by Pin  
Number  
Signal Buffer  
Type  
Signal Buffer  
Type  
Pin # Pin Name  
Direction  
Pin # Pin Name  
Direction  
U21  
U22  
VSS  
Power/Other  
Input/  
Output  
Y2  
Y3  
Y4  
A[17]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
DINV[2]#  
Source Synch  
Input/  
Output  
Input/  
Output  
U23  
U24  
U25  
D[39]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
A[29]#  
Input/  
Output  
Y5  
A[22]#  
Source Synch  
Input/  
Output  
D[38]#  
Y6  
VSS  
VSS  
Power/Other  
Power/Other  
Input/  
Output  
Y21  
U26  
V1  
COMP[1]  
Power/Other  
Source Synch  
Input/  
Output  
Y22  
D[32]#  
Source Synch  
Input/  
Output  
ADSTB[1]#  
Input/  
Output  
Y23  
Y24  
Y25  
D[42]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
V2  
V3  
VSS  
Power/Other  
Reserved  
RSVD  
Input/  
Output  
Input/  
Output  
V4  
A[31]#  
Source Synch  
D[40]#  
V5  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/  
Output  
Y26  
DSTBN[2]#  
Source Synch  
V6  
VCCP  
VCCP  
VSS  
V21  
V22  
Input/  
Output  
V23  
D[36]#  
Source Synch  
Input/  
Output  
V24  
V25  
V26  
W1  
D[34]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
D[35]#  
VSS  
Input/  
Output  
W2  
A[27]#  
Input/  
Output  
W3  
W4  
W5  
A[32]#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Input/  
Output  
A[28]#  
Input/  
Output  
W6  
A[20]#  
VCCP  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
W21  
W22  
W23  
W24  
Input/  
Output  
D[41]#  
VSS  
Input/  
Output  
D[43]#  
Input/  
Output  
W25  
W26  
Y1  
D[44]#  
VSS  
Source Synch  
Power/Other  
Power/Other  
Input/  
Output  
COMP[3]  
61  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 1 of 8)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address  
space. In sub-phase 1 of the address phase, these pins transmit the  
address of a transaction. In sub-phase 2, these pins transmit  
transaction type information. These signals must connect the  
appropriate pins of both agents on the processor FSB. A[35:3]# are  
source synchronous signals and are latched into the receiving  
buffers by ADSTB[1:0]#. Address signals are used as straps, which  
are sampled before RESET# is deasserted.  
Input/  
Output  
A[35:3]#  
If A20M# (Address-20 Mask) is asserted, the processor masks  
physical address Bit 20 (A20#) before looking up a line in any  
internal cache and before driving a read/write transaction on the  
bus. Asserting A20M# emulates the 8086 processor's address  
wrap-around at the 1-MB boundary. Assertion of A20M# is only  
supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition  
of this signal following an input/output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding input/  
output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the  
transaction address on the A[35:3]# and REQ[4:0]# pins. All bus  
agents observe the ADS# activation to begin parity checking,  
protocol checking, address decode, internal snoop, or deferred  
reply ID match operations associated with the new transaction.  
Input/  
Output  
ADS#  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their  
rising and falling edges. Strobes are associated with signals as  
shown below.  
Input/  
Output  
ADSTB[1:0]#  
Signals  
Associated Strobe  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
ADSTB[0]#  
ADSTB[1]#  
The differential pair BCLK (Bus Clock) determines the FSB  
frequency. All FSB agents must receive these signals to drive their  
outputs and latch their inputs.  
BCLK[1:0]  
BNR#  
Input  
All external timing parameters are specified with respect to the  
rising edge of BCLK0 crossing VCROSS  
.
BNR# (Block Next Request) is used to assert a bus stall by any bus  
agent who is unable to accept new bus transactions. During a bus  
stall, the current bus owner cannot issue any new transactions.  
Input/  
Output  
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance  
monitor signals. They are outputs from the processor that indicate  
the status of breakpoints and programmable counters used for  
monitoring processor performance. BPM[3:0]# should connect the  
appropriate pins of all processor FSB agents.This includes debug or  
performance monitoring tools.  
Output  
BPM[2:1]#  
BPM[3,0]#  
Input/  
Output  
Refer to the appropriate eXtended Debug Port: Debug Port Design  
Guide for UP and DP Platforms for detailed information.  
62  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 2 of 8)  
Name  
Type  
Description  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of  
the FSB. It must connect the appropriate pins of both FSB agents.  
Observing BPRI# active (as asserted by the priority agent) causes  
the other agent to stop issuing new requests, unless such requests  
are part of an ongoing locked operation. The priority agent keeps  
BPRI# asserted until all of its requests are completed, then releases  
the bus by deasserting BPRI#.  
BPRI#  
Input  
BR0# is used by the processor to request the bus. The arbitration is  
done between the processor (Symmetric Agent) and GMCH (High  
Priority Agent).  
Input/  
Output  
BR0#  
BSEL[2:0] (Bus Select) are used to select the processor input clock  
frequency. Table 3 defines the possible combinations of the signals  
and the frequency associated with each combination. The required  
frequency is determined by the processor, chipset and clock  
synthesizer. All agents must operate at the same frequency.  
BSEL[2:0]  
Output  
Analog  
COMP[3:0] must be terminated on the system board using  
precision (1% tolerance) resistors.  
COMP[3:0]  
Refer to the appropriate platform design guide for more details on  
