EL2126CSZ-T13 [INTERSIL]

Ultra-Low Noise, Low Power, Wideband Amplifier; 超低噪声,低功耗,宽带放大器
EL2126CSZ-T13
型号: EL2126CSZ-T13
厂家: Intersil    Intersil
描述:

Ultra-Low Noise, Low Power, Wideband Amplifier
超低噪声,低功耗,宽带放大器

放大器
文件: 总15页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL2126  
®
Data Sheet  
May 9, 2005  
FN7046.2  
Ultra-Low Noise, Low Power, Wideband  
Amplifier  
Features  
• Voltage noise of only 1.3nV/Hz  
• Current noise of only 1.2pA/Hz  
• 200µV offset voltage  
The EL2126 is an ultra-low noise, wideband amplifier that  
runs on half the supply current of competitive parts. It is  
intended for use in systems such as ultrasound imaging  
where a very small signal needs to be amplified by a large  
amount without adding significant noise. Its low power  
dissipation enables it to be packaged in the tiny SOT-23  
package, which further helps systems where many input  
channels create both space and power dissipation problems.  
• 100MHz -3dB BW for A = 10  
V
• Very low supply current - 4.7mA  
• SOT-23 package  
• ±2.5V to ±15V operation  
The EL2126 is stable for gains of 10 and greater and uses  
traditional voltage feedback. This allows the use of reactive  
elements in the feedback loop, a common requirement for  
many filter topologies. It operates from ±2.5V to ±15V  
supplies and is available in the 5-pin SOT-23 and 8-pin SO  
packages.  
Pb-Free available (RoHS compliant)  
Applications  
• Ultrasound input amplifiers  
• Wideband instrumentation  
• Communication equipment  
• AGC & PLL active filters  
• Wideband sensors  
The EL2126 is fabricated in Elantec’s proprietary  
complementary bipolar process, and is specified for  
operation over the full -40°C to +85°C temperature range.  
Pinouts  
EL2126  
(5-PIN SOT-23)  
TOP VIEW  
Ordering Information  
PART NUMBER  
PACKAGE  
TAPE & REEL PKG. DWG. #  
EL2126CW-T7  
5-Pin SOT-23  
7” (3K pcs)  
MDP0038  
MDP0038  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
EL2126CW-T7A 5-Pin SOT-23  
7” (250 pcs)  
EL2126CS  
8-Pin SO  
8-Pin SO  
8-Pin SO  
-
7”  
13”  
-
+
-
EL2126CS-T7  
EL2126CS-T13  
EL2126CSZ  
(See Note)  
8-Pin SO  
(Pb-free)  
EL2126  
(8-PIN SO)  
TOP VIEW  
EL2126CSZ-T7  
(See Note)  
8-Pin SO  
(Pb-free)  
7”  
MDP0027  
MDP0027  
NC  
IN-  
1
2
3
4
8
7
6
5
NC  
EL2126CSZ-T13  
(See Note)  
8-Pin SO  
(Pb-free)  
13”  
VS+  
OUT  
NC  
-
NOTE: Intersil Pb-free products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations. Intersil Pb-free products  
are MSL classified at Pb-free peak reflow temperatures that meet or  
exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
+
IN+  
VS-  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-352-6832 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2004, 2005. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
EL2126  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-60°C to +150°C  
Maximum Die Junction Temperature . . . . . . . . . . . . . . . . . . . +150°C  
Absolute Maximum Ratings (T = 25°C)  
A
V + to V - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33V  
S
S
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 40mA  
Any Input . . . . . . . . . . . . . . . . . . . . . . . . . . V + - 0.3V to V - + 0.3V  
S
S
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, T = 25°C, R = 180, R = 20, R = 500unless otherwise specified.  
S
S
A
F
G
L
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
0.2  
17  
MAX  
UNIT  
DC PERFORMANCE  
V
Input Offset Voltage (SO8)  
2
3
mV  
mV  
OS  
Input Offset Voltage (SOT23-5)  
T
Offset Voltage Temperature  
Coefficient  
µV/°C  
CVOS  
I
I
Input Bias Current  
-10  
-7  
µA  
µA  
B
Input Bias Current Offset  
0.06  
0.013  
0.6  
OS  
T
Input Bias Current Temperature  
Coefficient  
µA/°C  
CIB  
C
Input Capacitance  
Open Loop Gain  
2.2  
87  
pF  
dB  
dB  
IN  
A
V
= -2.5V to +2.5V  
O
80  
80  
VOL  
PSRR  
Power Supply Rejection Ratio  
(Note 1)  
100  
CMRR  
CMIR  
Common Mode Rejection Ratio  
Common Mode Input Range  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
at CMIR  
75  
-4.6  
3.8  
106  
dB  
V
3.8  
-3.9  
-3.2  
V
V
V
V
No load, R = 1kΩ  
3.8  
-4  
V
OUTH  
OUTL  
OUTH2  
OUTL2  
OUT  
F
No load, R = 1kΩ  
V
F
R
= 100Ω  
= 100Ω  
3.2  
80  
3.45  
-3.5  
100  
V
L
L
R
V
I
Output Short Circuit Current  
(Note 2)  
mA  
I
Supply Current  
4.7  
5.5  
mA  
SY  
AC PERFORMANCE - R = 20, C = 3pF  
G
L
BW  
-3dB Bandwidth, R = 500Ω  
100  
17  
MHz  
MHz  
MHz  
dB  
L
BW ±0.1dB  
BW ±1dB  
Peaking  
SR  
±0.1dB Bandwidth, R = 500Ω  
L
±1dB Bandwidth, R = 500Ω  
80  
L
Peaking, R = 500Ω  
0.6  
110  
2.8  
-7  
L
Slew Rate  
V
= 2V , measured at 20% to 80%  
PP  
80  
V/µs  
%
OUT  
OS  
Overshoot, 4Vpk-pk Output Square Positive  
Wave  
Negative  
%
t
Settling Time to 0.1% of ±1V Pulse  
Voltage Noise Spectral Density  
Current Noise Spectral Density  
51  
ns  
S
V
1.3  
1.2  
nV/Hz  
pA/Hz  
N
I
N
2
EL2126  
Electrical Specifications V + = +5V, V - = -5V, T = 25°C, R = 180, R = 20, R = 500unless otherwise specified. (Continued)  
S
S
A
F
G
L
PARAMETER  
HD2  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
-70  
MAX  
UNIT  
dBc  
2nd Harmonic Distortion (Note 3)  
3rd Harmonic Distortion (Note 3)  
HD3  
-70  
dBc  
NOTES:  
1. Measured by moving the supplies from ±4V to ±6V  
2. Pulse test only and using a 10load  
3. Frequency = 1MHz, V  
OUT  
= 2Vpk-pk, into 500and 5pF load  
Electrical Specifications V + = +15V, V - = -15V, T = 25°C, R = 180, R = 20, R = 500unless otherwise specified.  
S
S
A
F
G
L
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC PERFORMANCE  
V
Input Offset Voltage (SO8)  
0.5  
3
3
mV  
mV  
OS  
Input Offset Voltage (SOT23-5)  
T
Offset Voltage Temperature  
Coefficient  
4.5  
µV/°C  
CVOS  
I
I
Input Bias Current  
-10  
-7  
µA  
µA  
B
Input Bias Current Offset  
0.12  
0.016  
0.7  
OS  
T
Input Bias Current Temperature  
Coefficient  
µA/°C  
CIB  
C
Input Capacitance  
Open Loop Gain  
2.2  
90  
80  
pF  
dB  
dB  
IN  
A
80  
65  
VOL  
PSRR  
Power Supply Rejection Ratio  
(Note 1)  
CMRR  
CMIR  
Common Mode Rejection Ratio  
Common Mode Input Range  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
Positive Output Voltage Swing  
Negative Output Voltage Swing  
at CMIR  
70  
85  
dB  
V
-14.6  
13.6  
13.8  
-13.7  
-9.5  
V
V
V
V
No load, R = 1kΩ  
13.7  
-13.8  
11.2  
-10.3  
220  
V
OUTH  
OUTL  
OUTH2  
OUTL2  
OUT  
F
No load, R = 1kΩ  
V
F
R
R
= 100, R = 1kΩ  
10.2  
140  
V
L
L
F
= 100, R = 1kΩ  
V
F
I
Output Short Circuit Current  
(Note 2)  
mA  
I
Supply Current  
5
6
mA  
SY  
AC PERFORMANCE - R = 20, C = 3pF  
G
L
BW  
-3dB Bandwidth, R = 500Ω  
135  
26  
MHz  
MHz  
MHz  
dB  
L
BW ±0.1dB  
BW ±1dB  
Peaking  
SR  
±0.1dB Bandwidth, R = 500Ω  
L
±1dB Bandwidth, R = 500Ω  
60  
L
Peaking, R = 500Ω  
2.1  
150  
L
Slew Rate (±2.5V Square Wave,  
Measured 25%-75%)  
130  
V/µS  
OS  
Overshoot, 4Vpk-pk Output Square Positive  
1.6  
-4.4  
48  
%
%
Wave  
Negative  
T
Settling Time to 0.1% of ±1V Pulse  
Voltage Noise Spectral Density  
ns  
S
V
1.4  
nV/Hz  
N
3
EL2126  
Electrical Specifications V + = +15V, V - = -15V, T = 25°C, R = 180, R = 20, R = 500unless otherwise specified. (Continued)  
S
S
A
F
G
L
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
1.1  
MAX  
UNIT  
pA/Hz  
dBc  
I
Current Noise Spectral Density  
N
HD2  
HD3  
2nd Harmonic Distortion (Note 3)  
3rd Harmonic Distortion (Note 3)  
-72  
-73  
dBc  
NOTES:  
1. Measured by moving the supplies from ±13.5V to ±16.5V  
2. Pulse test only and using a 10load  
3. Frequency = 1MHz, V  
OUT  
= 2Vpk-pk, into 500and 5pF load  
4
EL2126  
Typical Performance Curves  
Non-Inverting Frequency Response for Various R  
Non-Inverting Frequency Response for Various R  
F
F
10  
6
10  
6
V
A
=±5V  
V =±15V  
S
S
R =1k  
F
=10  
A =10  
V
V
R =1kΩ  
F
C =5pF  
R =500Ω  
C =5pF  
L
L
L
R =500Ω  
R =500Ω  
R =500Ω  
L
F
F
2
2
-2  
-6  
-10  
-2  
-6  
-10  
R =180Ω  
R =180Ω  
F
F
R =100Ω  
F
R =100Ω  
F
1M  
10M  
100M  
1M  
10M  
Frequency (Hz)  
100M  
Frequency (Hz)  
Inverting Frequency Response for Various R  
Inverting Frequency Response for Various R  
F
F
8
4
8
4
R =1kΩ  
V
A
=±5V  
V =±15V  
S
F
S
R =500Ω  
R =1kΩ  
F
F
=-10  
A =-10  
V
V
R =500Ω  
C =5pF  
R =500Ω  
C =5pF  
L
F
L
L
R =500Ω  
R =350Ω  
L
F
R =350Ω  
F
0
0
R =200Ω  
F
R =200Ω  
F
-4  
-8  
-12  
-4  
-8  
-12  
R =100Ω  
R =100Ω  
F
F
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Non-Inverting Frequency Response for Various Gain  
Non-Inverting Frequency Response for Various Gain  
10  
6
10  
6
V
R
=±5V  
V =±15V  
S
S
=20Ω  
R =20Ω  
G
G
R =500Ω  
C =5pF  
R =500Ω  
L
L
L
C =5pF  
L
A =10  
V
2
2
A =10  
V
A =20  
A =20  
V
V
-2  
-6  
-10  
-2  
-6  
-10  
A =50  
V
A =50  
V
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
5
EL2126  
Typical Performance Curves (Continued)  
Inverting Frequency Response for Various Gain  
8
Inverting Frequency Response for Various R  
F
8
4
V
=±15V  
V
=±5V  
S
S
C =5pF  
R
C =5pF  
R =35Ω  
L
L
G
=20Ω  
4
0
G
0
A =-10  
V
A =-10  
V
-4  
-4  
-8  
-12  
A =-50  
V
A =-50  
V
A =-20  
V
A =-20  
V
-8  
-12  
1M  
10M  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Non-Inverting Frequency Response for Various  
Output Signal Levels  
Non-Inverting Frequency Response for Various  
Output Signal Levels  
8
4
10  
6
V
=±5V  
V =±15V  
S
S
L
L
F
C =5pF  
R =500Ω  
R =180Ω  
A
C =5pF  
L
V
=30mV  
PP  
R =500Ω  
O
L
R =180Ω  
F
V
=500mV  
PP  
O
=10  
A =10  
V
V
V
=500mV  
V =30mV  
O PP  
0
2
O
PP  
V
=1V  
PP  
O
-4  
-8  
-12  
-2  
-6  
-10  
V
=5V  
V
=10V  
O
PP  
O
PP  
V
=2.5V  
V
=5V  
O
PP  
O
PP  
V
=1V  
V =2.5V  
O PP  
O
PP  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
Inverting Frequency Response for Various Output  
Signal Levels  
Inverting Frequency Response for Various Output  
Signal Levels  
8
4
8
4
V
=±5V  
V =±15V  
S
S
V
=500mV  
=30mV  
V =500mV  
O
C =5pF  
R =500Ω  
R =350Ω  
C =5pF  
O
PP  
PP  
V =30mV  
O
L
L
F
L
R =500Ω  
L
V
R =200Ω  
O
PP  
PP  
F
V
=1V  
PP  
O
V
=1V  
PP  
A
=10  
A
=10  
O
V
V
0
0
V
=3.4V  
V =3.4V  
O PP  
O
PP  
-4  
-8  
-12  
-4  
-8  
-12  
V
=2.5V  
V =2.5V
O PP
O
PP  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
6
EL2126  
Typical Performance Curves (Continued)  
Non-Inverting Frequency Response for Various C  
10  
Non-Inverting Frequency Response for Various C  
L
L
10  
6
V
=±5V  
V =±15V  
S
S
F
R =150Ω  
A
R =500Ω  
R =180Ω  
F
C =28pF  
C =11pF  
L
L
=10  
A =10  
V
6
2
C =28pF  
V
L
R =500Ω  
L
L
C =16pF  
L
C =11pF  
C =16pF  
L
L
2
C =5pF  
C =5pF  
L
L
-2  
-6  
-10  
-2  
C =1.2pF  
L
C =1pF  
L
-6  
-10  
1M  
1M  
10M  
100M  
10M  
Frequency (Hz)  
100M  
Frequency (Hz)  
Inverting Frequency Response for Various C  
Inverting Frequency Response for Various C  
L
L
8
4
8
4
V
=±5V  
V =±15V  
S
S
C =28pF  
L
C =28pF  
L
R =350Ω  
R =500Ω  
A
R =200Ω  
F
F
R =500Ω  
C =16pF  
L
V
L
V
L
C =16pF  
=-10  
A
=-10  
L
0
0
C =11pF  
L
C=11pF
L
-4  
-8  
-4  
-8  
-12  
C =5pF  
L
C =5pF  
L
C =1.2pF  
L
C
=1.2pF  
L
-12  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
Open Loop Gain/Phase  
Gain  
Supply Current vs Supply Voltage  
100  
80  
60  
40  
20  
0
250  
150  
Phase  
50  
0.6/div  
-50  
-150  
-250  
V
=±5V  
S
0
10k  
100k  
1M  
10M  
100M  
1G  
0
1.5/div  
Frequency (Hz)  
Supply Voltage (V)  
7
EL2126  
Typical Performance Curves (Continued)  
Bandwidth vs V  
Peaking vs V  
s
s
160  
140  
120  
100  
80  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
R
=±5V  
V
R
=±5V  
S
S
A =-10  
=20Ω  
=20Ω  
V
G
G
R =500Ω  
C =5pF  
R =500Ω  
C =5pF  
L
L
L
L
A =10  
V
A =10  
V
A =-20  
V
60  
40  
A =-20  
V
A =-10  
V
A =-50  
V
20  
A =50  
V
0
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
±V (V)  
±Supply Voltage (V)  
S
Small Signal Step Response  
Large Signal Step Response  
R =180Ω  
V
V
=±5V  
F
S
R
=20Ω  
=2V  
G
O
PP  
20mV/div  
0.5V/div  
R =180Ω  
F
G
R
=20Ω  
V
V
=±5V  
S
=100mV  
O
10ns/div  
10ns/div  
1MHz Harmonic Distortion vs Output Swing  
1MHz Harmonic Distortion vs Output Swing  
-40  
-50  
-30  
V
V
=±5V  
V
V
=±5V  
S
S
=2V  
=2V  
O
P-P  
-40  
-50  
O
P-P  
R =180Ω  
A
R =500Ω  
R =180Ω  
A =10  
R =500Ω  
F
F
V
L
2nd HD  
=10  
2nd HD  
3rd HD  
V
-60  
L
-60  
-70  
-70  
-80  
-80  
3rd HD  
-90  
-90  
-100  
-100  
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
25  
V
(V  
)
V
(V )  
OUT P-P  
OUT P-P  
8
EL2126  
Typical Performance Curves (Continued)  
Total Harmonic Distortion vs Frequency  
-20  
Noise vs Frequency  
10  
V
V
=±5V  
=2V  
S
O
-30  
-40  
-50  
-60  
-70  
-80  
-90  
P-P  
I
, V =±5V  
S
N
V
, V =±15V  
S
N
V
, V =±5V  
S
N
I
, V =±15V  
S
N
1
10  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Settling Time vs Accuracy  
Group Delay vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
16  
12  
8
V
=±5V  
S
R =500Ω  
L
A =10  
V
4
A =-10  
V
0
-4  
0.1  
1.0  
10.0  
1M  
10M  
Frequency (Hz)  
100M  
400M  
Accuracy (%)  
CMRR vs Frequency  
PSRR vs Frequency  
-10  
-30  
110  
90  
70  
50  
30  
10  
V
=±5V  
S
PSRR-  
-50  
-70  
PSRR+  
-90  
-110  
10  
100  
1k  
10k 100k 1M  
Frequency (Hz)  
10M 100M  
10k  
100k  
1M  
10M  
200M  
Frequency (Hz)  
9
EL2126  
Typical Performance Curves (Continued)  
Closed Loop Output Impedance vs Frequency  
Bandwidth and Peaking vs Temperature  
120  
3.5  
3
100  
10  
V =±5V  
S
V
=±5V  
S
100  
80  
60  
40  
20  
0
2.5  
2
Bandwidth  
1.5  
1
1
Peaking  
0.5  
0
0.1  
0.01  
-0.5  
10k  
100k  
1M  
10M  
100M  
-40  
0
40  
80  
120  
160  
Frequency (Hz)  
Temperature  
Slew Rate vs Swing  
Supply Current vs Temperature  
220  
200  
180  
160  
140  
120  
100  
80  
5.2  
5.1  
5
15V  
-
SR  
V
=±15V  
S
15V  
SR  
+
5V  
-
SR  
V
=±5V  
S
4.9  
4.8  
5V  
+
SR  
60  
-1  
1
3
5
7
9
11  
13  
15  
-50  
0
50  
100  
150  
V
Swing (V  
)
Die Temperature (°C)  
OUT  
PP  
Offset Voltage vs Temperature  
CMRR vs Temperature  
1
0
120  
110  
100  
90  
V
=±5V  
S
V
=±5V  
S
V
=±15V  
S
-1  
-2  
80  
-50  
-50  
0
50  
Die Temperature (°C)  
100  
150  
0
50  
100  
150  
Die Temperature (°C)  
10  
EL2126  
Typical Performance Curves (Continued)  
PSRR vs Temperature  
110  
Positive Output Swing vs Temperature  
4.05  
106  
4
3.95  
3.9  
V
=±5V  
S
102  
98  
94  
90  
86  
82  
V
=±5V  
S
V
=±15V  
0
S
3.85  
3.8  
-50  
50  
Die Temperature (°C)  
100  
150  
150  
150  
-50  
0
50  
Die Temperature (°C)  
100  
150  
150  
150  
Positive Output Swing vs Temperature  
Negative Output Swing vs Temperature  
13.85  
13.8  
-3.9  
-3.95  
-4  
V
=±15V  
13.75  
13.7  
S
V
=±5V  
-4.05  
-4.1  
S
-4.15  
-4.2  
13.65  
13.6  
-50  
-4.25  
0
50  
Die Temperature (°C)  
100  
-50  
0
50  
Die Temperature (°C)  
100  
Negative Output Swing vs Temperature  
Slew Rate vs Temperature  
-13.76  
-13.78  
-13.8  
102  
100  
98  
V
=±5V  
S
96  
V
=±15V  
S
94  
92  
90  
-13.82  
88  
-50  
-50  
0
50  
Die Temperature (°C)  
100  
0
50  
Die Temperature (°C)  
100  
11  
EL2126  
Typical Performance Curves (Continued)  
Slew Rate vs Temperature  
155  
Positive Loaded Output Swing vs Temperature  
3.52  
150  
3.5  
3.48  
3.46  
3.44  
V
=±5V  
S
V
=±15V  
S
145  
140  
135  
V
=2V  
PP  
O
-50  
0
50  
Die Temperature (°C)  
100  
150  
150  
150  
-50  
0
50  
Die Temperature (°C)  
100  
150  
Positive Loaded Output Swing vs Temperature  
Negative Loaded Output Swing vs Temperature  
11.8  
11.6  
11.4  
11.2  
11  
-3.35  
-3.4  
V
=±15V  
S
-3.45  
-3.5  
V
=±5V  
S
3.55  
10.8  
10.6  
-50  
-3.6  
-50  
0
50  
Die Temperature (°C)  
100  
0
50  
Die Temperature (°C)  
100  
150  
Package Power Dissipation vs Ambient Temperature  
JEDEC JESD51-3 Low Effective Thermal Conductivity  
Test Board  
Negative Loaded Output Swing vs Temperature  
-9.4  
-9.6  
1.2  
1
781mW  
488mW  
-9.8  
V
=±15V  
0.8  
0.6  
0.4  
0.2  
0
S
-10  
-10.2  
-10.4  
-10.6  
-50  
0
50  
100  
0
25  
50  
75 85 100  
125  
150  
Die Temperature (°C)  
Ambient Temperature (°C)  
Package Power Dissipation vs Ambient Temperature  
JEDEC JESD51-7 High Effective Thermal Conductivity  
Test Board  
1.8  
1.6  
1.4  
1.2  
1
1.136W  
543mW  
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
12  
EL2126  
Pin Descriptions  
EL2126CW  
EL2126CS  
(5-PIN SOT-23)  
(8-PIN SO)  
PIN NAME  
PIN FUNCTION  
EQUIVALENT CIRCUIT  
1
6
VOUT  
Output  
V
+
S
V
OUT  
Circuit 1  
2
3
4
3
VS-  
Supply  
Input  
VINA+  
V
+
S
V
+
V -  
IN  
IN  
V
-
S
Circuit 2  
4
5
2
7
VINA-  
VS+  
Input  
Reference Circuit 2  
Supply  
13  
EL2126  
Noise Calculations  
Applications Information  
The primary application for the EL2126 is to amplify very  
small signals. To maintain the proper signal-to-noise ratio, it  
is essential to minimize noise contribution from the amplifier.  
Figure 2 below shows all the noise sources for all the  
components around the amplifier.  
Product Description  
The EL2126 is an ultra-low noise, wideband monolithic  
operational amplifier built on Elantec's proprietary high  
speed complementary bipolar process. It features 1.3nV/Hz  
input voltage noise, 200µV typical offset voltage, and 73dB  
THD. It is intended for use in systems such as ultrasound  
imaging where very small signals are needed to be  
R
3
V
V
V
N
IN  
R3  
+
-
I
+
V
ON  
N
amplified. The EL2126 also has excellent DC specifications:  
200µV V , 22µA IB, 0.4µA I , and 106dB CMRR. These  
specifications allow the EL2126 to be used in DC-sensitive  
applications such as difference amplifiers.  
OS OS  
V
R1  
R
1
I
-
V
R2  
N
Gain-Bandwidth Product  
R
2
The EL2126 has a gain-bandwidth product of 650MHz at  
±5V. For gains less than 20, higher-order poles in the  
amplifier's transfer function contribute to even higher closed-  
loop bandwidths. For example, the EL2126 has a -3dB  
bandwidth of 100MHz at a gain of 10 and decreases to  
33MHz at gain of 20. It is important to note that the extra  
bandwidth at lower gain does not come at the expenses of  
stability. Even though the EL2126 is designed for gain 10.  
With external compensation, the device can also operate at  
lower gain settings. The RC network shown in Figure 1  
reduces the feedback gain at high frequency and thus  
maintains the amplifier stability. R values must be less than  
RF divided by 9 and 1 divided by 2πRC must be less than  
200MHz.  
FIGURE 2.  
V
is the amplifier input voltage noise  
N
I + is the amplifier positive input current noise  
N
I - is the amplifier negative input current noise  
N
V
is the thermal noise associated with each resistor:  
RX  
V
=
4kTRx  
RX  
where:  
k is Boltzmann's constant = 1.380658 x 10  
-23  
R
F
R
T is temperature in degrees Kelvin (273+ °C)  
-
V
OUT  
C
+
The total noise due to the amplifier seen at the output of the  
amplifier can be calculated by using the following equation  
(Figure 3).  
V
IN  
FIGURE 1.  
As the equation shows, to keep noise at a minimum, small  
resistor values should be used. At higher amplifier gain  
configuration where R is reduced, the noise due to IN-, R ,  
Choice of Feedback Resistor, RF  
2
2
and R decreases and the noise caused by IN+, VN, and R  
1
3
The feedback resistor forms a pole with the input  
starts to dominate. Because noise is summed in a root-  
mean-squares method, noise sources smaller than 25% of  
the largest noise source can be ignored. This can greatly  
simplify the formula and make noise calculation much easier  
to calculate.  
capacitance. As this pole becomes larger, phase margin is  
reduced. This increases ringing in the time domain and  
peaking in the frequency domain. Therefore, RF has some  
maximum value which should not be exceeded for optimum  
performance. If a large value of RF must be used, a small  
capacitor in the few pF range in parallel with RF can help to  
reduce this ringing and peaking at the expense of reducing  
the bandwidth. Frequency response curves for various RF  
values are shown in the typical performance curves section  
of this data sheet.  
Output Drive Capability  
The EL2126 is designed to drive low impedance load. It can  
easily drive 6V  
signal into a 100load. This high output  
drive capability makes the EL2126 an ideal choice for RF, IF,  
P-P  
2
2
2
2
R
R
R
R
   
2
2
2
2
2
1
1
1
1
------  
V
=
BW × VN × 1 + ------ + IN- × R + IN+ × R × 1 + ------ + 4 × K × T × R + 4 × K × T × R  
×
+ 4 × K × T × R × 1 + ------  
3
   
   
ON  
1
3
1
2
R
2
R
R
R
2
2
2
FIGURE 3.  
14  
EL2126  
and video applications. Furthermore, the EL2126 is current-  
limited at the output, allowing it to withstand momentary  
short to ground. However, the power dissipation with output-  
shorted cannot exceed the power dissipation capability of  
the package.  
where pin 4 (V -) is connected to the ground plane, a single  
4.7µF tantalum capacitor in parallel with a 0.1µF ceramic  
S
capacitor across pins 7 (V +) and pin 4 (V -) will suffice.  
S
S
For good AC performance, parasitic capacitance should be  
kept to a minimum. Ground plane construction again should  
be used. Small chip resistors are recommended to minimize  
series inductance. Use of sockets should be avoided since  
they add parasitic inductance and capacitance which will  
result in additional peaking and overshoot.  
Driving Cables and Capacitive Loads  
Although the EL2126 is designed to drive low impedance  
load, capacitive loads will decreases the amplifier's phase  
margin. As shown in the performance curves, capacitive load  
can result in peaking, overshoot and possible oscillation. For  
optimum AC performance, capacitive loads should be  
reduced as much as possible or isolated with a series  
resistor between 5to 20. When driving coaxial cables,  
double termination is always recommended for reflection-  
free performance. When properly terminated, the  
capacitance of the coaxial cable will not add to the capacitive  
load seen by the amplifier.  
Supply Voltage Range and Single Supply  
Operation  
The EL2126 has been designed to operate with supply  
voltage range of ±2.5V to ±15V. With a single supply, the  
EL2126 will operate from +5V to +30V. Pins 4 and 7 are the  
power supply pins. The positive power supply is connected  
to pin 7. When used in single supply mode, pin 4 is  
connected to ground. When used in dual supply mode, the  
negative power supply is connected to pin 4.  
Power Supply Bypassing And Printed Circuit  
Board Layout  
As the power supply voltage decreases from +30V to +5V, it  
becomes necessary to pay special attention to the input  
voltage range. The EL2126 has an input voltage range of  
0.4V from the negative supply to 1.2V from the positive  
supply. So, for example, on a single +5V supply, the EL2126  
has an input voltage range which spans from 0.4V to 3.8V.  
The output range of the EL2126 is also quite large, on a +5V  
supply, it swings from 0.4V to 3.8V.  
As with any high frequency devices, good printed circuit  
board layout is essential for optimum performance. Ground  
plane construction is highly recommended. Lead lengths  
should be kept as short as possible. The power supply pins  
must be closely bypassed to reduce the risk of oscillation.  
The combination of a 4.7µF tantalum capacitor in parallel  
with 0.1µF ceramic capacitor has been proven to work well  
when placed at each supply pin. For single supply operation,  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
15  

相关型号:

EL2126CSZ-T7

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CSZ-T7

OP-AMP, 2000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

EL2126CW

Ultra-low Noise, Low Power, Wideband Amplifier
ELANTEC

EL2126CW-T13

Amplifier. Other
ETC

EL2126CW-T7

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CW-T7A

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CW-T7A

OP-AMP, 3000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO5, PLASTIC, SOT-23, 5 PIN
RENESAS

EL2126CWZ-T7

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CWZ-T7

OP-AMP, 3000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO5, GREEN, PLASTIC, SOT-23, 5 PIN
RENESAS

EL2126CWZ-T7A

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL

EL2126CWZ-T7A

OP-AMP, 3000uV OFFSET-MAX, 80MHz BAND WIDTH, PDSO5, GREEN, PLASTIC, SOT-23, 5 PIN
RENESAS

EL2126_07

Ultra-Low Noise, Low Power, Wideband Amplifier
INTERSIL