EL4332CSZ

更新时间:2024-09-18 02:15:32
品牌:INTERSIL
描述:Triple 2:1 300MHz Mux-Amp AV = 2

EL4332CSZ 概述

Triple 2:1 300MHz Mux-Amp AV = 2 三重2 : 1复用300MHz的放大器AV = 2 视频放大器

EL4332CSZ 数据手册

通过下载EL4332CSZ数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
EL4332  
®
Data Sheet  
October 4, 2004  
FN7163.2  
Triple 2:1 300MHz Mux-Amp A = 2  
V
Features  
The EL4332 is a triple very high speed 2:1 Multiplexer-  
Amplifier. It is intended primarily for component video  
multiplexing and is especially suited for pixel switching. The  
amplifiers have their gain set to 2 internally, which reduces  
the need for many external components. The gain-of-2  
facilitates driving back terminated cables. All three amplifiers  
are switched simultaneously from their A to B inputs by the  
TTL/CMOS compatible, common A/B control pin.  
• 3ns A-B switching  
• 300MHz bandwidth  
• Fixed gain of 2, for cable driving  
• > 650V/µs slew rate  
• TTL/CMOS compatible switch  
• Pb-free available  
A -3dB bandwidth of 300MHz together with 3ns multiplexing  
time enable the full performance of the fastest component  
video systems to be realized.  
Applications  
• RGB multiplexing  
• Picture-in-picture  
• Cable driving  
The EL4332 runs from standard ±5V supplies, and is  
available in the narrow 16-pin small outline package.  
• HDTV processing  
• Switched gain amplifiers  
• ADC input multiplexer  
Pinout  
EL4332  
[16-PIN SO (0.150”)]  
TOP VIEW  
Ordering Information  
TAPE &  
REEL  
PART NUMBER  
EL4332CS  
PACKAGE  
PKG. DWG. #  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
16-Pin SO (0.150”)  
16-Pin SO (0.150”)  
16-Pin SO (0.150”)  
-
7”  
13”  
-
EL4332CS-T7  
EL4332CS-T13  
EL4332CSZ  
(Note)  
16-Pin SO (0.150”)  
(Pb-Free)  
EL4332CSZ-T7  
(Note)  
16-Pin SO (0.150”)  
(Pb-Free)  
7”  
MDP0027  
MDP0027  
EL4332CSZ-T13 16-Pin SO (0.150”)  
(Note) (Pb-Free)  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which is compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J Std-020B.  
Demo Board  
A demo PCB is available for this product.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002-2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL4332  
Absolute Maximum Ratings (T = 25°C)  
A
V
V
V
to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14V  
EE  
Input Current, Any Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Ambient Operating Temperature . . . . . . . . . . . . . . . . .-40°C to 85°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-60°C to +150°C  
CC  
CC  
EE  
to any GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V  
to any GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V  
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 45mA  
Any Input . . . . . . . . . . . . . . . . . . . . . . . . . . V -0.3V to V +0.3V  
EE  
CC  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
DC Electrical Specifications  
V
= +5V, V = -5V, Temperature = 25°C, R =  
CC  
DESCRIPTION  
Input Referred Offset Voltage  
EE  
L
PARAMETER  
MIN  
TYP  
8
MAX  
20  
UNITS  
mV  
mV  
kΩ  
µA  
µA  
V/V  
%
V
OS  
dV  
Input Referred Offset Voltage Delta (Note 1)  
Input Resistance  
2
8
OS  
R
30  
IN  
I
Input Bias Current  
-7  
-30  
4.0  
B
dI  
Input Bias Current Delta (Note 1)  
Gain  
0.5  
B
A
1.94  
2.00  
0.5  
2.06  
2.5  
V
dA  
Gain Delta (Note 1)  
V
C
Input Capacitance  
3.3  
pF  
dB  
V
IN  
PSRR  
Power Supply Rejection Ratio  
Output Voltage Swing into 500load  
Output Voltage Swing into 150load  
Current Output, Measured with 75Load (Note 2)  
Crosstalk from Non-selected Input (at DC)  
Crosstalk from one Amplifier to another Amplifier  
Input Logic High Level  
50  
70  
V
±2.7  
±3.6  
+3/-2.7  
40  
O
V
I
30  
-70  
-70  
2.0  
mA  
dB  
dB  
V
OUT  
Xtalk  
Xtalk  
-100  
-100  
AB  
CH-CH  
V
V
IH  
IL  
Input Logic Low Level  
0.8  
-80  
3
V
I
I
I
Logic Low Input Current (V = 0V)  
IN  
-0.3  
-3  
-40  
0
µA  
µA  
mA  
IL  
Logic High Input Current (V = 0V)  
IN  
IH  
S
Total Supply Current  
38  
48  
60  
NOTES:  
1. Each channel’s A-input to its B-input.  
2. There is no short circuit protection on any output.  
AC Electrical Specifications  
V
= +5V, V = -5V, Temperature = 25°C, R = 150, C = 3pF.  
CC EE L L  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
300  
105  
0.04  
0.08  
0.2  
MAX  
UNITS  
MHz  
MHz  
%
BW  
-3dB Bandwidth  
±0.1dB Bandwidth  
BW 0.1dB  
DG  
Differential Gain at 3.58MHz  
DP  
Differential Phase at 3.58MHz  
°
Pkg  
Peaking with Nominal Load  
dB  
SR  
Slew Rate (4V Square Wave, Measured 25%–75%)  
650  
V/µs  
2
EL4332  
AC Electrical Specifications  
V
= +5V, V = -5V, Temperature = 25°C, R = 150, C = 3pF. (Continued)  
CC  
EE  
L
L
PARAMETER  
DESCRIPTION  
MIN  
TYP  
13  
3
MAX  
UNITS  
ns  
t
Settling Time to 0.1% of Final Value  
Time to Switch Inputs  
S
T
ns  
SW  
OS  
Overshoot, V  
= 4V  
P-P  
8
%
OUT  
I
I
ab  
10M  
Input to Input Isolation at 10MHz  
60  
40  
61  
50  
dB  
SO  
100M  
10M  
Input to Input Isolation at 100MHz  
Channel to Channel Isolation at 10MHz  
Channel to Channel Isolation at 100MHz  
dB  
ch-ch  
dB  
SO  
100M  
dB  
Pin Descriptions  
PIN NAME  
FUNCTION  
A1, A2, A3  
“A” inputs to amplifiers 1, 2 and 3 respectively.  
“B” inputs to amplifiers 1, 2 and 3 respectively.  
B1, B2, B3  
GND1, GND2, GND3  
Out1, Out2, Out3  
These are the individual ground pins for each channel.  
Amplifier outputs. Note: there is no short circuit protection on any output.  
Positive power supply. Typically +5V.  
V
V
CC  
EE  
Negative power supply. Typically -5V.  
A/B  
Common input select pin, a logic high selects the “A” inputs, logic low selects the “B” inputs. CMOS/TTL  
compatible.  
Burn In Schematic  
3
EL4332  
Typical Performance Curves  
FIGURE 2. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 1. SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 3. SWITCHING TO GROUND FROM A LARGE  
SIGNAL UNCORRELATED SINE WAVE  
FIGURE 4. SWITCHING FROM GROUND TO A LARGE  
SIGNAL UNCORRELATED SINE WAVE  
FIGURE 6. SWITCHING FROM GROUND TO A SMALL  
SIGNAL UNCORRELATED SINE WAVE  
FIGURE 5. SWITCHING TO GROUND FROM A SMALL  
SIGNAL UNCORRELATED SINE WAVE  
FIGURE 7. SWITCHING GLITCH (INPUTS AT GROUND)  
FIGURE 8. SWITCHING FROM A FAMILY OF DC LEVELS TO  
GROUND  
4
EL4332  
Typical Performance Curves (Continued)  
FIGURE 10. CHANNEL A/B SWITCHING DELAY  
FIGURE 9. SWITCHING FROM GROUND TO A FAMILY OF DC  
LEVELS  
FIGURE 11. GAIN vs FREQUENCY  
FIGURE 12. GAIN vs FREQUENCY  
FIGURE 13. -3dB BW vs SUPPLY VOLTAGE  
FIGURE 14. BANDWIDTH vs DIE TEMPERATURE  
5
EL4332  
Typical Performance Curves (Continued)  
FIGURE 16. INPUT VOLTAGE NOISE OVER FREQUENCY  
FIGURE 15. FREQUENCY RESPONSE WITH CAPACITIVE  
LOADS  
FIGURE 17. A-INPUT TO B–INPUT ISOLATION  
FIGURE 18. CHANNEL-CHANNEL ISOLATION  
FIGURE 19. OUTPUT SWING vs SUPPLY VOLTAGE  
FIGURE 20. OUTPUT SWING vs FREQUENCY  
6
EL4332  
Typical Performance Curves (Continued)  
FIGURE 22. SLEW RATE vs DIE TEMPERATURE  
FIGURE 21. SLEW RATE vs SUPPLY VOLTAGE  
JEDEC JESD51-3 LOW EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
1.2  
1.136W  
1
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 23. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 24. POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-7 HIGH EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
1.8  
1.6  
1.4  
1.2  
1
1.563W  
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 25. POWER DISSIPATION vs AMBIENT TEMPERATURE  
7
EL4332  
FIGURE 26. TYPICAL CONNECTION FOR A 2:1 COMPONENT VIDEO MULTIPLEXER  
Further notes and recommended practices for high speed  
printed circuit board layout can be found in the tutorials in  
the Elantec databooks.  
Applications Information  
Figure 26 shows a typical use for the EL4332. The circuit is a  
component video (R,G, B or Y,U,V) multiplexer. Since the  
gain of the internal amplifiers has been set to 2, the only  
extra components needed are the supply decoupling  
capacitors and the back terminating resistors, if transmission  
lines are to be driven. The EL4332 can drive backmatched  
50or 75loads.  
Supplies  
Supply bypassing should be as physically near the power  
pins as possible. Chip capacitors should be used to  
minimize lead inductance. Note that larger values of  
capacitor tend to have larger internal inductances. So when  
designing for 3 transmission lines or similar moderate loads,  
a 0.1µF ceramic capacitor right next to the power pin in  
parallel with a 22µF tantalum capacitor placed as close to  
the 0.1µF is recommended. For lighter loadings, or if not all  
the channels are being used, a single 4.7µF capacitor has  
been found quite adequate.  
Grounds  
It will be noticed that each mux-amp channel has its own  
separate ground pin. These ground pins have been kept  
separate to keep the channel separation inside the chip as  
large as possible. The feedback resistors use these ground  
pins as their reference. The resistors total 400, so there is  
a significant signal current flowing from these pins to ground.  
Note that component video signals do tend to have a high  
level of signal correlation. This is especially true if the video  
signal has been derived from 3 synchronously clocked  
DACs. This corresponds to all three channels drawing large  
slew currents simultaneously from the supplies. Thus, proper  
bypassing is critical.  
The ground pins should all be connected together, to a  
ground plane underneath the chip. 1 oz. copper for the  
ground plane is highly recommended.  
8
EL4332  
Logic Inputs  
The A/B select, logic input, is internally referenced to  
ground. It is set at 2 diode drops above ground, to give a  
threshold of about 1.4V (see Figure 27). The PNP input  
transistor requires that the driving gate be able to sink  
current, typically < 30µA, for a logic “low”. If left to float, it will  
be a logic “high”.  
FIGURE 27. SIMPLIFIED LOGIC INPUT STAGE  
The input PNP transistors have sufficient gain that a simple  
level shift circuit (see Figure 28) can be used to provide a  
simple interface with Emitter Coupled Logic. Typically,  
200mV is enough to switch from a solid logic “low” to a  
“high.”  
FIGURE 28. ADAPTING THE SELECT PIN  
FOR ECL LOGIC LEVELS  
The capacitor C is only in the network to prevent the A/B  
FF  
pin’s capacitance from slowing the control signal. The  
network shown level shifts the ECL levels, -0.7V to -1.5V to  
+1.6V and +1.1V respectively. The terminating resistor, R  
,
TT  
is required since the open emitter of the ECL gate can not  
sink current. If a -2V rail is not being used, a 220to 330Ω  
resistor to the -5.2V rail would have the same effect.  
9
EL4332  
When interstage attenuators are used, the values should be  
Expanding the Multiplexer  
kept down in the region of 50–300. This is to prevent a  
combination of circuit board stray capacitance and the  
EL4332’s input capacitance forming a significant pole. For  
example, if instead of 100as shown, resistors of 1khad  
been used, and assuming 3pF of stray and 3pF of input  
capacitance, a pole would be formed at about 53MHz.  
In Figure 29, a 3:1 multiplexer circuit is shown. The  
expansion to more inputs is very straight forward. Since the  
EL4332 has a fixed gain of 2, interstage attenuators may be  
required as shown in Figure 28. The truth table for the 3:1  
multiplexer select lines is:  
TABLE 1.  
X
0
0
1
Y
0
1
X
MUX OUTPUT  
R3, G3, B3  
R2, G2, B2  
R1, G1, B1  
FIGURE 29. TYPICAL CONNECTION FOR A 3:1 COMPONENT VIDEO MULTIPLEXER  
10  
EL4332  
This could be useful where an input signal is frequently  
A Bandwidth Selectable Circuit  
noisy. The component values shown give a Butterworth LPF  
response, with a -3dB frequency of 50MHz. Note again, the  
resistor values are low, so that stray capacitance does not  
affect the desired cut-off frequency.  
In Figure 30, a circuit is shown that allows three signals to be  
either low pass filtered or full bandwidth.  
FIGURE 30. SWITCHED 50MHz LOW PASS FILTER FOR HIGH/LOW RESOLUTION MONITORS  
11  
EL4332  
EL4332 Macromodel  
* EL4332 Macromodel  
* Revision A, April 1996  
****************************************************************************  
*Applications Hints. The EL4332 has two V pins, one V pin, and three ground  
CC  
EE  
*pins. The V  
pins (pins 14 and 15 are internally shorted together in the model,  
CC  
*but the ground pins (GND1, GND2, and GND3 (nodes 2, 7, and 10, respectively)  
*must be connected to ground (node 0) using a le-6W resistor. Alternatively,  
* nodes 2, 7, and 10 may be connected to ground through a 25resistor in parallel  
* with a 4nH inductor to simulate package and PCB parasitics.  
****************************************************************************  
* Connections:  
*
*
*
*
*
*
*
*
*
*
OUT1  
|
|
|
|
|
|
|
|
|
GND1  
|
|
|
|
|
|
|
|
A1  
|
|
|
|
|
|
|
B1  
|
|
|
|
|
|
B2  
|
|
|
|
|
A2  
|
|
|
|
GND2  
|
OUT2  
|
|
|
|
* 1  
*
2
3
4
5
6
7
8
* OUT3  
* |  
* |  
* |  
* |  
* |  
* |  
* |  
* |  
* |  
GND3  
|
|
|
|
|
|
|
|
B3  
|
|
|
|
|
|
|
A3  
|
|
|
|
|
|
V
EE  
|
|
|
|
|
V
CC  
|
|
|
|
V
CC  
|
|
|
A/B  
|
|
* 9 10 11 12 13 14 15 16  
************A B Switch ***************  
Rshort 14 15 le-12  
rshort1 15 0 100 Meg  
Isw 14 110 1.5 mA  
vref 111 0 1.6V  
q1 101 16 110 qp  
q2 102 111 110 qp  
R1 101 13 500  
R2 102 13 500  
Rd1 107 0 100  
Esw 107 0 table {v(102, 101)*100} (0,0) (1,1)  
*
************Amplifier #1 *************  
q131 103 3 112 qp  
q141 104 114 113 qp  
q151 105 4 115 qp  
q161 106 117 116 qp  
Ia11 14 112 1 mA  
Ia21 14 113 1 mA  
Ib11 14 115 1 mA  
Ib21 14 116 1 mA  
Rga1 112 113 275  
Rgb1 115 116 275  
R31 103 13 275  
R41 104 13 275  
12  
EL4332  
R51 105 13 275  
R61 106 13 275  
R71 1 114 400  
R81 114 2 400  
R911 117 400  
R110 117 2 400  
Ediff1 108 0 value {(v(104,103)*v(107))+(v(106,105)*(1-v(107)))}  
rdiff1 108 0 1K  
*
*Compensation Section  
*
ga1 0 134 108 0 1m  
rh1 134 0 5 Meg  
cc1 134 0 0.6 pF  
*
*Poles  
*
ep1 141 0 134 0 1.0  
rpa1 141 142 200  
cpa1 142 0 0.75 pF  
rpb1 142 143 200  
cpb1 143 0 0.75 pF  
*
*Output Stage  
*
i011 15 150 1.0 mA  
i021 151 13 1.0 mA  
q71 13 143 150 qp  
q81 15 143 151 qn  
q91 15 150 152 qn  
q101 13 151 153 qp  
ros11 152 1 2  
ros21 153 1 2  
*
************Amplifier #2***********  
q231 203 6 212 qp  
q241 204 214 213 qp  
q251 205 5 215 qp  
q261 206 217 216 qp  
Ia12 14 212 1 mA  
Ia22 14 213 1 mA  
Ib12 14 215 1 mA  
Ib22 14 216 1 mA  
Rga2 212 213 275  
Rgb2 215 216 275  
R231 203 13 275  
R241 204 13 275  
R251 205 13 275  
R261 206 13 275  
R271 8 214 400  
R281 214 7 400  
R291 8 217 400  
R210 217 7 400  
Ediff2 208 0 value {(v(204,203)*v(107))+(v(206,205)*(1-v(107)))}  
rdiff2 208 0 1K  
*
* Compensation Section  
*
ga2 0 234 208 0 1m  
rh2 234 0 5 Meg  
cc2 234 0 0.6 pF  
13  
EL4332  
*
* Poles  
*
ep2 241 0 234 0 1.0  
rpa2 241 242 200  
cpa2 242 0 0.75 pF  
rpb2 242 243 200  
cpb2 243 0 0.75 pF  
*
*Output Stage  
*
i0 12 15 250 1.0 mA  
i022 251 13 1.0 mA  
q271 13 243 250 qp  
q281 15 243 251 qn  
q291 15 250 252 qn  
q201 13 251 253 qp  
ros12 252 8 2  
ros22 253 8 2  
*
************Amplifier #3 ************  
q331 303 12 312 qp  
q341 304 314 313 qp  
q351 305 11 315 qp  
q361 306 317 316 qp  
Ia13 14 312 1 mA  
Ia23 14 313 1 mA  
Ib13 14 315 1 mA  
Ib23 14 316 1 mA  
Rga3 312 313 275  
Rgb3 315 316 275  
R331 303 13 275  
R341 304 13 275  
R351 305 13 275  
R361 306 13 275  
R371 9 314 400  
R381 314 10 400  
R391 9 317 400  
R310 317 10 400  
Ediff3 308 0 value {( v(304,303)*(v(107))+(v(306,305)*(1-v(107)))}  
rdiff3 308 0 1K  
*
* Compensation  
*
ga3 0 334 308 01m  
rh3 334 0 5 Meg  
cc3 334 0 0.6 pF  
*
* Poles  
*
ep3 341 0 3340 1.0  
rpa3 341 342 200  
cpa3 342 0 0.75 pF  
rpb3 342 343 200  
cpb3 343 0 0.75 pF  
*
* Output Stage  
*
i013 15 350 1.0 mA  
i023 351 13 1.0 mA  
q371 13 343 350 qp  
14  
EL4332  
q381 15 343 351 qn  
q391 15 350 352 qn  
q301 13 351 353 qp  
ros13 352 9 2  
ros23 353 9 2  
*
* Power Supply Current  
*
ips 15 13 22 mA  
*
*Models  
*
.model qp pnp(is=1.5e-16 bf=300 tf=0.01 ns)  
.model qn npn(is=0.8e-18 bf=300 tf=0.01 ns)  
.ends  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
15  

EL4332CSZ 替代型号

型号 制造商 描述 替代类型 文档
EL4332CSZ-T13 INTERSIL Triple 2:1 300MHz Mux-Amp AV = 2 完全替代
EL4332CS-T7 INTERSIL Triple 2:1 300MHz Mux-Amp AV = 2 完全替代

EL4332CSZ 相关器件

型号 制造商 描述 价格 文档
EL4332CSZ-T13 INTERSIL Triple 2:1 300MHz Mux-Amp AV = 2 获取价格
EL4332CSZ-T7 INTERSIL Triple 2:1 300MHz Mux-Amp AV = 2 获取价格
EL4340 INTERSIL 500MHz Triple, Multiplexing Amplifiers 获取价格
EL4340 RENESAS 500MHz Triple, Multiplexing Amplifier 获取价格
EL4340IU INTERSIL 500MHz Triple, Multiplexing Amplifiers 获取价格
EL4340IU RENESAS 1 CHANNEL, VIDEO AMPLIFIER, PDSO24, 0.150 INCH, MO-137, QSOP-24 获取价格
EL4340IU-T13 INTERSIL 500MHz Triple, Multiplexing Amplifiers 获取价格
EL4340IU-T13 RENESAS 1 CHANNEL, VIDEO AMPLIFIER, PDSO24, 0.150 INCH, MO-137, QSOP-24 获取价格
EL4340IU-T7 INTERSIL 500MHz Triple, Multiplexing Amplifiers 获取价格
EL4340IU-T7 RENESAS 1 CHANNEL, VIDEO AMPLIFIER, PDSO24, 0.150 INCH, MO-137, QSOP-24 获取价格

EL4332CSZ 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6