D2-24044 [INTERSIL]

Digital Audio Amplifier Power Stage; 数字音频放大器功率级
D2-24044
型号: D2-24044
厂家: Intersil    Intersil
描述:

Digital Audio Amplifier Power Stage
数字音频放大器功率级

音频放大器
文件: 总20页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Digital Audio Amplifier Power Stage  
D2-24044  
Features  
• All Digital Class-D Power Stage  
The D2-24044 device is a high performance, integrated  
Class-D amplifier power stage. The four power stage  
outputs are configurable as four separate Half-Bridge  
outputs, as two Full-Bridge outputs, or combinations of  
Half-Bridge and Full-Bridge. Individual power stage  
overload monitoring, on-chip temperature monitoring,  
and common alert logic outputs provide protection to  
integrate with the final system’s controller.  
• 4 Configurable Power Stage Outputs Supporting:  
- 2 Channels, Bridged  
- 4 Channels, Half-Bridge  
- 2 Channels, Half-Bridge, plus 1 Channel Bridged  
• Output Power (Bridged)  
- 25W (8Ω, <1% THD)  
- 30W (8Ω, <10% THD)  
• Single HV Supply - Wide 9V-26V Range  
- Gate Drive Supply Internally-Generated  
• Individual Channel Protection Monitoring  
• Temperature and Undervoltage Monitoring  
• Efficient 38 Ld HTSSOP Package  
Digital Amplifier Power Stage  
HSBSA  
HVDDA  
nOVRT  
nPDN  
OUTA  
Configuration &  
IREF  
Control  
HGNDA  
OCFG1  
OCFG0  
nERRORA  
HSBSB  
HVDDB  
PWM1  
PWM2  
PWM3  
OUTB  
HGNDB  
PWM4  
nERRORB  
Drivers  
PWM5  
HSBSC  
HVDDC  
PWM6  
PWM7  
PWM8  
OUTC  
HGNDC  
nERRORC  
HSBSD  
HVDDD  
VDDHV  
REG5V  
Power Supply  
PWMGND  
OUTD  
PWMVDD  
HGNDD  
nERRORD  
September 3, 2010  
FN7678.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2010. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
D2-24044  
Ordering Information  
PART  
NUMBER  
(Notes 2, 3)  
PART  
APPLICATION  
SUPPORT  
TEMP.  
RANGE (°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
MARKING  
D2-24044-MR  
D2-24044-MR  
D2-24044-MR  
Commercial  
Commercial  
-10 to +85  
-10 to +85  
38 Ld HTSSOP  
38 Ld HTSSOP  
M38.173C  
M38.173C  
D2-24044-MR-T (Note 1)  
NOTES:  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for the D2-24044. For more information on MSL  
please see techbrief TB363.  
FN7678.0  
September 3, 2010  
2
D2-24044  
Table of Contents  
Absolute Maximum Ratings .................................................................................................................4  
Thermal Information ...........................................................................................................................4  
Recommended Operating Conditions................................................................................................... 4  
Electrical Specifications.......................................................................................................................4  
Performance Specifications .................................................................................................................5  
Pin Configuration.................................................................................................................................6  
Pin Description ....................................................................................................................................6  
Typical Performance Characteristics.................................................................................................... 8  
Full-Bridge Typical Performance Curves.................................................................................................8  
Half-Bridge Typical Performance Curves ................................................................................................9  
Functional Overview.......................................................................................................................... 10  
Output Options.................................................................................................................................. 10  
Power Supply Requirements.............................................................................................................. 10  
High Side Gate Drive Voltage............................................................................................................. 10  
Supply Bypass Connection................................................................................................................. 10  
REG5V............................................................................................................................................ 10  
Input and Control Functions.............................................................................................................. 11  
PWM Inputs..................................................................................................................................... 11  
nPDN Input Pin ................................................................................................................................ 11  
nERRORA-D Output Pins.................................................................................................................... 11  
nOVRT Output Pin ............................................................................................................................ 11  
IREF Pin.......................................................................................................................................... 11  
OCFG0, OCFG1 Input Pins ................................................................................................................. 11  
Protection.......................................................................................................................................... 11  
