EL5108IW-T7 [INTERSIL]

450MHz Fixed Gain Amplifiers with Enable; 450MHz的固定增益放大器,使
EL5108IW-T7
型号: EL5108IW-T7
厂家: Intersil    Intersil
描述:

450MHz Fixed Gain Amplifiers with Enable
450MHz的固定增益放大器,使

放大器
文件: 总12页 (文件大小:1082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5108, EL5308  
®
Data Sheet  
August 31, 2004  
FN7358.4  
450MHz Fixed Gain Amplifiers with Enable  
Features  
• Pb-free Available as an Option  
The EL5108 and EL5308 are fixed gain amplifiers with a  
bandwidth of 450MHz. This makes these amplifiers ideal for  
today’s high speed video and monitor applications. They  
feature internal gain-setting resistors and can be configured  
in a gain of +1, -1 or +2. The same bandwidth is seen in both  
gain-of-1 and gain-of-2 applications.  
• Gain selectable (+1, -1, +2)  
• 450MHz -3dB BW (A = -1, +1, +2)  
V
• 3.5mA supply current per amplifier  
• Single and dual supply operation, from 5V to 12V  
• Available in SOT-23 packages  
The EL5108 and EL5308 also incorporate an enable and  
disable function to reduce the supply current to 25µA typical  
per amplifier. Allowing the CE pin to float or applying a low  
logic level will enable the amplifier.  
• 350MHz, 1.5mA product available (EL5106 & EL5306)  
Applications  
The EL5108 is offered in the 6-pin SOT-23 and the industry-  
standard 8-pin SO packages and the EL5308 is available in  
the 16-pin SO and 16-pin QSOP packages. All operate over  
the industrial temperature range of -40°C to +85°C.  
• Battery powered equipment  
• Handheld, portable devices  
• Video amplifiers  
Ordering Information  
• Cable drivers  
PART  
TAPE &  
REEL  
• RGB amplifiers  
NUMBER  
PACKAGE  
6-Pin SOT-23  
6-Pin SOT-23  
8-Pin SO  
PKG. DWG. #  
MDP0038  
MDP0038  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
EL5108IW-T7  
EL5108IW-T7A  
EL5108IS  
7” (3K pcs)  
7” (250 pcs)  
-
7”  
13”  
-
EL5108IS-T7  
EL5108IS-T13  
EL5308IS  
8-Pin SO  
8-Pin SO  
16-Pin SO (0.150”)  
16-Pin SO (0.150”)  
EL5308IS-T7  
7”  
13”  
-
EL5308IS-T13 16-Pin SO (0.150”)  
EL5308IU  
16-Pin QSOP  
16-Pin QSOP  
16-Pin QSOP  
EL5308IU-T7  
EL5308IU-T13  
7”  
13”  
-
EL5308IUZ  
(See Note)  
16-Pin QSOP  
(Pb-free)  
EL5308IUZ-T7  
(See Note)  
16-Pin QSOP  
(Pb-free)  
7”  
MDP0040  
MDP0040  
EL5308IUZ-  
T13 (See Note)  
16-Pin QSOP  
(Pb-free)  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which is compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J Std-020B.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002-2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL5108, EL5308  
Pinouts  
EL5108  
EL5308  
(16-PIN SO, QSOP)  
TOP VIEW  
(8-PIN SO)  
TOP VIEW  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
INA+  
CEA  
VS-  
1
2
3
4
5
6
7
8
16 INA-  
-
VS+  
OUT  
NC  
-
15 OUTA  
14 VS+  
+
+
IN+  
VS-  
+
-
CEB  
INB+  
NC  
13 OUTB  
12 INB-  
11 NC  
EL5108  
(6-PIN SOT-23)  
TOP VIEW  
+
-
CEC  
INC+  
10 OUTC  
VS+  
CE  
OUT  
VS-  
IN+  
1
2
3
6
5
4
9
INC-  
+
-
IN-  
2
EL5108, EL5308  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . 13.2V  
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . V - -0.5V to V + +0.5V  
