EL2211CN [INTERSIL]

Low Cost, Dual, Triple and Quad Video Op Amps; 低成本,双,三和四通道视频运算放大器
EL2211CN
型号: EL2211CN
厂家: Intersil    Intersil
描述:

Low Cost, Dual, Triple and Quad Video Op Amps
低成本,双,三和四通道视频运算放大器

运算放大器 光电二极管 局域网
文件: 总11页 (文件大小:91K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL2210/11, EL2310/11, EL2410/11  
eet  
August 6, 2001  
FN7057  
Low Cost, Dual, Triple and Quad Video Op  
Amps  
Features  
• Stable at gain of 2 and 100MHz gain_bandwidth product  
(EL2211, EL2311, & EL2411)  
This family of dual, triple, and quad  
operational amplifiers built using  
Elantec's Complementary Bipolar  
• Stable at gain of 1 and 50MHz gain_bandwidth product  
(EL2210, EL2310, & EL2410)  
process offers unprecedented high frequency performance  
at a very low cost. They are suitable for any application such  
as consumer video, where traditional DC performance  
specifications are of secondary importance to the high  
frequency specifications. On ±5V supplies at a gain of +1 the  
EL2210, EL2310, and EL2410 will drive a 150load to +2V,  
-1V with a bandwidth of 50MHz and a channel-to-channel  
isolation of 60dB or more. At a gain of +2, the EL2211,  
EL2311, and EL2411 will drive a 150load to +2V, -1V with  
a bandwidth of 100MHz with the same channel-to-channel  
isolation. All four achieve 0.1dB bandwidth at 5MHz.  
• 130V/µs slew rate  
• Drives 150load to video levels  
• Inputs and outputs operate at negative supply rail  
• ±5V or +10V supplies  
• -60dB isolation at 4.2MHz  
Applications  
• Consumer video amplifiers  
• Active filters/integrators  
• Cost-sensitive application  
• Single supply amplifiers  
The power supply operating range is fixed at ±5V or +10/0V.  
In single supply operation the inputs and outputs will operate  
to ground. Each amplifier draws only 7mA of supply current.  
Ordering Information  
PART NUMBER  
PACKAGE  
8-Pin PDIP  
8-Pin SO  
TAPE & REEL PKG. NO.  
EL2210CN  
-
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0031  
MDP0027  
MDP0031  
MDP0027  
MDP0031  
MDP0027  
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0031  
MDP0027  
EL2210CS  
-
EL2210CS-T7  
EL2210CS-T13  
EL2211CN  
8-Pin SO  
7”  
8-Pin SO  
13”  
8-Pin PDIP  
8-Pin SO  
-
EL2211CS  
-
EL2310CN  
8-Pin PDIP  
8-Pin SO  
-
EL2310CS  
-
EL2311CN  
8-Pin PDIP  
8-Pin SO  
-
-
EL2311CS  
EL2410CN  
14-Pin PDIP  
14-Pin SO  
14-Pin SO  
14-Pin SO  
14-Pin PDIP  
14-Pin SO  
-
EL2410CS  
-
EL2410CS-T7  
EL2410CS-T13  
EL2411CN  
7”  
13”  
-
EL2411CS  
-
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2003. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL2210/11, EL2310/11, EL2410/11  
Pinouts  
EL2210, EL2211  
(8-PIN SO, PDIP)  
TOP VIEW  
EL2210, EL2211  
(14-PIN SO, PDIP)  
TOP VIEW  
EL2210, EL2211  
(14-PIN SO, PDIP)  
TOP VIEW  
NC  
NC  
1
2
3
4
5
6
7
14 OUT2  
13 IN2-  
12 IN2+  
11 VS-  
OUT1  
IN1-  
1
2
14 OUT4  
13 IN4-  
12 IN4+  
11 V-  
OUT  
1
2
8
7
6
5
V+  
IN1-  
IN1+  
V-  
OUT2  
IN2-  
IN2+  
-
+
+
-
+
-
-
+
NC  
IN1+  
V+  
3
4
5
6
7
3
4
+
-
VS+  
IN1+  
IN1-  
OUT1  
10 IN3+  
IN2+  
IN2-  
10 IN3+  
-
+
+ -  
-
+
+
-
9
8
IN3-  
9
8
IN3-  
OUT3  
OUT2  
OUT3  
2
EL2210/11, EL2310/11, EL2410/11  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Temperature Range . . . . . . . . . . . . . . . . .-40°C to +85°C  
Die Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Absolute Maximum Ratings (T = 25°C)  
A
Total Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V  
S
Peak Output Current . . . . . . . . . . . . . . . . . . . . 75mA (per amplifier)  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
EL2210, EL2310, EL2410 - DC Electrical Specifications  
V = ±5V, R = 1k, T = 25°C unless otherwise noted.  
S L A  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
10  
MAX  
20  
UNIT  
mV  
V
OS  
EL2310 only  
EL2311 only  
10  
25  
mV  
5
25  
mV  
TCV  
Average Offset Voltage Drift (Note 1)  
Input Bias Current  
-25  
-7  
µV/°C  
µA  
OS  
I
I
-15  
-3  
B
Input Offset Current  
0.5  
1.5  
µA  
OS  
TCI  
Average Offset Current Drift (Note 1)  
Open-Loop Gain  
-7  
nA/°C  
V/V  
OS  
A
V
V
V
V
V
= ±2V, R = 1kΩ  
160  
160  
50  
250  
250  
60  
VOL  
OUT  
L
= +2V/0V, R = 150Ω  
OUT  
L
PSRR  
CMRR  
CMIR  
Power Supply Rejection  
Common Mode Rejection  
Common Mode Input Range  
Output Voltage Swing  
= ±4.5V to ±5.5V  
dB  
dB  
V
S
= ±2.4V, V  
OUT  
= 0V  
60  
80  
CM  
= ±5V  
-5/+3  
-3, 3  
-0.6, 2.9  
S
V
R
R
R
= R = 1kR to GND  
-2.5  
-0.45  
-4.95  
75  
2.7  
2.5  
3
V
OUT  
L
L
L
F
L
= R = 1k+150to GND  
F
= R = 1kR to V  
EE  
F
L
I
I
Output Short Circuit Current  
Supply Current  
Output to GND (Note 1)  
No Load (per channel)  
Differential  
125  
6.8  
mA  
mA  
kΩ  
MΩ  
pF  
SC  
5.5  
10  
S
R
Input Resistance  
150  
1.5  
IN  
Common Mode  
C
R
Input Capacitance  
A
= +1 @ 10MHz  
V
1
IN  
Output Resistance  
0.150  
OUT  
PSOR  
Power Supply Operating Range  
Dual Supply  
±4.5  
9
±6.5  
13  
V
Single Supply  
NOTE:  
1. A heat sink is required to keep junction temperature below absolute maximum when an output is shorted.  
3
EL2210/11, EL2310/11, EL2410/11  
EL2211, EL2311, EL2411 - DC Electrical Characteristics V = ±5V, R = 1k, A = +2, T = 25°C unless otherwise noted.  
S
L
V
A
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
5
MAX  
UNIT  
mV  
V
12  
OS  
TCV  
Average Offset Voltage Drift (Note 1)  
Input Bias Current  
-25  
µV/°C  
µA  
OS  
I
I
-15  
-7  
-3  
B
Input Offset Current  
0.5  
1.5  
µA  
OS  
TCI  
Average Offset Current Drift (Note 1)  
Open-Loop Gain  
-7  
nA/°C  
V/V  
OS  
A
V
V
V
V
V
= ±2V, R = 1kΩ  
250  
250  
55  
380  
380  
68  
VOL  
OUT  
OUT  
L
= +2V/0V, R = 150Ω  
L
PSRR  
CMRR  
CMIR  
Power Supply Rejection  
Common Mode Rejection  
Common Mode Input Range  
Output Voltage Swing  
= ±4.5V to ±5.5V  
dB  
dB  
V
S
= ±2.5V, V  
= 0V  
OUT  
70  
90  
CM  
= ±5V  
-5/+3  
-3.5, 3.3  
-0.6, 2.9  
S
V
R
R
R
= R = 1kR to GND  
2.5  
-0.45  
-4.95  
75  
2.7  
2.5  
3
V
OUT  
L
L
L
F
L
= R = 1k+150to GND  
F
= R = 1kR to V  
EE  
F
L
I
I
Output Short Circuit Current  
Supply Current  
Output to GND (Note 1)  
No Load  
125  
6.8  
mA  
mA  
kΩ  
MΩ  
pF  
SC  
5.5  
10  
S
R
Input Resistance  
Differential  
150  
1.5  
IN  
Common Mode  
C
R
Input Capacitance  
A
= +1 @ 10MHz  
V
1
IN  
Output Resistance  
0.150  
OUT  
PSOR  
Power Supply Operating Range  
Dual Supply  
±4.5  
9
±6.5  
13  
V
Single Supply  
NOTE:  
1. A heat-sink is required to keep junction temperature below absolute maximum when an output is shorted  
EL2210, EL2310, EL2410 - Closed-Loop AC Characteristics  
V = ±5V, AC Test Figure 1,T = 25°C unless otherwise noted.  
S A  
PARAMETER  
BW  
DESCRIPTION  
-3dB Bandwidth (V = 0.4V  
CONDITIONS  
= +1  
MIN  
TYP  
110  
12  
MAX  
UNIT  
MHz  
MHz  
MHz  
°C  
)
A
A
OUT  
±0.1 dB Bandwidth (V  
PP  
V
V
BW  
= 0.4V  
)
PP  
= +1  
OUT  
GBWP  
PM  
Gain Bandwidth Product  
Phase Margin  
55  
60  
SR  
Slew Rate  
85  
8
130  
11  
V/µs  
MHz  
ns  
FBWP  
Full Power Bandwidth (Note 1)  
Rise Time, Fall Time  
Overshoot  
t , t  
R
0.1V Step  
0.1V Step  
2
F
OS  
15  
%
t
t
Propagation Delay  
3.5  
80  
ns  
PD  
S
Settling to 0.1% (A = 1)  
V
V
= ±5V, 2V Step  
ns  
S
d
d
e
Differential Gain (Note 2)  
Differential Phase (Note 2)  
Input Noise Voltage  
NTSC/PAL  
NTSC/PAL  
10kHz  
0.1  
0.2  
15  
%
G
P
N
°C  
nV/Hz  
pA/Hz  
i
Input Noise Current  
10kHz  
1.5  
N
4
EL2210/11, EL2310/11, EL2410/11  
EL2210, EL2310, EL2410 - Closed-Loop AC Characteristics  
V = ±5V, AC Test Figure 1,T = 25°C unless otherwise noted.  
S A  
PARAMETER  
CS  
NOTES:  
1. For V = ±5V, V  
DESCRIPTION  
Channel Separation  
CONDITIONS  
P = 5MHz  
MIN  
TYP  
55  
MAX  
UNIT  
dB  
= 4 V . Full power bandwidth is based on slew rate measurement using: FPBW = SR/(2pi * V )  
PP peak  
S
OUT  
2. Video performance measured at V = ±5V, A = +2 with 2 times normal video level across R = 150Ω  
S
V
L
EL2211, EL2311, EL2411 - Closed-Loop AC Characteristics  
V = ±5V, AC Test Figure 1, T = 25°C unless otherwise noted.  
S A  
PARAMETER  
BW  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
100  
8
MAX  
UNIT  
MHz  
MHz  
MHz  
°C  
-3dB Bandwidth (V  
= 0.4V  
)
A
A
= +2  
= +2  
OUT  
PP  
V
V
BW  
±0.1dB Bandwidth (V  
= 0.4V  
)
PP  
OUT  
GBWP  
PM  
Gain Bandwidth Product  
Phase Margin  
130  
60  
SR  
Slew Rate  
100  
8
140  
11  
V/µs  
MHz  
ns  
FBWP  
Full Power Bandwidth (Note 1)  
Rise Time, Fall Time  
Overshoot  
t , t  
R
0.1V Step  
0.1V Step  
2.5  
6
F
OS  
%
t
t
Propagation Delay  
3.5  
80  
ns  
PD  
S
Settling to 0.1% (A = 1)  
V
V
= ±5V, 2V Step  
ns  
S
d
d
e
Differential Gain (Note 2)  
Differential Phase (Note 2)  
Input Noise Voltage  
NTSC/PAL  
NTSC/PAL  
10kHz  
0.04  
0.15  
15  
%
G
P
N
°C  
nV/Hz  
pA/Hz  
dB  
i
Input Noise Current  
10kHz  
1.5  
55  
N
CS  
NOTES:  
1. For V = ±5V, V  
Channel Separation  
P = 5MHz  
= 4 V . Full power bandwidth is based on slew rate measurement using: FPBW = SR/(2pi * V )  
PP peak  
S
OUT  
2. Video performance measured at V = ±5V, A = +2 with 2 times normal video level across R = 150.  
S
V
L
Simplified Block Diagram  
5
EL2210/11, EL2310/11, EL2410/11  
Typical Performance Curves  
Package Power Dissipation vs Ambient Temp.  
JEDEC JESD51-3 Low Effective Thermal Conductivity  
Test Board  
Package Power Dissipation vs Ambient Temp.  
JEDEC JESD51-3 Low Effective Thermal Conductivity  
Test Board  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
1.042W  
1.54W  
PDIP14  
SO14  
θJA=120°C/W  
1.25W  
θJA=81°C/W  
781W  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
PDIP8  
SO8  
θJA=160°C/W  
θJA=100°C/W  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
Application Information  
resistor. If R were 150then it and the 1250internal  
Product Description  
L
resistor limit the maximum negative swing to  
150  
The EL2210, EL2310, and EL2410 are dual, triple, and quad  
operational amplifiers stable at a gain of 1. The EL2211,  
EL2311, and EL2411 are dual, triple, and quad operational  
amplifiers stable at a gain of 2. All six are built on Elantec's  
proprietary complimentary process and share the same  
voltage mode feedback topology. This topology allows them  
to be used in a variety of applications where current mode  
feedback amplifiers are not appropriate because of  
restrictions placed on the feedback elements. These  
products are especially designed for applications where high  
bandwidth and good video performance characteristics are  
desired but the higher cost of more flexible and sophisticated  
products are prohibitive.  
V
= -----------------------------  
EE  
1250 + 150  
Or--0.53V  
The negative swing can be increased by adding an external  
resistor of appropriate value from the output to the negative  
supply. The simplified block diagram shows an 820Ω  
external pull-down resistor. This resistor is in parallel with the  
internal 1250resistor. This will increase the negative swing  
to  
1250 × 820  
1250 + 820  
-----------------------------  
+ 150  
V
= 150 ÷  
EE  
Or -1.16V  
Power Dissipation and Loading  
Power Supplies  
These amplifiers are designed to work at a supply voltage  
difference of 10V to 12V. These amplifiers will work on any  
combination of ± supplies. All electrical characteristics are  
measured with ±5V supplies. Below 9V total supply voltage  
the amplifiers’ performance will degrade dramatically. The  
quiescent current is a direct function of total supply voltage.  
With a total supply voltage of 12V the quiescent supply  
current will increase from a typical 6.8mA per amplifier to  
10mA per amplifier.  
Without any load and a 10V supply difference the power  
dissipation is 70mW per amplifier. At 12V supply difference  
this increases to 105mW per amplifier. At 12V this translates  
to a junction temperature rise above ambient of 33°C for the  
dual and 40°C for the quad amplifier. When the amplifiers  
provide load current the power dissipation can rapidly rise.  
In ±5V operation each output can drive a grounded 150Ω  
load to more than 2V. This operating condition will not  
exceed the maximum junction temperature limit as long as  
the ambient temperature is below 85°C, the device is  
soldered in place, and the extra pull-down resistor is 820or  
more.  
Output Swing vs Load  
Please refer to the simplified block diagram. These amplifiers  
provide an NPN pull-up transistor output and a passive  
1250pull-down resistor to the most negative supply. In an  
application where the load is connected to V - the output  
S
If the load is connected to the most negative voltage (ground  
in single supply operation) you can easily exceed the  
absolute maximum die temperature. For example the  
maximum die temperature should be 150°C. At a maximum  
voltage can swing to within 200mV of V -. In split supply  
S
applications where the DC load is connected to ground the  
negative swing is limited by the voltage divider formed by the  
load, the internal 1250resistor and any external pull-down  
6
EL2210/11, EL2310/11, EL2410/11  
expected ambient temperature of 85°C, the total allowable  
power dissipation for the SO8 package would be:  
Due to the negative swing limitations described above,  
inverted video at a gain of 2 is just not practical. If swings  
below ground are required then changing the extra 820Ω  
resistor to 500will allow reasonable dG and dP to  
approximately -0.75mV. The EL2211, EL2311, and EL2411  
will achieve approximately 0.1%/0.4° between 0V and  
-0.75V. Beyond -0.75V dG and dP get worse by orders of  
magnitude.  
150 85  
160°C/W  
-------------------------  
= 361mW  
P
=
D
At 12V total supply voltage each amplifier draws a maximum  
of 10mA and dissipates 12V * 10mA = 120mW or 240mW for  
the dual amplifier. Which leaves 121mW of increased power  
due to the load. If the load were 150connected to the most  
Differential gain and differential phase are fairly constant for  
all loads above 150. Differential phase performance will  
improve by a factor of 3 if the supply voltage is increased to  
±6V.  
negative voltage and the maximum voltage out were V -  
S
+1V the load current would be 6.67mA. Then an extra  
146mW ((12V - 1V) * 6.67mA * 2) would be dissipated in the  
EL2210 or EL2211. The total dual amplifier power  
dissipation would be 146mW + 240mW = 386mW, more than  
the maximum 361mW allowed. If the total supply difference  
were reduced to 10V, the same calculations would yield  
200mW quiescent power dissipation and 120mW due to  
loading. This results in a die temperature of 143°C (85°C +  
58°C).  
Output Drive Capability  
None of these devices have short circuit protection. Each  
output is capable of more than 100mA into a shorted output.  
Care must be used in the design to limit the output current  
with a series resistor.  
Printed-Circuit Layout  
In the above example, if the supplies were split ±6V and the  
150loads were connected to ground, the load induced  
power dissipation would drop to 66.7mW (6.67mA * (6 - 1) *  
2) and the die temperature would be below the rated  
maximum.  
The EL2210/EL2211/EL2310/EL2311/ EL2410/EL2411 are  
well behaved, and easy to apply in most applications.  
However, a few simple techniques will help assure rapid,  
high quality results. As with any high-frequency device, good  
PCB layout is necessary for optimum performance. Ground-  
plane construction is highly recommended, as is good power  
supply bypassing. A 0.1µF ceramic capacitor is  
recommended for bypassing both supplies. Lead lengths  
should be as short as possible, and bypass capacitors  
should be as close to the device pins as possible. For good  
AC performance, parasitic capacitances should be kept to a  
minimum at both inputs and at the output. Resistor values  
should be kept under 5kbecause of the RC time constants  
associated with the parasitic capacitance. Metal-film and  
carbon resistors are both acceptable, use of wire-wound  
resistors is not recommended because of their parasitic  
inductance. Similarly, capacitors should be low-inductance  
for best performance.  
Video Performance  
Following industry standard practices (see EL2044  
applications section) these six devices exhibit good  
differential gain (dG) and good differential phase (dP) with  
±5V supplies and an external 820resistor to the negative  
supply, in a gain of 2 configuration. Driving 75back  
terminated cables to standard video levels (1.428V at the  
amplifier) the EL2210, EL2310, and EL2410 have dG of  
0.1% and dP of 0.2°. The EL2211, EL2311, and EL2411  
have dG of 0.04% and dP of 0.15°.  
7
EL2210/11, EL2310/11, EL2410/11  
EL2210/EL2310/EL2410 Macromodel  
* Revision A, June 1994  
* Application Hints:  
*
* A pull down resistor between the output and V- is recommended  
* to allow output voltages to swing close to V-. See datasheet  
* for recommended values.  
*
* Connections:  
*
+In  
|
-In  
*
*
|
|
|
|
V+  
|
V-  
|
*
|
|
|
V
out  
*
|
|
|
|
|
.subckt EL2210/EL  
q1 20 3 24 qp  
q2 21 2 25 qp  
q3 10 10 26 qp  
q4 12 10 11 qp  
q5 14 10 13 qp  
q6 19 19 20 qn  
q7 14 19 21 qn  
q8 8 14 15 qn  
q9 8 16 17 qn 10  
r1 24 12 350  
r2 12 25 350  
r3 8 26 250  
r4 8 11 150  
r5 8 13 240  
r6 20 4 150  
r7 21 4 150  
r8 15 17 700  
r9 1 4 1250  
r10 15 16 40  
r11 17 1 15  
r12 10 19 10K  
r13 14 22 20  
c1 22 4 0.45pF  
c2 22 19 1pF  
d1 1 14 dcap  
3
2
8
4
1
.model qn npn(bf=150 tf=0.05nS)  
.model qp pnp(bf=90 tf=0.05nS)  
.model dcap d(rs=200 cjo=le- 12 vj=0.8 tt=100e-9)  
.ends  
8
EL2210/11, EL2310/11, EL2410/11  
EL2211/EL2311/EL2411 Macromodel (Continued)  
* Revision A, June 1994  
* Application Hints:  
*
* A pull down resistor between the output and V- is recommended  
* to allow output voltages to swing close to V-. See datasheet  
* for recommended values.  
*
* Connections:  
*
*
*
*
+In  
|
|
|
|
-In  
|
|
|
|
V+  
|
|
V-  
|
V
out  
*
|
|
|
|
.subckt EL2211/EL  
q1 20 3 24 qp  
q2 21 2 25 qp  
q3 10 10 26 qp  
q4 12 10 11 qp  
q5 14 10 13 qp  
q6 19 19 20 qn  
q7 14 19 21 qn  
q8 8 14 15 qn  
q9 8 16 17 qn 10  
r1 24 12 175  
r2 12 25 175  
r3 8 26 250  
r4 8 11 150  
r5 8 13 240  
r6 20 4 150  
r7 21 4 150  
r8 15 17 700  
r9 1 4 1250  
r10 15 16 40  
r11 17 1 15  
r12 10 19 10K  
r13 14 22 20  
c1 22 4 0.42pF  
c2 22 19 1pF  
d1 1 14 dcap  
3
2
8
4
1
.model qn npn(bf=150 tf=0.05nS)  
.model qp pnp(bf=90 tf=0.05nS)  
.model dcap d(rs=200 cjo=le- 12 vj=0.8 tt=100e-9)  
.ends  
9
EL2210/11, EL2310/11, EL2410/11  
EL2211/EL2311/EL2411 Macromodel (Continued)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
10  
EL2210/11, EL2310/11, EL2410/11  
11  

相关型号:

EL2211CS

Low Cost, Dual, Triple and Quad Video Op Amps
ELANTEC

EL2211CS

Low Cost, Dual, Triple and Quad Video Op Amps
INTERSIL

EL22120000J0G

Strip Terminal Block,
AMPHENOL

EL22120100J0G

Strip Terminal Block,
AMPHENOL

EL22150100J0G

Strip Terminal Block,
AMPHENOL

EL2220CN

Operational Amplifier, 2 Func, 20000uV Offset-Max, BIPolar, PDIP8,
ELANTEC

EL2220CN

DUAL OP-AMP, 20000uV OFFSET-MAX, 50MHz BAND WIDTH, PDIP8
RENESAS

EL2220CS

Operational Amplifier, 2 Func, 20000uV Offset-Max, BIPolar, PDSO8,
ELANTEC

EL2220CS

IC,OP-AMP,DUAL,BIPOLAR,SOP,8PIN,PLASTIC
RENESAS

EL2223

Dual, 500 MHz High Speed, Operational Amplifier
ELANTEC

EL2223C

Dual, 500 MHz High Speed, Operational Amplifier
ELANTEC

EL2223CJ

Voltage-Feedback Operational Amplifier
ETC