EL5111AIYEZ-T13 [INTERSIL]

60MHz Rail-to-Rail Input-Output Op Amps; 60MHz的轨至轨输入输出运算放大器
EL5111AIYEZ-T13
型号: EL5111AIYEZ-T13
厂家: Intersil    Intersil
描述:

60MHz Rail-to-Rail Input-Output Op Amps
60MHz的轨至轨输入输出运算放大器

运算放大器 光电二极管
文件: 总18页 (文件大小:533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5111, EL5211, EL5411  
®
Data Sheet  
May 7, 2007  
FN7119.7  
60MHz Rail-to-Rail Input-Output Op Amps  
Features  
The EL5111, EL5211, and EL5411 are low power, high  
voltage rail-to-rail input-output amplifiers. The EL5111  
represents a single amplifier, the EL5211 contains two  
amplifiers, and the EL5411 contains four amplifiers.  
Operating on supplies ranging from 5V to 15V, while  
consuming only 2.5mA per amplifier, the EL5111, EL5211,  
and EL5411 have a bandwidth of 60MHz (-3dB). They also  
provide common mode input ability beyond the supply rails,  
as well as rail-to-rail output capability. This enables these  
amplifiers to offer maximum dynamic range at any supply  
voltage.  
• Pb-free plus anneal available (RoHS compliant)  
• 60MHz (-3dB) bandwidth  
• Supply voltage = 4.5V to 16.5V  
• Low supply current (per amplifier) = 2.5mA  
• High slew rate = 75V/µs  
• Unity-gain stable  
• Beyond the rails input capability  
• Rail-to-rail output swing  
• ±180mA output short current  
The EL5111, EL5211, and EL5411 also feature fast slewing  
and settling times, as well as a high output drive capability of  
65mA (sink and source). These features make these  
amplifiers ideal for high speed filtering and signal  
conditioning application. Other applications include battery  
power, portable devices, and anywhere low power  
consumption is important.  
Applications  
• TFT-LCD panels  
• V  
COM  
amplifiers  
• Drivers for A/D converters  
• Data acquisition  
The EL5111 is available in 5 Ld TSOT and 8 Ld HMSOP  
packages. The EL5211 is available in the 8 Ld HMSOP  
package. The EL5411 is available in space-saving 14 Ld  
HTSSOP packages. All feature a standard operational  
amplifier pinout. These amplifiers operate over a temperature  
range of -40°C to +85°C.  
• Video processing  
• Audio processing  
• Active filters  
Test equipment  
• Battery-powered applications  
• Portable equipment  
Pinouts  
EL5111  
(8 LD HMSOP)  
TOP VIEW  
EL5111  
(5 LD TSOT)  
TOP VIEW  
EL5211  
(8 LD HMSOP)  
TOP VIEW  
EL5411  
(14 LD HTSSOP)  
TOP VIEW  
NC  
VIN-  
VIN+  
VS-  
1
2
3
4
8
7
6
5
NC  
VOUT 1  
5
4
VS+  
VIN-  
VOUTA  
VINA-  
VINA+  
VS-  
1
2
3
4
8
7
6
5
VS+  
VOUTA 1  
14 VOUTD  
VS+  
VOUT  
NC  
VS-  
2
3
-
+
VOUTB  
VINB-  
VINB+  
VINA-  
VINA+  
VS+  
2
3
4
5
6
7
13 VIND-  
12 VIND+  
11 VS-  
-
+
+
-
-
+
-
+
VIN+  
-
+
VINB+  
VINB-  
VOUTB  
10 VINC+  
+
-
+
-
9
8
VINC-  
VOUTC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2004, 2007. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL5111, EL5211, EL5411  
Ordering Information  
PART NUMBER  
PART MARKING  
TAPE & REEL  
PACKAGE  
PKG. DWG. #  
MDP0049  
EL5111IWT-T7  
8
7” (3k pcs)  
5 Ld TSOT  
5 Ld TSOT  
EL5111IWT-T7A  
8
7” (250 pcs)  
MDP0049  
MDP0049  
MDP0049  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0050  
MDP0048  
MDP0048  
MDP0048  
EL5111IWTZ-T7 (Note)  
EL5111IWTZ-T7A (Note)  
EL5111IYE  
BAAG  
BAAG  
7
7” (3k pcs)  