implementation.  
D[63:0]# (Data) are the data signals. These signals provide a 64-  
bit data path between the FSB agents, and must connect the  
appropriate pins on both agents. The data driver asserts DRDY# to  
indicate a valid data transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four  
times in a common clock period. D[63:0]# are latched off the  
falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of  
16 data signals correspond to a pair of one DSTBP# and one  
DSTBN#. The following table shows the grouping of data signals to  
data strobes and DINV#  
.
Quad-Pumped Signal Groups  
Input/  
Output  
D[63:0]#  
DSTBN#/  
Data Group  
DINV#  
DSTBP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DINV# pins determine the polarity of the data  
signals. Each group of 16 data signals corresponds to one DINV#  
signal. When the DINV# signal is active, the corresponding data  
group is inverted and therefore sampled active high.  
DBR# (Data Bus Reset) is used only in processor systems where no  
debug port is implemented on the system board. DBR# is used by a  
debug port interposer so that an in-target probe can drive system  
reset. If a debug port is implemented in the system, DBR# is a no-  
connect in the system. DBR# is not a processor signal.  
DBR#  
Output  
Datasheet  
63  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 3 of 8)  
Name  
Type  
Description  
DBSY# (Data Bus Busy) is asserted by the agent responsible for  
driving data on the FSB to indicate that the data bus is in use. The  
data bus is released after DBSY# is deasserted. This signal must  
connect the appropriate pins on both FSB agents.  
Input/  
Output  
DBSY#  
DEFER# is asserted by an agent to indicate that a transaction  
cannot be ensured in-order completion. Assertion of DEFER# is  
normally the responsibility of the addressed memory or input/  
output agent. This signal must connect the appropriate pins of both  
FSB agents.  
DEFER#  
Input  
DINV[3:0]# (Data Bus Inversion) are source synchronous and  
indicate the polarity of the D[63:0]# signals. The DINV[3:0]#  
signals are activated when the data on the data bus is inverted. The  
bus agent will invert the data bus signals if more than half the bits,  
within the covered group, would change level in the next cycle.  
DINV[3:0]# Assignment to Data Bus  
Input/  
Output  
DINV[3:0]#  
Bus Signal  
Data Bus Signals  
DINV[3]#  
DINV[2]#  
DINV[1]#  
DINV[0]#  
D[63:48]#  
D[47:32]#  
D[31:16]#  
D[15:0]#  
DPRSTP#, when asserted on the platform, causes the processor to  
transition from the Deep Sleep State to the Deeper Sleep state or  
C6 state. To return to the Deep Sleep State, DPRSTP# must be  
deasserted. DPRSTP# is driven by the ICH8M chipset.  
DPRSTP#  
Input  
Input  
DPSLP# when asserted on the platform causes the processor to  
transition from the Sleep State to the Deep Sleep state. To return to  
the Sleep State, DPSLP# must be deasserted. DPSLP# is driven by  
the ICH8M chipset.  
DPSLP#  
DPWR#  
DRDY#  
DPWR# is a control signal used by the chipset to reduce power on  
the processor data bus input buffers. The processor drives this pin  
during dynamic FSB frequency switching.  
Input/  
Output  
DRDY# (Data Ready) is asserted by the data driver on each data  
transfer, indicating valid data on the data bus. In a multi-common  
clock data transfer, DRDY# may be deasserted to insert idle clocks.  
This signal must connect the appropriate pins of both FSB agents.  
Input/  
Output  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
DSTBN[0]#  
D[15:0]#, DINV[0]#  
D[31:16]#, DINV[1]#  
D[47:32]#, DINV[2]#  
D[63:48]#, DINV[3]#  
Input/  
Output  
DSTBN[3:0]#  
DSTBN[1]#  
DSTBN[2]#  
DSTBN[3]#  
64  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 4 of 8)  
Name  
Type  
Description  
Data strobe used to latch in D[63:0]#.  
Signals  
Associated Strobe  
D[15:0]#, DINV[0]#  
D[31:16]#, DINV[1]#  
D[47:32]#, DINV[2]#  
D[63:48]#, DINV[3]#  
DSTBP[0]#  
DSTBP[1]#  
DSTBP[2]#  
DSTBP[3]#  
Input/  
Output  
DSTBP[3:0]#  
FERR# (Floating-point Error)/PBE#(Pending Break Event) is a  
multiplexed signal and its meaning is qualified with STPCLK#. When  
STPCLK# is not asserted, FERR#/PBE# indicates a floating point  
when the processor detects an unmasked floating-point error.  
FERR# is similar to the ERROR# signal on the Intel 387  
coprocessor, and is included for compatibility with systems using  
MS-DOS*-type floating-point error reporting. When STPCLK# is  
asserted, an assertion of FERR#/PBE# indicates that the processor  
has a pending break event waiting for service. The assertion of  
FERR#/PBE# indicates that the processor should be returned to the  
Normal state. When FERR#/PBE# is asserted, indicating a break  
event, it will remain asserted until STPCLK# is deasserted.  
Assertion of PREQ# when STPCLK# is active will also cause an  
FERR# break event.  
FERR#/PBE#  
Output  
For additional information on the pending break event functionality,  
including identification of support of the feature and enable/disable  
information, refer to Volumes 3A and 3B of the Intel® 64 and IA-32  
Architectures Software Developer's Manuals and the CPUID  
Instruction Application Note.  
Refer to the appropriate platform design guide for termination  
requirements.  
GTLREF determines the signal reference level for AGTL+ input pins.  
GTLREF should be set at 2/3 VCCP. GTLREF is used by the AGTL+  
receivers to determine if a signal is a Logical 0 or Logical 1.  
GTLREF  
Input  
Input/  
Output  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction  
