AD7541 [INTERSIL]

12-Bit, Multiplying D/A Converter; 12位乘法D / A转换器
AD7541
型号: AD7541
厂家: Intersil    Intersil
描述:

12-Bit, Multiplying D/A Converter
12位乘法D / A转换器

转换器
文件: 总8页 (文件大小:57K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AD7541  
12-Bit, Multiplying D/A Converter  
August 1997  
Features  
Description  
• 12-Bit Linearity 0.01%  
The AD7541 is a monolithic, low cost, high performance,  
12-bit accurate, multiplying digital-to-analog converter  
(DAC).  
• Pretrimmed Gain  
• Low Gain and Linearity Tempcos  
• Full Temperature Range Operation  
• Full Input Static Protection  
• TTL/CMOS Compatible  
Intersil’ wafer level laser-trimmed thin-film resistors on  
CMOS circuitry provide true 12-bit linearity with TTL/CMOS  
compatible operation.  
Special tabbed-resistor geometries (improving time stability),  
full input protection from damage due to static discharge by  
diode clamps to V+ and ground, large I  
lines (improving superposition errors) are some of the fea-  
tures offered by Intersil AD7541.  
and I  
bus  
• +5V to +15V Supply Range  
• 20mW Low Power Dissipation  
• Current Settling Time 1µs to 0.01% of FSR  
• Four Quadrant Multiplication  
OUT1  
OUT2  
Pin compatible with AD7521, this DAC provides accurate  
four quadrant multiplication over the full military temperature  
range.  
Ordering Information  
o
PART NUMBER  
AD7541JN  
NONLINEARITY  
TEMP. RANGE ( C)  
PACKAGE  
18 Ld PDIP  
PKG. NO.  
E18.3  
0.02% (11-Bit)  
0.01% (12-Bit)  
0 to 70  
AD7541KN  
AD7541LN  
0 to 70  
18 Ld PDIP  
18 Ld PDIP  
E18.3  
E18.3  
0.01% (12-Bit) Guaranteed  
Monotonic  
0 to 70  
Pinout  
Functional Block Diagram  
AD7541  
(PDIP)  
TOP VIEW  
V
10k  
10kΩ  
10kΩ  
10kΩ  
REF IN  
(17)  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
20kΩ  
1
2
3
4
5
6
7
8
9
18  
17  
I
I
R
V
OUT1  
FEEDBACK  
(3)  
OUT2  
GND  
REF IN  
16 V+  
SPDT  
NMOS  
SWITCHES  
BIT 1 (MSB)  
BIT 2  
15 BIT 12 (LSB)  
14 BIT 11  
13 BIT 10  
I
(2)  
(1)  
OUT2  
I
OUT1  
BIT 3  
10kΩ  
BIT 4  
12  
11  
10  
BIT 9  
BIT 8  
BIT 7  
R
MSB  
(4)  
BIT 2  
(5)  
BIT 3  
(6)  
FEEDBACK  
(18)  
BIT 5  
BIT 6  
NOTE: Switches shown for digital inputs “High”.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
File Number 3107.1  
10-9  
AD7541  
Absolute Maximum Ratings  
Thermal Information  
o
Supply Voltage (V+ to GND). . . . . . . . . . . . . . . . . . . . . . . . . . . +17V Thermal Resistance (Typical, Note 1)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25V  
Digital Input Voltage Range . . . . . . . . . . . . . . . . . . . . . . .V+ to GND  
θJA ( C/W)  
V
REF  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
90  
o
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150 C  
o
o
Output Voltage Compliance . . . . . . . . . . . . . . . . . . . . -100mV to V+  
Maximum Storage Temperature . . . . . . . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300 C  
o
Operating Conditions  
Temperature Range  
JN, KN, LN Versions . . . . . . . . . . . . . . . . . . . . . . . . . .0 C to 70 C  
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications V+ = +15V, V  
= +10V, V  
OUT1  
= V  
= 0V, T = 25 C, Unless Otherwise Specified  
A
REF  
OUT2  
o
T
= 25 C  
T MIN-MAX  
A
A
PARAMETER  
SYSTEM PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
12  
-
-
-
-
-
-
12  
-
-
Bits  
Nonlinearity  
A, S, J  
-10V V  
+10V  
±0.024  
±0.012  
±0.012  
±0.024  
±0.012  
±0.012  
% of FSR  
% of FSR  
% of FSR  
REF  
= V  
V
= 0V  
OUT1  
OUT2  
B, T, K  
L
-
-
See Figure 3  
(Note 5)  
-
-
Monotonicity  
Gain Error  
Guaranteed  
±0.3  
-10V V  
REF  
+10V (Note 5)  
-
-
-
-
-
-
±0.4  
% of FSR  
nA  
Output Leakage Current  
(Either Output)  
V
= V  
OUT2  
= 0  
±50  
±200  
OUT1  
DYNAMIC CHARACTERISTICS  
Power Supply Rejection  
V+ = 14.5V to 15.5V  
See Figure 5 (Note 5)  
-
-
-
-
-
-
±0.005  
-
-
-
±0.01 % of FSR/% of  
V+  
Output Current Settling Time  
Feedthrough Error  
To 0.1% of FSR  
See Figure 9 (Note 6)  
1
1
1
µs  
V
= 20V , 10kHz  
P-P  
1
mV  
P-P  
REF  
All Digital Inputs Low  
See Figure 8 (Note 6)  
REFERENCE INPUTS  
Input Resistance  
All Digital Inputs High  
5
10  
20  
5
20  
kΩ  
I
at Ground  
OUT1  
ANALOG OUTPUT  
Voltage Compliance  
Both Outputs, See Maximum  
Ratings (Note 7)  
-100mV to V+  
Output Capacitance  
C
C
C
C
All Digital Inputs High  
See Figure 7 (Note 6)  
-
-
-
-
-
-
-
-
200  
60  
-
-
-
-
200  
60  
pF  
pF  
pF  
pF  
OUT1  
OUT2  
OUT1  
OUT2  
All Digital Inputs Low)  
See Figure 7 (Note 6)  
60  
60  
200  
200  
Output Noise (Both Outputs)  
See Figure 6  
(Notes 2, 6)  
Equivalent to 10kJohnson Noise  
DIGITAL INPUTS  
Low State Threshold, V  
IL  
-
-
-
0.8  
-
-
0.8  
-
V
V
High State Threshold, V  
2.4  
2.4  
IH  
10-10  
AD7541  
o
Electrical Specifications V+ = +15V, V  
= +10V, V  
OUT1  
= V  
= 0V, T = 25 C, Unless Otherwise Specified (Continued)  
REF  
OUT2  
A
o
T
= 25 C  
T MIN-MAX  
A
A
PARAMETER  
Input Current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
V
= 0V or V+ (Note 6)  
-
-
±1  
-
±1  
µA  
IN  
Input Coding  
See Tables 1 and 2 (Note 6)  
(Note 6)  
Binary/Offset Binary  
Input Capacitance  
-
-
8
-
8
pF  
POWER SUPPLY CHARACTERISTICS  
Power Supply Voltage Range  
Accuracy Is Not Guaranteed  
+5 to +16  
V
Over This Range  
I+  
All Digital Inputs High or Low  
(Excluding Ladder Network)  
-
-
-
2.0  
-
-
-
2.5  
-
mA  
mW  
Total Power Dissipation  
NOTES:  
(Including Ladder Network)  
20  
2. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy  
electrostatic fields. Keep unused units in conductive foam at all times.  
3. Do not apply voltages higher than V  
or less than GND potential on any terminal except V  
REF  
and R  
.
FEEDBACK  
DD  
4. Full scale range (FSR) is 10V for unipolar and ±10V for bipolar modes.  
5. Using internal feedback resistor, R  
.
FEEDBACK  
6. Guaranteed by design or characterization and not production tested.  
7. Accuracy not guaranteed unless outputs at ground potential.  
Definition of Terms  
Detailed Description  
Nonlinearity: Error contributed by deviation of the DAC The AD7541 is a 12-bit, monolithic, multiplying D/A converter.  
transfer function from a “best fit straight line” function. Nor- A highly stable thin film R-2R resistor ladder network and  
mally expressed as a percentage of full scale range. For a NMOS SPDT switches form the basis of the converter circuit.  
multiplying DAC, this should hold true over the entire V  
range.  
CMOS level shifters provide low power TTL/CMOS compati-  
ble operation. An external voltage or current reference and an  
operational amplifier are all that is required for most voltage  
output applications. A simplified equivalent circuit of the DAC  
is shown on page 1, (Functional Diagram). The NMOS SPDT  
REF  
Resolution: Value of the LSB. For example, a unipolar  
-N  
converter with n bits has a resolution of LSB = (V  
REF  
)/2 . A  
bipolar converter of  
n
bits has  
a
resolution of  
switches steer the ladder leg currents between I  
and  
buses which must be held at ground potential. This  
-(N-1)  
OUT1  
LSB = (V  
)/2  
. Resolution in no way implies linearity.  
REF  
I
OUT2  
configuration maintains a constant current in each ladder leg  
independent of the input code. Converter errors are further  
eliminated by using wider metal interconnections between the  
major bits and the outputs. Use of high threshold switches  
reduces the offset (leakage) errors to a negligible level.  
Settling Time: Time required for the output function of the  
1
DAC to settle to within  
/
LSB for a given digital input  
2
stimulus, i.e., 0 to Full Scale.  
Gain Error: Ratio of the DAC’s operational amplifier output  
voltage to the nominal input voltage value.  
Each circuit is laser-trimmed, at the wafer level, to better than  
12-bits linearity. For the first four bits of the ladder, special  
trim-tabbed geometries are used to keep the body of the  
resistors, carrying the majority of the output current, undis-  
turbed. The resultant time stability of the trimmed circuits is  
comparable to that of untrimmed units.  
Feedthrough Error: Error caused by capacitive coupling  
from V  
to output with all switches OFF.  
REF  
Output Capacitance: Capacitance from I  
, and I  
OUT2  
OUT1  
terminals to ground.  
Output Leakage Current: Current which appears on  
, terminal when all digital inputs are LOW or on I  
The level shifter circuits are comprised of three inverters with  
a positive feedback from the output of the second to first  
(Figure 1). This configuration results in TTL/COMS compati-  
ble operation over the full military temperature range. With  
the ladder SPDT switches driven by the level shifter, each  
switch is binary weighted for an “ON” resistance proportional  
to the respective ladder leg current. This assures a constant  
voltage drop across each switch, creating equipotential ter-  
minations for the 2R ladder resistor, resulting in accurate leg  
currents.  
I
OUT1  
terminal when all inputs are HIGH.  
OUT2  
10-11  
AD7541  
V+  
+15V  
1 3  
V
±10V  
6
REF  
4
TO LADDER  
R
17  
16  
18  
BIT 1 (MSB)  
FEEDBACK  
8
9
4
I
OUT1  
5 AD7541 1  
-
V
OUT  
DIGITAL  
INPUT  
CR1  
TTL/CMOS  
INPUT  
A
2
5
7
+
I
OUT2  
15  
2
3
BIT 12 (LSB)  
I
I
OUT2 OUT1  
GND  
FIGURE 2. UNIPOLAR BINARY OPERATION (2-QUADRANT  
MULTIPLICATION)  
FIGURE 1. CMOS SWITCH  
Typical Applications  
Zero Offset Adjustment  
General Recommendations  
1. Connect all digital inputs to GND.  
2. Adjust the offset zero adjust trimpot of the output  
Static performance of the AD7541 depends on I  
and  
OUT1  
(pin 1 and pin 2) potentials being exactly equal to  
I
operational amplifier for 0V ±0.5mV (Max) at V  
.
OUT2  
GND (pin 3).  
OUT  
Gain Adjustment  
The output amplifier should be selected to have a low input  
bias current (typically less than 75nA), and a low drift  
(depending on the temperature range). The voltage offset of  
the amplifier should be nulled (typically less than ±200µV).  
1. Connect all digital inputs to V  
.
DD  
12  
1
2. Monitor V  
OUT  
for a -V  
REF  
(1 /  
) reading.  
2
3. To increase V  
OUT  
, connect a series resistor, (0to  
amplifier feedback loop.  
The bias current compensation resistor in the amplifier’s  
non-inverting input can cause a variable offset. Non-inverting  
input should be connected to GND with a low resistance  
wire.  
250), in the I  
OUT1  
4. To decrease V  
OUT  
, connect a series resistor, (0to 250),  
between the reference voltage and the V  
terminal.  
REF  
Ground-loops must be avoided by taking all pins going to  
GND to a common point, using separate connections.  
TABLE 1. CODE TABLE - UNIPOLAR BINARY OPERATION  
DIGITAL INPUT  
ANALOG OUTPUT  
The V+ (pin 18) power supply should have a low noise level  
and should not have any transients exceeding +17V.  
1
12  
111111111111  
-V  
-V  
-V  
(1 -  
/
)
REF  
REF  
REF  
2
Unused digital inputs must be connected to GND or V  
proper operation.  
for  
DD  
1
1
12  
100000000001  
( /  
+
/
)
2
2
A high value resistor (~1M) can be used to prevent static  
charge accumulation, when the inputs are open-circuited for  
any reason.  
/2  
100000000000  
011111111111  
000000000001  
000000000000  
1
1
12  
-V  
-V  
0
( / - /  
)
REF  
REF  
2
2
When gain adjustment is required, low tempco  
1
12  
o
( /  
)
(approximately 50ppm/ C) resistors or trim-pots should be  
2
selected.  
Unipolar Binary Operation  
The circuit configuration for operating the AD7541 in  
unipolar mode is shown in Figure 2. With positive and  
Bipolar (Offset Binary) Operation  
negative V  
values the circuit is capable of 2-Quadrant  
REF  
The circuit configuration for operating the AD7541 in the  
bipolar mode is given in Figure 3. Using offset binary digital  
input codes and positive and negative reference voltage  
values Four-Quadrant multiplication can be realized. The  
“Digital Input Code/Analog Output Value” table for bipolar  
mode is given in Table 2.  
multiplication. The “Digital Input Code/Analog Output Value”  
table for unipolar mode is given in Table 1. A Schottky diode  
(HP5082-2811 or equivalent) prevents I  
from negative  
OUT1  
excursions which could damage the device. This precaution  
is only necessary with certain high speed amplifiers.  
10-12  
AD7541  
A “Logic 1” input at any digital input forces the corresponding Gain Adjustment  
ladder switch to steer the bit current to I  
bus. A “Logic  
OUT1  
bus. For any code the  
1. Connect all digital inputs to V  
.
DD  
1
0” input forces the bit current to I  
OUT2  
bus currents are complements of one  
11  
I
and I  
2. Monitor V  
OUT  
for a -V  
REF  
(1 - /  
) volts reading.  
OUT1  
another. The current amplifier at I  
OUT2  
2
changes the polarity  
OUT2  
current and the transconductance amplifier at  
3. To increase V  
OUT  
, connect a series resistor, (0to  
amplifier feedback loop.  
of I  
OUT2  
output sums the two currents. This configuration dou-  
250), in the I  
OUT1  
I
OUT1  
bles the output range of the DAC. The difference current  
resulting at zero offset binary code, (MSB = “Logic 1”, All  
other bits = “Logic 0”), is corrected by using an external  
4. To decrease V  
OUT  
, connect a series resistor, (0to 250),  
between the reference voltage and the V  
terminal.  
REF  
resistive divider, from V  
to I  
.
REF  
OUT2  
TABLE 2. CODE TABLE - BIPOLAR (OFFSET BINARY)  
OPERATION  
Offset Adjustment  
1. Adjust V  
to approximately +10V.  
DIGITAL INPUT  
ANALOG OUTPUT  
REF  
1
11  
2. Set R4 to zero.  
111111111111  
-V  
-V  
0
(1 -  
/
)
REF  
REF  
2
3. Connect all digital inputs to “Logic 1”.  
1
11  
100000000001  
( /  
)
2
4. Adjust I  
amplifier offset zero adjust trimpot for 0V  
amplifier output.  
OUT1  
±0.1mV at I  
OUT2  
100000000000  
011111111111  
000000000001  
000000000000  
5. Connect a short circuit across R2.  
6. Connect all digital inputs to “Logic 0”.  
1
( /  
11  
V
V
V
)
REF  
REF  
REF  
2
1
11  
(1 -  
/
)
2
7. Adjust I  
OUT2  
amplifier offset zero adjust trimpot for 0V  
amplifier output.  
±0.1mV at I  
OUT1  
8. Remove short circuit across R2.  
9. Connect MSB (Bit 1) to “Logic 1” and all other bits to “Logic 0”.  
10. Adjust R4 for 0V ±0.2mV at V  
OUT  
.
±10V  
REF  
V
+15V  
16  
17  
BIT 1 (MSB)  
4
18  
I
OUT1  
1
-
A1  
V
OUT  
+
DIGITAL  
INPUT  
AD7541  
R1 10K  
R2 10K  
R5 10K  
R3  
390K  
15  
2
-
R4  
500Ω  
BIT 12 (LSB)  
I
OUT2  
3
A2  
GND  
+
NOTE: R1 and R2 should be 0.01%, low-TCR resistors.  
FIGURE 3. BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION)  
10-13  
AD7541  
Test Circuits  
+15V  
V
REF  
17  
16  
18  
BIT 1 (MSB)  
R
FEEDBACK  
4
5
I
I
OUT1  
12-BIT  
BINARY  
COUNTER  
1
-
AD7541  
HA2600  
+
OUT2  
10K  
0.01%  
15  
2
3
1MΩ  
BIT 12  
(LSB)  
GND  
CLOCK  
-
V
REF  
HA2600  
+
LINEARITY  
ERROR X 100  
BIT 1  
10K 0.01%  
(MSB)  
BIT 12  
BIT 13  
BIT 14  
14-BIT  
REFERENCE  
DAC  
FIGURE 4. NONLINEARITY TEST CIRCUIT  
+15V  
UNGROUNDED  
SINE WAVE  
500K  
GENERATION  
40Hz 1.0V  
P-P  
+10V  
V
REF  
-
5K 0.01%  
FEEDBACK  
HA2600  
+
17 16  
BIT 1 (MSB)  
R
5K 0.01%  
V
X 100  
ERROR  
18  
4
I
OUT1  
OUT2  
5
-
1
AD7541  
HA2600  
+
I
BIT 12  
(LSB)  
15  
2
3
GND  
FIGURE 5. POWER SUPPLY REJECTION TEST CIRCUIT  
+11V (ADJUST FOR V  
OUT  
= 0V)  
+15V  
1K  
100Ω  
10K  
F = 1KHz  
BW = 1Hz  
I
17  
4
5
16  
2
OUT2  
15µF  
QUAN  
TECH  
-
V
OUT  
AD7541  
MODEL  
134D  
101ALN  
I
OUT1  
15  
1
WAVE  
+
3
ANALYZER  
50K  
1K  
-50V  
0.1µF  
FIGURE 6. NOISE TEST CIRCUIT  
10-14  
AD7541  
Test Circuits (Continued)  
+15V  
NC  
+15V  
+15V  
V
= 20V 10kHz SINE WAVE  
P-P  
REF  
BIT 1 (MSB)  
BIT 12 (LSB)  
17  
16  
18  
BIT 1 (MSB)  
17  
4
5
16  
18  
NC  
1K  
4
5
AD7541  
AD7541  
I
I
OUT1  
3
1
2
1
2
6
OUT2  
HA2600  
15  
17  
100mV  
1MHz  
3
P-P  
3
2
V
SCOPE  
BIT 12 (LSB)  
OUT  
GND  
FIGURE 7. OUTPUT CAPACITANCE TEST CIRCUIT  
FIGURE 8. FEEDTHROUGH ERROR TEST CIRCUIT  
+15V  
V
REF  
+10V  
EXTRAPOLATE  
3t: 5% SETTLING  
9t: 0.01% SETTLING  
BIT 1 (MSB)  
17  
4
16  
+5V  
0V  
OSCILLOSCOPE  
5
+100mV  
AD7541  
1
2
DIGITAL INPUT  
I
OUT2  
15  
3
BIT 12 (LSB)  
100Ω  
GND  
FIGURE 9. OUTPUT CURRENT SETTLING TIME TEST CIRCUIT  
Dynamic Performance  
The dynamic performance of the DAC, also depends on the code. These variations necessitate the use of compensation  
output amplifier selection. For low speed or static applica- capacitors, when high speed amplifiers are used.  
tions, AC specifications of the amplifier are not very critical.  
A capacitor in parallel with the feedback resistor (as shown  
For high-speed applications slew-rate, settling-time,  
in Figure 10) provides the necessary phase compensation to  
openloop gain and gain/phase-margin specifications of the  
critically damp the output.  
amplifier should be selected for the desired performance.  
A small capacitor connected to the compensation pin of the  
The output impedance of the AD7541 looking into I  
OUT1  
alone) and 5kΩ  
in parallel with the ladder resistance).  
amplifier may be required for unstable situations causing  
oscillations. Careful PC board layout, minimizing parasitic  
capacitances, is also vital.  
varies between 10k(R  
FEEDBACK  
(R  
FEED-BACK  
Similarly the output capacitance varies between the  
minimum and the maximum values depending on the input  
+15V  
V
+10V  
REF  
R
FEEDBACK  
17  
4
16  
18  
BIT 1 (MSB)  
BIT 2  
5
C
C
I
I
AD7541  
OUT1  
OUT2  
1
-
+
A
V
OUT  
BIT 12 (LSB)  
15  
2
3
GND  
FIGURE 10. GENERAL DAC CIRCUIT WITH COMPENSATION CAPACITOR, C  
C
10-15  
AD7541  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
Taiwan Limited  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
10-16  

相关型号:

AD7541A

CMOS 12-Bit Monolithic Multiplying DAC
ADI

AD7541AACHIPS

12-Bit Digital-to-Analog Converter
ETC

AD7541AAD

12-Bit Digital-to-Analog Converter
ETC

AD7541AAQ

CMOS 12-Bit Monolithic Multiplying DAC
ADI

AD7541AAQ/+

12-Bit Digital-to-Analog Converter
ETC

AD7541ABD

12-Bit Digital-to-Analog Converter
ETC

AD7541ABQ

CMOS 12-Bit Monolithic Multiplying DAC
ADI

AD7541ABQ/+

12-Bit Digital-to-Analog Converter
ETC

AD7541ACQ

IC IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,DIP,18PIN, Digital to Analog Converter
ADI

AD7541AD

Data Acquisition
INTERSIL

AD7541AGCQ

IC IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,DIP,18PIN, Digital to Analog Converter
ADI

AD7541AGLN

IC IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,DIP,18PIN, Digital to Analog Converter
ADI