5 Ld TSOT (Pb-free)  
7” (250 pcs)  
5 Ld TSOT (Pb-free)  
-
7”  
13”  
-
8 Ld HMSOP (3.0mm)  
EL5111IYE-T7  
7
8 Ld HMSOP (3.0mm)  
EL5111IYE-T13  
7
8 Ld HMSOP (3.0mm)  
EL5111IYEZ (Note)  
EL5111IYEZ-T7 (Note)  
EL5111IYEZ-T13 (Note)  
EL5111AIYEZ (Note)  
EL5111AIYEZ-T13 (Note)  
EL5111AIYEZ-T7 (Note)  
EL5211IYE  
BAAJA  
BAAJA  
BAAJA  
BBLAA  
BBLAA  
BBLAA  
9
8 Ld HMSOP (Pb-free) (3.0mm)  
8 Ld HMSOP (Pb-free) (3.0mm)  
8 Ld HMSOP (Pb-free) (3.0mm)  
8 Ld HMSOP (Pb-free) (3.0mm)  
8 Ld HMSOP (Pb-free) (3.0mm)  
8 Ld HMSOP (Pb-free) (3.0mm)  
8 Ld HMSOP (3.0mm)  
7”  
13”  
-
13”  
7”  
-
EL5211IYE-T7  
9
7”  
13”  
-
8 Ld HMSOP (3.0mm)  
EL5211IYE-T13  
9
8 Ld HMSOP (3.0mm)  
EL5211IYEZ (Note)  
EL5211IYEZ-T7 (Note)  
EL5211IYEZ-T13 (Note)  
EL5411IRE  
BAATA  
BAATA  
BAATA  
5411IRE  
5411IRE  
5411IRE  
5411IREZ  
5411IREZ  
5411IREZ  
5411IR  
5411IR  
5411IR  
5411IRZ  
5411IRZ  
5411IRZ  
8 Ld HMSOP (Pb-free) (3.0mm)  
8 Ld HMSOP (Pb-free) (3.0mm)  
8 Ld HMSOP (Pb-free) (3.0mm)  
14 Ld HTSSOP (4.4mm)  
14 Ld HTSSOP (4.4mm)  
14 Ld HTSSOP (4.4mm)  
7”  
13”  
-
EL5411IRE-T7  
7”  
13”  
-
EL5411IRE-T13  
EL5411IREZ (Note)  
EL5411IREZ-T7 (Note)  
EL5411IREZ-T13 (Note)  
EL5411IR  
14 Ld HTSSOP (Pb-free) (4.4mm) MDP0048  
14 Ld HTSSOP (Pb-free) (4.4mm) MDP0048  
14 Ld HTSSOP (Pb-free) (4.4mm) MDP0048  
7”  
13”  
-
14 Ld TSSOP (4.4mm)  
14 Ld TSSOP (4.4mm)  
14 Ld TSSOP (4.4mm)  
MDP0044  
MDP0044  
MDP0044  
EL5411IR-T7  
7”  
13”  
-
EL5411IR-T13  
EL5411IRZ (Note)  
EL5411IRZ-T7 (Note)  
EL5411IRZ-T13 (Note)  
14 Ld TSSOP (Pb-free) (4.4mm) M14.173  
14 Ld TSSOP (Pb-free) (4.4mm) M14.173  
14 Ld TSSOP (Pb-free) (4.4mm) M14.173  
7”  
13”  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN7119.7  
May 7, 2007  
2
EL5111, EL5211, EL5411  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . V - - 0.5V, V +0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 65mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 1kΩ to 0V, T = +25°C, Unless Otherwise Specified  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 0V  
= 0V  
3
7
2
1
2
mV  
µV/°C  
nA  
OS  
CM  
CM  
TCV  
Average Offset Voltage Drift (Note 1)  
Input Bias Current  
OS  
I
60  
B
R
C
Input Impedance  
GΩ  
pF  
IN  
Input Capacitance  
IN  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-5.5  
50  
+5.5  
V
CMRR  
for V from -5.5V to 5.5V  
IN  
70  
70  
dB  
A
-4.5V V  
4.5V  
OUT  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-Circuit Current  
Output Current  
I = -5mA  
-4.92  
4.92  
±180  
±65  
-4.85  
V
V
OL  
L
I = 5mA  
4.85  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current  
V
is moved from ±2.25V to ±7.75V  
60  
80  
2.5  
5
dB  
mA  
mA  
mA  
S
I
No load (EL5111)  
No load (EL5211)  
No load (EL5411)  
4.5  
7.5  
15  
S
10  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
-4.0V V  
4.0V, 20% to 80%  
75  
80  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
S
V
O
BW  
-3dB Bandwidth  
60  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
32  
50  
CS  
Channel Separation  
Differential Gain (Note 3)  
Differential Phase (Note 3)  
f = 5MHz (EL5211 and EL5411 only)  
110  
0.17  
0.24  
dB  
%
d
d
R
R
= R = 1kΩ and V  
= 1.4V  
= 1.4V  
G
P
F
G
OUT  
= R = 1kΩ and V  
°
F
G
OUT  
NOTES:  
1. Measured over operating temperature range.  
2. Slew rate is measured on rising and falling edges.  
3. NTSC signal generator used.  
FN7119.7  
May 7, 2007  
3
EL5111, EL5211, EL5411  
Electrical Specifications V + = +5V, V - = 0V, R = 1kΩ to 2.5V, T = +25°C, Unless Otherwise Specified  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
V
= 2.5V  
= 2.5V  
3
7
2
1
2
mV  
µV/°C  
nA  
OS  
CM  
CM  
TCV  
Average Offset Voltage Drift (Note 4)  
Input Bias Current  
OS  
I
60  
B
R
C
Input Impedance  
GΩ  
pF  
IN  
IN  
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
45  
+5.5  
150  
V
CMRR  
for V from -0.5V to 5.5V  
IN  
66  
70  
dB  
A
0.5V V  
4.5V  
OUT  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-circuit Current  
Output Current  
I = -5mA  
80  
mV  
V
OL  
L
I = 5mA  
4.85  
4.92  
±180  
±65  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current  
V
is moved from 4.5V to 15.5V  
60  
80  
2.5  
5
dB  
mA  
mA  
mA  
S
I
No load (EL5111)  
No load (EL5211)  
No load (EL5411)  
4.5  
7.5  
15  
S
10  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 5)  
1V V  
4V, 20% to 80%  
75  
80  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
S
V
O
BW  
-3dB Bandwidth  
60  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
32  
50  
CS  
Channel Separation  
Differential Gain (Note 6)  
Differential Phase (Note 6)  
f = 5MHz (EL5211 and EL5411 only)  
110  
0.17  
0.24  
dB  
%
d
d
R
R
= R = 1kΩ and V  
= 1.4V  
= 1.4V  
G
P
F
F
G
OUT  
= R = 1kΩ and V  
°
G
OUT  
NOTES:  
4. Measured over operating temperature range.  
5. Slew rate is measured on rising and falling edges.  
6. NTSC signal generator used.  
FN7119.7  
May 7, 2007  
4
EL5111, EL5211, EL5411  
Electrical Specifications V + = +15V, V - = 0V, R = 1kΩ to 7.5V, T = +25°C, Unless Otherwise Specified  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
15  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 7.5V  
= 7.5V  
3
7
2
1
2
mV  
µV/°C  
nA  
OS  
CM  
CM  
TCV  
Average Offset Voltage Drift (Note 7)  
Input Bias Current  
OS  
I
V
60  
B
R
C
Input Impedance  
GΩ  
pF  
IN  
IN  
Input Capacitance  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
-0.5  
53  
+15.5  
150  
V
CMRR  
for V from -0.5V to 15.5V  
IN  
72  
70  
dB  
A
0.5V V  
14.5V  
OUT  
62  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short-circuit Current  
Output Current  
I = -5mA  
80  
mV  
V
OL  
L
I = 5mA  
14.85  
14.92  
±180  
±65  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current  
V
is moved from 4.5V to 15.5V  
60  
80  
2.5  
5
dB  
mA  
mA  
mA  
S
I
No load (EL5111)  
No load (EL5211)  
No load (EL5411)  
4.5  
7.5  
15  
S
10  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 8)  
1V V  
14V, 20% to 80%  
75  
80  
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
S
V
O
BW  
-3dB Bandwidth  
60  
MHz  
MHz  
°
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
32  
50  
CS  
Channel Separation  
Differential Gain (Note 9)  
Differential Phase (Note 9)  
f = 5MHz (EL5211 and EL5411 only)  
110  
0.16  
0.22  
dB  
%
d
d
R
R
= R = 1kΩ and V  
= 1.4V  
= 1.4V  
G
P
F
F
G
OUT  
= R = 1kΩ and V  
°
G
OUT  
NOTES:  
7. Measured over operating temperature range  
8. Slew rate is measured on rising and falling edges  