snoop operation results. Either FSB agent may assert both HIT#  
and HITM# together to indicate that it requires a snoop stall that  
can be continued by reasserting HIT# and HITM# together.  
HIT#  
Input/  
Output  
HITM#  
IERR# (Internal Error) is asserted by the processor as the result of  
an internal error. Assertion of IERR# is usually accompanied by a  
SHUTDOWN transaction on the FSB. This transaction may optionally  
be converted to an external error signal (e.g., NMI) by system core  
logic. The processor will keep IERR# asserted until the assertion of  
RESET#, BINIT#, or INIT#.  
IERR#  
Output  
Datasheet  
65  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 5 of 8)  
Name  
Type  
Description  
IGNNE# (Ignore Numeric Error) is asserted to force the processor  
to ignore a numeric error and continue to execute non-control  
floating-point instructions. If IGNNE# is deasserted, the processor  
generates an exception on a non-control floating-point instruction if  
a previous floating-point instruction caused an error. IGNNE# has  
no effect when the NE bit in Control Register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition  
of this signal following an input/output write instruction, it must be  
valid along with the TRDY# assertion of the corresponding input/  
output Write bus transaction.  
INIT# (Initialization), when asserted, resets integer registers inside  
the processor without affecting its internal caches or floating-point  
registers. The processor then begins execution at the power-on  
Reset vector configured during power-on configuration. The  
processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal. However, to ensure  
recognition of this signal following an input/output write instruction,  
it must be valid along with the TRDY# assertion of the  
INIT#  
Input  
corresponding input/output write bus transaction. INIT# must  
connect the appropriate pins of both FSB agents.  
If INIT# is sampled active on the active-to-inactive transition of  
RESET#, then the processor executes its Built-in Self-Test (BIST).  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins  
of all APIC Bus agents. When the APIC is disabled, the LINT0 signal  
becomes INTR, a maskable interrupt request signal, and LINT1  
becomes NMI, a nonmaskable interrupt. INTR and NMI are  
backward compatible with the signals of those names on the  
Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software-configured via BIOS  
programming of the APIC register space to be used either as NMI/  
INTR or LINT[1:0]. Because the APIC is enabled by default after  
Reset, operation of these pins as LINT[1:0] is the default  
configuration.  
LOCK# indicates to the system that a transaction must occur  
atomically. This signal must connect the appropriate pins of both  
FSB agents. For a locked sequence of transactions, LOCK# is  
asserted from the beginning of the first transaction to the end of  
the last transaction.  
Input/  
Output  
LOCK#  
When the priority agent asserts BPRI# to arbitrate for ownership of  
the FSB, it will wait until it observes LOCK# deasserted. This  
enables symmetric agents to retain ownership of the FSB  
throughout the bus locked operation and ensure the atomicity of  
lock.  
Probe Ready signal used by debug tools to determine processor  
debug readiness.  
PRDY#  
PREQ#  
Output  
Input  
Probe Request signal used by debug tools to request debug  
operation of the processor.  
66  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 6 of 8)  
Name  
Type  
Description  
As an output, PROCHOT# (Processor Hot) will go active when the  
processor temperature monitoring sensor detects that the  
processor has reached its maximum safe operating temperature.  
This indicates that the processor Thermal Control Circuit (TCC) has  
been activated, if enabled. As an input, assertion of PROCHOT# by  
the system will activate the TCC, if enabled. The TCC will remain  
active until the system deasserts PROCHOT#.  
Input/  
Output  
PROCHOT#  
By default PROCHOT# is configured as an output. The processor  
must be enabled via the BIOS for PROCHOT# to be configured as  
bidirectional.  
Processor Power Status Indicator signal. This signal is asserted  
when the processor is both in the normal state (HFM to LFM) and in  
lower power states (Deep Sleep and Deeper Sleep).  
PSI#  
Output  
PWRGOOD (Power Good) is a processor input. The processor  
requires this signal to be a clean indication that the clocks and  
power supplies are stable and within their specifications. ‘Clean’  
implies that the signal remains low (capable of sinking leakage  
current), without glitches, from the time that the power supplies  
are turned on until they come within specification. The signal must  
then transition monotonically to a high state. PWRGOOD can be  
driven inactive at any time, but clocks and power must again be  
stable before a subsequent rising edge of PWRGOOD.  
PWRGOOD  
Input  
The PWRGOOD signal must be supplied to the processor; it is used  
to protect internal circuits against voltage sequencing issues. It  
should be driven high throughout boundary scan operation.  
REQ[4:0]# (Request Command) must connect the appropriate pins  
of both FSB agents. They are asserted by the current bus owner to  
define the currently active transaction type. These signals are  
source synchronous to ADSTB[0]#.  
Input/  
Output  
REQ[4:0]#  
RESET#  
Asserting the RESET# signal resets the processor to a known state  
and invalidates its internal caches without writing back any of their  
contents. For a power-on Reset, RESET# must stay active for at  