Short-Circuit and Overcurrent Sensing ................................................................................................ 11  
Thermal Protection and Monitoring ..................................................................................................... 12  
Power Supply Voltage Monitoring ....................................................................................................... 12  
Output Mode Configurations.............................................................................................................. 14  
Typical Application Examples ............................................................................................................ 17  
2-Channel Full Bridge Example........................................................................................................... 17  
2.1-Channel Example........................................................................................................................ 18  
4-Channel Half-Bridge Example.......................................................................................................... 19  
Package Outline Drawing .................................................................................................................. 20  
FN7678.0  
September 3, 2010  
3
D2-24044  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage  
Thermal Resistance (Typical)  
θ
JA (°C/W) θJC (°C/W)  
29 1.3  
HVDD[A:D], VDDHV. . . . . . . . . . . . . . . . . . 0V to +28.0V  
PWMVDD . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 4.0V  
Input Voltage  
38 Ld HTSSOP Package (Notes 4, 5)  
Maximum Storage Temperature . . . . . . . . -55°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Any Input. . . . . . . . . . . . . . . . .-0.3V to PWMVDD + 0.3V  
Recommended Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . .-10°C to +85°C  
High Voltage Supply Voltage,  
HVDD[A:D], VDDHV . . . . . . . . . . . . . . . . . .9.0V to 26.5V  
Digital I/O Supply Voltage, PWMVDD. . . . . . . . . . . . . . 3.3V  
Minimum Load Impedance (HVDD[A:D] 24.0V), Z . . . . 4Ω  
L
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach”  
JA  
features. See Tech Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
6. Absolute Maximum parameters are not tested in production.  
Electrical Specifications  
T = +25°C, PWMVDD = 3.3V ±10%. All grounds at 0.0V.  
A
All voltages referenced to ground.  
TEST  
PARAMETER  
Digital Input High Logic Level  
Digital Input Low Logic Level  
High Level Output Drive Voltage  
CONDITIONS  
SYMBOL  
MIN  
TYP MAX UNIT  
V
2
-
-
-
-
0.4  
-
V
V
V
IH  
V
-
IL  
V
PWMVDD-0.4  
OH  
(I  
at -Pin Drive Strength Current)  
OUT  
Low Level Output Drive Voltage  
(I at +Pin Drive Strength Current)  
V
-
-
0.4  
V
OL  
OUT  
Input Leakage Current  
Pins 1, 2, 3  
I
-
-
-
-
±10  
±50  
μA  
μA  
IN  
PWM Input Pins  
(includes 100kΩ internal pull-down  
resistor current)  
Input Capacitance  
Output Capacitance  
C
-
-
-
-
9
-
-
-
-
pF  
pF  
IN  
All Outputs Except OUT[A:D]  
OUT[A:D]  
C
9
OUT  
190  
100  
Internal Pull-Up Resistance to PWMVDD  
(for nERRORA-D, nOVRT)  
kΩ  
Digital I/O Supply Pin Voltage, Current  
PWMVDD  
3
-
3.3 3.6  
V
Active Current  
0.47  
0.15  
-
-
mA  
mA  
Power-Down Current  
-
3.3V (PWMVDD) BROWN-OUT DETECTION  
Logic Supply Undervoltage Threshold  
-
-
-
2.6  
200  
50  
-
-
-
V
Logic Supply Undervoltage Threshold Hysteresis  
Logic Supply Undervoltage Glitch Rejection  
mV  
ns  
GATE DRIVE INTERNAL +5V BROWN-OUT DETECTION  
Gate Drive Supply Undervoltage Threshold  
-
4.5  
-
V
FN7678.0  
September 3, 2010  
4
D2-24044  
Electrical Specifications  
T
= +25°C, PWMVDD = 3.3V ±10%. All grounds at 0.0V.  
A
All voltages referenced to ground. (Continued)  
TEST  
PARAMETER  
CONDITIONS  
SYMBOL  
MIN  
TYP MAX UNIT  
Gate Drive Supply Undervoltage Threshold  
Hysteresis  
-
200  
-
mV  
Gate Drive Supply Undervoltage Threshold Glitch  
Rejection  
-
50  
-
ns  
PROTECTION DETECT  
High Voltage Undervoltage Protection  
Overcurrent Trip Threshold  
Overcurrent De-glitch  
-
-
-
-
-
-
-
-
-
7
4
9
-
-
-
-
-
-
-
-
V
A
2.5  
8
ns  
A
Short-Circuit Current Limit (Peak)  
Overcurrent Response Time  
Thermal Shut-Down OTmax  
Thermal Warning Temperature OTmin  
Thermal Shut-Down Hysteresis  
Thermal Warning Hysteresis  
20  
140  
125  
30  
20  
ns  
°C  
°C  
°C  
°C  
Performance Specifications  
T = +25°C, PWMVDD = 3.3V ±10%. All grounds at 0.0V. All voltages referenced to  
A
ground.  
PARAMETER  
SYMBOL  
MIN  
TYP  
200  
1
MAX  
UNIT  
mΩ  
%
r
r
(MOSFETs @ +25°C)  
Mismatch  
r
-
-
-
-
-
-
-
-
-
-
-
DS(ON)  
DS(ON)  
DS(ON)  
PWM Switching Rate  
384  
3.5  
10  
-
kHz  
ns  
Minimum PWM Pulse Width  
PWM Off Sensor Time  
-
-
μs  
PWM Input to Output Delay  
PWM Input to Output Delay Matching  
nPDN Input Off Delay  
50  
-
ns  
3
ns  
T
1.4  
1.4  
-
PDNOFF  
nPDN Input On Delay  
T
-
PDNON  
POWER OUTPUT  
<1% THD, Bridged, Load = 8Ω, HVDD[A:D] = 24V  
<10% THD, Bridged, Load = 8Ω, HVDD[A:D] = 24V  
<1% THD, Half-Bridge, Load = 8Ω, HVDD[A:D] = 24V  
<10% THD, Half-Bridge, Load = 8Ω, HVDD[A:D] = 24V  
THD+N  
P
P
P
P
-
-
-
-
25  
30  
7
-
-
-
-
W
W
W
W
OUT  
OUT  
OUT  
OUT  
9
Load = 8Ω, Power = 25W, Bridged, 1kHz  
Load = 8Ω, Power = 1W, Bridged, 1kHz  
SNR  
THD+N  
SNR  
-
-
-
-
0.3  
0.05  
110  
90  
-
-
-
-
%
%
dB  
%
Efficiency (Load = 8Ω)  
FN7678.0  
September 3, 2010  
5
D2-24044  
Pin Configuration  
D2-24044  
38 LD HTSSOP  
TOP VIEW  
1
nPDN  
OCFG1  
HVDDA  
HGNDA  
OUTA  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
2
3
OCFG0  
4
PWMGND  
PWMVDD  
nOVRT  
HSBSA  
HSBSB  
OUTB  
5
6
7
PWM1  
HGNDB  
HVDDB  
REG5V  
VDDHV  
IREF  
8
PWM2  
9
PWM3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PWM4  
PWM5  
PWM6  
HVDDC  
HGNDC  
OUTC  
PWM7  
PWM8  
PWMGND2  
nERRORA  
nERRORB  
nERRORC  
nERRORD  
HSBSC  
HSBSD  
OUTD  
HGNDD  
HVDDD  
Pin Description  
VOLTAGE  
LEVEL  
PIN NAME  
PIN (Note 7) TYPE  
(V)  
DESCRIPTION  
1
2
3
nPDN  
OCFG1  
OCFG0  
I
I
I
3.3  
Power-down and mute input. Active low. When this input is low, all 4 outputs become  
inactive and their output stages float, and their output is muted. Internal logic and other  
references remain active during this power-down state.  
3.3  
3.3  
Output configuration control select. OCFG0 and OCFG1 are logic inputs to select the  
output configuration mode of the output stages. Connects to either PWMGND ground or  
PWMVDD (+3.3V) through nominal 10kΩ resistor to select output configuration.  
Output configuration control select. OCFG0 and OCFG1 are logic inputs to select the  
output configuration mode of the output stages. Connects to either PWMGND ground or  
PWMVDD (+3.3V) through nominal 10kΩ resistor to select output configuration.  
4
5
6
PWMGND  
PWMVDD  
nOVRT  
GND  
P
0
Low-voltage ground. Connects to ground of circuitry providing PWM inputs. Both  
PWMGND and PWMGND2 are to tie together to the same ground.  
3.3  
3.3  
Low-voltage power. This 3.3V supply connects to the same system low-voltage power  
used for providing PWM inputs.  
O
Over-temperature warning output. Open drain, 16mA drive strength output with pull-up.  
Pulls low when active from over-temperature detection.  
7
8
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
I
I
I
I
I
I
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
PWM Input. Routes to output channel, dependent on output configuration settings.  
PWM Input. Routes to output channel, dependent on output configuration settings.  
PWM Input. Routes to output channel, dependent on output configuration settings.  
PWM Input. Routes to output channel, dependent on output configuration settings.  
PWM Input. Routes to output channel, dependent on output configuration settings.  
PWM Input. Routes to output channel, dependent on output configuration settings.  
9
10  
11  
12  
FN7678.0  
September 3, 2010  
6
D2-24044  
Pin Description (Continued)  
VOLTAGE  
PIN NAME  
PIN (Note 7) TYPE  
LEVEL  
(V)  
DESCRIPTION  
13  
14  
PWM7  
PWM8  
I
I
3.3  
3.3  
0
PWM Input. Routes to output channel, dependent on output configuration settings.  
PWM Input. Routes to output channel, dependent on output configuration settings.  
15 PWMGND2 GND  
Low-voltage ground. Connects to ground of circuitry providing PWM inputs. Both  
PWMGND and PWMGND2 are to tie together to the same ground.  
16  
17  
18  
19  
20  
nERRORA  
nERRORB  
nERRORC  
nERRORD  
HVDDD  
O
O
O
O
P
3.3  
3.3  
3.3  
3.3  
HV  
Overcurrent protection output, channel A output stage. Open drain, 16mA drive strength  
output with pull-up. Pulls low when active from overcurrent detection of output stage.  
Overcurrent protection output, channel B output stage. Open drain, 16mA drive strength  
output with pull-up. Pulls low when active from overcurrent detection of output stage.  
Overcurrent protection output, channel C output stage. Open drain, 16mA drive strength  
output with pull-up. Pulls low when active from overcurrent detection of output stage.  
Overcurrent protection output, channel D output stage. Open drain, 16mA drive strength  
output with pull-up. Pulls low when active from overcurrent detection of output stage.  
Output stage D high voltage supply power. A separate power pin connection is provided  
for each of the output stages. All of the HVDD[A:D] pins and the VDDHV pin connect to  
the system “HV” power source.  
21  
HGNDD  
GND  
HV  
Output stage D high voltage supply ground. A separate ground pin connection is provided  
for each of the output stages. All of the HGND[A:D] pins connect to system “HV” power  
ground (also see Note 8).  
22  
23  
24  
25  
26  
OUTD  
HSBSD  
HSBSC  
OUTC  
O
HV  
HV  
HV  
HV  
HV  
PWM power amplifier output, channel D.  
I
I
High side boot strap input, output channel D. Capacitor couples to OUTD amplifier output.  
High side boot strap input, output channel C. Capacitor couples to OUTC amplifier output.  
PWM power amplifier output, channel C.  
O
HGNDC  
GND  
Output stage C high voltage supply ground. A separate ground pin connection is provided  
for each of the output stages. All of the HGND[A:D] pins connect to system “HV” power  
ground (also see Note 8).  
27  
28  
29  
30  
31  
32  
HVDDC  
IREF  
P
HV  
-
Output stage C high voltage supply power. A separate power pin connection is provided  
for each of the output stages. All of the HVDD[A:D] pins and the VDDHV pin connect to  
the system “HV” power source.  
I
P
Overcurrent reference analog input. Used in setting the overcurrent error detect  
externally-set threshold. The pin needs to be connected to a 100kΩ resistor to ground to  
set the overcurrent threshold according to the specified limits.  
VDDHV  
REG5V  
HVDDB  
HGNDB  
+HV  
5
High Voltage internal driver supply power. All of the HVDD[A:D] pins and the VDDHV pin  
connect to the system “HV” power source. The internal +5V supply regulators also  
operate from this VDDHV input.  
P
5V internal regulator filter connect. A +5V supply is internally generated from the voltage  
source provided at the VDDHV pin. REG5V is used for external connection of a decoupling  
capacitor.  
P
HV  
HV  
Output stage B high voltage supply power. A separate power pin connection is provided  
for each of the output stages. All of the HVDD[A:D] pins and the VDDHV pin connect to  
the system “HV” power source.  
GND  
Output stage B high voltage supply ground. A separate ground pin connection is provided  
for each of the output stages. All of the HGND[A:D] pins connect to system “HV” power  
ground (also see Note 8).  
33  
34  
35  
36  
OUTB  
HSBSB  
HSBSA  
OUTA  
O
I
HV  
HV  
HV  
HV  
PWM power amplifier output, channel B.  
High side boot strap input, output channel B. Capacitor couples to OUTB amplifier output.  
High side boot strap input, output channel A. Capacitor couples to OUTA amplifier output.  
PWM power amplifier output, channel A.  
I
O
FN7678.0  
September 3, 2010  
7
D2-24044  
Pin Description (Continued)  
VOLTAGE  
PIN NAME  
PIN (Note 7) TYPE  
LEVEL  
(V)  
DESCRIPTION  
37  
HGNDA  
GND  
HV  
Output stage A high voltage supply ground. A separate ground pin connection is provided  
for each of the output stages. All of the HGND[A:D] pins connect to system “HV” power  
ground (also see Note 8).  
38  
HVDDA  
P
HV  
Output stage A high voltage supply power. A separate power pin connection is provided  
for each of the output stages. All of the HVDD[A:D] pins and the VDDHV pin connect to  
the system “HV” power source.  
NOTES:  
7. Unless otherwise specified all pin names are active high. Those that are active low have an “n” prefix, such as nERRORA.  
8. Thermal pad is internally connected to all 4 HGND ground pins (HGNDA, HGNDB, HGNDC, HGNDD). Any connection to the  
thermal pad must be made to the common ground for these 4 ground pins.  
Typical Performance Characteristics  
Full-Bridge Typical Performance Curves  
10.00  
5.00  
1.000  
0.500  
P = 25W  
HVDD = 24.0V,  
8Ω LOAD, 1kHz  
P = 14W  
2.00  
1.00  
0.50  
0.200  
0.100  
0.050  
P = 7W  
0.20  
0.020  
0.010  
0.005  
P = 1W  
0.10  
0.05  
HVDD = 24.0V, 8Ω LOAD,  
0.02  
0.01  
0.002  
0.001  
AT 1W, 7W, 14W, 25W POWER OUT  
50 100 200 500 1k 2k  
FREQUENCY (Hz)  
20  
5k 10k 20k  
0.06 0.1 0.2  
0.5  
1
2
5
10  
20  
50  
POWER (W)  
FIGURE 1. THD vs POWER, FULL-BRIDGE  
FIGURE 2. THD vs FREQUENCY, FULL-BRIDGE  
6
5
-50  
-55  
-60  
-65  
-70  
HVDD = 24.0V,  
8Ω LOAD, 3.5W  
HVDD = 24.0V, 8Ω LOAD,  
AT 1kHz, REFERENCE TO 30W  
4
3
2
-75  
-80  
1
-0  
-1  
-2  
-3  
-4  
-85  
-90  
-95  
-100  
-105  
-110  
< -115dB, UN-WEIGHTED  
-5  
-6  
-115  
-120  
30 50 100 200  
500 1k  
2k  
5k 10k  
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 +0  
dBFS  
FREQUENCY (Hz)  
FIGURE 3. FREQUENCY RESPONSE, FULL-BRIDGE  
FIGURE 4. NOISE FLOOR, FULL-BRIDGE  
FN7678.0  
September 3, 2010  
8
D2-24044  
Half-Bridge Typical Performance Curves  
1.000  
10.00  
5.00  
HVDD = 24.0V,  
8Ω LOAD, 1kHz  
0.500  
0.200  
0.100  
0.050  
2.00  
1.00  
0.50  
0.020  
0.010  
0.005  
0.20  
0.10  
0.05  
HVDD = 24.0V, 8Ω LOAD,  
2.4W POWER OUT  
0.002  
0.001  
0.02  
20  
50  
100 200  
500  
1k  
2k  
5k  
10k 20k  
0.06 0.1  
0.2  
0.5  
1
2
5
10  
20  
POWER (W)  
FREQUENCY (Hz)  
FIGURE 5. THD vs POWER, HALF-BRIDGE  
FIGURE 6. THD vs FREQUENCY, HALF-BRIDGE  
12  
10  
8
-30  
HVDD = 24.0V,  
8Ω LOAD, 1W  
-35  
-40  
NOISE FLOOR @ 1kHz, +24V RAIL,  
SPDIF INPUT, 8Ω LOAD, UNITY DSP GAIN  
-45  
-50  
6
-55  
DC RESPONSE WITHOUT  
DC BLOCKING CAPACITOR  
-60  
4
-65  
2
-70  
-75  
-0  
-2  
-4  
-6  
-8  
-10  
-12  
-80  
-85  
-90  
< -110dB, UN-WEIGHTED  
-95  
-100  
-105  
-110  
-115  
-120  
-125  
AC RESPONSE DUE TO LOUDSPEAKER  
DC BLOCKING CAPACITOR  
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 +0  
dBFS  
20  
50 100 200  
500 1k  
FREQUENCY (Hz)  
2k  
5k 10k 20k  
FIGURE 7. FREQUENCY RESPONSE, HALF-BRIDGE  
FIGURE 8. NOISE FLOOR, HALF-BRIDGE  
FN7678.0  
September 3, 2010  
9
D2-24044  
mode “11” as described in the configuration assignment  
Functional Overview  
table on page 14) and two of those outputs can be used  
in a full bridge configuration, simply by connecting the  
appropriate PWM input pins to the input source. This  
allows flexibility in applications where combinations may  
be desired other than the four defined by the output  
configuration modes.  
The devices include four independent output stages  
(Figure 9) that are each implemented using a high side  
(to positive VDDHV supply) and a low side (to HV supply  
ground) FET pair. Drivers and overcurrent monitoring are  
included in each of these four output stages. Depending  
on the selected configuration mode, these four stages  
can be used independently as single half-bridge outputs,  
or as pairs for full-bridge outputs.  
Power Supply Requirements  
The device operates from two supply voltages:  
Digital PWM inputs are connected to the PWM input pins,  
where their signals are routed through the configuration  
select logic to the individual output FETs and drivers.  
• PWMVDD is a nominal 3.3V supply voltage, and  
operates the logic and control.  
• HVDD (HVDD[A:D], and VDDHV) is the “high  
voltage” used for operating the output power stages.  
On-chip temperature and undervoltage monitoring, and  
individual per-output current monitoring provides  
protection and status reporting outputs to the system  
controller.  
Individual HVDD and its ground (HGND) pins are  
included for each of the four power stage outputs,  
providing channel isolation and low impedance source  
connections to each of the outputs. A separate VDDHV  
pin is used for the output drivers, and is the source for  
the on-chip regulated 5V source needed for the drivers.  
All the HVDD/VDDHV pins connect to the same voltage  
source.  
Upon application of power, the on-chip voltage sensors  
monitor presence of the required power voltages. Until all  
voltages are at their design specifications, the outputs  
remain off and floating.  
After supply voltages are within limits and stable, the  
output configuration is set by the logic levels at the  
OCFG0 and OCFG1 input pins, and the PWM inputs are  
routed to their appropriate output stage FETs.  
PWMVDD is the reference for the PWM inputs and device  
control logic, and is the same voltage as used by the  
PWM/system controller.  
HSBSA  
(+)  
High Side Gate Drive Voltage  
HVDD  
An on-chip bootstrap circuit provides the high-side gate  
drive voltage used by each output stage. A pin is  
included for each output channel (HSBS[A:D]) for  
connection of a capacitor (nominal, 0.22μF/50V) from  
this pin to that channel’s PWM output. The charge  
pumping actions uses this capacitor to filter and hold this  
gate drive voltage, and enables amplifier operation  
without need of connection to an additional power supply  
voltage.  
HIGH  
SIDE  
FET  
HIGH-SIDE  
PWM DRIVE  
OUT  
LOW  
SIDE  
FET  
LOW SIDE  
PWM DRIVE  
(GND)  
HGND  
Supply Bypass Connection  
nERROR  
OVERCURRENT  
Power supply bypass capacitors should be connected  
across each of the power supply connection pins, as:  
FIGURE 9. OUTPUT STAGE  
• Four HVDD power pins and their respective HGND  
ground pins. These should be a parallel combination  
of a nominal 100μF and 0.1μF capacitors, located as  
close as possible to the HVDD/HGND pin pair.  
Output Options  
The D2-24044 devices provide four configuration options  
for the outputs. These options are selected by strapping  
the OCFG0 and OCFG1 pins high or low. These defined  
configurations include:  
• A 0.1μF capacitor also is to connect at the VDDHV  
pin.  
• The PWMVDD power pin should include a 1μF and  
0.1μF capacitor.  
• 2 Channels of Full Bridge, 4-Quadrant Outputs,  
• 2 Channels of Full Bridge, 2-Quadrant Outputs  
• 4 Channels of Half-Bridge Outputs  
REG5V  
The on-chip gate drive power supply operates from the  
VDDHV power input, to produce the 5V supply voltage.  
The REG5V pin is used for external capacitor connection  
to filter this regulated voltage. A 1.0μF and 0.1μF  
capacitor should be connected to this pin, and the  
connection should be made as close as practical to the  
pin. No other connection is to be made to this pin.  
• 2 Channels Half-Bridge, Plus 1 Channel Full Bridge  
When a configuration is set that includes a full-bridge  
output, each input channel’s PWM input signal is routed  
to the high and low side FETs, appropriate for that full  
bridge operation. Note however, that the device can be  
configured as 4 independent half-bridge outputs (using  
FN7678.0  
September 3, 2010  
10  
D2-24044  
OCFG0, OCFG1 Input Pins  
Input and Control Functions  
PWM Inputs  
Eight PWM input pins provide the PWM inputs to the  
amplifier’s output stages. The PWM input pins are  
electrically single-ended, referenced to the PWMVDD and  
PWMGND supplies.  
These two pins are used to define the configuration of the  
four output stages. They are connected to logic high  
(PWMVDD) or logic ground (PWMGND) to set their level.  
Refer to “Output Mode Configurations” on page 14 for  
additional reference and definition.  
Protection  
PWM drive to the output stages is provided differentially  
on-chip, with the PWM input channels mapped to each of  
the high-side output FETs and the low-side output FETs  
that implement the individual power stages. Routing and  
assignment of the PWM input pins to the output FETS is  
defined by the configuration mode. Figures 11, 12, 13,  
and 14 show the mapping of these input pins to the  
outputs for each of the four configuration modes.  
The D2-24044 device includes monitors for protection of  
the system as well as the device itself. Certain levels of  
protection are managed on-chip, as shown in Figure 10.  
Other protection is integrated at the system level  
through the system controller, and involves system  
design decisions based on:  
• A short circuit, over-temperature, or undervoltage  
event will shut down the outputs.  
All eight input pins however are not always used in each  
of the configuration modes. For example, in mode “00”,  
providing 3-level drive of two channels of full bridge  
outputs, or in mode “11” providing four independent  
half-bridge outputs, one PWM input is dedicated to each  
of the FETs. But in mode “01” that implements two  
2-quadrant full-bridge outputs, only four PWM inputs are  
used, and the logical high/low states are routed to the  
FETs as needed.  
• Other operation depends on the PWM/system  
controller to properly manage full system protection  
operation.  
• Power supply sensors shut down the device if supply  
voltages drop below their design thresholds.  
• Overload and overcurrent monitors provide dual  
threshold status of high current conditions, providing  
both indication, and device shutdown if needed.  
nPDN Input Pin  
The nPDN pin is a control input that is used to set the  
inactive (powered down) state, and also mute the  
outputs. It operates by turning off drive and internal  
sources to the PWM outputs, as well as turning off the  
PWM drive to those outputs.  
• Chip temperature monitoring provides dual threshold  
status of high temperature conditions, providing  
both indication, and device shutdown if needed.  
Short-Circuit and Overcurrent Sensing  
Each PWM output FET includes a dual-threshold  
overcurrent sensor. Multiple functions occur depending  
on detection of overcurrent conditions:  
When an overcurrent condition is detected on an output,  
causing its overcurrent protection to latch and turn off  
that output, asserting the nPDN input resets the device,  
and clears this overcurrent state.  
• The lower threshold is used to monitor fault  
conditions after the output stage filter inductor, such  
as shorts or overloads on the loudspeaker outputs.  
The nPDN pin is active low, and inactive when at logic  
high level.  
• The higher threshold monitors fault conditions of the  
PWM output pin.  
nERRORA-D Output Pins  
Each of the four outputs includes an overload and  
overcurrent monitor. An overcurrent or overload  
condition asserts the nERROR output for that channel.  
These outputs are active low, open drain. Depending on  
the output mode configuration and need to monitor more  
than one output, these nERROR pins can be wire-or  
connected together.  
• The nERROR output asserts for the channel detecting  
the fault.  
• For the lower level threshold, nERROR remains  
asserted only through the duration of the  
overcurrent event.  
• For the higher level threshold, the output is shut  
down, and its nERROR output is asserted, and these  
remain latched until the controller acknowledges the  
fault event by turning off the channel’s PWM drive.  
(When the output is shutdown, its PWM output pin  
floats.)  
nOVRT Output Pin  
The nOVRT pin is an output that provides warning of a  
high temperature condition. It is an open drain, active  
low output. This pin provides only indication of high  
temperature.  
IREF Pin  
The IREF pin is used to control the overcurrent  
monitoring threshold. A 100kΩ resistor connects from  
this pin to ground.  
FN7678.0  
September 3, 2010  
11  
D2-24044  
Thermal Protection and Monitoring  
Power Supply Voltage Monitoring  
An on-chip temperature sensor provides two thresholds  
of temperature monitoring.  
Undervoltage monitors are included for the output drive  
(HVDD) supply voltage, the on-chip generated gate drive  
(REG5V) supply voltage, and the low-level PWMVDD  
supply voltage. Detection occurs at approximately 2.5V  
for PWMVDD, approximately 4V for the gate drive supply,  
and approximately 7V for the HVDD supply. (Limits are  
listed in the electrical specification tables starting on  
page 4.)  
If the device reaches the lower threshold, the nOVRT  
output is asserted, providing warning indication to an  
external controller. The low threshold setting provides  
indication only, and does not have any effect on device  
operation.  
• The lower high-temperature threshold (warning) is  
set at approximately +125°C.  
If any of the monitored voltages drop below their  
threshold, the device shuts down its outputs and asserts  
all four of the nERROR outputs. Operation resumes  
normally after the undervoltage condition is cleared.  
If the device reaches the higher threshold, it will drive all  
four nERRORA-D outputs low (active) and shut down the  
device, in addition to asserting the nOVRT output. This  
shutdown in non-latching, and operation will resume  
automatically when temperature returns to normal.  
• The higher high-temperature threshold (over-temp)  
is set at approximately +140°C.  
FN7678.0  
September 3, 2010  
12  
D2-24044  
OT Warning  
(Low-Limit)  
nOVRT  
Pin  
Over-Temperature  
Detectors  
Over-Current  
Warning Detected  
(OUTA)  
OT Shut-Down  
(High-Limit)  
nERRORA  
Pin  
HVDD  
Undervoltage  
Detector  
Over-Current  
Warning Detected  
(OUTB)  
nERRORB  
Pin  
+5V  
Undervoltage  
Detector  
Over-Current  
Warning Detected  
(OUTC)  
nERRORC  
Pin  
PWMVDD  
Undervoltage  
Detector  
Over-Current  
Warning Detected  
(OUTD)  
nERRORD  
Pin  
nPDN  
Pin  
Over-Current Shutd  
own  
Over-Current  
Short Detect  
(OUTA)  
OUTA  
Power Down  
OUTA  
S
R
PWM Input to  
OUTA From  
PWM Controller  
PWM  
Present  
Detector  
Over-Current Shutd  
OUTB  
own  
Over-Current  
Short Detect  
(OUTB)  
Power Down  
OUTB  
S
R
PWM Input to  
OUTB From  
PWM Controller  
PWM  
Present  
Detector  
Over-Current Shut  
OUTC  
down  
Over-Current  
Short Detect  
(OUTC)  
Power Down  
OUTC  
S
R
PWM Input to  
OUTC From  
PWM Controller  
PWM  
Present  
Detector  
Over-Current Sh  
OUTD  
utdown  
Over-Current  
Short Detect  
(OUTD)  
Power Down  
OUTD  
S
R
PWM Input to  
OUTD From  
PWM Controller  
PWM  
Present  
Detector  
Over-Current (OC) Shutdown: OC detect condition is latched, shutting down  
output. Latched shutdown is then cleared after over-current condition has  
cleared, AND PWM data clocking has stopped from PWM controller.  
FIGURE 10. PROTECTION AND MONITORING HIGH-LEVEL FUNCTIONAL OPERATION  
FN7678.0  
September 3, 2010  
13  
D2-24044  
Output Mode Configurations  
The D2-24044 device supports four amplifier output  
For each of the four configurations, the PWM input pin  
signals route to the individual FETs of each of the power  
stages to implement the channel drive and topology  
needed for those configurations. Figures 11, 12, 13, and  
14 show this routing of the PWM inputs to each of the  
power stages, and how the particular topology is  
implemented for that configuration. Table 1 shows the  
configuration functions that are defined with the  
combinations of the OCFG pins, and these diagrams  
show the implementation that is listed in this table.  
configuration modes, utilizing the device’s 4 power stage  
outputs.  
Configuration selection is controlled by the OCFG0 and  
OCFG1 pins, by connecting them to either a high  
(+3.3V, PWMVDD = 1) or low (ground = 0) level.  
Settings are chosen based on the output configuration  
and topology of the design. Their connection is to be  
hard-connected on the design, and they are not  
intended to be dynamic or subject to change during  
system operation.  
TABLE 1. D2-24044 CONFIGURATION PWM AND OUTPUT CHANNEL ASSIGNMENTS  
CONFIG PINS  
POWER STAGE OUTPUT  
OUTA OUTB OUTC  
Output Output  
nERROR CHANNEL USE  
CONFIGURATION  
DESCRIPTION  
OCFG1 OCFG0 CONFIG  
OUTD nERRORA nERRORB nERRORC nERRORD  
Connect (wire-or)  
Connect (wire-or)  
Channel 1 Channel 2  
nERRORA & nERRORB nERRORC & nERRORD  
2-Channel  
Full Bridge  
3-Level  
together.  
together.  
High-Side FET PWM Input Assignments  
PWM1 PWM3 PWM5 PWM7  
Low-Side FET PWM Input Assignments  
PWM2 PWM4 PWM6 PWM8  
Output Output  
Use for Output  
Channel 1 Protect  
Use for Output  
Channel 2 Protect  
0
0
1
1
0
1
0
1
“00”  
“01”  
“10”  
“11”  
PWM Drive  
(Ref. Figure 11)  
Connect (wire-or)  
Connect (wire-or)  
Channel 1 Channel 2  
nERRORA & nERRORB nERRORC & nERRORD  
2-Channel  
Full Bridge,  
2-Quadrant PWM Drive  
together.  
together.  
High-Side FET PWM Input Assignments  
PWM1 PWM2 PWM3 PWM4  
Low-Side FET PWM Input Assignments  
Use for Output  
Channel 1 Protect  
Use for Output  
Channel 2 Protect  
(Ref. Figure 12)  
PWM2  
PWM1  
PWM4  
PWM3  
Output  
Ch. 1  
Output  
Ch 2  
Output  
Channel 3  
2-Channel  
Half-Bridge  
plus  
1-Channel  
Full Bridge  
Connect (wire-or)  
nERRORC & nERRORD  
together.  
Use for Output  
Channel 3 Protect  
nERRORA nERRORB  
High-Side FET PWM Input Assignments  
PWM1 PWM3 PWM5 PWM6  
Low-Side FET PWM Input Assignments  
Use for  
Channel 1 Channel 2  
Protect Protect  
Use for  
(Ref. Figure 13)  
PWM2  
PWM4  
PWM6  
PWM5  
Output  
Ch. 1  
Output  
Ch 2  
Output  
Ch. 3  
Output  
Ch 4  
4-Channel  
Half-Bridge  
nERRORA nERRORB nERRORC nERRORD  
Use for Use for Use for Use for  
Channel 1 Channel 2 Channel 3 Channel 4  
High-Side FET PWM Input Assignments  
PWM1 PWM3 PWM5 PWM7  
Low-Side FET PWM Input Assignments  
PWM2 PWM4 PWM6 PWM8  
(Ref. Figure 14)  
Protect  
Protect  
Protect  
Protect  
FN7678.0  
September 3, 2010  
14  
D2-24044  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8  
PWMIN1-HI-1  
PWMIN1-LO-1  
PWMIN1-HI-2  
PWMIN1-LO-2  
PWM Input Mapping To Output Stages  
Configuration “00”  
2 x 4-Quadrant Full-Bridge Outputs  
Channel 1  
PWM Input  
PWMIN2-HI-1  
PWMIN2-LO-1  
PWMIN2-HI-2  
Channel 2  
PWM Input  
PWMIN2-LO-2  
(HVDD)  
(HVDD)  
(HVDD)  
(HVDD)  
PWM Inputs From  
PWM/System Controller  
PWM1-8  
Input Pins  
High  
Side  
FET  
High  
Side  
FET  
High  
Side  
FET  
High  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
(HGND)  
(HGND)  
(HGND)  
(HGND)  
OUTA  
OUTB  
OUTC  
OUTD  
Channel 2  
Channel 1  
Output  
Output  
FIGURE 11. CONFIGURATION “00” PWM INPUT-TO-OUTPUT POWER STAGE MAPPING  
PWM1  
PWMIN1-HI  
Channel 1  
PWM Input  
PWM Input Mapping To Output Stages  
Configuration “01”  
2 x Full Bridge , 2-Quadrant Output  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8  
PWMIN1-LO  
PWMIN2-HI  
PWMIN2-LO  
Channel 2  
PWM Input  
(HVDD)  
(HVDD)  
(HVDD)  
(HVDD)  
PWM Inputs From  
PWM/System Controller  
PWM1-8  
Input Pins  
High  
Side  
FET  
High  
Side  
FET  
High  
Side  
FET  
High  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
(HGND)  
(HGND)  
(HGND)  
(HGND)  
OUTA  
OUTB  
Channel 1  
OUTC  
OUTD  
Channel 2  
Output  
Output  
FIGURE 12. CONFIGURATION “01” PWM INPUT-TO-OUTPUT POWER STAGE MAPPING  
FN7678.0  
September 3, 2010  
15  
D2-24044  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8  
PWMIN1-HI  
PWMIN1-LO  
PWMIN2-HI  
PWMIN2-LO  
PWMIN3-HI  
PWMIN3-LO  
Channel 1  
PWM Input  
PWM Input Mapping To Output Stages  
Configuration “10”  
2 x Half-Bridge Outputs + 1 x Full Bridge Output  
Channel 2  
PWM Input  
Channel 3  
PWM Input  
(HVDD)  
(HVDD)  
(HVDD)  
(HVDD)  
PWM Inputs From  
PWM/System Controller  
PWM1-8  
Input Pins  
High  
Side  
FET  
High  
Side  
FET  
High  
Side  
FET  
High  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
(HGND)  
(HGND)  
(HGND)  
(HGND)  
OUTA  
OUTB  
OUTC  
OUTD  
Channel 2  
Output  
Channel 2  
Output  
Channel 1  
Output  
FIGURE 13. CONFIGURATION “10” PWM INPUT-TO-OUTPUT POWER STAGE MAPPING  
PWM1  
PWMIN1-HI  
Channel 1  
PWM Input  
PWM Input Mapping To Output Stages  
Configuration “11”  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8  
PWMIN1-LO  
PWMIN2-HI  
PWMIN2-LO  
PWMIN3-HI  
PWMIN3-LO  
PWMIN4-HI  
PWMIN4-LO  
4x Half-Bridge Outputs  
Channel 2  
PWM Input  
Channel 3  
PWM Input  
Channel 3  
PWM Input  
(HVDD)  
(HVDD)  
(HVDD)  
(HVDD)  
PWM Inputs From  
PWM/System Controller  
PWM1-8  
Input Pins  
High  
Side  
FET  
High  
Side  
FET  
High  
Side  
FET  
High  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
Low  
Side  
FET  
(HGND)  
(HGND)  
(HGND)  
(HGND)  
OUTA  
OUTB  
OUTC  
OUTD  
Channel 2  
Output  
Channel 4  
Output  
Channel 1  
Output  
Channel 3  
Output  
FIGURE 14. CONFIGURATION “11” PWM INPUT-TO-OUTPUT POWER STAGE MAPPING  
FN7678.0  
September 3, 2010  
16  
D2-24044  
2-Channel Full Bridge Example  
Typical Application Examples  
This example (Figure 15) uses configuration mode “01”  
to provide two full-bridge loudspeaker output channels.  
The PWM controller provides input into four PWM input  
pins.  
These examples show functional circuit examples of  
typical applications using the D2-24044 device. (Note:  
These examples are provided to show typical applications  
only and are not intended to represent complete  
production-qualified reference designs.)  
nPDN  
Configuration “01”  
2x Full Bridge Outputs  
1
2
38  
PWMVDD/+3.3  
nOVRT  
10k  
+HV  
nPDN  
HVDDA  
37  
10k  
OCFG1  
OCFG0  
PWMGND  
PWMVDD  
nOVRT  
GND  
HGNDA  
OUTA  
3
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
Full Bridge  
4
HSBSA  
HSBSB  
OUTB  
5
Output  
Filter  
6
7
PWMIN1-HI  
PWMIN1-LO  
PWMIN2-HI  
PWMIN2-LO  
GND  
+HV  
PWM1  
HGNDB  
HVDDB  
REG5V  
VDDHV  
IREF  
Channel 1  
Channel 1 In  
Channel 2 In  
8
PWM2  
9
PWM3  
+HV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
0.1u  
PWM4  
100K  
(no connect)  
1u  
PWM5  
PWM Inputs From  
PWM/System  
Controller  
0.1u  
(no connect)  
(no connect)  
(no connect)  
+HV  
GND  
PWM6  
HVDDC  
HGNDC  
OUTC  
PWM7  
PWM8  
Full Bridge  
PWMGND2  
nERRORA  
nERRORB  
nERRORC  
nERRORD  
HSBSC  
HSBSD  
OUTD  
For Channel 1 Output  
For Channel 2 Output  
Output  
Filter  
22  
21  
20  
GND  
+HV  
HGNDD  
HVDDD  
Channel 2  
nERROR Reporting to  
PWM/System Controller  
D2-24044  
FIGURE 15. 2-CHANNEL FULL BRIDGE EXAMPLE  
FN7678.0  
September 3, 2010  
17  
D2-24044  
2.1-Channel Example  
This example (Figure 16) uses configuration mode “10”  
to provide two independent half-bridge loudspeaker  
output channels, plus one full-bridge loudspeaker output.  
The PWM controller provides input into all eight PWM  
input pins.  
nPDN  
Configuration “10”  
2x Half Bridge Outputs, plus  
1x Full Bridge Output  
Half Bridge  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PWMVDD/+3.3  
nOVRT  
10k  
+HV  
GND  
nPDN  
HVDDA  
HGNDA  
OUTA  
Output  
Filter  
+HV  
Bias  
10k  
OCFG1  
OCFG0  
PWMGND  
PWMVDD  
nOVRT  
3
4
Channel 1  
Half Bridge  
HSBSA  
HSBSB  
OUTB  
5
6
Output  
Filter  
+HV  
Bias  
7
PWM1  
GND  
+HV  
PWMIN1-HI  
PWMIN1-LO  
PWMIN2-HI  
PWMIN2-LO  
PWMIN3-HI  
PWMIN3-LO  
HGNDB  
HVDDB  
REG5V  
VDDHV  
IREF  
Channel 1  
Channel 2  
Channel 3  
8
PWM2  
Channel 2  
9
PWM3  
+HV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
0.1u  
PWM4  
100K  
1u  
PWM5  
0.1u  
PWM6  
+HV  
GND  
HVDDC  
HGNDC  
OUTC  
(no connect)  
(no connect)  
PWM7  
PWM Inputs From  
PWM/System  
Controller  
PWM8  
Full Bridge  
PWMGND2  
nERRORA  
nERRORB  
nERRORC  
nERRORD  
HSBSC  
HSBSD  
OUTD  
Output  
Filter  
For Channel 1 Output  
For Channel 2 Output  
For Channel 3 Output  
22  
21  
20  
GND  
+HV  
HGNDD  
HVDDD  
Channel 3  
nERROR Reporting to  
PWM/System Controller  
D2-24044  
FIGURE 16. 2-CHANNEL HALF BRIDGE PLUS 1-CHANNEL FULL BRIDGE EXAMPLE  
FN7678.0  
September 3, 2010  
18  
D2-24044  
4-Channel Half-Bridge Example  
This example (Figure 17) uses configuration mode “11”  
to provide four independent half-bridge loudspeaker  
output channels. The PWM controller provides input into  
all eight PWM input pins.  
nPDN  
Configuration “11”  
4x Half Bridge Outputs  
Half Bridge  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PWMVDD/+3.3  
nOVRT  
10k 10k  
+HV  
GND  
nPDN  
HVDDA  
HGNDA  
OUTA  
Output  
Filter  
+HV  
Bias  
OCFG1  
OCFG0  
PWMGND  
PWMVDD  
nOVRT  
3
4
Channel 1  
Half Bridge  
HSBSA  
HSBSB  
OUTB  
5
PWM Inputs From  
PWM/System Controller  
6
Output  
Filter  
+HV  
Bias  
7
PWM1  
GND  
+HV  
PWMIN1-HI  
PWMIN1-LO  
PWMIN2-HI  
PWMIN2-LO  
PWMIN3-HI  
PWMIN3-LO  
PWMIN4-HI  
PWMIN4-LO  
HGNDB  
HVDDB  
REG5V  
VDDHV  
IREF  
Channel 1  
8
PWM2  
Channel 2  
9
PWM3  
Channel 2  
Channel 3  
Channel 3  
+HV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
0.1u  
PWM4  
100K  
1u  
PWM5  
0.1u  
PWM6  
+HV  
GND  
HVDDC  
HGNDC  
OUTC  
Half Bridge  
PWM7  
PWM8  
Output  
Filter  
+HV  
Bias  
PWMGND2  
nERRORA  
nERRORB  
nERRORC  
nERRORD  
HSBSC  
HSBSD  
OUTD  
For Channel 1 Output  
For Channel 2 Output  
For Channel 3 Output  
For Channel 4 Output  
Channel 3  
Half Bridge  
22  
21  
20  
GND  
+HV  
HGNDD  
HVDDD  
Output  
Filter  
+HV  
Bias  
nERROR Reporting to  
PWM/System Controller  
D2-24044  
Channel 4  
FIGURE 17. 4-CHANNEL HALF BRIDGE EXAMPLE  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7678.0  
September 3, 2010  
19  
D2-24044  
Package Outline Drawing  
M38.173C  
38 LEAD HEAT-SINK THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE (HTSSOP)  
Rev 0, 4/10  
PIN 1 ID  
B
4.6±0.10  
0.09-0.20  
D
3 2  
1
1 2 3  
C
6.4  
L
3.20±0.10  
4.4±0.10  
4
38  
0.20 C A-B D  
2X N/2 TIPS  
SEE  
DETAIL "A"  
EXPOSED PAD VIEW  
0.08 M C A-B D  
5
0.17-0.27  
A
TOP VIEW  
END VIEW  
(14°) TYP  
(1.00)  
1.10 MAX  
0.05 C  
0.90±0.05  
0.25  
C
PARTING  
LINE  
0.10 C  
H
3
0.50  
0.05/0.15  
SEATING  
PLANE  
4
0.6±0.10  
(0-8°)  
9.70±0.10  
SIDE VIEW  
DETAIL "A"  
SCALE: 30/1  
(VIEW ROTATED 90°C.W.)  
(4.60)  
NOTES:  
1. Die thickness allowable is 0.279±0.0127 (0.0110±0.0005 inches).  
2. Dimensioning & tolerances per ASME. Y14.5m-1994.  
(1.30)  
(3.20)  
3. Datum plane H located at mold parting line and coincident  
with lead where lead exits plastic body at bottom of parting line.  
4. At reference datum and does not include mold flash or protrusions,  
and is measured at the bottom parting line. Mold flash or protrusions  
shall not exceed 0.15mm on the package ends and 0.25mm between  
the leads.  
(5.80)  
5. The lead width dimension does not include dambar protrusion.  
Allowable dambar protrusion shall be 0.07mm total in excess of  
the lead width dimension at maximum material condition. Dambar  
cannot be located on the lower radius or the foot. Minimum space  
between protrusions and an adjacent lead should be 0.08mm.  
(36X 0.50)  
(38X 0.28)  
6. This part is compliant with JEDEC specification MO-153 variation BDT-1  
TYPICAL RECOMMENDED LAND PATTERN  
FN7678.0  
September 3, 2010  
20  

相关型号:

D2-24044-MR

Digital Audio Amplifier Power Stage
INTERSIL

D2-24044-MR-T

Digital Audio Amplifier Power Stage
INTERSIL

D2-3

Optoelectronic
ETC

D2-3-37

GENERAL-PURPOSE PHOTOVOLTAIC CELL
ETC

D2-3-5

GENERAL-PURPOSE PHOTOVOLTAIC CELL
ETC

D2-3-8

GENERAL-PURPOSE PHOTOVOLTAIC CELL
ETC

D2-37

GENERAL-PURPOSE PHOTOVOLTAIC CELL
ETC

D2-4-8

GENERAL-PURPOSE PHOTOVOLTAIC CELL
ETC

D2-41051

Intelligent Digital Amplifier PWM Controller and Audio Processor
RENESAS

D2-41051-QR

Intelligent Digital Amplifier PWM Controller and Audio Processor
INTERSIL

D2-41051-QR

Intelligent Digital Amplifier PWM Controller and Audio Processor
RENESAS

D2-41051-QR-TK

Intelligent Digital Amplifier PWM Controller and Audio Processor
INTERSIL