TN83C196MD [INTEL]

INDUSTRIAL MOTOR CONTROL MICROCONTROLLER; 工业电机控制用微控制器
TN83C196MD
型号: TN83C196MD
厂家: INTEL    INTEL
描述:

INDUSTRIAL MOTOR CONTROL MICROCONTROLLER
工业电机控制用微控制器

微控制器和处理器 电动机控制 电机
文件: 总25页 (文件大小:1063K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8XC196MD  
Table 2. 8XC196MD Memory Map  
PROCESS INFORMATION  
Description  
Address  
This device is manufactured on PX29.5, a CHMOS  
III-E process. Additional process and reliability infor-  
mation is available in the Intel Quality System  
External Memory or I/O  
0FFFFH  
06000H  
®
Handbook.  
Internal ROM/EPROM or External  
Memory (Determined by EA)  
5FFFH  
2080H  
Reserved. Must contain FFH.  
(Note 5)  
207FH  
205EH  
PTS Vectors  
205DH  
2040H  
Upper Interrupt Vectors  
ROM/EPROM Security Key  
203FH  
2030H  
x
x
202FH  
2020H  
272323–2  
Reserved. Must contain FFH.  
(Note 5)  
201FH  
201CH  
Reserved. Must Contain 20H  
(Note 5)  
201BH  
NOTE:  
CCB1  
201AH  
2019H  
EPROMs are available as One Time Programmable  
(OTPROM) only.  
Reserved. Must Contain 20H  
(Note 5)  
CCB0  
2018H  
Figure 2. The 8XC196MD Family Nomenclature  
Reserved. Must contain FFH.  
(Note 5)  
2017H  
2014H  
Table 1. Thermal Characteristics  
Package  
Lower Interrupt Vectors  
2013H  
2000H  
θ
θ
jc  
ja  
Type  
PLCC  
QFP  
35 C/W  
13 C/W  
°
°
SFR’s  
1FFFH  
1F00H  
56 C/W  
°
12 C/W  
°
All thermal impedance data is approximate for static air  
conditions at 1W of power dissipation. Values will change  
depending on operation conditions and application. See  
the Intel Packaging Handbook (order number 240800) for a  
description of Intel’s thermal impedance test methodology.  
External Memory  
1EFFH  
0200H  
488 Bytes Register RAM (Note 1)  
CPU SFR’s (Notes 1. 3)  
01FFH  
0018H  
0017H  
0000H  
NOTES:  
1. Code executed in locations 0000H to 01FFH will be  
forced external.  
2. Reserved memory locations must contain 0FFH unless  
noted.  
3. Reserved SFR bit locations must contain 0.  
4. Refer to 8XC196MC for SFR descriptions.  
5. WARNING: Reserved memory locations must not be  
written or read. The contents and/or function of these lo-  
cations may change with future revisions of the device.  
Therefore, a program that relies on one or more of these  
locations may not function properly.  
3
8XC196MD  
8XC196MC AND 8XC196MD  
DIFFERENCES  
PI MASK and PI PEND Registers  
Ð Ð  
The PI MASK/PI PEND registers contain the bits  
Ð
Ð
for the Compare Module 5 (COMP5) Waveform Gen-  
erator (WG), Timer 1 Overflow (TFI), and Timer 2  
Overflow (TF2) mask/status flag. The diagram be-  
low shows the registers. Notice that the COMP5 bit  
is a reserved bit on the 8XC196MC. The 8XC196MC  
User’s Manual should be referenced for details  
about the Waveform Generator, Compare Modules,  
and Timers.  
INT MASK1/INT PEND1 Registers  
Ð Ð  
There are some differences between the  
8XC196MC and 8XC196MD INT MASK1/  
INT PEND1 registers. The 8XC196MD interrupt  
Ð
Ð
mask and pending registers are shown below. No-  
tice that the CAPCOM5, COMP4, and CAPCOM4  
bits are reserved bits on the 8XC196MC. The PI bit  
of the INT PEND1 register will be set when a  
Ð
Waveform Generator or Compare Module 5 event  
occurs and the corresponding bit in the PI MASK  
PI MASK (1FBEH) and  
Ð
PI PEND (1FBCH, Read Only)  
Ð
register is set. The PI interrupt vector can be taken  
Ð
7
6
5
4
3
2
1
0
when the PI bit in the INT MASK1 register is set.  
Ð
The 8XC196MC User’s Manual should be refer-  
enced for details about the interrupts.  
RSV  
COMP5*  
RSV  
WG  
RSV  
TF2  
RSV  
TF1  
e
RSV  
RESERVED BIT. MUST WRITE AS 0,  
READ AS 1.  
THIS BIT RESERVED ON 8XC196MC.  
e
*
INT MASK1 (0031H)  
Ð
and INT PEND1 (0012H)  
Figure 5. Peripheral Interrupt Mask  
and Status Registers  
Ð
7
6
5
4
3
2
1
0
RSV EXTINT PI CAPCOM5* COMP4* CAPCOM4* COMP3 CAPCOM3  
The PI bit in the INT PEND1 register is set if a  
Ð
Waveform Generator event or Compare Module 5  
event occurs and the corresponding PI MASK bit is  
Ð
set. For either of these events to cause an interrupt,  
e
RSV  
e
RESERVED BIT. MUST WRITE AS 0  
THIS BIT RESERVED ON 8XC196MC.  
*
Figure 3. Interrupt Mask and Status Registers  
the PI bit in the INT MASK1 register and the corre-  
Ð
sponding event bit in the PI MASK register must be  
Ð
set.  
PTSSRV and PTSSEL Register  
Similarly, the TOVF bit in the INT PEND register is  
Ð
set if Timer 1 or Timer 2 overflow and the corre-  
sponding bit in the PI MASK register is set. For ei-  
Ð
ther of these two events to cause an interrupt, the  
TOVF bit in the INT MASK register and the corre-  
Ð
sponding event bit in the PI MASK must be set.  
Ð
Similarly, there are differences between 8XC196MC  
and 8XC196MD PTS registers. The 8XC196MD PTS  
registers are shown below. Notice the CAPCOM5,  
COMP4, and CAPCOM4 bits are reserved bits on  
the 8XC196MC. The PI bit in the PTSSRV will be set  
when a Waveform Generator or Compare Module 5  
end of PTS interrupt occurs and the corresponding  
Upon a PI and/or a TOVF interrupt, it may be neces-  
sary to check if the Compare Module 5, the Wave-  
form Generator, Timer 1, or Timer 2 event caused  
the interrupt. The PI PEND will give this informa-  
Ð
tion. However, it should be noted that reading the  
bit in the PI MASK register is set. The PI PTS vec-  
Ð
tor can be used when the PI bit in the PTSSEL regis-  
ter is set. The 8XC196MC User’s Manual should be  
referenced for details about the PTS.  
PI PEND register will clear the register. So the indi-  
Ð
vidual bits in the PI PEND register must be read by  
Ð
PTSSEL (0004H) and PTSSRV (0006H)  
10  
loading PI PEND into another ‘‘shadow’’ register,  
Ð
15  
14  
13  
12  
11  
9
8
then checking the ‘‘shadow’’ register to see what  
event occurred.  
RSV EXTINT  
PI  
CAPCOM5* COMP4* CAPCOM4* COMP3 CAPCOM3  
7
6
5
4
3
2
1
0
COMP2 CAPCOM2 COMP1 CAPCOM1 COMP0 CAPCOM0 AD DONE TOVF  
Ð
e
RSV  
e
RESERVED BIT. MUST WRITE AS 0  
THIS BIT RESERVED ON 8XC196MC.  
*
Figure 4. PTS Select and Service Registers  
4
8XC196MD  
Table 3. Interrupt Sources, Vectors and Priorities  
Interrupt Service  
PTS Service  
Interrupt Source  
Capture/Compare5  
Compare4  
Symbol  
CAPCOMP5  
COMP4  
Name  
INT12  
INT11  
INT10  
Vector  
2038H  
2036H  
2034H  
Priority  
12  
Name  
PTS12  
PTS11  
PTS10  
Vector  
2058H  
2056H  
2054H  
Priority  
27  
11  
26  
Capture/Compare4  
CAPCOMP4  
10  
25  
Interrupt and PTS Vectors  
Port 7  
The 8XC196MD has three new interrupt and PTS  
vectors which are Capture/Compare5, Compare 4,  
and Capture/Compare4. Table 3 shows these inter-  
rupt vectors and priorities. These are shown as re-  
served vectors in the 8XC196MC User’s Manual.  
Port 7 is an additional bidirectional port that was not  
available on the 8XC196MC device. Port 7 can be  
used as I/O or some of the pins have special func-  
tions. The pins are listed below followed by their  
special functions.  
Table 4. Port 7 Special Function Pins  
Frequency Generator  
Pin  
Special Function  
CAPCOMP4  
CAPCOMP5  
CAPCOMP4  
CAPCOMP5  
The Frequency Generator (FG) Peripheral which  
was not available on the 8XC196MC device, is avail-  
able on the 8XC196MD device. The FG outputs a  
programmable-frequency 50% duty cycle waveform  
on the FREQOUT pin (P7.7). There are two 8-bit reg-  
isters which control the FG peripheral:  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
Ð Frequency Generator Control Register  
(FG CON) at 1FB8h  
Ð
Ð Frequency Generator Period Count Register  
(FG COUNT) at 1FBAh.  
Ð
FREQOUT  
The FG CON can be read or written. This register  
Ð
is loaded with a value which determines the number  
of counts necessary for toggling the output. The fol-  
lowing equation should be used to calculate the  
The special functions of the pins are selected in the  
Port 7 SFRs. The Port 2 I/O Port section of the  
8XC196MC User’s Manual can be referenced when  
setting up the Port 7 SFRs. Port 7 SFRs are located  
in the following locations:  
FG CON value:  
Ð
F
XTAL  
e
b
1
FG CON value  
Ð
16 * (FG Frequency)  
Table 5. Port 7 Special Function Registers  
where FG Frequency is from 4 kHz to 1 MHz.  
SFR  
Address  
1FD1h  
1FD3h  
1FD5h  
1FD7h  
P7 MODE  
Ð
The FG COUNT is loaded with the FG CON reg-  
Ð Ð  
ister value. The FG COUNT register is decrement-  
Ð
ed every eighth state time. When it reaches 00h, the  
P7 DIR  
Ð
FG COUNT register will send a signal to toggle the  
Ð
P7 REG  
Ð
output pin and reload the FG COUNT register with  
Ð
P7 PIN  
Ð
the value in the FG CON register. The  
Ð
FG COUNT can only be read, not written.  
Ð
The FREQOUT pin (P7.7) must be configured for a  
special function to use it for the Frequency Genera-  
tor feature.  
5
8XC196MD  
Port 1  
NOTE:  
pin on the 8XC196MC device. If  
P1.5 was a V  
SS  
P1.5 and P1.6 are not being used these pins can  
remain connected to V  
There are three additional Port 1 input pins (P1.5–  
P1.7) that were not available on the 8XC196MC.  
These pins are listed below followed by their func-  
tion:  
.
SS  
Table 6. New 8XC196MD Port 1 Pins  
Pin  
Description  
Digital or Analog Input  
Digital Input  
P1.5  
P1.6  
P1.7  
Digital Input  
6
8XC196MD  
272323–3  
NOTE:  
NC means No Connect. Do not connect these pins.  
Figure 6. 84-Lead PLCC Package  
7
8XC196MD  
272323–4  
Figure 7. 80-Lead Shrink EIAJQFP (Quad Flat Pack)  
8
8XC196MD  
PIN DESCRIPTIONS (Alphabetically Ordered)  
Symbol  
Function  
ACH0ACH13  
(P0.0P0.7, P1.0P1.5)  
Analog inputs to the on-chip A/D converter. ACH0–7 share the input pins  
with P0.0–7 and ACH813 share pins with P1.05. If the A/D is not used,  
the port pins can be used as standard input ports.  
ANGND  
Reference ground for the A/D converter. Must be held at nominally the  
.
same potential as V  
SS  
ALE/ADV(P5.0)  
Address Latch Enable or Address Valid output, as selected by CCR. Both  
options allow a latch to demultiplex the address/data bus on the signal’s  
falling edge. When the pin is ADV, it goes inactive (high) at the end of the  
bus cycle. ALE/ADV is active only during external memory accesses. Can be  
used as standard I/O when not used as ALE/ADV.  
BHE/WRH (P5.5)  
BUSWIDTH (P5.7)  
Byte High Enable or Write High output, as selected by the CCR. BHE will go  
low for external writes to the high byte of the data bus. WRH will go low for  
external writes where an odd byte is being written. BHE/WRH is activated  
only during external memory writes.  
e
Input for bus width selection. If CCR bits 1 and 2  
1, this pin dynamically  
controls the bus width of the bus cycle in progress. If BUSWIDTH is low, an  
8-bit cycle occurs. If it is high, a 16-bit cycle occurs. This pin can be used as  
standard I/O when not used as BUSWIDTH.  
CAPCOMP0CAPCOMP5  
(P2.0P2.3, P7.0P7.1)  
The EPA Capture/Compare pins. CAPCOMP0–3 share the pins with  
P2.0P2.3. CAPCOMP4–5 share the pins with P7.0P7.1. If not used for the  
EPA, they can be configured as standard I/O pins.  
CLKOUT  
Output of the internal clock generator. The frequency is (/2 of the oscillator  
frequency. It has a 50% duty cycle.  
COMPARE0COMPARE5  
(P2.4P2.7, P7.2P7.3)  
The EPA Compare pins. COMPARE0–3 share the pins with P2.4P2.7.  
COMPARE4–5 share the pins with P7.2P7.3. If not used for the EPA, they  
can be configured as standard I/O pins.  
e
EA  
External Access enable pin. EA  
e
0 causes all memory accesses to be  
external to the chip. EA  
to 5FFFH to be from the on-chip OTPROM/ROM. EA  
1 causes memory accesses from location 2000H  
e
12.5V causes  
execution to begin in the programming mode. EA is latched at reset.  
EXTINT  
FREQOUT  
INST (P5.1)  
NMI  
A programmable input on this pin causes a maskable interrupt vector  
through memory location 203CH. The input may be selected to be a  
positive/negative edge or a high/low level using WG PROTECT (1FCEH).  
Ð
Programmable frequency output pin. The frequency can vary from 4 KHz to 1  
MHz (16 MHz input clock). It has a 50% duty cycle. Pin may be configured as  
standard I/O if FREQOUT is not used.  
INST is high during the instruction fetch from the external memory and  
throughout the bus cycle. It is low otherwise. This pin can be configured as  
standard I/O if not used as INST.  
A positive transition on this pin causes a non-maskable interrupt which  
vectors to memory location 203EH. If not used, it should be tied to V . May  
be used by Intel Evaluation boards.  
SS  
PORT0  
8-bit high impedance input-only port. Also used as A/D converter inputs.  
Port0 pins should not be left floating. These pins also used to select  
programming modes in the OTPROM devices.  
PORT1  
8-bit high impedance input-only port. P1.0P1.5 are also used as A/D  
converter inputs. In addition, P1.2 and P1.3 can be used as Timer 1 clock  
input and direction select respectively. P1.6P1.7 can be used as input-only  
pins.  
9
8XC196MD  
PIN DESCRIPTIONS (Alphabetically Ordered) (Continued)  
Symbol  
Function  
PORT2  
8-bit bidirectional I/O port. All of the Port2 pins are shared with the EPA I/O  
pins (CAPCOMP0–3 and COMPARE03).  
PORT3  
PORT4  
8-bit bidirectional I/O ports with open drain outputs. These pins are shared  
with the multiplexed address/data bus which uses strong internal pullups.  
PORT5  
8-bit bidirectional I/O port. 7 of the pins are shared with bus control signals  
(ALE, INST, WR, RD, BHE, READY, BUSWIDTH). Can be used as standard  
I/O.  
PORT6  
PORT7  
8-bit output port. P6.6 and P6.7 output PWM, the others are used as the Wave  
Form Generator outputs. Can be used as standard output ports.  
8-bit bidirectional I/O port. P7.0P7.3 can be used as EPA I/O pins  
(CAPCOMP4–5 and COMPARE45). P7.7 can be used as FREQOUT output  
pin. P7.4P7.6 are standard I/O pins.  
PWM0, PWM1  
(P6.6, P6.7)  
Programmable duty cycle, Programmable frequency Pulse Width Modulator  
pins. The duty cycle has a resolution of 256 steps, and the frequency can vary  
from 122 Hz to 31 KHz (16 MHz input clock). Pins may be configured as  
standard output if PWM is not used.  
RD (P5.3)  
Read signal output to external memory. RD is low only during external memory  
reads. Can be used as standard I/O when not used as RD.  
e
0, the memory  
READY (P5.6)  
Ready input to lengthen external memory cycles. If READY  
controller inserts wait states until the next positive transition of CLKOUT  
e
occurs with READY  
READY.  
1. Can be used as standard I/O when not used as  
RESET  
Reset input to and open-drain output from the chip. Held low for at least 16  
state times to reset the chip. Input high for normal operation. RESET has an  
Ohmic internal pullup resistor.  
T1CLK  
(P1.2)  
Timer 1 Clock input. This pin has two other alternate functions: ACH10 and  
P1.2.  
T1DIR  
(P1.3)  
Timer 1 Direction input. This pin has two other alternate functions: ACH11 and  
P1.3.  
V
The programming voltage is applied to this pin. It is also the timing pin for the  
return from Power Down circuit. Connect this pin with a 1 mF capacitor to V  
PP  
SS  
and a 1 MX resistor to V . If the Power Down feature is not used, connect  
CC  
the pin to V  
.
CC  
WG1WG3/WG1WG3  
(P6.0P6.5)  
3 phase output signals and their complements used in motor control  
applications. The pins can also be configured as standard output pins.  
WR/WRL (P5.2)  
Write and Write Low output to external memory. WR will go low every external  
write. WRL will go low only for external writes to an even byte. Can be used as  
standard I/O when not used as WR/WRL.  
XTAL1  
XTAL2  
Input of the oscillator inverter and the internal clock generator. This pin should  
be used when using an external clock source.  
Output of the oscillator inverter.  
PMODE  
(P0.47)  
Determines the EPROM programming mode.  
PACT  
(P2.5)  
A low signal in Auto Programming mode indicates that programming is in  
process. A high signal indicates programming is complete.  
10  
8XC196MD  
PIN DESCRIPTIONS (Alphabetically Ordered) (Continued)  
Symbol  
Function  
PALE  
(P2.1)  
A falling edge in Slave Programming Mode and Auto Configuration Byte  
Programming Mode indicates that ports 3 and 4 contain valid programming  
address/command information (input to slave).  
PROG  
(P2.2)  
A falling edge in Slave Programming Mode begins programming. A rising edge  
ends programming.  
PVER  
(P2.0)  
A high signal in Slave Programming Mode and Auto Configuration Byte  
Programming Mode indicates the byte programmed correctly.  
CPVER  
(P2.6)  
Cumulative Program Verification. Pin is high if all locations since entering a  
programming mode have programmed correctly.  
AINC  
(P2.4)  
Auto Increment. Active low input enables the auto increment mode. Auto  
increment will allow reading or writing of sequential EPROM locations without  
address transactions across the PBUS for each read or write.  
11  
8XC196MD  
ABSOLUTE MAXIMUM RATINGS  
NOTICE: This data sheet contains preliminary infor-  
mation on new products in production. The specifica-  
tions are subject to change without notice. Verify with  
your local Intel Sales office that you have the latest  
data sheet before finalizing a design.  
Ambient Temperature  
Under Bias ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40 C to 85 C  
b
a
§
Storage Temperature ÀÀÀÀÀÀÀÀÀÀ 65 C to 150 C  
§
§
b
a
§
*WARNING: Stressing the device beyond the ‘‘Absolute  
Maximum Ratings’’ may cause permanent damage.  
These are stress ratings only. Operation beyond the  
‘‘Operating Conditions’’ is not recommended and ex-  
tended exposure beyond the ‘‘Operating Conditions’’  
may affect device reliability.  
Voltage from EA or V  
PP  
b
a
to V or ANGNDÀÀÀÀÀÀÀÀÀÀÀ 0.5V to 13.00V  
SS  
Voltage on Any Other Pin  
(1)  
b
a
to V or ANGND ÀÀÀÀÀÀÀÀÀÀÀ 0.5V to 7.0V  
SS  
(2)  
Power Dissipation ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1.5W  
NOTES:  
1. This includes V and EA on ROM or CPU only devices.  
PP  
2. Power dissipation is based on package heat transfer lim-  
itations, not device power consumption.  
OPERATING CONDITIONS  
Symbol  
Description  
Ambient Temperature Under Bias  
Digital Supply Voltage  
Min  
Max  
Units  
b
a
85  
T
A
40  
C
§
V
CC  
4.50  
4.00  
8
5.50  
5.50  
16  
V
V
V
Analog Supply Voltage  
Oscillator Frequency  
REF  
OSC  
F
MHz  
NOTE:  
ANGND and V should be nominally at the same potential. Also V and V  
must be at the same potential.  
SS1  
S
S
S
S
DC ELECTRICAL CHARACTERISTICS (Over Specified Operating Conditions)  
Symbol  
Parameter  
Input Low Voltage  
Min  
Max  
0.3 V  
Units  
Test Conditions  
b
V
V
V
0.5  
V
V
IL  
CC  
a
0.5  
Input High Voltage  
0.7 V  
V
CC  
IH  
OL  
CC  
e
e
e
Output Low Voltage  
Port 2, 5, and 7, P6.6, P6.7,  
CLKOUT  
0.3  
0.45  
1.5  
V
V
V
I
I
I
200 mA  
3.2 mA  
7 mA  
OL  
OL  
OL  
e
e
V
V
Output Low Voltage on Port 3/4  
1.0  
V
V
I
I
15 mA  
10 mA  
OL1  
OL2  
OL  
OL  
Output Low Voltage on  
Port 6.06.5  
0.45  
b
b
b
e b  
e b  
e b  
V
V
Output High Voltage  
V
V
V
0.3  
0.7  
1.5  
V
V
V
I
I
I
200 mA  
3.2 mA  
7 mA  
OH  
CC  
CC  
CC  
OH  
OH  
OH  
–V  
Hysteresis Voltage Width on  
RESET  
0.2  
V
Typical  
a
b
th  
th  
12  
8XC196MD  
DC ELECTRICAL CHARACTERISTICS (Over Specified Operating Conditions) (Continued)  
Symbol  
Parameter  
Min Typ Max Units  
Test Conditions  
k
k
k
g
I
I
I
I
I
Input Leakage Current on All Input  
Only Pins  
10 mA 0V  
V
V
V
0.3V (in RESET)  
CC  
LI  
IN  
k
g
Input Leakage Current on Port0  
and Port1  
3
mA 0V  
V
LI1  
IL  
IN  
REF  
b
b
e
0.3 V  
Input Low Current on BD Ports  
(Note 1)  
70 mA  
V
IN  
CC  
Input Low Current on P5.4 and  
P2.6 during Reset (Note 3)  
10 mA 0.2 V  
mA 0.7 V  
IL1  
OH  
CC  
b
Output High Current on P5.4 and  
P2.6 during Reset (Note 4)  
2
CC  
e
I
I
I
I
Active Mode Current in Reset  
A/D Conversion Reference Current  
Idle Mode Current  
50  
2
70  
mA XTAL1  
16 MHz,  
e
CC  
e
e
e
V
V
PP  
V
5.5V  
5.5V  
CC  
CC  
REF  
5
mA  
mA  
mA  
X
REF  
IDL  
PD  
15  
5
30  
50  
65k  
10  
e
e
Power-Down Mode Current  
RESET Pin Pullup Resistor  
V
V
PP  
V
REF  
R
6k  
RST  
S
e
C
Pin Capacitance (Any Pin to V  
)
SS  
pF  
F
1.0 MHz  
TEST  
NOTES:  
1. BD (Bidirectional ports) include:  
P2.0P2.7, except P2.6  
P3.0P3.7  
P4.0P4.7  
P5.0P5.3  
P5.5P5.7  
P7.0P7.7  
2. During normal (non-transient) conditions, the following total current limits apply:  
P6.0P6.5  
P3  
P4  
P5, CLKOUT  
P2, P6.6, P6.7, P7  
I
I
I
I
I
:
:
:
:
:
40 mA  
90 mA  
90 mA  
35 mA  
63 mA  
I
I
I
I
I
:
:
:
:
:
28 mA  
42 mA  
42 mA  
35 mA  
63 mA  
OL  
OL  
OL  
OL  
OL  
OH  
OH  
OH  
OH  
OH  
3. Maximum current that must be sunk by external device to ensure test mode entry.  
4. Do not exceed minimum current or device may enter test mode.  
13  
8XC196MD  
EXPLANATION OF AC SYMBOLS  
Each symbol is two pairs of letters prefixed by ‘‘T’’ for time. The characters in a pair indicate a signal and its  
condition, respectively. Symbols represent the time between the two signal/condition points.  
Conditions:  
Signals:  
H
L
Ð High  
A
B
C
D
G
H
Ð Address  
L
Ð ALE/ADV  
Ð Low  
Ð BHE  
BR Ð BREQ  
V
X
Z
Ð Valid  
Ð CLKOUT  
Ð DATA  
R
W
X
Ð RD  
Ð No Longer Valid  
Ð Floating  
Ð WR/WRH/WRL  
Ð XTAL1  
Ð Buswidth  
Ð HOLD  
Y
Ð READY  
Ð Data Out  
HA Ð HLDA  
Q
AC ELECTRICAL CHARACTERISTICS (Over Specified Operating Conditions)  
e
e
e
16 MHz.  
OSC  
Test Conditions: Capacitive load on all pins  
100 pF, Rise and fall times  
10 ns, F  
The system must meet the following specifications to work with the 87C196MD:  
Symbol  
Parameter  
Min  
8
Max  
16  
Units  
MHz  
ns  
Notes  
F
T
T
T
T
T
T
T
T
T
T
T
T
T
T
Frequency on XTAL1  
3
XTAL  
OSC  
1/F  
62.5  
125  
XTAL  
b
OSC  
Address Valid to READY Setup  
ALE Low to READY Setup  
2 T  
75  
ns  
AVYV  
LLYV  
YLYH  
CLYX  
LLYX  
AVGV  
LLGV  
CLGX  
AVDV  
RLDV  
CLDV  
RHDZ  
RXDX  
b
T
70  
ns  
4
OSC  
Not READY Time  
No Upper Limit  
ns  
b
READY Hold after CLKOUT Low  
READY Hold after ALE Low  
Address Valid to BUSWIDTH Setup  
ALE Low to BUSWIDTH Setup  
Buswidth Hold after CLKOUT Low  
Address Valid to Input Data Valid  
RD Active to Input Data Valid  
CLKOUT Low to Input Data Valid  
End of RD to Input Data Float  
Data Hold after RD Inactive  
0
T
30  
ns  
1
1
OSC  
b
b
T
15  
2 T  
2 T  
40  
75  
ns  
OSC  
OSC  
OSC  
b
ns  
b
T
60  
ns  
4
OSC  
0
ns  
b
3 T  
55  
ns  
2
2
OSC  
b
T
T
22  
ns  
OSC  
OSC  
b
50  
ns  
T
ns  
OSC  
0
ns  
NOTES:  
1. If Max is exceeded, additional wait states will occur.  
e
3. Testing performed at 8 MHz. However, the device is static by design and will typically operate below 1 Hz.  
2. If wait states are used, add 2 T  
* N, where N  
number of wait states.  
OSC  
b
4. These timings are included for compatibility with older 90 and BH products. They should not be used for newer high-  
speed designs.  
14  
8XC196MD  
AC ELECTRICAL CHARACTERISTICS (Continued)  
e
e
e
16 MHz.  
OSC  
Test Conditions: Capacitive load on all pins  
100 pF, Rise and fall times  
10 ns, F  
The 87C196MD will meet the following timing specifications:  
Symbol  
Parameter  
Min  
Max  
110  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
XTAL1 to CLKOUT High or Low  
CLKOUT Cycle Time  
30  
XHCH  
CLCL  
CHCL  
CLLH  
LLCH  
LHLH  
LHLL  
2 T  
OSC  
T
b
a
OSC  
CLKOUT High Period  
T
10  
15  
10  
OSC  
b
CLKOUT Falling Edge to ALE Rising  
ALE Falling Edge to CLKOUT Rising  
ALE Cycle Time  
5
15  
15  
b
20  
4 T  
3
OSC  
T
b
b
b
b
a
OSC  
ALE High Period  
T
T
T
T
10  
OSC  
OSC  
OSC  
OSC  
Address Setup to ALE Falling Edge  
Address Hold after ALE Falling  
ALE Falling Edge to RD Falling  
RD Low to CLKOUT Falling Edge  
RD Low Period  
15  
40  
30  
AVLL  
LLAX  
LLRL  
4
30  
RLCL  
RLRH  
RHLH  
RLAZ  
LLWL  
CLWL  
QVWH  
CHWH  
WLWH  
WHQX  
WHLH  
WHBX  
WHAX  
RHBX  
RHAX  
b
a
T
5
T
T
25  
25  
3
1
OSC  
OSC  
OSC  
a
RD Rising Edge to ALE Rising Edge  
RD Low to Address Float  
T
OSC  
5
b
ALE Falling Edge to WR Falling  
CLKOUT Low to WR Falling Edge  
Data Stable to WR Rising Edge  
CLKOUT High to WR Rising Edge  
WR Low Period  
T
T
10  
23  
OSC  
0
25  
15  
b
OSC  
b
10  
b
b
b
b
b
b
b
T
T
T
T
T
T
T
30  
25  
10  
10  
30  
10  
30  
3
1
2
2
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
OSC  
Data Hold after WR Rising Edge  
WR Rising Edge to ALE Rising Edge  
BHE, INST Hold after WR Rising  
AD815 Hold after WR Rising  
BHE, INST Hold after RD Rising  
AD815 Hold after RD Rising  
a
T
15  
OSC  
NOTES:  
1. Assuming back to back cycles.  
2. 8-bit bus only.  
3. If wait states are used, add 2 T  
e
number of wait states.  
*N, where N  
OSC  
15  
8XC196MD  
SYSTEM BUS TIMINGS  
272323–5  
16  
8XC196MD  
READY TIMINGS (One Wait State)  
272323–6  
BUSWIDTH TIMINGS  
272323–7  
17  
8XC196MD  
EXTERNAL CLOCK DRIVE  
Symbol  
1/T  
Parameter  
Min  
8
Max  
16.0  
125  
Units  
MHz  
ns  
Oscillator Frequency  
Oscillator Period  
High Time  
XLXL  
T
T
T
T
T
62.5  
22  
XLXL  
ns  
XHXX  
XLXX  
XLXH  
XHXL  
Low Time  
22  
ns  
Rise Time  
10  
10  
ns  
Fall Time  
ns  
EXTERNAL CRYSTAL CONNECTIONS  
EXTERNAL CLOCK CONNECTIONS  
272323–8  
272323–9  
* Required if TTL driver used.  
Not needed if CMOS driver is used.  
NOTE:  
Keep oscillator components close to chip and use  
short, direct traces to XTAL1, XTAL2 and V . When  
SS  
e
20 pF. When using  
e
using crystals, C1  
20 pF, C2  
ceramic resonators, consult manufacturer for recom-  
mended circuitry.  
EXTERNAL CLOCK DRIVE WAVEFORMS  
27232310  
An external oscillator may encounter as much as a 100 pF load at XTAL1 when it starts-up. This is due to  
interaction between the amplifier and its feedback capacitance. Once the external signal meets the V and  
IL  
V
IH  
specifications the capacitance will not exceed 20 pF.  
AC TESTING INPUT, OUTPUT WAVEFORMS  
FLOAT WAVEFORMS  
27232311  
27232312  
AC Testing inputs are driven at 3.5V for a Logic ‘‘1’’ and 0.45V for  
a Logic ‘‘0’’. Timing measurements are made at 2.0V for a Logic  
‘‘1’’ and 0.8V for a Logic ‘‘0’’.  
For Timing Purposes a Port Pin is no Longer Floating when a  
100 mV change from Load Voltage Occurs and Begins to Float  
when a 100 mV change from the Loaded V /V Level occurs  
OH OL  
e
g
15 mA.  
I /I  
OL OH  
18  
8XC196MD  
e
T
F
B
B
Conversion time, ms  
CONV  
A TO D CHARACTERISTICS  
e
Processor frequency, MHz  
8 for 8-bit conversion  
10 for 10-bit conversion  
e
bits 0–5  
OSC  
e
e
The sample and conversion time of the A/D convert-  
er in the 8-bit or 10-bit modes is programmed by  
loading a byte into the AD TIME Special Function  
CONV  
Value loaded into AD TIME  
Ð
Ð
Register. This allows optimizing the A/D operation  
for specific applications. The AD TIME register is  
Ð
functional for all possible values, but the accuracy of  
the A/D converter is only guaranteed for the times  
specificed in the operating conditions table.  
CONV must be in the range 2 through 31.  
The converter is ratiometric, so absolute accuracy is  
dependent on the accuracy and stability of V  
.
REF  
must be close to V since it supplies both the  
The value loaded into AD TIME bits 5, 6, 7 deter-  
Ð
V
REF CC  
mines the sample time, T  
ing the following formula:  
, and is calculated us-  
resistor ladder and the analog portion of the convert-  
er and input port pins. There is also an AD TEST  
SAM  
Ð
SFR that allows for conversion on ANGND and  
c
b
2
(T  
SAM  
F
8
)
V as well as adjusting the zero offset. The abso-  
REF  
lute error listed is WITHOUT doing any adjustments.  
OSC  
e
SAM  
A/D CONVERTER SPECIFICATION  
e
e
T
F
SAM  
Sample time, ms  
Processor frequency, MHz  
Value loaded into AD TIME  
SAM  
OSC  
The specifications given assume adherence to the  
operating conditions section of this data sheet. Test-  
e
Ð
bits 5, 6, 7  
e
ing is performed with V  
5.12V and 16.0 MHz  
REF  
operating frequency. After a conversion is started,  
the device is placed in the IDLE mode until the con-  
version is complete.  
SAM must be in the range 1 through 7.  
The value loaded into AD TIME bits 0–5 deter-  
Ð
mines the conversion time, T  
using the following formula:  
, and is calculated  
CONV  
c
b
3
(T  
F
)
OSC  
CONV  
e
b
1
CONV  
2B  
19  
8XC196MD  
10-BIT MODE A/D OPERATING CONDITIONS  
Symbol  
Description  
Ambient Temperature  
Digital Supply Voltage  
Analog Supply Voltage  
Sample Time  
Min  
Max  
Units  
b
a
85  
T
A
40  
C
§
V
V
4.50  
4.00  
1.0  
5.50  
5.50  
V
CC  
(1)  
V
REF  
SAM  
CONV  
OSC  
(2)  
ms  
T
T
F
(2)  
ms  
Conversion Time  
10.0  
8.0  
20.0  
16.0  
Oscillator Frequency  
MHz  
NOTES:  
ANGND and V should nominally be at the same potential.  
SS  
must be within 0.5V of V  
1. V  
.
CC  
REF  
2. The value of AD TIME is selected to meet these specifications.  
Ð
10-BIT MODE A/D CHARACTERISTICS (Over Specified Operating Conditions)  
(1)  
Parameter  
Resolution  
Typical  
Min  
Max  
Units*  
1024  
10  
1024  
10  
Levels  
Bits  
g
Absolute Error  
0
4
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
g
0.25 0.5  
Full Scale Error  
g
0.25 0.5  
Zero Offset Error  
Non-Linearity  
g
1.0 2.0  
g
a
4
2
l
b
0
Differential Non-Linearity  
Channel-to-Channel Matching  
Repeatability  
1
g
g
0.1  
1.0  
g
0.25  
0
Temperature Coefficients:  
Offset  
Full Scale  
0.009  
0.009  
0.009  
LSB/C  
LSB/C  
LSB/C  
Differential Non-Linearity  
(2, 3)  
dB  
b
Off Isolation  
Feedthrough  
60  
(2)  
dB  
b
b
60  
60  
(2)  
dB  
V
Power Supply Rejection  
CC  
(4)  
Input Series Resistance  
Voltage on Analog Input Pin  
Sampling Capacitor  
750  
2K  
X
(5, 6)  
V
b
a
ANGND  
0.5  
V
0.5  
REF  
3
pF  
g
g
DC Input Leakage  
1
0
3.0  
mA  
NOTES:  
*An ‘‘LSB’’, as used here has a value of approximately 5 mV. (See Embedded Microcontrollers and Processors Handbook  
for A/D glossary of terms).  
1. These values are expected for most parts at 25 C but are not tested or guaranteed.  
2. DC to 100 KHz.  
§
3. Multiplexer Break-Before-Make is guaranteed.  
4. Resistance from device pin, through internal MUX, to sample capacitor.  
g
5. These values may be exceeded if the pin current is limited to 2 mA.  
6. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.  
7. All conversions performed with processor in IDLE mode.  
20  
8XC196MD  
Units  
8-BIT MODE A/D OPERATING CONDITIONS  
Symbol  
Description  
Ambient Temperature  
Digital Supply Voltage  
Analog Supply Voltage  
Sample Time  
Min  
Max  
b
a
85  
T
A
40  
C
§
V
V
4.50  
4.00  
1.0  
5.50  
5.50  
V
CC  
(1)  
V
REF  
SAM  
CONV  
OSC  
(2)  
ms  
T
T
F
(2)  
ms  
Conversion Time  
7.0  
20.0  
16.0  
Oscillator Frequency  
8.0  
MHz  
NOTES:  
ANGND and V should nominally be at the same potential.  
SS  
must be within 0.5V of V  
1. V  
.
CC  
REF  
2. The value of AD TIME is selected to meet these specifications.  
Ð
8-BIT MODE A/D CHARACTERISTICS (Over the Above Operating Conditions)  
(1)  
Parameter  
Resolution  
Typical  
Min  
Max  
Units*  
256  
8
256  
8
Level  
Bits  
g
Absolute Error  
0
1
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
LSBs  
g
g
Full Scale Error  
0.5  
0.5  
Zero Offset Error  
Non-Linearity  
g
a
0
1
1
l
b
Differential Non-Linearity  
Channel-to-Channel Matching  
Repeatability  
1
g
0
1.0  
g
0.25  
Temperature Coefficients:  
Offset  
Full Scale  
0.003  
0.003  
0.003  
LSB/C  
LSB/C  
LSB/C  
Differential Non-Linearity  
(2, 3)  
dB  
b
Off Isolation  
Feedthrough  
60  
(2)  
dB  
b
b
60  
60  
(2)  
dB  
V
CC  
Power Supply Rejection  
(4)  
Input Series Resistance  
Voltage on Analog Input Pin  
Sampling Capacitor  
750  
2K  
X
(5, 6)  
V
b
a
V
0.5  
V
0.5  
SS  
REF  
3
pF  
g
g
DC Input Leakage  
1
0
3.0  
mA  
NOTES:  
*An ‘‘LSB’’ as used here, has a value of approximately 20 mV. (See Embedded Microcontrollers and Processors Handbook  
for A/D glossary of terms).  
1. These values are expected for most parts at 25 C but are not tested or guaranteed.  
2. DC to 100 KHz.  
§
3. Multiplexer Break-Before-Make is guaranteed.  
4. Resistance from device pin, through internal MUX, to sample capacitor.  
g
5. These values may be exceeded if the pin current is limited to 2 mA.  
6. Applying voltages beyond these specifications will degrade the accuracy of other channels being converted.  
7. All conversions performed with processor in IDLE mode.  
21  