least two milliseconds after VCC and BCLK have reached their  
proper specifications. On observing active RESET#, both FSB  
agents will deassert their outputs within two clocks. All processor  
straps must be valid within the specified setup time before RESET#  
is deasserted.  
Input  
Input  
RS[2:0]# (Response Status) are driven by the response agent (the  
agent responsible for completion of the current transaction), and  
must connect the appropriate pins of both FSB agents.  
RS[2:0]#  
RSVD  
Reserved/ These pins are RESERVED and must be left unconnected on the  
No  
Connect  
board. However, it is recommended that routing channels to these  
pins on the board be kept open for possible future use.  
Datasheet  
67  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 7 of 8)  
Name  
Type  
Description  
SLP# (Sleep), when asserted in Stop-Grant state, causes the  
processor to enter the Sleep state. During Sleep state, the  
processor stops providing internal clock signals to all units, leaving  
only the Phase-Locked Loop (PLL) still operating. Processors in this  
state will not recognize snoops or interrupts. The processor will  
recognize only assertion of the RESET# signal, deassertion of SLP#,  
and removal of the BCLK input while in Sleep state. If SLP# is  
deasserted, the processor exits Sleep state and returns to Stop-  
Grant state, restarting its internal clock signals to the bus and  
processor core units. If DPSLP# is asserted while in the Sleep state,  
the processor will exit the Sleep state and transition to the Deep  
Sleep state.  
SLP#  
Input  
SMI# (System Management Interrupt) is asserted asynchronously  
by system logic. On accepting a System Management Interrupt, the  
processor saves the current state and enters System Management  
Mode (SMM). An SMI Acknowledge transaction is issued and the  
processor begins program execution from the SMM handler.  
SMI#  
Input  
Input  
If an SMI# is asserted during the deassertion of RESET#, then the  
processor will tristate its outputs.  
STPCLK# (Stop Clock), when asserted, causes the processor to  
enter a low-power stop-grant state. The processor issues a Stop-  
Grant Acknowledge transaction, and stops providing internal clock  
signals to all processor core units except the FSB and APIC units.  
The processor continues to snoop bus transactions and service  
interrupts while in Stop-Grant state. When STPCLK# is deasserted,  
the processor restarts its internal clock to all units and resumes  
execution. The assertion of STPCLK# has no effect on the bus  
clock; STPCLK# is an asynchronous input.  
STPCLK#  
TCK (Test Clock) provides the clock input for the processor Test Bus  
(also known as the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI  
provides the serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor.  
TDO provides the serial output needed for JTAG specification  
support.  
TDO  
Output  
TEST1,  
TEST2,  
TEST3,  
TEST4,  
TEST5,  
TEST6,  
TEST7  
TEST1, TEST2, TEST3, TEST4, TEST5, TEST6, and TEST7 have  
termination requirements.  
Input  
THRMDA  
THRMDC  
Other  
Other  
Thermal Diode Anode.  
Thermal Diode Cathode.  
The processor protects itself from catastrophic overheating by use  
of an internal thermal sensor. This sensor is set well above the  
normal operating temperature to ensure that there are no false  
trips. The processor will stop all execution when the junction  
temperature exceeds approximately 125°C. This is signalled to the  
system by the THERMTRIP# (Thermal Trip) pin.  
THERMTRIP#  
Output  
68  
Datasheet  
Package Mechanical Specifications and Pin Information  
Table 14.  
Signal Description (Sheet 8 of 8)  
Name  
TMS  
Type  
Description  
TMS (Test Mode Select) is a JTAG specification support signal used  
by debug tools.  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is  
ready to receive a write or implicit writeback data transfer. TRDY#  
must connect the appropriate pins of both FSB agents.  
TRDY#  
TRST#  
Input  
Input  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST#  
must be driven low during power on Reset.  
VCC  
Input  
Input  
Input  
Input  
Processor core power supply.  
VSS  
Processor core ground node.  
VCCA  
VCCP  
VCCA provides isolated power for the internal processor core PLLs.  
Processor I/O Power Supply.  
VCC_SENSE together with VSS_SENSE are voltage feedback signals to  
Intel® MVP6 that control the 2.1-mΩ loadline at the processor die.  
It should be used to sense voltage near the silicon with little noise.  
Refer to the platform design guide for termination and routing  
recommendations.  
VCC_SENSE  
VID[6:0]  
VSS_SENSE  
Output  
Output  
Output  
VID[6:0] (Voltage ID) pins are used to support automatic selection  
of power supply voltages (VCC). Unlike some previous generations  
of processors, these are CMOS signals that are driven by the  
processor. The voltage supply for these pins must be valid before  
the VR can supply VCC to the processor. Conversely, the VR output  
must be disabled until the voltage supply for the VID pins becomes  
valid. The VID pins are needed to support the processor voltage  
specification variations. See Table 2 for definitions of these pins.  
The VR must supply the voltage that is requested by the pins, or  
disable itself.  
VSS_SENSE together with VCC_SENSE are voltage feedback signals to  
Intel MVP6 that control the 2.1-mΩ loadline at the processor die. It  
should be used to sense ground near the silicon with little noise.  
Refer to the platform design guide for termination and routing  
recommendations.  
§
Datasheet  
69  
Package Mechanical Specifications and Pin Information  
70  
Datasheet  
Thermal Specifications  
5 Thermal Specifications  
Maintaining the proper thermal environment is key to reliable, long-term system  
operation. A complete thermal solution includes both component and system-level  
thermal management features. To allow for the optimal operation and long-term  
reliability of Intel processor-based systems, the system/processor thermal solution  
should be designed so the processor remains within the minimum and maximum  
junction temperature (TJ) specifications at the corresponding thermal design power  
(TDP) value listed in Table 15. Analysis indicates that real applications are unlikely to  
cause the processor to consume the theoretical maximum power dissipation for  
sustained time periods.  
Table 15.  
Power Specifications for the Extreme Edition Processor  
Processor  
Number  
ThermalDesign  
Symbol  
Core Frequency & Voltage  
Unit Notes  
Power  
X9000  
2.8 GHz & VCCHFM  
1.2 GHz & VCCLFM  
0.8 GHz & VCCSLFM  
44  
29  
22  
1, 4,  
5, 6  
TDP  
W
Symbol  
Parameter  
Min Typ Max Unit Notes  
Auto Halt, Stop Grant Power  
at VCCHFM  
PAH,  
W
W
W
2, 5, 7  
2, 5, 7  
2, 5, 8  
17.1  
7.4  
PSGNT  
at VCCSLFM  
Sleep Power  
at VCCHFM  
PSLP  
16.1  
7.1  
at VCCSLFM  
Deep Sleep Power  
at VCCHFM  
PDSLP  
7.5  
4.2  
at VCCSLFM  
PDPRSLP  
PDC4  
PC6  
Deeper Sleep Power  
0
1.9  
1.7  
1.3  
105  
W
W
W
°C  
2,8  
2,8  
Intel® Enhanced Deeper Sleep State Power  
Deep Power-Down Technology Power  
Junction Temperature  
2, 8  
3, 4  
TJ  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for details.  
4.  
5.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
Processor TDP requirements in Intel Dynamic Acceleration Technology mode is less than  
TDP in HFM.  
6.  
7.  
8.  
At Tj of 105oC  
At Tj of 50oC  
At Tj of 35oC  
Datasheet  
71  
Thermal Specifications  
Table 16.  
Power Specifications for Dual-Core Standard Voltage Processors  
Processor  
Number  
ThermalDesign  
Symbol  
Core Frequency & Voltage  
Unit Notes  
Power  
2.6 GHz & VCCHFM  
2.5 GHz & VCCHFM  
2.4 GHz & VCCHFM  
2.1 GHz & VCCHFM  
1.2 GHz & VCCLFM  
0.8 GHz & VCCLFM  
35  
35  
35  
35  
22  
12  
T9500  
T9300  
T8300  
T8100  
1, 4,  
5, 6  
TDP  
W
Symbol  
Parameter  
Min Typ Max Unit  
Auto Halt, Stop Grant Power  
at VCCHFM  
PAH,  
12.5  
5.0  
W
W
W
2, 5, 7  
2, 5, 7  
2, 5, 8  
PSGNT  
at VCCSLFM  
Sleep Power  
at VCCHFM  
PSLP  
11.8  
4.8  
at VCCSLFM  
Deep Sleep Power  
at VCCHFM  
PDSLP  
5.5  
2.2  
at VCCSLFM  
PDPRSLP Deeper Sleep Power  
0
1.7  
1.3  
0.3  
105  
W
W
W
°C  
2, 8  
2, 8  
2, 8  
3, 4  
PDC4  
PC6  
TJ  
Intel® Enhanced Deeper Sleep State Power  
Deep Power-Down Technology Power  
Junction Temperature  
NOTES:  
1.  
The TDP specification should be used to design the processor thermal solution. The TDP is  
not the maximum theoretical power the processor can generate.  
Not 100% tested. These power specifications are determined by characterization of the  
processor currents at higher temperatures and extrapolating the values for the  
temperature indicated.  
2.  
3.  
As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal  
Monitor’s automatic mode is used to indicate that the maximum TJ has been reached.  
Refer to Section 5.1 for more details.  
4.  
5.  
The Intel Thermal Monitor automatic mode must be enabled for the processor to operate  
within specifications.  
Processor TDP requirements in Intel Dynamic Acceleration Technology mode is lesser than  
TDP in HFM.  
6.  
7.  
8.  
At Tj of 105oC  
At Tj of 50oC  
At Tj of 35oC  
72  
Datasheet  
Thermal Specifications  
5.1  
Thermal Features  
The processor requires a thermal solution to maintain temperatures within operating  
limits as set forth in Section 5.1.  
Caution:  
Operating the processor outside these operating limits may result in permanent  
damage to the processor and potentially other components in the system.  
The processor incorporates three methods of monitoring die temperature:  
• Thermal diode  
• Intel Thermal Monitor  
• Digital thermal sensor  
Note:  
The Intel Thermal Monitor (detailed in Section 5.1.2) must be used to determine when  
the maximum specified processor junction temperature has been reached.  
5.1.1  
Thermal Diode  
Intel’s processors utilize an SMBus thermal sensor to read back the voltage/current  
characteristics of a substrate PNP transistor. Since these characteristics are a function  
of temperature, in principle one can use these parameters to calculate silicon  
temperature values. For older silicon process technologies it was possible to simplify  
the voltage/current and temperature relationships by treating the substrate transistor  
as though it were a simple diffusion diode. In this case, the assumption is that the beta  
of the transistor does not impact the calculated temperature values. The resultant  
diode model essentially predicts a quasi linear relationship between the base/emitter  
voltage differential of the PNP transistor and the applied temperature (one of the  
proportionality constants in this relationship is processor specific, and is known as the  
diode ideality factor). Realization of this relationship is accomplished with the SMBus  
thermal sensor that is connected to the transistor.  
This processor, however, is built on Intel’s advanced 45-nm processor technology. Due  
to this new, highly-advanced processor technology, it is no longer possible to model the  
substrate transistor as a simple diode. To accurately calculate silicon temperature one  
must use a full bi-polar junction transistor-type model. In this model, the voltage/  
current and temperature characteristics include an additional process dependant  
parameter which is known as the transistor “beta. System designers should be aware  
that the current thermal sensors on Santa Rosa platforms may not be configured to  
account for “beta” and should work with their SMB thermal sensor vendors to ensure  
they have a part capable of reading the thermal diode in BJT model.  
Offset between the thermal diode-based temperature reading and the Intel Thermal  
Monitor reading may be characterized using the Intel Thermal Monitor’s Automatic  
mode activation of the thermal control circuit. This temperature offset must be taken  
into account when using the processor thermal diode to implement power management  
events. This offset is different than the diode Toffset value programmed into the  
processor model-specific register (MSR).  
Table 17 to Table 18 provide the diode interface and transistor model specifications.  
Table 17.  
Thermal Diode Interface  
Signal Name  
Pin/Ball Number  
Signal Description  
THERMDA  
THERMDC  
A24  
B25  
Thermal diode anode  
Thermal diode cathode  
Datasheet  
73  
Thermal Specifications  
Table 18.  
Thermal Diode Parameters using Transistor Model  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1
1
IFW  
IE  
Forward Bias Current  
Emitter Current  
5
5
200  
200  
1.008  
0.5  
μA  
μA  
2, 3, 4  
2, 3  
2
nQ  
Transistor Ideality  
0.997  
0.1  
3.0  
1.001  
0.4  
Beta  
RT  
Series Resistance  
4.5  
7.0  
Ω
NOTES:  
1.  
2.  
3.  
4.  
Intel does not support or recommend operation of the thermal diode under reverse bias.  
Characterized across a temperature range of 50-105°C.  
Not 100% tested. Specified by design characterization.  
The ideality factor, nQ, represents the deviation from ideal transistor model behavior as  
exemplified by the equation for the collector current:  
/n  
I
C = IS * (e qVBE kT –1)  
Q
where IS = saturation current, q = electronic charge, VBE = voltage across the transistor  
base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute  
temperature (Kelvin).  
5.1.2  
Intel® Thermal Monitor  
The Intel Thermal Monitor helps control the processor temperature by activating the  
TCC (thermal control circuit) when the processor silicon reaches its maximum operating  
temperature. The temperature at which the Intel Thermal Monitor activates the TCC is  
not user configurable. Bus traffic is snooped in the normal manner and interrupt  
requests are latched (and serviced during the time that the clocks are on) while the  
TCC is active.  
With a properly designed and characterized thermal solution, it is anticipated that the  
TCC would only be activated for very short periods of time when running the most  
power-intensive applications. The processor performance impact due to these brief  
periods of TCC activation is expected to be minor and hence not detectable. An under-  
designed thermal solution that is not able to prevent excessive activation of the TCC in  
the anticipated ambient environment may cause a noticeable performance loss and  
may affect the long-term reliability of the processor. In addition, a thermal solution that  
is significantly under-designed may not be capable of cooling the processor even when  
the TCC is active continuously.  
The Intel Thermal Monitor controls the processor temperature by modulating (starting  
and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep  
Technology transition when the processor silicon reaches its maximum operating  
temperature. The Intel Thermal Monitor uses two modes to activate the TCC: automatic  
mode and on-demand mode. If both modes are activated, automatic mode takes  
precedence.  
There are two automatic modes called Intel Thermal Monitor 1 (TM1) and Intel Thermal  
Monitor 2 (TM2). These modes are selected by writing values to the MSRs of the  
processor. After automatic mode is enabled, the TCC will activate only when the  
internal die temperature reaches the maximum allowed value for operation.  
When TM1 is enabled and a high temperature situation exists, the clocks will be  
modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times  
are processor speed-dependent and will decrease linearly as processor core frequencies  
increase. Once the temperature has returned to a non-critical level, modulation ceases  
and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid  
74  
Datasheet  
Thermal Specifications  
active/inactive transitions of the TCC when the processor temperature is near the trip  
point. The duty cycle is factory configured and cannot be modified. Also, automatic  
mode does not require any additional hardware, software drivers, or interrupt handling  
routines. Processor performance will be decreased by the same amount as the duty  
cycle when the TCC is active.  
When TM2 is enabled and a high temperature situation exists, the processor will  
perform an Enhanced Intel SpeedStep Technology transition to the LFM. When the  
processor temperature drops below the critical level, the processor will make an  
Enhanced Intel SpeedStep Technology transition to the last requested operating point.  
The processor also supports Enhanced Multi Threaded Thermal Monitoring (EMTTM).  
EMTTM is a processor feature that enhances TM2 with a processor throttling algorithm  
known as Adaptive TM2. Adaptive TM2 transitions to intermediate operating points,  
rather than directly to the LFM, once the processor has reached its thermal limit and  
subsequently searches for the highest possible operating point. Please ensure this  
feature is enabled and supported in the BIOS. Also with EMTTM enabled, the OS can  
request the processor to throttling to any point between Intel Dynamic Acceleration  
Technology frequency and SuperLFM frequency as long as these features are enabled in  
the BIOS and supported by the processor.  
The Intel Thermal Monitor automatic mode and Enhanced Multi Threaded  
Thermal Monitoring must be enabled through BIOS for the processor to be  
operating within specifications. Intel recommends TM1 and TM2 be enabled on the  
processors.  
TM1, TM2 and EMTTM features are collectively referred to as adaptive thermal  
monitoring features.  
TM1 and TM2 can co-exist within the processor. If both TM1 and TM2 bits are enabled in  
the auto-throttle MSR, TM2 will take precedence over TM1. However, if Force TM1 over  
TM2 is enabled in MSRs via BIOS and TM2 is not sufficient to cool the processor below  
the maximum operating temperature, then TM1 will also activate to help cool down the  
processor.  
If a processor load-based Enhanced Intel SpeedStep Technology transition (through  
MSR write) is initiated when a TM2 period is active, there are two possible results:  
1. If the processor load-based Enhanced Intel SpeedStep Technology transition target  
frequency is higher than the TM2 transition-based target frequency, the processor  
load-based transition will be deferred until the TM2 event has been completed.  
2. If the processor load-based Enhanced Intel SpeedStep Technology transition target  
frequency is lower than the TM2 transition-based target frequency, the processor  
will transition to the processor load-based Enhanced Intel SpeedStep Technology  
target frequency point.  
The TCC may also be activated via on-demand mode. If Bit 4 of the ACPI Intel Thermal  
Monitor control register is written to a 1, the TCC will be activated immediately,  
independent of the processor temperature. When using on-demand mode to activate  
the TCC, the duty cycle of the clock modulation is programmable via Bits 3:1 of the  
same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is  
fixed at 50% on/50% off; however, in on-demand mode the duty cycle can be  
programmed from 12.5% on/87.5% off to 87.5% on/12.5% off, in 12.5% increments.  
On-demand mode may be used at the same time automatic mode is enabled, however,  
if the system tries to enable the TCC via on-demand mode at the same time automatic  
mode is enabled and a high temperature condition exists, automatic mode will take  
precedence.  
An external signal, PROCHOT# (processor hot) is asserted when the processor detects  
that its temperature is above the thermal trip point. Bus snooping and interrupt  
latching are also active while the TCC is active.  
Datasheet  
75  
Thermal Specifications  
Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also  
includes one ACPI register, one performance counter register, three MSR, and one I/O  
pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal  
Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt  
upon the assertion or deassertion of PROCHOT#.  
PROCHOT# will not be asserted when the processor is in the Stop Grant, Sleep, Deep  
Sleep, and Deeper Sleep low-power states, hence the thermal diode reading must be  
used as a safeguard to maintain the processor junction temperature within maximum  
specification. If the platform thermal solution is not able to maintain the processor  
junction temperature within the maximum specification, the system must initiate an  
orderly shutdown to prevent damage. If the processor enters one of the above low-  
power states with PROCHOT# already asserted, PROCHOT# will remain asserted until  
the processor exits the low-power state and the processor junction temperature drops  
below the thermal trip point.  
If thermal monitor automatic mode is disabled, the processor will be operating out of  
specification. Regardless of enabling the automatic or on-demand modes, in the event  
of a catastrophic cooling failure, the processor will automatically shut down when the  
silicon has reached a temperature of approximately 125°C. At this point the  
THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor  
activity and does not generate any bus cycles. When THERMTRIP# is asserted, the  
processor core voltage must be shut down within the time specified in Chapter 3.  
In all cases, the Intel Thermal Monitor feature must be enabled for the processor to  
remain within specification.  
5.1.3  
Digital Thermal Sensor  
The processor also contains an on-die digital thermal sensor (DTS) that can be read via  
an MSR (no I/O interface). Each core of the processor will have a unique digital thermal  
sensor whose temperature is accessible via the processor MSRs. The DTS is the  
preferred method of reading the processor die temperature since it can be located  
much closer to the hottest portions of the die and can thus more accurately track the  
die temperature and potential activation of processor core clock modulation via the  
thermal monitor. The DTS is only valid while the processor is in the normal operating  
state (the normal package level low-power state).  
Unlike traditional thermal devices, the DTS outputs a temperature relative to the  
maximum supported operating temperature of the processor (TJ,max). It is the  
responsibility of software to convert the relative temperature to an absolute  
temperature. The temperature returned by the DTS will always be at or below TJ,max  
Catastrophic temperature conditions are detectable via an out of specification status  
.
bit. This bit is also part of the DTS MSR. When this bit is set, the processor is operating  
out of specification and immediate shutdown of the system should occur. The processor  
operation and code execution is not ensured once the activation of the out of  
specification status bit is set.  
The DTS-relative temperature readout corresponds to the thermal monitor (TM1/TM2)  
trigger point. When the DTS indicates maximum processor core temperature has been  
reached, the TM1 or TM2 hardware thermal control mechanism will activate. The DTS  
and TM1/TM2 temperature may not correspond to the thermal diode reading since the  
thermal diode is located in a separate portion of the die and thermal gradient between  
the individual core DTS. Additionally, the thermal gradient from DTS to thermal diode  
can vary substantially due to changes in processor power, mechanical and thermal  
attach, and software application. The system designer is required to use the DTS to  
ensure proper operation of the processor within its temperature operating  
specifications.  
76  
Datasheet  
Thermal Specifications  
Changes to the temperature can be detected via two programmable thresholds located  
in the processor MSRs. These thresholds have the capability of generating interrupts  
via the core's local APIC. Refer to the Intel® 64 and IA-32 Architectures Software  
Developer's Manuals for specific register and programming details.  
5.2  
5.3  
Out of Specification Detection  
Overheat detection is performed by monitoring the processor temperature and  
temperature gradient. This feature is intended for graceful shutdown before the  
THERMTRIP# is activated. If the processor’s TM1 or TM2 are triggered and the  
temperature remains high, an “Out Of Spec” status and sticky bit are latched in the  
status MSR register, and it generates a thermal interrupt.  
PROCHOT# Signal Pin  
An external signal, PROCHOT# (processor hot), is asserted when the processor die  
temperature has reached its maximum operating temperature. If TM1 or TM2 is  
enabled, then the TCC will be active when PROCHOT# is asserted. The processor can  
be configured to generate an interrupt upon the assertion or deassertion of  
PROCHOT#.  
The processor implements a bi-directional PROCHOT# capability to allow system  
designs to protect various components from overheating situations. The PROCHOT#  
signal is bi-directional in that it can either signal when the processor has reached its  
maximum operating temperature or be driven from an external source to activate the  
TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal  
protection of system components.  
Only a single PROCHOT# pin exists at a package level of the processor. When either  
core's thermal sensor trips, PROCHOT# signal will be driven by the processor package.  
If only TM1 is enabled, PROCHOT# will be asserted regardless of which core is above  
TCC temperature trip point, and both cores will have their core clocks modulated. If  
TM2 is enabled, then regardless of which core(s) are above TCC temperature trip point,  
both cores will enter the lowest programmed TM2 performance state. It is important to  
note that Intel recommends both TM1 and TM2 to be enabled.  
When PROCHOT# is driven by an external agent, if only TM1 is enabled on both cores,  
then both processor cores will have their core clocks modulated. If TM2 is enabled on  
both cores, then both processor cores will enter the lowest programmed TM2  
performance state. It should be noted that force TM1 on TM2, enabled via BIOS, does  
not have any effect on external PROCHOT#. If PROCHOT# is driven by an external  
agent when TM1, TM2, and force TM1 on TM2 are all enabled, then the processor will  
still apply only TM2.  
PROCHOT# may be used for thermal protection of voltage regulators (VR). System  
designers can create a circuit to monitor the VR temperature and activate the TCC  
when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low)  
and activating the TCC, the VR will cool down as a result of reduced processor power  
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target  
maximum sustained current instead of maximum current. Systems should still provide  
proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case  
of system cooling failure. The system thermal design should allow the power delivery  
circuitry to operate within its temperature specification even while the processor is  
operating at its TDP. With a properly designed and characterized thermal solution, it is  
anticipated that bi-directional PROCHOT# would only be asserted for very short periods  
of time when running the most power-intensive applications. An under-designed  
thermal solution that is not able to prevent excessive assertion of PROCHOT# in the  
anticipated ambient environment may cause a noticeable performance loss. §  
Datasheet  
77  

相关型号:

T8100A

H.100/H.110 Interface and Time-Slot Interchangers
AGERE

T8102A

H.100/H.110 Interface and Time-Slot Interchangers
AGERE

T8105A

H.100/H.110 Interface and Time-Slot Interchangers
AGERE

T810H

High temperature 8 A sensitive TRIACs
STMICROELECTR

T810H-6G

High temperature 8 A sensitive TRIACs
STMICROELECTR

T810H-6G-TR

High temperature 8 A sensitive TRIACs
STMICROELECTR

T810H-6T

High temperature 8 A sensitive TRIACs
STMICROELECTR

T810H-6T-TR

High temperature 8 A sensitive TRIACs
STMICROELECTR

T810T-6I

Snubberless™, logic level and standard 8 A Triacs
STMICROELECTR

T8110

Version History
AGERE

T811004

E-SWITCH 800SP9B5M2QE
E-SWITCH

T8110L

Ambassador㈢ T8110L H.100/H.110 Switch
AGERE