S S  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .125°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 150, T = 25°C unless otherwise specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
= +1  
= -1  
440  
445  
450  
40  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
V
A
V
A
= +2  
= +2  
V
BW1  
SR  
0.1dB Bandwidth  
A
V
Slew Rate  
V
V
= -2.5V to +2.5V, A = +2  
3500  
4500  
10  
O
V
t
0.1% Settling Time  
Input Voltage Noise  
Input Current Noise  
= -2.5V to +2.5V, A = +2  
OUT V  
S
e
2
nV/Hz  
pA/Hz  
%
N
i
f = 2kHz  
12  
N
dG  
dP  
Differential Gain Error (Note 1)  
Differential Phase Error (Note 1)  
A
= +2  
= +2  
0.01  
0.01  
V
A
°
V
DC PERFORMANCE  
V
Offset Voltage  
-8  
+3  
5
+8  
mV  
OS  
T V  
Input Offset Voltage Temperature  
Coefficient  
Measured from T  
MIN  
to T  
MAX  
µV/°C  
C
OS  
A
Gain Error  
V
= -3V to +3V, R = 150Ω  
0.7  
2.5  
%
E
O
L
R , R  
Internal R and R  
G
325  
F
G
F
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
+ Input Current  
±3  
±3.3  
2
V
+I  
8
µA  
MΩ  
pF  
IN  
IN  
IN  
R
C
Input Resistance  
at I +  
0.7  
1
N
Input Capacitance  
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
R = 150to GND  
±3.6  
±3.8  
100  
±3.8  
±4.0  
135  
V
V
O
L
R = 1kto GND  
L
I
Output Current  
R = 10to GND  
mA  
OUT  
L
SUPPLY  
I
I
Supply Current - Enabled (per amplifier) No load, V = 0V  
IN  
3.18  
3.7  
9
4.35  
25  
mA  
µA  
dB  
SON  
Supply Current - Disabled (per amplifier) No load, V = 0V  
IN  
SOFF  
PSRR  
Power Supply Rejection Ratio  
DC, V = ±4.75V to ±5.25V  
75  
S
3
EL5108, EL5308  
Electrical Specifications V + = +5V, V - = -5V, R = 150, T = 25°C unless otherwise specified. (Continued)  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ENABLE  
t
t
I
I
Enable Time  
280  
560  
5
ns  
ns  
µA  
µA  
V
EN  
Disable Time (Note 2)  
DIS  
CE Pin Input High Current  
CE Pin Input Low Current  
CE = V +  
-1  
25  
-1  
IHCE  
ILCE  
S
CE = V -  
+1  
S
V
V
CE Input High Voltage for Power-down  
CE Input Low Voltage for Enable  
V + -1  
S
IHCE  
ILCE  
V + -3  
V
S
NOTES:  
1. Standard NTSC test, AC signal amplitude = 286mV , f = 3.58MHz  
P-P  
2. Measured from the application of the CE logic signal until the output voltage is at the 50% point between initial and final values  
Pin Descriptions  
EL5308  
EL5108  
(SO8)  
EL5108  
(SO16,  
(SOT23-6)  
QSOP16)  
PIN NAME  
NC  
FUNCTION  
Not connected  
EQUIVALENT CIRCUIT  
1, 5  
2
6, 11  
4
9, 12, 16  
IN-  
Inverting input  
R
G
IN+  
IN-  
R
F
CIRCUIT 1  
3
4
6
3
2
1
1, 5, 8  
3
IN+  
VS-  
Non-inverting input  
Negative supply  
Output  
(Reference Circuit 1)  
10, 13, 15  
OUT  
OUT  
R
F
CIRCUIT 2  
7
8
6
5
14  
VS+  
CE  
Positive supply  
Chip enable  
2, 4, 7  
V +  
S
CE  
V -  
S
CIRCUIT 3  
4
EL5108, EL5308  
Typical Performance Curves  
5
135  
45  
V =±5V  
V =±5V  
S
S
V
=200mV  
V
=200V  
IN  
R =150  
P-P  
IN  
R =150Ω  
P-P  
L
L
3
1
A
= -1  
A
= -1  
V
V
-45  
A
= 2  
V
-1  
-3  
-5  
-135  
-225  
-315  
A
= 1  
V
A
= 2  
V
A
= 1  
V
100K  
1M  
10M  
FREQUENCY (Hz)  
1G  
100K  
1M  
10M  
1G  
1G  
1G  
100M  
100M  
FREQUENCY (Hz)  
FIGURE 1. FREQUENCY RESPONSE  
FIGURE 2. PHASE RESPONSE  
11  
9
11  
9
V =±5V  
S
V =±5V  
S
A =2  
V
A =2  
V
R
= 500Ω  
L
R =150Ω  
L
R
= 150Ω  
L
V
= 400mV  
OP-P  
7
5
3
1
7
5
3
1
V
= 2V  
R
= 100  
OP-P  
L
R
= 50Ω  
L
100K  
1M  
10M  
1G  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
100M  
FREQUENCY (Hz)  
FIGURE 3. FREQUENCY RESPONSE vs OUTPUT VOLTAGE  
FIGURE 4. FREQUENCY RESPONSE vs R  
L
11  
1.2  
1
V =±5V  
V =±5V  
S
A = -1  
V
S
C
C
= 6.8pF  
= 4.7pF  
L
A =2  
R =150Ω  
V
L
R =150Ω  
A = 1  
V
L
9
7
5
3
1
L
0.8  
0.6  
0.4  
A
= 2  
V
C
= 2.2pF  
L
C
= 0pF  
L
0.2  
0
100K  
1M  
10M  
FREQUENCY (Hz)  
1G  
100M  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
FIGURE 5. FREQUENCY RESPONSE FOR VARIOUS C  
FIGURE 6. GROUP DELAY vs FREQUENCY  
L
5
EL5108, EL5308  
Typical Performance Curves (Continued)  
100  
15  
A =2  
V
R =150Ω  
L
10  
1
-5  
-25  
-45  
-65  
-85  
0.1  
0.01  
0.002  
10K  
100K  
1M  
100M  
10M  
100K  
1M  
10M  
1G  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 7. INPUT TO OUTPUT ISOLATION vs FREQUENCY  
(FOR DISABLE MODE)  
FIGURE 8. OUTPUT IMPEDENCE vs FREQUENCY  
0
1K  
V =±5V  
S
V
A =2  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
100  
I
N
10  
1
V
N
1K  
10K  
100K  
1M  
10M  
100M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
FIGURE 10. POWER SUPPLY REJECTION RATIO vs  
FREQUENCY  
1.4  
480  
R
= 150Ω  
L
R
= 150Ω  
L
460  
440  
420  
400  
380  
360  
340  
A = 2  
V
1.2  
1
A
= -1  
= 2  
= 1  
V
A
= -1  
V
0.8  
0.6  
0.4  
0.2  
A
V
A
= 1  
V
A
V
320  
300  
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10 10.5 11  
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5 9 9.5 10 10.5 11  
V
(V)  
S
V
(V)  
S
FIGURE 11. BANDWIDTH vs SUPPLY VOLTAGE  
FIGURE 12. PEAKING vs SUPPLY VOLTAGE  
6
EL5108, EL5308  
Typical Performance Curves (Continued)  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
-40  
V =±5V  
S
A =2  
V
HD2  
HD3  
R =150Ω  
L
O
-50  
-60  
-70  
-80  
-90  
V
=2V  
P-P  
I +, I -  
S
S
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5 9 9.5 10 10.5 11  
0
10  
20  
30  
40  
50  
60  
V
(V)  
S
FREQUENCY (MHz)  
FIGURE 13. DISTORTION vs FREQUENCY  
FIGURE 14. SUPPLY CURRENT vs SUPPLY VOLTAGE  
V
=±2V  
V
=±200mV  
O
O
1V/DIV  
100mV/DIV  
10ns/DIV  
10ns/DIV  
FIGURE 15. LARGE SIGNAL RESPONSE  
FIGURE 16. SMALL SIGNAL RESPONSE  
M=100ns  
M=100ns  
CH1 2.00V/DIV  
CH1 2.00V/DIV  
CH2 1.00V/DIV  
CH2 1.00V/DIV  
FIGURE 17. DISABLED RESPONSE  
FIGURE 18. ENABLED RESPONSE  
7
EL5108, EL5308  
Typical Performance Curves (Continued)  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1
1.4  
1.2  
1
909mW  
1.250W  
0.9  
SO16 (0.150”)  
SO16 (0.150”)  
θ
=110°C/W  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
JA  
θ
=80°C/W  
JA  
625mW  
633mW  
909mW  
893mW  
SO8  
SO8  
0.8  
0.6  
0.4  
θ
θ
=160°C/W  
θ
θ
=110°C/W  
JA  
JA  
435mW  
391mW  
SOT23-6  
QSOP16  
=158°C/W  
JA  
SOT23-6  
QSOP16  
θ
=256°C/W  
JA  
θ
=230°C/W  
=112°C/W  
JA  
0.2  
0.1  
0
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
Disable/Power-Down  
Applications Information  
The EL5108 and EL5308 amplifiers can be disabled and  
placing their outputs in a high impedance state. When  
disabled, the amplifier supply current is reduced to <25µA.  
The EL5108 and EL5308 are disabled when the CE pin is  
pulled up to within 1V of the positive supply. Similarly, the  
amplifier is enabled by floating or pulling its CE pin to at least  
3V below the positive supply. For ±5V supply, this means  
that the amplifier will be enabled when CE is 2V or less, and  
disabled when CE is above 4V. Although the logic levels are  
not standard TTL, this choice of logic voltages allow the  
EL5108 and EL5308 to be enabled by tying CE to ground,  
even in 5V single supply applications. The CE pins can be  
driven from CMOS outputs.  
Product Description  
The EL5108 and EL5308 are fixed gain amplifiers that offer a  
wide -3dB bandwidth of 450MHz and a low supply current of  
3.5mA per amplifier. They work with supply voltages ranging  
from a single 5V to 10V and they are also capable of  
swinging to within 1.2V of either supply on the output. These  
combinations of high bandwidth, low power, and high slew  
rate make the EL5108 and EL5308 the ideal choice for many  
low-power/high-bandwidth applications such as portable,  
handheld, or battery-powered equipment.  
For varying bandwidth and higher gains, consider the  
EL5166 with 1GHz on a 9mA supply current or the EL5164  
with 600MHz on a 3.5mA supply current. Versions include  
single, dual, and triple amp packages with 6-pin SOT-23,  
16-pin QSOP, and 8-pin or 16-pin SO outlines.  
Gain Setting  
The EL5108 and EL5308 are built with internal feedback and  
gain resistors. The internal feedback resistors have equal  
value; as a result, the amplifier can be configured into gain of  
+1, -1, and +2 without any external resistors. Figure 21  
shows the amplifier in gain of +2 configuration. The gain  
error is ±2% maximum. Figure 22 shows the amplifier in gain  
of -1 configuration. For gain of +1, IN+ and IN- should be  
connected together as shown in Figure 23. This  
configuration avoids the effects of any parasitic capacitance  
on the IN- pin. Since the internal feedback and gain resistors  
change with temperature and process, external resistor  
should not be used to adjust the gain settings.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit board  
layout is necessary for optimum performance. Low  
impedance ground plane construction is essential. Surface  
mount components are recommended, but if leaded  
components are used, lead lengths should be as short as  
possible. The power supply pins must be well bypassed to  
reduce the risk of oscillation. The combination of a 4.7µF  
tantalum capacitor in parallel with a 0.01µF capacitor has  
been shown to work well when placed at each supply pin.  
325Ω  
325Ω  
IN+  
IN-  
-
+
FIGURE 21. A = +2  
V
8
EL5108, EL5308  
Video Performance  
325Ω  
For good video performance, an amplifier is required to  
maintain the same output impedance and the same  
frequency response as DC levels are changed at the output.  
This is especially difficult when driving a standard video load  
of 150, because of the change in output current with DC  
level. Previously, good differential gain could only be  
achieved by running high idle currents through the output  
transistors (to reduce variations in output impedance).  
Special circuitry has been incorporated in the EL5108 and  
EL5308 to reduce the variation of output impedance with  
current output. This results in dG and dP specifications of  
0.01% and 0.01°, while driving 150at a gain of 2.  
325Ω  
IN-  
-
GND  
+
FIGURE 22. A = -1  
V
325Ω  
IN- 325Ω  
-
+
IN+  
FIGURE 23. A = +1  
V
Output Drive Capability  
In spite of its low 3.5mA of supply current per amplifier, the  
EL5108 and EL5308 are capable of providing a maximum of  
±130mA of output current.  
Supply Voltage Range and Single-Supply  
Operation  
The EL5108 and EL5308 have been designed to operate  
with supply voltages having a span of greater than or equal  
to 5V and less than 12V. In practical terms, this means that  
they will operate on dual supplies ranging from ±2.5V to ±5V.  
With single-supply, they will operate from 5V to 10V.  
Driving Cables and Capacitive Loads  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back-termination series resistor will  
decouple the EL5108 and EL5308 from the cable and allow  
extensive capacitive drive. However, other applications may  
have high capacitive loads without a back-termination  
resistor. In these applications, a small series resistor (usually  
between 5and 50) can be placed in series with the  
output to eliminate most peaking.  
As supply voltages continue to decrease, it becomes  
necessary to provide input and output voltage ranges that  
can get as close as possible to the supply voltages. The  
EL5108 and EL5308 have an input range which extends to  
within 2V of either supply. So, for example, on ±5V supplies,  
the input range is about ±3V. The output range is also quite  
large, extending to within 1V of the supply rail. On a ±5V  
supply, the output is therefore capable of swinging from -4V  
to +4V. Single-supply output range is larger because of the  
increased negative swing due to the external pull-down  
resistor to ground. Figure 24 shows an AC-coupled, gain of  
+2, +5V single supply circuit configuration.  
Current Limiting  
The EL5108 and EL5308 have no internal current-limiting  
circuitry. If the output is shorted, it is possible to exceed the  
Absolute Maximum Rating for output current or power  
dissipation, potentially resulting in the destruction of the  
device.  
Power Dissipation  
325Ω  
With the high output drive capability of the EL5108 and  
EL5308, it is possible to exceed the 125°C Absolute  
Maximum junction temperature under certain very high load  
+5  
current conditions. Generally speaking when R falls below  
L
about 25, it is important to calculate the maximum junction  
4.7µF  
temperature (T  
) for the application to determine if  
325Ω  
JMAX  
-
power supply voltages, load conditions, or package type  
need to be modified for the EL5108 and EL5308 to remain in  
the safe operating area. These parameters are calculated as  
follows:  
V
OUT  
+5  
+
0.1µF  
1K  
1K  
0.1µF  
V
IN  
T
= T  
+ (θ × n × PD  
)
MAX  
JMAX  
MAX  
JA  
FIGURE 24.  
9
EL5108, EL5308  
where:  
T
PD  
for each amplifier can be calculated as follows:  
V
MAX  
MAX  
= Maximum ambient temperature  
OUTMAX  
MAX  
----------------------------  
PD  
= (2 × V × I  
) + (V - V ) ×  
S
SMAX  
S
OUTMAX  
R
L
θ
= Thermal resistance of the package  
JA  
where:  
n = Number of amplifiers in the package  
V
= Supply voltage  
PD = Maximum power dissipation of each amplifier in  
S
MAX  
the package  
I
= Maximum supply current of 1A  
SMAX  
V
= Maximum output voltage (required)  
OUTMAX  
R = Load resistance  
L
SO Package Outline Drawing  
10  
EL5108, EL5308  
SOT-23 Package Outline Drawing  
11  
EL5108, EL5308  
QSOP Package Outline Drawing  
NOTE: The package drawings shown here may not be the latest versions. To check the latest revision, please refer to the Intersil website at  
http://www.intersil.com/design/packages/index.asp  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
12  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY