EL1509_07 [INTERSIL]

Medium Power Differential Line Driver; 中功率差动线路驱动器
EL1509_07
型号: EL1509_07
厂家: Intersil    Intersil
描述:

Medium Power Differential Line Driver
中功率差动线路驱动器

驱动器
文件: 总10页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL1509  
®
Data Sheet  
March 26, 2007  
FN7015.2  
Medium Power Differential Line Driver  
Features  
The EL1509 is a dual operational amplifier designed for  
customer premise line driving in DMT ADSL solutions. This  
device features a high drive capability of 250mA while  
consuming only 7.1mA of supply current per amplifier and  
operating from a single 5V to 12V supply. This driver  
achieves a typical distortion of less than -85dBc, at 150kHz  
into a 25Ω load. The EL1509 is available in the industry  
standard 8 Ld SOIC as well as the thermally-enhanced 8 Ld  
DFN package. Both are specified for operation over the full  
-40°C to +85°C temperature range.  
• Drives up to 250mA from a +12V supply  
• 20V differential output drive into 100Ω  
P-P  
• -85dBc typical driver output distortion at full output at  
150kHz  
• Low quiescent current of 7.5mA per amplifier  
• Pb-free plus anneal available (RoHS compliant)  
Applications  
• ADSL G.lite CO line driving  
• ADSL full rate CPE line driving  
G.SHDSL, HDSL2 line driver  
• Video distribution amplifier  
• Video twisted-pair line driver  
The EL1509 is ideal for ADSL, SDSL, HDSL2 and VDSL line  
driving applications.  
Ordering Information  
PART  
TAPE&  
PKG.  
PART NUMBER MARKING  
REEL PACKAGE DWG. #  
EL1509CS  
1509CS  
1509CS  
-
7”  
13"  
-
8 Ld SOIC MDP0027  
8 Ld SOIC MDP0027  
8 Ld SOIC MDP0027  
Pinouts  
EL1509CS-T7  
EL1509  
(8 LD SOIC)  
TOP VIEW  
EL1509CS-T13 1509CS  
EL1509CSZ  
(See Note)  
1509CSZ  
8 Ld SOIC MDP0027  
(Pb-Free)  
OUTA  
INA-  
VS  
1
2
3
4
8
7
6
5
EL1509CSZ-T7 1509CSZ  
(See Note)  
7”  
8 Ld SOIC MDP0027  
(Pb-Free)  
-
OUTB  
INB-  
INB+  
+
EL1509CSZ-T13 1509CSZ  
(See Note)  
13"  
8 Ld SOIC MDP0027  
(Pb-Free)  
INA+  
GND  
-
EL1509CL  
1509CL  
1509CL  
1509CL  
-
8 Ld DFN  
8 Ld DFN  
8 Ld DFN  
MDP0047  
MDP0047  
MDP0047  
+
EL1509CL-T7  
EL1509CL-T13  
7"  
13"  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
EL1509  
(8 LD DFN)  
TOP VIEW  
VS  
8
7
6
5
OUTA  
1
2
3
4
INA-  
OUTB  
INB-  
INB+  
-
+
INA+  
GND  
-
AMP A  
+
AMP B  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002-2004, 2007. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
EL1509  
Absolute Maximum Ratings (T = +25°C)  
A
V + Voltage to Ground . . . . . . . . . . . . . . . . . . . . . . -0.3V to +14.6V  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-60°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . .-40°C to +150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
V
+ Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to V +  
IN  
S
Current into any Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8mA  
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 75mA  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V = +12V, R = 1.5kΩ, R = 100Ω connected to mid supply, T = 25°C, unless otherwise specified.  
S F L A  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
HD  
dG  
dθ  
-3dB Bandwidth  
A
= +4  
70  
-85  
MHz  
dBc  
%
V
Total Harmonic Distortion  
Differential Gain  
Differential Phase  
Slewrate  
f = 150kHz, V = 16V , R = 25Ω  
P-P  
O
L
A
= +2, R = 37.5Ω  
0.15  
0.1  
V
L
A
= +2, R = 37.5Ω  
°
V
L
SR  
V
from -3V to +3V  
350  
500  
V/µs  
OUT  
OUT  
DC PERFORMANCE  
V
Offset Voltage  
-20  
-10  
0.7  
20  
10  
mV  
mV  
MΩ  
OS  
ΔV  
V
Mismatch  
OS  
OS  
R
Transimpedance  
V
from -4.5V to +4.5V  
1.4  
2.5  
OL  
INPUT CHARACTERISTICS  
I +  
Non-Inverting Input Bias Current  
Inverting Input Bias Current  
-5  
5
µA  
µA  
µA  
B
I -  
-30  
-30  
30  
30  
B
ΔI -  
I - Mismatch  
B
B
e
Input Noise Voltage  
-Input Noise Current  
2.8  
19  
nV/ Hz  
N
i
pA/ Hz  
N
OUTPUT CHARACTERISTICS  
V
Loaded Output Swing (single ended)  
Output Current  
V
V
= ±6V, R = 100Ω to GND  
±4.8  
±4.4  
±5  
V
V
OUT  
S
S
L
= ±6V, R = 25Ω to GND  
±4.7  
450  
L
I
R
= 0Ω  
mA  
OUT  
L
SUPPLY  
V
Supply Voltage  
Supply Current  
Single Supply  
5
12  
18  
V
S
I
All Outputs at Mid Supply  
14.2  
mA  
S
FN7015.2  
March 26, 2007  
2
EL1509  
Typical Performance Curves  
28  
28  
24  
20  
16  
12  
8
A =10  
A =10  
V
V
V =±6V  
V =±6V  
S
S
R =100Ω  
R =100Ω  
24  
20  
16  
12  
8
L
L
R =1kΩ  
F
R =1.5kΩ  
F
R =1.5kΩ  
F
R =1kΩ  
F
R =2kΩ  
F
R =2kΩ  
F
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. DIFFERENTIAL FREQUENCY RESPONSE vs R  
(EL1509CS)  
FIGURE 2. DIFFERENTIAL FREQUENCY RESPONSE vs R  
(EL1509CL)  
F
F
L
F
F
L
22  
22  
A =5  
A =5  
V
V
V =±6V  
V =±6V  
S
S
R =1kΩ  
F
R =100Ω  
R =100Ω  
18  
14  
10  
6
18  
14  
10  
6
L
L
R =1kΩ  
F
R =1.5kΩ  
F
R =1.5kΩ  
F
R =2kΩ  
F
R =2kΩ  
F
2
2
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. DIFFERENTIAL FREQUENCY RESPONSE vs R  
(EL1509CS)  
FIGURE 4. DIFFERENTIAL FREQUENCY RESPONSE vs R  
(EL1509CL)  
22  
22  
A =5  
A =5  
V
V
C =22pF  
L
V =±6V  
V =±6V  
S
S
C =22pF  
L
18 R =100Ω  
18 R =100Ω  
L
L
R =1.5kΩ  
R =1.5kΩ  
F
F
C =10pF  
L
C =10pF  
L
14  
10  
6
14  
10  
6
C =0pF  
L
C =0pF  
L
2
2
100K  
1M  
10M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. DIFFERENTIAL FREQUENCY RESPONSE vs C  
(EL1509CS)  
FIGURE 6. DIFFERENTIAL FREQUENCY RESPONSE vs C  
(EL1509CL)  
FN7015.2  
March 26, 2007  
3
EL1509  
Typical Performance Curves  
55  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
V =±2.5V  
S
A =5  
V
53  
A =5  
R =1.5kΩ  
V
F
51  
49  
47  
45  
43  
41  
39  
37  
35  
R =1.5kΩ  
R =100Ω  
F
L
R =100Ω  
EL1509CL  
L
f=1MHz  
EL1509CS  
HD3  
HD2  
5
2.5  
3
3.5  
4
4.5  
5
5.5  
6
1
1.5  
2
2.5  
3
3.5  
(V)  
4
4.5  
5.5  
±V (V)  
V
S
OP-P  
FIGURE 7. DIFFERENTIAL BANDWIDTH vs SUPPLY VOLTAGE  
FIGURE 8. DIFFERENTIAL HARMONIC DISTORTION vs  
DIFFERENTIAL OUTPUT VOLTAGE (ALL  
PACKAGES)  
-45  
4
3
V =±6V  
S
A =5  
V
-50  
A =5  
V
R =1.5kΩ  
F
R =1.5kΩ  
R =100Ω  
F
L
-55  
R =100Ω  
L
EL1509CS  
2
f=1MHz  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
1
HD3  
0
EL1509CL  
HD2  
-1  
-2  
1
3
5
7
9
11 13 15 17 19  
(V)  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V
±V (V)  
OP-P  
S
FIGURE 9. DIFFERENTIAL PEAKING vs SUPPLY VOLTAGE  
FIGURE 10. DIFFERENTIAL HARMONIC DISTORTION vs  
DIFFERENTIAL OUTPUT VOLTAGE (ALL  
PACKAGES)  
-45  
-45  
A =5  
A =5V  
V
V
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
R =1.5kΩ  
R =1.5kΩ  
F
F
-50  
-55  
-60  
-65  
-70  
-75  
-80  
R =100Ω  
R =100Ω  
L
L
f=150kHz  
f=1MHz  
V =±2.5V  
S
V =±2.5V  
V =±6V  
S
S
V =±6V  
S
1
3
5
7
9
11 13 15 17 19 21  
1
3
5
7
9
11 13 15 17 19  
(V)  
V
(V)  
V
OP-P  
OP-P  
FIGURE 11. DIFFERENTIAL TOTAL HARMONIC DISTORTION  
vs DIFFERENTIAL OUTPUT VOLTAGE (ALL  
PACKAGES)  
FIGURE 12. DIFFERENTIAL TOTAL HARMONIC DISTORTION  
vs DIFFERENTIAL OUTPUT (ALL PACKAGES)  
FN7015.2  
March 26, 2007  
4
EL1509  
Typical Performance Curves  
-10  
-20  
-30  
-40  
-50  
100  
10  
1
IB-  
B A  
-60  
-70  
A B  
-80  
-90  
E
N
IB+  
-100  
-110  
10K  
100K  
1M  
10M  
100M  
10  
100  
1K  
10K 100K 1M  
FREQUENCY (Hz)  
10M 100M  
FREQUENCY (Hz)  
FIGURE 13. CHANNEL ISOLATION vs FREQUENCY  
FIGURE 14. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
30  
20  
10  
0
100  
V =±12V  
S
A =1  
V
R =1.5kΩ  
10  
1
F
-10  
-20  
-30  
0.1  
PSRR-  
100K  
-40  
-50  
-60  
-70  
0.01  
PSRR+  
0.001  
10K  
1M  
FREQUENCY (Hz)  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 15. POWER SUPPLY REJECTION vs FREQUENCY  
FIGURE 16. OUTPUT IMPEDANCE vs FREQUENCY  
0.06  
0.05  
10M  
1M  
50  
0
GAIN  
-50  
0.04  
PHASE  
GAIN  
100K  
10K  
1K  
-100  
-150  
-200  
-250  
-300  
0.03  
0.02  
0.01  
0
PHASE  
100  
100  
0
1
2
3
4
5
1K  
10K  
100K  
1M  
10M  
100M  
NUMBER OF 150Ω LOADS  
FREQUENCY (Hz)  
FIGURE 17. TRANSIMEDANCE (ROL) vs FREQUENCY  
FIGURE 18. DIFFERENTIAL GAIN & PHASE  
FN7015.2  
March 26, 2007  
5
EL1509  
Typical Performance Curves  
14.5  
14  
10  
8
6
IB-  
4
2
13.5  
13  
0
-2  
-4  
-6  
-8  
-10  
IB+  
12.5  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 19. SUPPLY CURRENT vs TEMPERATURE  
5.2  
FIGURE 20. INPUT BIAS CURRENT vs TEMPERATURE  
520  
510  
500  
490  
480  
470  
460  
450  
440  
R =100Ω  
L
5.15  
5.1  
50.5  
5
4.95  
4.9  
4.85  
4.8  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 21. OUTPUT VOLTAGE vs TEMPERATURE  
FIGURE 22. SLEW RATE vs TEMPERATURE  
16  
14  
12  
10  
8
7
6
5
4
3
2
1
6
0
4
-1  
-2  
-3  
2
0
0
1
2
3
4
5
6
7
-50 -25  
0
25  
50  
75 100 125 150  
±V (V)  
TEMPERATURE (°C)  
S
FIGURE 23. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 24. OFFSET VOLTAGE vs TEMPERATURE  
FN7015.2  
March 26, 2007  
6
EL1509  
Typical Performance Curves  
JEDEC JESD51-3 AND SEMI G42-88 (SINGLE  
LAYER) TEST BOARD  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.5  
2
781mW  
1.5  
1
0.5  
0
-50 -25  
0
25  
50  
75 100 125 150  
0
25  
50  
75 85 100  
125  
150  
TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 25. TRANSIMEDANCE vs TEMPERATURE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
FIGURE 26. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
CONDUCTIVITY (4-LAYER) TEST BOARD (DFN EXPOSED  
DIEPAD SOLDERED TO PCB PER JESD51-5)  
3.5  
3
2.907W  
2.5  
2
1.5  
1
1.136W  
0.5  
0
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 27. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
Power Supply Bypassing and Printed Circuit  
Board Layout  
Applications Information  
Product Description  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Ground  
plane construction is highly recommended. Lead lengths  
should be as short as possible, below ¼”. The power supply  
pins must be well bypassed to reduce the risk of oscillation.  
A 1.0µF tantalum capacitor in parallel with a 0.01µF ceramic  
capacitor is adequate for each supply pin.  
The EL1509 is a dual operational amplifier designed for  
customer premise line driving in DMT ADSL solutions. It is a  
dual current mode feedback amplifier with low distortion  
while drawing moderately low supply current. It is built using  
Elantec's proprietary complimentary bipolar process and is  
offered in industry standard pin-outs. Due to the current  
feedback architecture, the EL1509 closed-loop 3dB  
For good AC performance, parasitic capacitances should be  
kept to a minimum, especially at the inverting input. This  
implies keeping the ground plane away from this pin. Carbon  
resistors are acceptable, while use of wire-wound resistors  
should not be used because of their parasitic inductance.  
Similarly, capacitors should be low inductance for best  
performance.  
bandwidth is dependent on the value of the feedback  
resistor. First the desired bandwidth is selected by choosing  
the feedback resistor, R , and then the gain is set by picking  
F
the gain resistor, R . The curves at the beginning of the  
G
Typical Performance Curves section show the effect of  
varying both R and R . The 3dB bandwidth is somewhat  
F
G
dependent on the power supply voltage.  
FN7015.2  
March 26, 2007  
7
EL1509  
Capacitance at the Inverting Input  
Supply Voltage Range  
Due to the topology of the current feedback amplifier, stray  
capacitance at the inverting input will affect the AC and  
transient performance of the EL1509 when operating in the  
non-inverting configuration.  
The EL1509 has been designed to operate with supply  
voltages from ±2.5V to ±6V. Optimum bandwidth, slew rate,  
and video characteristics are obtained at higher supply  
voltages. However, at ±2.5V supplies, the 3dB bandwidth at  
A = +2 is a respectable 40MHz.  
V
In the inverting gain mode, added capacitance at the  
inverting input has little effect since this point is at a virtual  
ground and stray capacitance is therefore not “seen” by the  
amplifier.  
Single Supply Operation  
If a single supply is desired, values from +5V to +12V can be  
used as long as the input common mode range is not  
exceeded. When using a single supply, be sure to either 1)  
DC bias the inputs at an appropriate common mode voltage  
and AC couple the signal, or 2) ensure the driving signal is  
within the common mode range of the EL1509.  
Feedback Resistor Values  
The EL1509 has been designed and specified with R =  
F
1.5kΩ for A = +5. This value of feedback resistor yields  
V
extremely flat frequency response with little to no peaking  
out to 50MHz. As is the case with all current feedback  
amplifiers, wider bandwidth, at the expense of slight  
peaking, can be obtained by reducing the value of the  
feedback resistor. Inversely, larger values of feedback  
resistor will cause rolloff to occur at a lower frequency. See  
the curves in the Typical Performance Curves section which  
show 3dB bandwidth and peaking vs. frequency for various  
feedback resistors and various supply voltages.  