8XC196MD  
EPROM SPECIFICATIONS  
OPERATING CONDITIONS DURING PROGRAMMING  
Symbol  
Description  
Ambient Temperature during Programming  
Supply Voltage during Programming  
Reference Supply Voltage during Programming  
Programming Voltage  
Min  
20  
Max  
30  
Units  
T
A
C
§
(1)  
V
V
V
V
4.5  
5.5  
V
CC  
(1)  
V
4.5  
5.5  
REF  
PP  
(2)  
V
12.25  
12.25  
6.0  
12.75  
12.75  
8.0  
(2)  
V
EA Pin Voltage  
EA  
F
Oscillator Frequency during Auto  
and Slave Mode Programming  
MHz  
OSC  
T
Oscillator Frequency during  
Run-Time Programming  
6.0  
12.0  
MHz  
OSC  
NOTES:  
1. V and V  
2. V and V must never exceed the maximum specification, or the device may be damaged.  
should nominally be at the same voltage during programming.  
REF  
CC  
PP EA  
3. V and ANGND should nominally be at the same potential (0V).  
SS  
e
4. Load capacitance during Auto and Slave Mode programming  
150 pF.  
AC EPROM PROGRAMMING CHARACTERISTICS (SLAVE MODE)  
Symbol  
Parameter  
Reset High to First PALE Low  
PALE Pulse Width  
Min  
1100  
50  
Max  
Units  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
T
OSC  
SHLL  
LLLH  
AVLL  
LLAX  
PLDV  
PHDX  
DVPL  
PLDX  
Address Setup Time  
0
Address Hold Time  
100  
PROG Low to Word Dump Valid  
Word Dump Data Hold  
Data Setup Time  
50  
50  
0
Data Hold Time  
400  
50  
(1)  
PROG Pulse Width  
PLPH  
PHLL  
LHPL  
PHPL  
PHIL  
ILIH  
PROG High to Next PALE Low  
PALE High to PROG Low  
PROG High to Next PROG Low  
PROG High to AINC Low  
AINC Pulse Width  
220  
220  
220  
0
240  
50  
PVER Hold after AINC Low  
AINC Low to PROG Low  
PROG High to PVER Valid  
ILVH  
ILPL  
170  
220  
PHVL  
NOTE:  
1. This specification is for the Word Dump Mode. For programming pulses, use the Modified Quick Pulse Algorithm.  
22  
8XC196MD  
DC EPROM PROGRAMMING CHARACTERISTICS  
Symbol  
Parameter  
Min  
Max  
Units  
I
V
Supply Current (When Programming)  
PP  
100  
mA  
PP  
NOTE:  
Do not apply V until V  
PP  
damaged.  
is stable and within specifications and the oscillator/clock has stabilized or the device may be  
CC  
SLAVE PROGRAMMING MODE DATA PROGRAM MODE WITH SINGLE PROGRAM PULSE  
272323113  
NOTE:  
P3.0 must be high (‘‘1’’)  
23  
8XC196MD  
SLAVE PROGRAMMING MODE IN WORD DUMP WITH AUTO INCREMENT  
27232314  
NOTE:  
P3.0 must be low (‘‘0’’)  
SLAVE PROGRAMMING MODE TIMING IN DATA PROGRAM  
WITH REPEATED PROG PULSE AND AUTO INCREMENT  
27232315  
24  
8XC196MD  
the 8XC196MD. Port 7 is a bidirectional port added  
to the 8XC196MD. Port 1 has one additional analog  
87C196MD DESIGN  
CONSIDERATIONS  
or digital input that was connected to V  
on the  
SS  
8XC196MC. Port 1 also has two additional digital in-  
puts. See 8XC196MC and 8XC196MD Differences  
Section of this data sheet.  
When an indirect shift during divide occurs the upper  
3 bits of the shift count are not masked completely.  
If the shift count register has the value 32 n where  
*
e
n
1, 3, 5 or 7. the operand will be shifted 32 times.  
This should have resulted in no shift taking place.  
DATA SHEET REVISION HISTORY  
Document 272323-003 was updated due to changes  
required for the lead free initiative. To address the fact  
that many of the package prefix variables have changed,  
all package prefix variables in the document are now  
indicated with an "x".  
8XC196MC to 8XC196MD Design  
Considerations  
8XC196MC and 8XC196MD are pin compatible.  
However, there were several pins that were not con-  
nected (NC) on the 8XC196MC that are I/O pins on  
25  

相关型号:

TN83C196MH

Microcontroller, 16-Bit, MROM, 8096 CPU, 16MHz, CMOS, PQCC84

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTEL

TN83C196TB12

Microcontroller, 16-Bit, MROM, 12MHz, CMOS, PQCC68, PLASTIC, LCC-68

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTEL

TN83C198

16-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TN83C198-16

16-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TN83C251SA

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTEL

TN83C251SA16

HIGH-PERFORMANCE CHMOS MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTEL

TN83C251SB

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TN83C251SB16

HIGH-PERFORMANCE CHMOS MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTEL

TN83C251SP

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTEL

TN83C251SP16

HIGH-PERFORMANCE CHMOS MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTEL

TN83C251SQ

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTEL

TN83C251SQ16

HIGH-PERFORMANCE CHMOS MICROCONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTEL