CA3240A [INTERSIL]

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output; 双通道, 4.5MHz ,采用BiMOS与MOSFET的输入运算放大器/双极性输出
CA3240A
型号: CA3240A
厂家: Intersil    Intersil
描述:

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output
双通道, 4.5MHz ,采用BiMOS与MOSFET的输入运算放大器/双极性输出

运算放大器
文件: 总15页 (文件大小:604K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CA3240, CA3240A  
Data Sheet  
August 2001  
File Number 1050.5  
Dual, 4.5MHz, BiMOS Operational Amplifier  
with MOSFET Input/Bipolar Output  
Features  
• Dual Version of CA3140  
• Internally Compensated  
• MOSFET Input Stage  
The CA3240A and CA3240 are dual versions of the popular  
CA3140 series integrated circuit operational amplifiers. They  
combine the advantages of MOS and bipolar transistors on  
the same monolithic chip. The gate-protected MOSFET  
(PMOS) input transistors provide high input impedance and  
a wide common-mode input voltage range (typically to 0.5V  
below the negative supply rail). The bipolar output  
transistors allow a wide output voltage swing and provide a  
high output current capability.  
- Very High Input Impedance (Z ) 1.5T(Typ)  
IN  
- Very Low Input Current (I ) 10pA (Typ) at ± 15V  
- Wide Common-Mode Input Voltage Range (V  
Be Swung 0.5V Below Negative Supply Voltage Rail  
I
): Can  
ICR  
• Directly Replaces Industry Type 741 in Most Applications  
Applications  
The CA3240A and CA3240 are compatible with the industry  
standard 1458 operational amplifiers in similar packages.The  
offset null feature is available only when these types are supplied  
in the 14 lead PDIP package (E1 suffix).  
• Ground Referenced Single Amplifiers in Automobile and  
Portable Instrumentation  
• Sample and Hold Amplifiers  
Ordering Information  
• Long Duration Timers/Multivibrators (Microseconds-  
Minutes-Hours)  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
8 Ld PDIP  
• Photocurrent Instrumentation  
• Intrusion Alarm System  
• Comparators  
• Active Filters  
CA3240AE  
CA3240AE1  
CA3240E  
-40 to 85  
-40 to 85  
-40 to 85  
E8.3  
14 Ld PDIP  
8 Ld PDIP  
E14.3  
E8.3  
• Function Generators  
• Power Supplies  
• Instrumentation Amplifiers  
Functional Diagram  
Pinouts  
CA3240, CA3240A (PDIP)  
TOP VIEW  
2mA  
4mA  
V+  
OUTPUT (A)  
1
2
3
4
8
7
6
5
V+  
BIAS CIRCUIT  
CURRENT SOURCES  
AND REGULATOR  
INV.  
INPUT (A)  
OUTPUT  
INV.  
INPUT (B)  
NON-INV.  
INPUT (B)  
NON-INV.  
INPUT (A)  
200µA  
1.6mA  
200µA  
2µA  
2mA  
V-  
+
OUT-  
PUT  
IN-  
PUT  
A 10  
A 10,000  
A 1  
CA3240A (PDIP)  
-
C
1
TOP VIEW  
12pF  
V-  
OFFSET  
14  
NULL (A)  
INV.  
INPUT (A)  
NON-INV.  
INPUT (A)  
OFFSET  
NULL (A)  
1
2
3
4
5
6
7
13 V+  
12 OUTPUT (A)  
11 NC  
OFFSET NULL  
V-  
OFFSET  
NULL (B)  
NON - INV.  
INPUT (B)  
INV.  
NOTE: Only available with 14 lead DIP (E1 Suffix).  
10 OUTPUT (B)  
9
8
V+†  
OFFSET  
NULL (B)  
INPUT (B)  
Pins 9 and 13 internally connected through approximately 3.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Americas Inc. | Copyright © Intersil Americas Inc. 2001  
1
CA3240, CA3240A  
Absolute Maximum Ratings  
Thermal Information  
o
Supply Voltage (Between V+ and V-). . . . . . . . . . . . . . . . . . . . . 36V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . (V+ +8V) to (V- -0.5V)  
Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1mA  
Output Short Circuit Duration (Note 1). . . . . . . . . . . . . . . . Indefinite  
Thermal Resistance (Typical, Note 2)  
θ
( C/W)  
JA  
8 Lead PDIP Package . . . . . . . . . . . . . . . . . . . . . . .  
14 Lead PDIP Package . . . . . . . . . . . . . . . . . . . . . .  
100  
100  
o
Maximum Junction Temperature (Plastic Package) . . . . . . . 150 C  
o
o
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
Voltage Range . . . . . . . . . . . . . . . . . . . . . 4V to 36V or ± 2V to ± 18V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Short circuit may be applied to ground or to either supply. Temperatures and/or supply voltages must be limited to keep dissipation within max-  
imum rating.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications For Equipment Design, V  
= ± 15V, T = 25 C, Unless Otherwise Specified  
SUPPLY  
A
CA3240  
CA3240A  
TYP  
2
PARAMETER  
Input Offset Voltage  
SYMBOL  
MIN  
-
TYP  
5
MAX  
15  
30  
50  
-
MIN  
-
MAX  
5
UNITS  
mV  
pA  
V
IO  
Input Offset Current  
Input Current  
I
-
0.5  
10  
-
0.5  
20  
40  
-
IO  
I
-
-
10  
pA  
I
Large-Signal Voltage Gain  
(See Figures 13, 28) (Note 3)  
A
20  
86  
-
100  
100  
32  
20  
86  
-
100  
100  
32  
kV/V  
dB  
OL  
-
-
Common Mode Rejection  
Ratio (See Figure 18)  
CMRR  
320  
-
320  
-
µV/V  
dB  
70  
-15  
90  
70  
-15  
90  
Common Mode Input Voltage Range  
(See Figure 25)  
V
-15.5 to  
+12.5  
11  
-15.5 to  
+12.5  
12  
V
ICR  
Power Supply Rejection Ratio  
(See Figure 20)  
PSRR  
(V /V± ±  
-
100  
80  
150  
-
100  
80  
150  
µV/V  
dB  
V
IO  
76  
12  
-14  
0.4  
-
-
-
76  
12  
-14  
0.4  
-
-
-
Maximum Output Voltage (Note 4)  
(See Figures 24, 25)  
V
+
13  
13  
OM  
V
-
-14.4  
0.13  
8
-
-14.4  
0.13  
8
-
V
OM  
Maximum Output Voltage (Note 5)  
V
-
-
V
OM-  
I+  
Total Supply Current  
12  
12  
mA  
(See Figure 16) For Both Amps  
Total Device Dissipation  
NOTES:  
P
-
240  
360  
-
240  
360  
mW  
D
3. At V = 26V  
, +12V, -14V and R = 2k.  
L
O
P-P  
4. At R = 2k.  
L
5. At V+ = 5V, V- = GND, I  
SINK  
= 200µA.  
o
Electrical Specifications For Equipment Design, V  
= ± 15V, T = 25 C, Unless Otherwise Specified  
A
SUPPLY  
TYPICAL VALUES  
CA3240A CA3240 UNITS  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
Typical Value of Resistor Between Terminals 4 and 3(5)  
or Between 4 and 14(8) to Adjust Maximum V  
Input Offset Voltage Adjustment Resistor (E1  
Package Only)  
18  
4.7  
kΩ  
IO  
Input Resistance  
Input Capacitance  
Output Resistance  
R
C
1.5  
4
1.5  
4
TΩ  
pF  
I
I
R
60  
48  
60  
48  
O
N
Equivalent Wideband Input Noise Voltage  
(See Figure 2)  
e
BW = 140kHz, R = 1MΩ  
µV  
S
2
CA3240, CA3240A  
o
Electrical Specifications For Equipment Design, V  
= ± 15V, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
A
TYPICAL VALUES  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
f = 1kHz, R = 100Ω  
CA3240A CA3240 UNITS  
Equivalent Input Noise Voltage  
(See Figure 19)  
e
40  
12  
40  
12  
nV/Hz  
nV/Hz  
mA  
N
S
f = 10kHz, R = 100Ω  
S
Short-Circuit Current to Opposite Supply  
I
+
Source  
Sink  
40  
40  
OM  
I
-
11  
11  
mA  
OM  
Gain Bandwidth Product (See Figures 14, 28)  
Slew Rate (See Figure 15)  
f
4.5  
9
4.5  
9
MHz  
V/µs  
µs  
T
SR  
Transient Response (See Figure 1)  
t
R
R
= 2k, C = 100pF  
Rise Time  
Overshoot  
To 1mV  
0.08  
10  
0.08  
10  
r
L
L
L
OS  
= 2k, C = 100pF  
%
L
Settling Time at 10V  
(See Figure 26)  
t
A
= +1, R = 2k, C = 100pF,  
4.5  
1.4  
120  
4.5  
1.4  
120  
µs  
P-P  
S
V
L
L
Voltage Follower  
To 10mV  
µs  
Crosstalk (See Figure 23)  
f = 1kHz  
dB  
o
Electrical Specifications For Equipment Design, at V  
= ± 15V, T = -40 to 85 C, Unless Otherwise Specified  
SUPPLY  
A
TYPICAL VALUES  
PARAMETER  
Input Offset Voltage  
SYMBOL  
|V  
CA3240A  
CA3240  
UNITS  
|
3
32  
10  
32  
mV  
pA  
IO  
Input Offset Current (Note 8)  
|I  
|
IO  
Input Current (Note 8)  
I
640  
63  
640  
63  
pA  
I
Large Signal Voltage Gain (See Figures 13, 28), (Note 6)  
A
kV/V  
dB  
OL  
96  
96  
Common Mode Rejection Ratio (See Figure 18)  
CMRR  
32  
32  
µV/V  
dB  
90  
90  
Common Mode Input Voltage Range (See Figure 25)  
Power Supply Rejection Ratio (See Figure 20)  
V
-15 to +12.3  
150  
76  
-15 to +12.3  
150  
76  
V
ICR  
PSRR  
(V /V± )  
µV/V  
dB  
IO  
Maximum Output Voltage (Note 7) (See Figures 24, 25)  
V
+
12.4  
-14.2  
8.4  
12.4  
-14.2  
8.4  
V
OM  
V
-
V
OM  
I+  
Supply Current (See Figure 16) Total For Both Amps  
Total Device Dissipation  
mA  
mW  
P
252  
15  
252  
15  
D
o
Temperature Coefficient of Input Offset Voltage  
NOTES:  
V /T  
IO  
µV/ C  
6. At V = 26V  
, +12V, -14V and R = 2k.  
L
O
P-P  
7. At R = 2k.  
L
o
8. At T = 85 C.  
A
o
Electrical Specifications For Equipment Design, at V+ = 5V, V- = 0V, T = 25 C, Unless Otherwise Specified  
A
TYPICAL VALUES  
PARAMETER  
SYMBOL  
|V  
CA3240A  
CA3240  
UNITS  
mV  
Input Offset Voltage  
Input Offset Current  
Input Current  
|
2
0.1  
2
5
0.1  
2
IO  
|I  
|
pA  
IO  
I
pA  
I
Input Resistance  
R
1
1
TΩ  
IN  
Large Signal Voltage Gain (See Figures 13, 28)  
A
100  
100  
100  
100  
kV/V  
dB  
OL  
3
CA3240, CA3240A  
o
Electrical Specifications For Equipment Design, at V+ = 5V, V- = 0V, T = 25 C, Unless Otherwise Specified (Continued)  
A
TYPICAL VALUES  
PARAMETER  
Common-Mode Rejection Ratio  
SYMBOL  
CA3240A  
CA3240  
32  
UNITS  
µV/V  
dB  
CMRR  
32  
90  
-0.5  
2.6  
31.6  
90  
3
90  
Common-Mode Input Voltage Range (See Figure 25)  
Power Supply Rejection Ratio  
V
-0.5  
2.6  
31.6  
90  
V
ICR  
V
PSRR  
µV/V  
dB  
Maximum Output Voltage (See Figures 24, 25)  
Maximum Output Current  
V
+
3
V
OM  
V
-
0.3  
20  
1
0.3  
20  
V
OM  
Source  
Sink  
I
+
mA  
mA  
V/µs  
MHz  
mA  
mW  
OM  
I
-
1
OM  
SR  
Slew Rate (See Figure 15)  
7
7
Gain Bandwidth Product (See Figure 14)  
Supply Current (See Figure 16)  
Device Dissipation  
f
4.5  
4
4.5  
4
T
I+  
P
20  
20  
D
Test Circuits and Waveforms  
50mV/Div., 200ns/Div.  
Top Trace: Input, Bottom Trace: Output  
5V/Div., 1µs/Div.  
Top Trace: Input, Bottom Trace: Output  
FIGURE 1A. SMALL SIGNAL RESPONSE  
FIGURE 1B. LARGE SIGNAL RESPONSE  
+15V  
0.1µF  
10kΩ  
SIMULATED  
LOAD  
+
CA3240  
-
2kΩ  
100pF  
0.1µF  
-15V  
2kΩ  
BW (-3dB) = 4.5MHz  
SR = 9V/µs  
0.05µF  
FIGURE 1C. TEST CIRCUIT  
FIGURE 1. SPLIT-SUPPLY VOLTAGE FOLLOWER TEST CIRCUIT AND ASSOCIATED WAVEFORMS  
4
CA3240, CA3240A  
Test Circuits and Waveforms (Continued)  
+15V  
0.01µF  
R
S
+
1MΩ  
NOISE  
VOLTAGE  
OUTPUT  
CA3240  
-
30.1kΩ  
0.01µF  
-15V  
1kΩ  
BW (-3dB) = 140kHz  
TOTAL NOISE VOLTAGE  
(REFERRED TO INPUT) = 48µV (TYP)  
FIGURE 2. TEST CIRCUIT AMPLIFIER (30dB GAIN) USED FOR WIDEBAND NOISE MEASUREMENT  
Schematic Diagram (One Amplifier of Two)  
BIAS CIRCUIT  
INPUT STAGE  
SECOND STAGE  
OUTPUT STAGE  
DYNAMIC CURRENT SINK  
V+  
D
7
D
1
R
13  
15K  
R
50Ω  
9
Q
Q
2
20  
Q
3
Q
1
D
8
R
10  
Q
19  
1K  
Q
R
14  
20K  
5
R
Q
Q
4
12  
12K  
6
R
11  
20Ω  
Q
7
Q
17  
Q
21  
R
1K  
8
R
8K  
1
Q
8
OUTPUT  
Q
18  
D
D
4
3
D
2
D
5
INVERTING  
INPUT  
-
Q
Q
10  
C
1
9
12pF  
NON-INVERTING  
INPUT  
+
R
500Ω  
3
R
500Ω  
2
Q
Q
14  
Q
16  
Q
13  
15  
D
Q
6
Q
11  
12  
R
50Ω  
R
7
30Ω  
6
R
500Ω  
R
5
500Ω  
4
OFFSET NULL (NOTE 9)  
V-  
NOTES:  
9. Only available with 14 Lead DIP (E1 Suffix).  
10. All resistance values are in ohms.  
5
CA3240, CA3240A  
Application Information  
Circuit Description  
Input Circuit Considerations  
The schematic diagram details one amplifier section of the  
CA3240. It consists of a differential amplifier stage using PMOS  
As indicated by the typical VICR, this device will accept  
inputs as low as 0.5V below V-. However, a series current-  
limiting resistor is recommended to limit the maximum input  
terminal current to less than 1mA to prevent damage to the  
input protection circuitry.  
transistors (Q and Q ) with gate-to-source protection against  
9
10  
static discharge damage provided by zener diodes D , D , and  
3
4
D . Constant current bias is applied to the differential amplifier  
5
from transistors Q and Q connected as a constant current  
source. This assures a high common-mode rejection ratio. The  
output of the differential amplifier is coupled to the base of gain  
2
5
Moreover, some current-limiting resistance should be  
provided between the inverting input and the output when  
the CA3240 is used as a unity-gain voltage follower. This  
resistance prevents the possibility of extremely large input-  
signal transients from forcing a signal through the input-  
protection network and directly driving the internal constant-  
current source which could result in positive feedback via the  
output terminal. A 3.9kresistor is sufficient.  
stage transistor Q by means of an NPN current mirror that  
13  
supplies the required differential-to-single-ended conversion.  
Provision for offset null for types in the 14 lead plastic package  
(E1 suffix) is provided through the use of this current mirror.  
The gain stage transistor Q has a high impedance active  
13  
load (Q and Q ) to provide maximum open-loop gain. The  
3
4
The typical input current is on the order of 10pA when the  
inputs are centered at nominal device dissipation. As the  
output supplies load current, device dissipation will increase,  
rasing the chip temperature and resulting in increased input  
current. Figure 4 shows typical input-terminal current versus  
ambient temperature for the CA3240.  
collector of Q directly drives the base of the compound  
13  
emitter-follower output stage. Pulldown for the output stage is  
provided by two independent circuits: (1) constant-current-  
connected transistors Q and Q and (2) dynamic current-  
14 15  
sink transistor Q and its associated circuitry. The level of  
16  
pulldown current is constant at about 1mA for Q and varies  
15  
from 0 to 18mA for Q depending on the magnitude of the  
16  
voltage between the output terminal and V+. The dynamic  
current sink becomes active whenever the output terminal is  
more negative than V+ by about 15V. When this condition  
+HV  
V+  
LOAD  
CA3240  
exists, transistors Q and Q are turned on causing Q to  
21 16 16  
R
L
sink current from the output terminal to V-. This current always  
flows when the output is in the linear region, either from the  
load resistor or from the emitter of Q if no load resistor is  
18  
present. The purpose of this dynamic sink is to permit the  
output to go within 0.2V (V  
ground. When the load is returned to V+, it may be necessary  
(sat)) of V- with a 2kload to  
CE  
R
S
LOAD  
to supplement the 1mA of current from Q in order to turn on  
120V  
AC  
15  
30V NO LOAD  
the dynamic current sink (Q ). This may be accomplished by  
placing a resistor (Approx. 2k) between the output and V-.  
16  
MT  
2
1
Output Circuit Considerations  
CA3240  
MT  
Figure 24 shows output current-sinking capabilities of the  
CA3240 at various supply voltages. Output voltage swing to  
the negative supply rail permits this device to operate both  
power transistors and thyristors directly without the need for  
level-shifting circuitry usually associated with the 741 series  
of operational amplifiers.  
R
L
FIGURE 3. METHODS OF UTILIZING THE V  
SINKING  
CE (SAT)  
CURRENT CAPABILITY OF THE CA3240 SERIES  
Figure 3 shows some typical configurations. Note that a series  
resistor, RL, is used in both cases to limit the drive available to  
the driven device. Moreover, it is recommended that a series  
diode and shunt diode be used at the thyristor input to prevent  
large negative transient surges that can appear at the gate of  
thyristors, from damaging the integrated circuit.  
6
CA3240, CA3240A  
shift in the output voltage (Terminal 7) of the CA3240E.  
10K  
These positive transitions are fed into the CA3059, which is  
used as a latching circuit and zero-crossing TRIAC driver.  
When a positive pulse occurs at Terminal 7 of the CA3240E,  
the TRIAC is turned on and held on by the CA3059 and its  
associated positive feedback circuitry (51kresistor and  
36k/42kvoltage divider). When the positive pulse occurs  
at Terminal 1 (CA3240E), the TRIAC is turned off and held  
off in a similar manner. Note that power for the CA3240E is  
supplied by the CA3059 internal power supply.  
V
= ± 15V  
S
1K  
100  
10  
The advantage of using the CA3240E in this circuit is that it  
can sense the small currents associated with skin  
conduction while allowing sufficiently high circuit impedance  
to provide protection against electrical shock.  
-60  
-40 -20  
0
20  
40  
60  
o
80 100 120 140  
TEMPERATURE ( C)  
Dual Level Detector (Window Comparator)  
FIGURE 4. INPUT CURRENT vs TEMPERATURE  
Figure 7 illustrates a simple dual liquid level detector using  
the CA3240E as the sensing amplifier. This circuit operates  
on the principle that most liquids contain enough ions in  
solution to sustain a small amount of current flow between  
two electrodes submersed in the liquid. The current, induced  
by an 0.5V potential applied between two halves of a PC  
board grid, is converted to a voltage level by the CA3240E in  
a circuit similar to that of the on/off touch switch shown in  
Figure 6. The changes in voltage for both the upper and  
lower level sensors are processed by the CA3140 to activate  
an LED whenever the liquid level is above the upper sensor  
or below the lower sensor.  
It is well known that MOSFET devices can exhibit slight  
changes in characteristics (for example, small changes in  
input offset voltage) due to the application of large  
differential input voltages that are sustained over long  
periods at elevated temperatures.  
Both applied voltage and temperature accelerate these  
changes. The process is reversible and offset voltage shifts  
of the opposite polarity reverse the offset. In typical linear  
applications, where the differential voltage is small and  
symmetrical, these incremental changes are of about the  
same magnitude as those encountered in an operational  
amplifier employing a bipolar transistor input stage.  
Constant-Voltage/Constant-Current Power Supply  
The constant-voltage/constant-current power supply shown  
in Figure 8 uses the CA3240E1 as a voltage-error and  
current-sensing amplifier. The CA3240E1 is ideal for this  
application because its input common-mode voltage range  
includes ground, allowing the supply to adjust from 20mV to  
25V without requiring a negative supply voltage. Also, the  
ground reference capability of the CA3240E1 allows it to  
sense the voltage across the 1current-sensing resistor in  
the negative output lead of the power supply. The CA3086  
transistor array functions as a reference for both constant-  
voltage and constant-current limiting. The 2N6385 power  
Darlington is used as the pass element and may be required  
to dissipate as much as 40W. Figure 9 shows the transient  
response of the supply during a 100mA to 1A load transition.  
Offset-Voltage Nulling  
The input offset voltage of the CA3240AE1 and CA3240E1  
can be nulled by connecting a 10kpotentiometer between  
Terminals 3 and 14 or 5 and 8 and returning its wiper arm to  
Terminal 4, see Figure 5A. This technique, however, gives  
more adjustment range than required and therefore, a  
considerable portion of the potentiometer rotation is not fully  
utilized. Typical values of series resistors that may be placed  
at either end of the potentiometer, see Figure 5B, to optimize  
its utilization range are given in the table “Electrical  
Specifications for Equipment Design” shown on third page of  
this data sheetAn alternate system is shown in Figure 5C.  
This circuit uses only one additional resistor of approximately  
the value shown in the table. For potentiometers, in which the  
resistance does not drop to 0at either end of rotation, a  
value of resistance 10% lower than the values shown in the  
table should be used.  
Precision Differential Amplifier  
Figure 10 shows the CA3240E in the classical precision  
differential amplifier circuit. The CA3240E is ideally suited for  
biomedical applications because of its extremely high input  
impedance. To insure patient safety, an extremely high  
electrode series resistance is required to limit any current  
that might result in patient discomfort in the event of a fault  
condition. In this case, 10Mresistors have been used to  
limit the current to less than 2µA without affecting the  
performance of the circuit. Figure 11 shows a typical  
electrocardiogram waveform obtained with this circuit.  
Typical Applications  
On/Off Touch Switch  
The on/off touch switch shown in Figure 6 uses the  
CA3240E to sense small currents flowing between two  
contact points on a touch plate consisting of a PC board  
metallization “grid”. When the “on” plate is touched, current  
flows between the two halves of the grid causing a positive  
7
CA3240, CA3240A  
V+  
13(9)  
V+  
1(7)  
2(6)  
CA3240  
12(10)  
CA3240  
14(8)  
4
3
(5)  
R (NOTE 11)  
R
10kΩ  
(NOTE 11)  
10kΩ  
V-  
V-  
FIGURE 5B. IMPROVED RESOLUTION  
FIGURE 5A. BASIC  
V+  
CA3240  
10kΩ  
(NOTE 11)  
V-  
FIGURE 5C. SIMPLER IMPROVED RESOLUTION  
R
NOTE:  
11. See Electrical Specification Table for value of R.  
FIGURE 5. THREE OFFSET-VOLTAGE NULLING METHODS, (CA3240AE1 ONLY)  
44M  
+6V  
10K (2W)  
120V/220V  
AC  
60Hz/50Hz  
+6V  
R
(NOTE 12)  
S
“ON”  
51K  
8
40W  
120V LIGHT  
1M  
36K  
5
12K  
-
6
5
MT  
2
1/2  
CA3240  
+
+6V  
7
1
13  
9
0.01µF  
8
4
T2300B (NOTE 12)  
1N914  
42K  
5.1M  
CA3059  
G
MT  
1
10  
11  
1M  
“OFF”  
+
3
2
COMMON  
7
1/2  
CA3240  
2
1N914  
-
1M  
+
0.01µF  
+6V SOURCE  
4
100µF (16V)  
-
44M  
NOTE:  
12. At 220V operation, TRIAC should be T2300D, R = 18K, 5W.  
S
FIGURE 6. ON/OFF TOUCH SWITCH  
8
CA3240, CA3240A  
12M  
+15V  
0.1µF  
8
+15V  
100K  
-
2
3
1/2  
1
CA3240  
+
+15V  
240K  
0.1µF  
7
33K  
3
2
+
HIGH  
LEVEL  
160K  
100K  
CA3140  
(0.5V)  
6
-
680Ω  
LED  
8.2K  
+
5
6
4
100K  
1/2  
7
CA3240  
100K  
-
4
LED ON WHEN  
LIQUID OUTSIDE  
OF LIMITS  
LOW  
LEVEL  
12M  
FIGURE 7. DUAL LEVEL DETECTER  
V
O
I
V+  
13  
O
2N6385  
2
10K  
3
DARLINGTON  
75Ω  
3K  
-
1
2
1/2  
12  
CA3240E1  
180K  
+
+
-
1
4
500  
µF  
100Ω  
1N914  
2.7K  
V = 30V  
I
100K  
+
-
0.056µF  
2000µF  
50V  
2.2K  
82K  
V+  
10  
2
1
+
-
5µF  
16V  
9
11  
100K  
-
7
6
1/2  
14  
13  
10  
CA3240E1  
100K  
9
8
7
CA3086E  
+
12  
3
5
TRANSISTOR  
ARRAY  
820Ω  
680K  
50K  
1K  
4
6
6.2K  
1Ω  
1W  
100K  
CHASSIS GROUND  
RANGE = 20mV TO 25V  
LOAD REGULATION:  
VOLTAGE <0.08%  
CURRENT <0.05%  
V
OUTPUT HUM AND NOISE 150µV  
RMS  
O
(10MHz BANDWIDTH)  
SINE REGULATION 0.1%/V  
O
I
RANGE = 10mA - 1.3A  
O
FIGURE 8. CONSTANT-VOLTAGE/CONSTANT-CURRENT POWER SUPPLY  
9
CA3240, CA3240A  
Top Trace: Output Voltage;  
500mV/Div., 5µs/Div.  
Bottom Trace: Collector Of Load Switching Transistor  
Load = 100mA to 1A; 5V/Div., 5µs/Div.  
FIGURE 9. TRANSIENT RESPONSE  
+15V  
0.1µF  
8
100K 1%  
2000pF  
10M  
+
1/2  
3
2
1
CA3240  
-
2000pF  
+15V  
0.1µF  
1%  
5.1K  
GAIN  
CONTROL  
7
100K 1%  
100K  
3.9K  
OUTPUT  
2
3
CA3140  
6
2K  
100K 1%  
2000pF  
5.1K  
1%  
4
TWO COND.  
SHIELDED  
CABLE  
0.1µF  
-
-15V  
6
5
1/2  
7
CA3240  
+
FREQUENCY RESPONSE (-3dB) DC TO 1MHz  
SLEW RATE = 1.5V/µs  
COMMON MODE REJ: 86dB  
10M  
4
GAIN RANGE: 35dB TO 60dB  
0.1µF  
-15V  
FIGURE 10. PRECISION DIFFERENTIAL AMPLIFIER  
10  
CA3240, CA3240A  
Vertical: 1.0mV/Div.  
Amplifier Gain = 100X  
Scope Sensitivity = 0.1V/Div.  
Horizontal: >0.2s/Div. (Uncal)  
FIGURE 11. TYPICAL ELECTROCARIOGRAM WAVEFORM  
0.015µF  
100K  
+15V  
+15V  
8
2
-
+15V  
1/2  
7
1
7
CA3240E  
2K  
3
2
5.1K  
C30809  
PHOTO  
DIODE  
+
+
3
5
200K  
1.3  
K
OUTPUT  
CA3140  
6
-
+
1/2  
CA3240E  
13K  
2K  
4
6
-
-15V  
4
C30809  
PHOTO  
DIODE  
-15V  
200k  
100K  
0.015µF  
FIGURE 12. DIFFERENTIAL LIGHT DETECTOR  
only the difference is amplified. In this manner, the circuit  
can be used over a wide range of ambient light conditions  
without circuit component adjustment. Also, when used with  
a light source, the circuit will not be sensitive to changes in  
light level as the source ages.  
Differential Light Detector  
In the circuit shown in Figure 12, the CA3240E converts the  
current from two photo diodes to voltage, and applies 1V of  
reverse bias to the diodes. The voltages from the CA3240E  
outputs are subtracted in the second stage (CA3140) so that  
11  
CA3240, CA3240A  
Typical Performance Curves  
R
C
= 2kΩ  
= 100pF  
L
L
R
= 2kΩ  
L
20  
10  
125  
100  
75  
o
o
T
= -40 C  
T
= -40 C  
A
A
o
o
25 C  
25 C  
o
85 C  
o
85 C  
50  
25  
1
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 13. OPEN LOOP VOLTAGE GAIN vs SUPPLY VOLTAGE  
FIGURE 14. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE  
20  
10  
R
C
= 2kΩ  
= 100pF  
L
L
R
= ∞  
L
9
8
7
6
5
4
3
2
o
25 C  
o
15  
10  
T
= -40 C  
A
o
25 C  
o
85 C  
o
T
= -40 C  
A
o
85 C  
5
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 15. SLEW RATE vs SUPPLY VOLTAGE  
FIGURE 16. QUIESCENTSUPPLY CURRENT vs SUPPLY VOLTAGE  
120  
SUPPLY VOLTAGE: V = ± 15V  
A
S
SUPPLY VOLTAGE: V = ± 15V  
o
S
T
= 25 C  
o
T
= 25 C  
A
25  
100  
80  
60  
40  
20  
0
20  
15  
10  
5
0
1
2
3
4
5
6
7
10  
10  
10  
10  
10  
10  
10  
10K  
100K  
1M  
4M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 17. MAXIMUM OUTPUT VOLTAGE SWING vs  
FREQUENCY  
FIGURE 18. COMMON MODE REJECTION RATIO vs  
FREQUENCY  
12  
CA3240, CA3240A  
Typical Performance Curves (Continued)  
1000  
100  
10  
SUPPLY VOLTAGE: V = ± 15V  
S
SUPPLY VOLTAGE: V = ± 15V  
A
S
o
T
= 25 C  
o
A
T
= 25 C  
100  
POWER SUPPLY  
REJECTION RATIO = V /∆  
V
S
IO  
R
= 100Ω  
S
80  
60  
40  
+PSRR  
-PSRR  
20  
1
1
2
3
4
5
6
7
1
2
3
4
5
10  
1
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 19. EQUIVALENT INPUT NOISE VOLTAGE vs  
FREQUENCY  
FIGURE 20. POWER SUPPLY REJECTION RATIO vs  
FREQUENCY  
o
o
T
= 25 C  
T
= 25 C  
A
A
12  
10  
8
17.5  
V
R
= ± 15V  
= ∞  
V
= ± 15V  
S
L
S
15  
ONE AMPLIFIER OPERATING  
12.5  
10  
6
7.5  
4
2
0
5
2.5  
-15  
-10  
-5  
0
5
10  
15  
-15  
-10  
-5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
FIGURE 21. OUTPUT SINK CURRENT vs OUTPUT VOLTAGE  
FIGURE 22. SUPPLY CURRENT vs OUTPUT VOLTAGE  
1000  
V- = 0V  
o
o
T
= 25 C  
A
T
= 25 C  
A
AMP A AMP B  
AMP B AMP A  
140  
130  
120  
110  
100  
90  
V
V
= ± 15V  
S
O
= 5V  
V+ = +5V  
RMS  
100  
+15V  
+30V  
10  
80  
1.0  
0.01  
1
2
3
0.1  
1
10  
FREQUENCY (Hz)  
10  
10  
0.1  
1.0  
10  
LOAD (SINKING) CURRENT (mA)  
FIGURE 23. CROSSTALK vs FREQUENCY  
FIGURE 24. VOLTAGE ACROSS OUTPUT TRANSISTORS Q  
15  
AND Q vs LOAD CURRENT  
16  
13  
CA3240, CA3240A  
Typical Performance Curves (Continued)  
R
= ∞  
L
R
= ∞  
L
0
-0.5  
-1  
1.5  
1.0  
OUTPUT VOLTAGE (+V  
)
O
OUTPUT VOLTAGE (-V  
COMMON MODE VOLTAGE (-V  
)
O
COMMON MODE VOLTAGE (+V  
ICR  
)
)
ICR  
o
0.5  
0
T
= 25 C  
A
o
o
T
= -40 C TO 85 C  
A
o
= 85 C  
-1.5  
-2  
o
T
A
T
= 85 C  
A
o
T
= 85 C  
A
-0.5  
-1.0  
-1.5  
o
T
= -40 C  
A
-2.5  
-3  
o
T
= 25 C  
A
o
T
= 25 C  
A
o
o
T
= -40 C  
A
T
= -40 C  
A
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 25A.  
FIGURE 25B.  
FIGURE 25. OUTPUT VOLTAGE SWING CAPABILITY AND COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE  
SUPPLY VOLTAGE:  
o
V
= ± 15V  
S
T
= 25 C, R = 2k, C = 100pF  
A
L L  
+15V  
+
10  
8
1mV  
1mV  
0.1µF  
0.1µF  
10mV  
10mV  
SIMULATED  
LOAD  
6
10kΩ  
CA3240  
4
-
2
2kΩ  
100pF  
FOLLOWER  
INVERTING  
0
-2  
-4  
-6  
-8  
-10  
-15V  
1mV  
10mV  
1mV  
2kΩ  
10mV  
6
0.05µF  
2
4
8
2
4
6
8
0.1  
1.0  
10  
TIME (µs)  
FIGURE 26A. SETTLING TIME vs INPUT VOLTAGE  
FIGURE 26B. TEST CIRCUIT (FOLLOWER)  
5kΩ  
+15V  
-
0.1µF  
0.1µF  
5kΩ  
SIMULATED  
LOAD  
CA3240  
+
200Ω  
4.99kΩ  
2kΩ  
100pF  
-15V  
5.11kΩ  
SETTLING POINT  
1N914  
D
D
2
1
1N914  
FIGURE 26C. TEST CIRCUIT (INVERTING)  
FIGURE 26. INPUT VOLTAGE vs SETTLING TIME  
14  
CA3240, CA3240A  
Typical Performance Curves (Continued)  
10K  
-75  
V
= ± 15V  
= 25 C  
S
V
= ± 15V  
o
S
-90  
T
A
R
C
= 2k,  
= 0pF  
L
100  
80  
-105  
L
PHASE  
-120  
-135  
1K  
R
C
= 2k,  
L
-150  
= 100pF  
L
60  
100  
GAIN  
40  
10  
1
20  
0
1
2
3
4
5
6
7
8
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
10  
10  
10  
10  
10  
10  
10  
10  
o
TEMPERATURE ( C)  
FREQUENCY (Hz)  
FIGURE 27. INPUT CURRENT vs TEMPERATURE  
FIGURE 28. OPEN LOOP VOLTAGE GAIN AND PHASE vs  
FREQUENCY  
All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice.  
Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable.  
However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its  
use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
Intersil Corporation  
7585 Irvine Center Drive  
Suite 100  
Irvine, CA 92618  
TEL: (949) 341-7000  
FAX: (949) 341-7123  
EUROPE  
ASIA  
Intersil Corporation  
Intersil Corporation  
2401 Palm Bay Rd.  
Palm Bay, FL 32905  
TEL: (321) 724-7000  
FAX: (321) 724-7946  
Intersil Europe Sarl  
Ave. C - F Ramuz 43  
CH-1009 Pully  
Switzerland  
TEL: +41 21 7293637  
FAX: +41 21 7293684  
Unit 1804 18/F Guangdong Water Building  
83 Austin Road  
TST, Kowloon Hong Kong  
TEL: +852 2723 6339  
FAX: +852 2730 1433  
15  

相关型号:

CA3240AE

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output
INTERSIL

CA3240AE1

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output
INTERSIL

CA3240AEI

Analog IC
ETC

CA3240AEZ

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output
INTERSIL

CA3240AS

Analog IC
ETC

CA3240E

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output
INTERSIL

CA3240E1

IC-DUAL OP AMP
ETC

CA3240E1X

CA3240E1X
RENESAS

CA3240EX

CA3240EX
RENESAS

CA3240EZ

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output
INTERSIL

CA3240T

Analog IC
ETC

CA3240_05

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output
INTERSIL