CA3318_02 [INTERSIL]

CMOS Video Speed, 8-Bit, Flash A/D Converter; CMOS视频速度, 8位,闪存A / D转换器
CA3318_02
型号: CA3318_02
厂家: Intersil    Intersil
描述:

CMOS Video Speed, 8-Bit, Flash A/D Converter
CMOS视频速度, 8位,闪存A / D转换器

转换器 闪存
文件: 总12页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
CA3318  
CMOS Video Speed,  
November 2002  
8-Bit, Flash A/D Converter  
Features  
Description  
• CMOS Low Power with SOS Speed (Typ) . . . . . . . .150mW  
The CA3318 is a CMOS parallel (FLASH) analog-to-digital  
converter designed for applications demanding both low  
power consumption and high speed digitization.  
• Parallel Conversion Technique  
• 15MHz Sampling Rate (Conversion Time). . . . . . . 67ns  
• 8-Bit Latched Three-State Output with Overflow Bit  
• Accuracy (Typ). . . . . . . . . . . . . . . . . . . . . . . . . . ±1 LSB  
The CA3318 operates over a wide full scale input voltage  
range of 4V up to 7.5V with maximum power consumption  
depending upon the clock frequency selected. When  
• Single Supply Voltage. . . . . . . . . . . . . . . . . . 4V to 7.5V operated from a 5V supply at a clock frequency of 15MHz,  
the typical power consumption of the CA3318 is 150mW.  
• 2 Units in Series Allow 9-Bit Output  
The intrinsic high conversion rate makes the CA3318 ideally  
suited for digitizing high speed signals. The overflow bit  
makes possible the connection of two or more CA3318s in  
series to increase the resolution of the conversion system. A  
series connection of two CA3318s may be used to produce a  
9-bit high speed converter. Operation of two CA3318s in  
parallel doubles the conversion speed (i.e., increases the  
sampling rate from 15MHz to 30MHz).  
• 2 Units in Parallel Allow 30MHz Sampling Rate  
Applications  
• TV Video Digitizing (Industrial/Security/Broadcast)  
• High Speed A/D Conversion  
• Ultrasound Signature Analysis  
• Transient Signal Analysis  
• High Energy Physics Research  
• General-Purpose Hybrid ADCs  
• Optical Character Recognition  
• Radar Pulse Analysis  
256 paralleled auto balanced voltage comparators measure  
the input voltage with respect to a known reference to  
produce the parallel bit outputs in the CA3318.  
255 comparators are required to quantize all input voltage  
levels in this 8-bit converter, and the additional comparator is  
required for the overflow bit.  
• Motion Signature Analysis  
µP Data Acquisition Systems  
Part Number Information  
o
PART NUMBER LINEARITY (INL, DNL)  
SAMPLING RATE  
15MHz (67ns)  
15MHz (67ns)  
15MHz (67ns)  
TEMP. RANGE ( C)  
-40 to 85  
PACKAGE  
24 Ld PDIP  
PKG. NO.  
E24.6  
CA3318CE  
CA3318CM  
CA3318CD  
±1.5 LSB  
±1.5 LSB  
±1.5 LSB  
-40 to 85  
24 Ld SOIC  
M24.3  
D24.6  
-40 to 85  
24 Ld SBDIP  
Pinout  
CA3318  
(PDIP, SBDIP, SOIC)  
TOP VIEW  
(LSB) B1  
1
2
3
4
5
6
7
8
9
24  
V
3
+ (ANA. SUP.)  
AA  
B2  
23 / R  
4
22  
B3  
B4  
V
+
REF  
IN  
21 V  
20 p  
B5  
B6  
19 PHASE  
18 CLK  
B7  
(MSB) B8  
17 V - (ANA. GND)  
AA  
OVERFLOW  
1
16 V  
IN  
15  
/ R 10  
V
-
REF  
4
(DIG. GND) V  
11  
12  
14 CE1  
13 CE2  
SS  
DD  
(DIG. SUP.) V  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
FN3103.3  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
1
CA3318  
Functional Block Diagram  
V
V
+
DD  
AA  
24  
ANALOG  
SUPPLY  
DIGITAL  
SUPPLY  
φ2 φ1  
φ1  
φ1  
φ1  
φ2  
φ1  
12  
THREE-  
STATE  
V
IN  
21  
OUTPUT  
REGISTER DRIVERS  
OVER-  
FLOW  
COUNT  
256  
V
+
1
REF  
22  
/
R
2
9
D
Q
D
Q
D
Q
CAB  
# 256  
CLK  
BIT 8  
R = 2Ω  
LATCH  
256  
LATCH  
256  
(MSB)  
8
D
Q
ENCODER  
LOGIC  
ARRAY  
CLK  
COUNT  
193  
R
BIT 7  
7
3
/
REF  
D
Q
D
Q
4
D
Q
CAB  
# 193  
23  
= 7Ω  
CLK  
LATCH  
LATCH  
BIT 6  
6
R
R
D
Q
COUNT  
129  
CLK  
D
Q
D
Q
1
/
REF  
2
BIT 5  
5
CAB  
# 129  
20  
D
Q
= 30Ω  
CLK  
LATCH  
LATCH  
R
R
BIT 4  
4
COUNT  
65  
D
Q
1
/
REF  
D
Q
D
Q
4
CLK  
CAB  
# 65  
10  
= 4Ω  
BIT 3  
3
D
Q
LATCH  
LATCH  
R
V
IN  
16  
CLK  
COUNT  
1
BIT 2  
2
D
Q
D
Q
R 2K  
D
Q
V
-
CAB  
REF  
15  
CLK  
(NOTE 1)  
BIT 1  
(LSB)  
COMPARATOR #1  
1
LATCH  
1
LATCH  
11  
/
R
2
D
Q
1
50K  
CLK  
φ1 (AUTO BALANCE)  
CLOCK  
18  
PHASE  
19  
CE1  
14  
φ2 (SAMPLE UNKNOWN)  
V
-
AA  
17  
CE2  
13  
ANALOG  
GND  
NOTE:  
1. Cascaded Auto Balance (CAB).  
V
SS  
DIGITAL  
GND  
11  
2
CA3318  
Absolute Maximum Ratings  
Thermal Information  
o
o
DC Supply Voltage Range (V  
or V +). . . . . . . . . . -0.5V to +8V  
AA  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
θ
( C/W)  
DD  
JA  
JC  
(Referenced to V or V - Terminal, Whichever is More Negative)  
Input Voltage Range  
SBDIP Package. . . . . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . . . .  
SOIC Package. . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
Ceramic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 C  
Plastic Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 C  
60  
60  
75  
22  
N/A  
N/A  
SS AA  
CE2 and CE1 . . . . . . . . . . . . . . . . . . . . V - -0.5V to V  
+ 0.5V  
AA  
DD  
1
Clock, Phase, V  
Clock, Phase, V  
3
-,  
-,  
/
/
Ref. . . . . . . V - -0.5V to V + + 0.5V  
Ref. . . . . . . . V - -0.5V to V  
SS DD  
REF  
REF  
REF  
2
4
AA AA  
1
o
+ 0.5V  
o
V
,
/
REF, V  
+ . . . . . . . . . . . . . .V - -0.5V to V - + 7.5V  
IN  
4
AA AA  
o
o
Output Voltage Range,. . . . . . . . . . . . . . . V - 0.5V to V  
+ 0.5V  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . . 265 C  
SS  
DD  
o
Bits 1-8, Overflow (Outputs Off)  
DC Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA  
(SOIC - Lead Tips Only)  
Clock, Phase, CE1, CE2, V , Bits 1-8, Overflow  
IN  
Operating Conditions  
Operating Voltage Range (V  
or V +) . . 4V (Min) to 7.5V (Max)  
AA  
DD  
Recommended V + Operating Range. . . . . . . . . . . . . . . V  
±1V  
AA  
DD  
Recommended V - Operating Range . . . . . . . . . . . . . . . V ±1V  
AA SS  
o
o
Operating Temperature Range (T ). . . . . . . . . . . . . . -40 C to 85 C  
A
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications At 25 C, V + = V = 5V, V  
+ = 6.4V, V - = V - = V , CLK = 15MHz,  
REF AA SS  
AA  
DD  
REF  
All Reference Points Adjusted, Unless Otherwise Specified  
PARAMETER  
SYSTEM PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
8
-
-
-
Bits  
LSB  
LSB  
LSB  
Integral Linearity Error  
Differential Linearity Error  
Offset Error, Unadjusted  
-
-
± 1.5  
+1, -0.8  
6.4  
-
1
-0.5  
4.5  
V
V
= V  
= V  
- +  
+ -  
/
LSB  
LSB  
IN  
IN  
REF  
REF  
2
2
1
Gain Error Unadjusted  
-1.5  
0
1.5  
LSB  
/
DYNAMIC CHARACTERISTICS  
Maximum Input Bandwidth  
Maximum Conversion Speed  
Signal to Noise Ratio (SNR)  
(Note 1) CA3318  
CLK = Square Wave  
2.5  
15  
-
5.0  
17  
47  
43  
-
-
-
-
MHz  
MSPS  
dB  
f
f
= 15MHz, f = 100kHz  
IN  
S
S
RMSSignal  
=--------------------------------  
RMSNoise  
= 15MHz, f = 4MHz  
IN  
-
dB  
Signal to Noise Ratio (SINAD)  
f
f
= 15MHz, f = 100kHz  
IN  
-
-
45  
35  
-
-
dB  
dB  
S
S
RMSSignal  
= 15MHz, f = 4MHz  
IN  
=-----------------------------------------------------------  
RMSNoise+Distortion  
Total Harmonic Distortion, THD  
f
f
f
f
= 15MHz, f = 100kHz  
IN  
-
-
-
-
-
-
-46  
-36  
7.2  
5.5  
2
-
-
-
-
-
-
dBc  
dBc  
Bits  
Bits  
%
S
S
S
S
= 15MHz, f = 4MHz  
IN  
Effective Number of Bits (ENOB)  
= 15MHz, f = 100kHz  
IN  
= 15MHz, f = 4MHz  
IN  
Differential Gain Error  
Differential Phase Error  
ANALOG INPUTS  
Unadjusted  
Unadjusted  
1
%
Full Scale Range, V and (V  
IN  
+) - (V  
-)  
REF  
Notes 2, 4  
4
-
-
30  
-
7
-
V
REF  
Input Capacitance, V  
pF  
mA  
IN  
Input Current, V , (See Text)  
IN  
V
= 5V, V  
+ = 5V  
REF  
-
3.5  
IN  
REFERENCE INPUTS  
Ladder Impedance  
270  
500  
800  
3
CA3318  
o
Electrical Specifications At 25 C, V + = V = 5V, V  
+ = 6.4V, V - = V - = V , CLK = 15MHz,  
REF AA SS  
AA  
DD  
REF  
All Reference Points Adjusted, Unless Otherwise Specified (Continued)  
PARAMETER  
DIGITAL INPUTS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Low Level Input Voltage, V  
CE1, CE2  
OL  
Note 4  
Note 4  
-
-
-
-
0.2V  
V
V
DD  
AA  
Phase, CLK  
0.2V  
High Level Input Voltage, V  
CE1, CE2  
IN  
Note 4  
Note 4  
Note 3  
0.7V  
-
-
-
-
V
V
DD  
AA  
Phase, CLK  
0.7V  
Input Leakage Current, I (Except CLK Input)  
-
-
±0.2  
3
±5  
µA  
pF  
I
Input Capacitance, C  
-
I
DIGITAL OUTPUTS  
Output Low (Sink) Current  
V
V
= 0.4V  
4
-4  
-
10  
-6  
-
-
mA  
mA  
µA  
pF  
O
O
Output High (Source) Current  
= 4.5V  
Three-State Output Off-State Leakage Current, I  
±0.2  
4
±5  
-
OZ  
Output Capacitance, C  
-
O
TIMING CHARACTERISTICS  
Auto Balance Time (φ1)  
33  
-
ns  
Sample Time (φ2)  
Aperture Delay  
Aperture Jitter  
Note 4  
25  
-
-
500  
ns  
ns  
ps  
ns  
ns  
ns  
ns  
15  
100  
50  
40  
18  
18  
-
-
-
Data Valid Time, t  
Note 4  
Note 4  
-
65  
-
D
Data Hold Time, t  
25  
-
H
Output Enable Time, t  
EN  
-
Output Disable Time, t  
DIS  
POWER SUPPLY CHARACTERISTICS  
-
-
Device Current (I  
+ I ) (Excludes I )  
REF  
Continuous Conversion (Note 4)  
-
-
30  
30  
60  
60  
mA  
mA  
DD  
A
Auto Balance (φ1)  
NOTES:  
1. A full scale sine wave input of greater than f  
/2 or the specified input bandwidth (whichever is less) may cause an erroneous code.  
CLOCK  
The -3dB bandwidth for frequency response purposes is greater than 30MHz.  
2. V (Full Scale) or V + should not exceed V + + 1.5V for accuracy.  
IN REF AA  
3. The clock input is a CMOS inverter with a 50kfeedback resistor and may be AC coupled with 1V  
minimum source.  
P-P  
4. Parameter not tested, but guaranteed by design or characterization.  
Timing Waveforms  
DECODED DATA IS SHIFTED  
TO OUTPUT REGISTERS  
COMPARATOR DATA IS LATCHED  
CLOCK (PIN 18)  
IF PHASE (PIN 19)  
φ1  
φ2  
φ1  
φ2  
φ2  
IS LOW  
SAMPLE  
N + 1  
SAMPLE  
N + 2  
CLOCK IF  
PHASE IS HIGH  
SAMPLE  
AUTO  
BALANCE  
AUTO  
BALANCE  
N
t
D
t
H
DATA  
N - 2  
DATA  
N - 1  
DATA  
N
FIGURE 1. INPUT TO OUTPUT TIMING DIAGRAM  
4
CA3318  
Timing Waveforms (Continued)  
CE1  
CE2  
t
t
EN  
DIS  
t
t
EN  
DIS  
BITS 1 - 8  
OF  
DATA  
DATA  
DATA  
HIGH  
HIGH  
IMPEDANCE  
IMPEDANCE  
DATA  
HIGH  
IMPEDANCE  
FIGURE 2. OUTPUT ENABLE TIMING DIAGRAM  
AUTO  
BALANCE  
AUTO  
BALANCE  
SAMPLE  
N
SAMPLE  
N + 1  
CLOCK  
NO MAX  
LIMIT  
25ns  
MIN  
33ns  
MIN  
25ns  
MIN  
50ns  
MIN  
DATA  
FIGURE 3A. STANDBY IN INDEFINITE AUTO BALANCE (SHOWN WITH PHASE = LOW)  
AUTO  
AUTO  
BALANCE  
BALANCE  
SAMPLE  
N
SAMPLE  
N + 1  
SAMPLE  
N + 2  
CLOCK  
500ns  
MAX  
33ns  
MIN  
25ns  
MIN  
50ns  
TYP  
DATA  
N - 1  
DATA  
N
DATA  
FIGURE 3B. STANDBY IN SAMPLE (SHOWN WITH PHASE = LOW)  
FIGURE 3. PULSE MODE OPERATION  
5
CA3318  
Typical Performance Curves  
40  
28  
27  
26  
25  
24  
23  
35  
30  
25  
20  
15  
10  
0
10  
20  
30  
-50  
-25  
0
25  
50  
75  
100  
o
f
(MHz)  
S
TEMPERATURE ( C)  
FIGURE 4. DEVICE CURRENT vs SAMPLE FREQUENCY  
FIGURE 5. DEVICE CURRENT vs TEMPERATURE  
8.0  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0
f
= 15MHz  
f
= 15MHz, f = 1MHz  
I
S
S
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
INL  
DNL  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 6. ENOB vs TEMPERATURE  
FIGURE 7. NON-LINEARITY vs TEMPERATURE  
1.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0
1.20  
1.08  
0.96  
0.84  
0.72  
0.60  
0.48  
0.36  
0.24  
0.12  
0
f
= 15MHz  
S
INL  
INL  
DNL  
DNL  
0
1
2
3
4
5
6
7
0
5
10  
15  
20  
25  
V
(V)  
REF  
f
(MHz)  
S
FIGURE 8. NON-LINEARITY vs SAMPLE FREQUENCY  
FIGURE 9. NON-LINEARITY vs REFERENCE VOLTAGE  
6
CA3318  
Typical Performance Curves (Continued)  
8.0  
7.6  
f
= 15MHz  
7.2  
6.8  
6.4  
6.0  
5.6  
5.2  
4.8  
S
4.4  
4.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
f (MHz)  
I
FIGURE 10. ENOB vs INPUT FREQUENCY  
Pin Descriptions  
CHIP ENABLE TRUTH TABLE  
PIN  
1
NAME  
B1  
DESCRIPTION  
Output Data Bits  
(High = True)  
CE1  
CE2  
B1 - B8  
Valid  
OF  
Valid  
Bit 1 (LSB)  
Bit 2  
0
1
1
0
2
B2  
1
X
Three-State  
Three-State  
Valid  
3
B3  
Bit 3  
Three-State  
4
B4  
Bit 4  
X = Don’t Care  
5
B5  
Bit 5  
Theory of Operation  
6
B6  
Bit 6  
A sequential parallel technique is used by the CA3318  
converter to obtain its high speed operation. The sequence  
consists of the “Auto-Balance” phase, φ1, and the “Sample  
Unknown” phase, φ2. (Refer to the circuit diagram.) Each  
conversion takes one clock cycle (see Note). With the phase  
control (pin 19) high, the “Auto-Balance” (φ1) occurs during  
the high period of the clock cycle, and the “Sample Unknown”  
(φ2) occurs during the low period of the clock cycle.  
7
B7  
Bit 7  
8
B8  
Bit 8 (MSB)  
Overflow  
Reference Ladder  
Digital Ground  
9
OF  
1
1
10  
11  
12  
13  
/
R
/ Point  
4
4
V
V
SS  
Digital Power Supply, +5V  
DD  
CE2  
Three-State Output Enable Input,  
Active Low, See Truth Table.  
NOTE: The device requires only a single phase clock The terminology  
of φ1 and φ2 refers to the high and low periods of the same clock.  
14  
CE1  
Three-State Output Enable Input  
Active High. See Truth Table.  
During the “Auto-Balance” phase, a transmission switch is  
used to connect each of the first set of 256 commutating  
capacitors to their associated ladder reference tap. Those  
tap voltages will be as follows:  
15  
16  
17  
18  
19  
V
-
Reference Voltage Negative Input  
Analog Signal Input  
Analog Ground  
REF  
V
IN  
V
(N) = [(N/256) V  
REF  
] - (1/512) V ]  
REF  
V
-
TAP  
AA  
CLK  
PHASE  
= [(2N - 1)/512] V  
,
Clock Input  
REF  
Where:  
Sample clock phase control input.  
When PHASE is low, “Sample  
Unknown” occurs when the clock is  
low and “Auto Balance” occurs when  
the clock is high (see text).  
V
V
(n) = reference ladder tap voltage at point n,  
TAP  
= voltage across V  
- to V +,  
REF  
REF  
REF  
N
= tap number (1 through 256).  
1
20  
21  
22  
23  
24  
/
R
Reference Ladder Midpoint  
Analog Signal Input  
2
The other side of these capacitors are connected to single-  
stage amplifiers whose outputs are shorted to their inputs by  
switches. This balances the amplifiers at their intrinsic trip  
V
IN  
V
+
Reference Voltage Positive Input  
3
REF  
3
points, which is approximately (V + - V -)/2. The first set  
AA AA  
/
R
Reference Ladder / Point  
4
4
of capacitors now charges to their associated tap voltages.  
V
+
Analog Power Supply, +5V  
AA  
7
CA3318  
At the same time a second set of commutating capacitors Pulse-Mode Operation  
and amplifiers is also auto-balanced. The balancing of the  
The CA3318 needs two of the same polarity clock edges to  
second-stage amplifier at its intrinsic trip point removes any  
tracking differences between the first and second amplifier  
stages. The cascaded auto-balance (CAB) technique, used  
here, increases comparator sensitivity and temperature  
tracking.  
complete a conversion cycle: If, for instance, a negative  
going clock edge ends sample “N”, then data “N” will appear  
after the next negative going edge. Because of this require-  
ment, and because there is a maximum sample time of  
500ns (due to capacitor droop), most pulse or intermittent  
sample applications will require double clock pulsing.  
In the “Sample Unknown” phase, all ladder tap switches and  
comparator shorting switches are opened. At the same time  
If an indefinite standby state is desired, standby should be in  
auto-balance, and the operation would be as in Figure 3A.  
V
is switched to the first set of commutating capacitors.  
lN  
Since the other end of the capacitors are now looking into an  
effectively open circuit, any input voltage that differs from the  
previous tap voltage will appear as a voltage shift at the  
comparator amplifiers. All comparators that had tap voltages  
If the standby state is known to last less than 500ns and  
lowest average power is desired, then operation could be as  
in Figure 3B.  
greater than V will go to a “high” state at their outputs. All  
lN  
comparators that had tap voltages lower than V will go to a  
lN  
“low” state.  
Increased Accuracy  
In most cases the accuracy of the CA3318 should be  
sufficient without any adjustments. In applications where  
accuracy is of utmost importance, five adjustments can be  
made to obtain better accuracy, i.e., offset trim; gain trim;  
The status of all these comparator amplifiers is AC coupled  
through the second-stage comparator and stored at the end  
of this phase (φ2) by a latching amplifier stage. The latch  
feeds a second latching stage, triggered at the end of φ1.  
This delay allows comparators extra settling time. The status  
1
1
3
and / , / and / point trim.  
4
2
4
of the comparators is decoded by a 256 to 9-bit decoder Offset Trim  
array, and the results are clocked into a storage register at  
In general, offset correction can be done in the preamp  
circuitry by introducing a DC shift to V or by the offset trim  
the end of the next φ2.  
lN  
A 3-stage buffer is used at the output of the 9 storage regis- of the op amp. When this is not possible the V  
- input can  
REF  
ters which are controlled by two chip-enable signals. CE1 be adjusted to produce an offset trim. The theoretical input  
1
will independently disable B1 through B6 when it is in a high voltage to produce the first transition is / LSB. The equa-  
2
state. CE2 will independently disable B1 through B8 and the tion is as follows:  
OF buffers when it is in the low state.  
1
1
V
(0 to 1 transition) = / LSB = / (V  
/256)  
lN  
2
2
REF  
To facilitate usage of this device, a phase control input is  
provided which can effectively complement the clock as it  
enters the chip.  
= V  
/512.  
REF  
If V for the first transition is less than the theoretical, then a  
lN  
single-turn 50pot connected between V  
- and ground  
REF  
will accomplish the adjustment. Set V to 1/2 LSB and trim  
the pot until the 0-to-1 transition occurs.  
lN  
Continuous-Clock Operation  
One complete conversion cycle can be traced through the  
CA3318 via the following steps. (Refer to timing diagram.)  
With the phase control in a “low” state, the rising edge of the  
clock input will start a “sample” phase. During this entire  
“high” state of the clock, the comparators will track the input  
voltage and the first-stage latches will track the comparator  
outputs. At the falling edge of the clock, all 256 comparator  
outputs are captured by the 256 latches. This ends the “sam-  
ple” phase and starts the “auto-balance” phase for the com-  
parators. During this “low” state of the clock, the output of  
the latches settles and is captured by a second row of  
latches when the clock returns high. The second-stage latch  
output propagates through the decode array, and a 9-bit  
code appears at the D inputs of the output registers. On the  
next falling edge of the clock, this 9-bit code is shifted into  
If V for the first transition is greater than the theoretical,  
lN  
then the 50pot should be connected between V  
- and a  
REF  
negative voltage of about 2 LSBs. The trim procedure is as  
stated previously.  
Gain Trim  
In general, the gain trim can also be done in the preamp  
circuitry by introducing a gain adjustment for the op amp.  
When this is not possible, then a gain adjustment circuit  
should be made to adjust the reference voltage. To perform  
this trim, V should be set to the 255 to overflow transition.  
lN  
1
That voltage is / LSB less than V  
3
+ and is calculated as  
REF  
follows:  
V
(255 to 256 transition) = V  
= V  
- V  
/512  
(511/512).  
lN  
REF  
REF  
REF  
the output registers and appears with time delay t as valid  
D
data at the output of the three-state drivers. This also marks  
the end of the next “sample” phase, thereby repeating the  
conversion process for this next cycle.  
To perform the gain trim, first do the offset trim and then  
apply the required V for the 255 to overflow transition. Now  
lN  
+ until that transition occurs on the outputs.  
adjust V  
REF  
8
CA3318  
The first step for connecting a 9-bit circuit is to totem-pole  
+10V TO 30V  
INPUT  
+
the ladder networks, as illustrated in Figure 13. Since the  
absolute resistance value of each ladder may vary, external  
trim of the mid-reference voltage may be required.  
3
18Ω  
2
7
1
6
V
+
REF  
(PIN 22)  
8
CA3085E  
(NOTE)  
5K  
The overflow output of the lower device now becomes the  
ninth bit. When it goes high, all counts must come from the  
upper device. When it goes low, all counts must come from  
the lower device. This is done simply by connecting the lower  
overtlow signal to the CE1 control of the lower A/D converter  
and the CE2 control of the upper A/D converter. The three-  
state outputs of the two devices (bits 1 through 8) are now  