ADSL CPE Applications  
The EL1509 is designed as a line driver for ADSL CPE  
modems. It is capable of outputting 250mA of output current  
with a typical supply voltage headroom of 1.3V. It can  
achieve -85dBc of distortion at low 7.1mA of supply current  
per amplifier.  
The average line power requirement for the ADSL CPE  
application is 13dBm (20mW) into a 100Ω line. The average  
Bandwidth vs Temperature  
line voltage is 1.41V  
. The ADSL DMT peak to average  
RMS  
Whereas many amplifier's supply current and consequently  
3dB bandwidth drop off at high temperature, the EL1509 was  
designed to have little supply current variations with  
temperature. An immediate benefit from this is that the 3dB  
bandwidth does not drop off drastically with temperature.  
ratio (crest factor) of 5.3 implies peak voltage of 7.5V into the  
line. Using a differential drive configuration and transformer  
coupling with standard back termination, a transformer ratio  
of 1:2 is selected. The circuit configuration is as shown  
below.  
12.5  
12.5  
+
-
TX1  
1.5k  
AFE  
100  
464Ω  
1:2  
+
-
1.5k  
FN7015.2  
March 26, 2007  
8
EL1509  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN7015.2  
March 26, 2007  
9
EL1509  
Dual Flat No-Lead Package Family (DFN)  
MDP0047  
A
DUAL FLAT NO-LEAD PACKAGE FAMILY (JEDEC REG: MO-229)  
D
MILLIMETERS  
N
N-1  
0.075  
2X  
C
SYMBOL  
DFN8  
0.85  
0.02  
0.30  
0.20  
4.00  
3.00  
4.00  
2.20  
0.80  
0.50  
0.10  
DFN10  
0.90  
0.02  
0.25  
0.20  
3.00  
2.25  
3.00  
1.50  
0.50  
0.50  
0
TOLERANCE  
±0.10  
A
A1  
b
PIN #1  
I.D.  
E
+0.03/-0.02  
±0.05  
c
Reference  
Basic  
1
2
D
0.075  
2X  
C
B
D2  
E
Reference  
Basic  
TOP VIEW  
E2  
e
Reference  
Basic  
(D2)  
N-1  
4
L1  
N
L
±0.10  
(N LEADS)  
L
L1  
Maximum  
Rev. 2 2/07  
(E2)  
NOTES:  
1. Dimensioning and tolerancing per ASME Y14.5M-1994.  
2. Exposed lead at side of package is a non-functional feature.  
PIN #1 I.D.  
3
3. Bottom-side pin #1 I.D. may be a diepad chamfer, an extended  
tiebar tab, or a small square as shown.  
2
1
5
e
4. Exposed leads may extend to the edge of the package or be  
pulled back. See dimension “L1”.  
0.10 M  
C A B  
b
BOTTOM VIEW  
5. Inward end of lead may be square or circular in shape with radius  
(b/2) as shown.  
6. N is the total number of leads on the device.  
0.10  
C
C
SEATING  
PLANE  
0.08  
C
SEE DETAIL "X"  
(N LEADS  
& EXPOSED PAD)  
2
C
(c)  
A
A1  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7015.2  
March 26, 2007  
10  

相关型号:

EL1510

Medium Power Differential Line Driver
ELANTEC

EL1510

Medium Power Differential Line Driver
INTERSIL

EL1510C

Medium Power Differential Line Driver
ELANTEC

EL1510CL

Medium Power Differential Line Driver
ELANTEC

EL1510CL

Medium Power Differential Line Driver
INTERSIL

EL1510CL-T13

Medium Power Differential Line Driver
ELANTEC

EL1510CL-T13

Medium Power Differential Line Driver
INTERSIL

EL1510CL-T7

Medium Power Differential Line Driver
ELANTEC

EL1510CL-T7

Medium Power Differential Line Driver
INTERSIL

EL1510CS

Medium Power Differential Line Driver
ELANTEC

EL1510CS

Medium Power Differential Line Driver
INTERSIL

EL1510CS

DUAL LINE DRIVER, PDSO8, SO-8
RENESAS