connected in parallel to complete the circuitry. The complete  
circuit for a 9-bit A/D converter is shown in Figure 13.  
4
+
IOT  
CW  
4.7µF,  
TAN/IOV  
10µF, TAN  
(NOTE)  
1.5K  
NOTE: Bypass V  
cap. Parts noted should have low temperature drift.  
+ to analog GND near A/D with 0.1µF ceramic  
REF  
FIGURE 11. TYPICAL VOLTAGE REFERENCE SOURCE FOR  
Grounding/Bypassing  
DRIVING V  
+ INPUT  
REF  
The analog and digital supply grounds of a system should be  
kept separate and only connected at the A/D. This keeps  
digital ground noise out of the analog data to be converted.  
1
/ Point Trims  
4
1
1
3
The / ,  
/
and  
/ points on the reference ladder are Reference drivers, input amps, reference taps, and the V  
4
2
4
A
A
brought out for linearity adjusting or if the user wishes to supply should be bypassed at the A/D to the analog side of  
1
create a nonlinear transfer function. The  
/ points can be the ground. See Figure 15 for a block diagram of this con-  
4
driven by the reference drivers shown (Figure 12) or by 2-K cept. All capacitors shown should be low impedance 0.1µF  
1
pots connected between V  
REF  
+ and V -. The / (mid-) ceramics and should be mounted as close to the A/D as pos-  
REF 2  
point should be set first by applying an input of 257/512 x sible. If V + is derived from V , a small (10resistor or  
AA DD  
(V  
REF  
) and adjusting for an output changing from 128 to inductor and additional filtering (4.7µF tantalum) may be  
129. Similarly the / and / points can be set with inputs of used to keep digital noise out of the analog system.  
1
3
4
4
129/512 and 385/512 x (V  
) and adjusting for counts of  
REF  
Input Loading  
192 to 193 and 64 to 65. (Note that the points are actually  
1
1
3
/ , / and / of full scale +1 LSB.)  
The CA3318 outputs a current pulse to the V terminal at  
lN  
4
2
4
the start of every sample period. This is due to capacitor  
charging and switch feedthrough and varies with input volt-  
age and sampling rate. The signal source must be capable  
of recovering from the pulse before the end of the sample  
period to guarantee a valid signal for the A/D to convert.  
Suitable high speed amplifiers include the HA-5033,  
HA-2542; and CA3450. Figure 16 is an example of an ampli-  
fier which recovers fast enough for sampling at 15MHz.  
+10V TO +30V  
11  
510Ω  
V
+
4
REF  
(PIN 22)  
3
2
10Ω  
1K  
IOT  
3
1
/
REF  
+
4
CW  
CW  
-
(PIN 23)  
5
6
10Ω  
10Ω  
1
1K  
IOT  
7
/
REF  
+
2
(PIN 20)  
-
Output Loading  
10  
9
1K  
IOT  
1
8
/
REF  
+
4
The CMOS digital output stage, although capable of driving  
large loads, will reflect these loads into the local ground. It is  
CW  
-
(PIN 10)  
510Ω  
recommended that  
a
local QMOS buffer such as  
CD74HC541 E be used to isolate capacitive loads.  
NOTES:  
Definitions  
3
1. All Op Amps =  
/ CA324E.  
4
Dynamic Performance Definitions  
2. Bypass all reference points to analog ground near A/D with 0.1µF  
ceramic caps.  
Fast Fourier Transform (FFT) techniques are used to evaluate  
the dynamic performance of the converter. A low distortion sine  
wave is applied to the input, it is sampled, and the output is  
stored in RAM. The data is then transformed into the frequency  
domain with a 4096 point FFT and analyzed to evaluate the  
dynamic performance of the A/D. The sine wave input to the  
part is -0.5dB down from fullscale for all these tests.  
1
3
1
3. Adjust V  
first, then / ,  
3
/
and  
/ points.  
4
REF+  
4
1
FIGURE 12. TYPICAL / POINT DRIVERS FOR ADJUSTING  
4
LINEARITY (USE FOR MAXIMUM LINEARITY)  
9-Bit Resolution  
Signal-to-Noise (SNR)  
To obtain 9-bit resolution, two CA3318s can be wired  
together. Necessary ingredients include an open-ended lad-  
der network, an overflow indicator, three-state outputs, and  
chip-enable controls - all of which are available on the  
CA3318.  
SNR is the measured RMS signal to RMS noise at a  
specified input and sampling frequency. The noise is the  
RMS sum of all of the spectral components except the  
fundamental and the first five harmonics.  
9
CA3318  
Signal-to-Noise + Distortion Ratio (SINAD)  
Total Harmonic Distortion (THD)  
SINAD is the measured RMS signal to RMS sum of all other THD is the ratio of the RMS sum of the first 5 harmonic  
spectral components below the Nyquist frequency excluding DC. components to the RMS value of the measured input signal.  
Effective Number of Bits (ENOB)  
The effective number of bits (ENOB) is derived from the  
SINAD data. ENOB is calculated from:  
ENOB = (SINAD - 1.76 + V  
)/6.02,  
CORR  
where:  
V
= 0.5dB.  
CORR  
NC  
V
V
V
+
OF  
+6.4V REF  
+5V  
REF  
+
-
V
DD  
+5V  
AA  
AA  
BIT 8  
A
VIN1  
0V TO 6.4V  
V
V
BIT 1  
CL  
IN  
IN  
PH  
CE2  
CE1  
MID-POINT  
DRIVER  
V
V
-
V
REF  
REF  
SS  
6.4V REF  
D
A
+5V  
+
V
DD  
CE2  
V
V
CE1  
OF  
IN  
IN  
BIT 9  
BIT 8  
BIT 8  
BIT 1  
CL  
BIT 1  
CLOCK  
V
+
-
+5V  
AA  
AA  
V
V
PH  
PHASE  
-
V
SS  
REF  
A
A
D
FIGURE 13. USING TWO CA3318s FOR 9-BIT RESOLUTION  
10  
CA3318  
4.7µF/10V TANTALUM  
+
+5V (ANALOG SUPPLY)  
A
V
3
+
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
OVF  
AA  
/
REF  
4
+4V TO +6.5V  
REFERENCE  
V
+
REF  
IN  
V
1
DIGITAL  
OUTPUT  
/
REF  
2
OPTIONAL CAP  
(SEE TEXT)  
0.01µF  
PHASE  
CLK  
CLOCK  
SOURCE  
V
V
V
-
AA  
INPUT SIGNAL  
IN  
1
/
REF  
-
4
REF  
AMPLIFIER/BUFFER  
(SEE TEXT)  
A
V
V
CE1  
CE2  
SS  
A
D
D
DD  
+
CA3318  
4.7µF  
TANTALUM/10V  
+5V (DIGITAL SUPPLY)  
FIGURE 14. TYPICAL CIRCUIT CONFIGURATION FOR THE CA3318 WITH NO LINEARITY ADJUST  
V
V
IN  
IN  
AMP  
TO  
DIGITAL  
SYSTEM  
SIGNAL  
SOURCE  
OUTPUT  
DRIVERS  
REF  
V
+
REF  
SIGNAL  
GROUND  
REFERENCE  
TAPS  
V
+
V
DD  
AA  
V
-
REF  
V
-
V
SS  
AA  
SYSTEM  
DIGITAL  
GROUND  
-
+
V
V
DD  
SUPPLY  
ANALOG  
SUPPLIES  
AA  
SUPPLY  
FIGURE 15. TYPICAL SYSTEM GROUNDING/BYPASSING  
+8V  
75Ω  
10Ω  
1V  
P-P  
14  
VIDEO  
INPUT  
7
0.001µF  
0.001µF  
75Ω  
11  
8
10Ω  
16  
21  
6
A/D FLASH  
INPUT  
5pF  
CA3450  
9
3
13  
12  
5
390  
4
10Ω  
750  
110  
0V TO -10V  
OFFSET SOURCE  
< 10Ω  
NOTE: Ground-planing and tight layout  
are extremely important.  
0.1  
-4V  
R
S
FIGURE 16. TYPICAL HIGH BANDWIDTH AMPLIFIER FOR DRIVING THE CA3318  
11  
CA3318  
TABLE 1. OUTPUT CODE TABLE  
(NOTE 1)  
INPUT VOLTAGE  
BINARY OUTPUT CODE  
CODE  
DESCRIPTION  
V
V
MSB  
B8  
LSB  
B1  
DECIMAL  
COUNT  
REF  
REF  
6.40V (V) 5.12V (V)  
OF  
0
B7  
0
B6  
0
B5  
0
B4  
0
B3  
0
B2  
0
Zero  
1 LSB  
2 LSB  
0.00  
0.025  
0.05  
0.00  
0.02  
0.04  
0
0
0
0
1
0
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
/
Full Scale  
1.60  
1.28  
0
0
1
0
0
0
0
0
0
64  
4
1
/
Full Scale - 1 LSB  
1
3.175  
3.20  
2.54  
2.56  
2.58  
0
0
0
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
127  
128  
129  
2
/
Full Scale  
2
1
/
Full Scale + 1 LSB  
3.225  
2
3
/
Full Scale  
4.80  
3.84  
0
1
1
0
0
0
0
0
0
192  
4
Full Scale - 1 LSB  
Full Scale  
6.35  
6.375  
6.40  
5.08  
5.10  
5.12  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
254  
255  
511  
Over Flow  
NOTE: 1. The voltages listed above are the ideal centers of each output code shown as a function of its associated reference voltage.  
Reducing Power  
Clock Input  
Most power is consumed while in the auto-balance state. The Clock and Phase inputs feed buffers referenced to  
When operating at lower than 15MHz clock speed, power  
V
+ and V -. Phase should be tied to one of these two  
AA  
AA  
can be reduced by stretching the sample (φ2) time. The con- potentials, while the clock (if DC coupled) should be driven  
straints are a minimum balance time (φ1) of 33ns, and a at least from 0.2 to 0.7 x (V + - V -). The clock may also  
AA  
AA  
swing. This allows TTL  
maximum sample time of 500ns. Longer sample times cause be AC coupled with at least a 1V  
P-P  
droop in the auto-balance capacitors. Power can also be drive levels or 5V QMOS levels when V + is greater than  
AA  
reduced in the reference string by switching the reference on 5V.  
only during auto-balance.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice.  
Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reli-  
able. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may  
result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
12  

相关型号:

CA3338

CMOS Video Speed, 8-Bit, 50 MSPS, R2R D/A Converters
INTERSIL

CA3338A

CMOS Video Speed, 8-Bit, 50 MSPS, R2R D/A Converters
INTERSIL

CA3338AD

CMOS Video Speed, 8-Bit, 50 MSPS, R2R D/A Converters
INTERSIL

CA3338AD

PARALLEL, 8 BITS INPUT LOADING, 0.02us SETTLING TIME, 8-BIT DAC, CDIP16
ROCHESTER

CA3338AE

CMOS Video Speed, 8-Bit, 50 MSPS, R2R D/A Converters
INTERSIL

CA3338AE

PARALLEL, 8 BITS INPUT LOADING, 0.02us SETTLING TIME, 8-BIT DAC, PDIP16
ROCHESTER

CA3338AEZ

CMOS Video Speed, 8-Bit, 50 MSPS, R2R D/A Converters
INTERSIL

CA3338AM

CMOS Video Speed, 8-Bit, 50 MSPS, R2R D/A Converters
INTERSIL

CA3338AM

PARALLEL, 8 BITS INPUT LOADING, 0.02 us SETTLING TIME, 8-BIT DAC, PDSO16
ROCHESTER

CA3338AM96

PARALLEL, 8 BITS INPUT LOADING, 0.02us SETTLING TIME, 8-BIT DAC, PDSO16
RENESAS

CA3338AM96

PARALLEL, 8 BITS INPUT LOADING, 0.02 us SETTLING TIME, 8-BIT DAC, PDSO16
ROCHESTER

CA3338AMZ

CMOS Video Speed, 8-Bit, 50 MSPS, R2R D/A Converters
INTERSIL