9. NTSC signal generator used  
FN7119.7  
May 7, 2007  
5
EL5111, EL5211, EL5411  
Typical Performance Curves  
500  
25  
V
= ±5V  
= +25°C  
TYPICAL  
PRODUCTION  
DISTRIBUTION  
V
= ±5V  
TYPICAL  
PRODUCTION  
DISTRIBUTION  
S
S
T
A
400  
300  
200  
100  
0
20  
15  
10  
5
0
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE DRIFT, TCV  
(µV/°C)  
OS  
FIGURE 1. INPUT OFFSET VOLTAGE DISTRIBUTION  
FIGURE 2. INPUT OFFSET VOLTAGE DRIFT  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
0.008  
V
= ±5V  
S
0.004  
0.000  
-0.004  
-0.008  
-0.012  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 3. INPUT OFFSET VOLTAGE vs TEMPERATURE  
FIGURE 4. INPUT BIAS CURRENT vs TEMPERATURE  
4.96  
-4.85  
V
= ±5V  
= 5mA  
V = ±5V  
S
OUT  
S
I
I
= 5mA  
OUT  
-4.87  
-4.89  
-4.91  
-4.93  
-4.95  
4.94  
4.92  
4.90  
4.88  
4.86  
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 5. OUTPUT HIGH VOLTAGE vs TEMPERATURE  
FIGURE 6. OUTPUT LOW VOLTAGE vs TEMPERATURE  
FN7119.7  
May 7, 2007  
6
EL5111, EL5211, EL5411  
Typical Performance Curves (Continued)  
75  
70  
65  
60  
78  
77  
76  
75  
74  
73  
72  
V
R
= ±5V  
= 1kΩ  
V = ±5V  
S
S
L
-50  
-10  
30  
70  
110  
150  
-50  
-10  
30  
70  
110  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. OPEN-LOOP GAIN vs TEMPERATURE  
FIGURE 8. SLEW RATE vs TEMPERATURE  
2.9  
2.70  
T
= +25°C  
V = ±5V  
S
A
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
4
8
12  
16  
20  
-50  
-10  
30  
70  
110  
150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY  
VOLTAGE  
FIGURE 10. SUPPLY CURRENT PER AMPLIFIER vs  
TEMPERATURE  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.12  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.14  
-0.16  
-0.18  
V
= ±5V  
= 2  
= 1kΩ  
S
A
V
R
L
0
100  
IRE  
200  
0
100  
IRE  
200  
FIGURE 11. DIFFERENTIAL GAIN  
FIGURE 12. DIFFERENTIAL PHASE  
FN7119.7  
May 7, 2007  
7
EL5111, EL5211, EL5411  
Typical Performance Curves (Continued)  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
80  
60  
40  
20  
0
250  
190  
130  
70  
V
= ±5V  
= 2  
= 1kΩ  
S
A
V
R
L
GAIN  
FREQ = 1MHz  
2nd HD  
PHASE  
10  
3rd HD  
-20  
1k  
-50  
100M  
0
2
4
6
8
10  
10k  
100k  
1M  
10M  
V
(V)  
FREQUENCY (Hz)  
OP-P  
FIGURE 13. HARMONIC DISTORTION vs V  
FIGURE 14. OPEN LOOP GAIN AND PHASE  
OP-P  
5
25  
V
= ±5V  
= 1  
S
100pF  
A
V
1000pF  
15  
C
= 0pF  
3
1
LOAD  
1kΩ  
47pF  
10pF  
5
-5  
-1  
-3  
-5  
560Ω  
150Ω  
V
= ±5V  
= 1  
= 1kΩ  
S
-15  
A
V
R
L
-25  
100k  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS R  
FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS C  
L
L
400  
350  
300  
250  
200  
150  
100  
50  
12  
10  
8
6
4
V
= ±5V  
= 1  
= 1kΩ  
S
A
V
2
R
L
DISTORTION <1%  
0
10k  
0
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
FIGURE 17. CLOSED LOOP OUTPUT IMPEDANCE  
FIGURE 18. MAXIMUM OUTPUT SWING vs FREQUENCY  
FN7119.7  
May 7, 2007  
8
EL5111, EL5211, EL5411  
Typical Performance Curves (Continued)  
-15  
-25  
-35  
-45  
-55  
-65  
-80  
-60  
-40  
-20  
0
PSRR+  
PSRR-  
V
T
= ±5V  
= +25°C  
S
A
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 19. CMRR  
FIGURE 20. PSRR  
-60  
-80  
1K  
100  
10  
DUAL MEASURED CH A TO B  
QUAD MEASURED CH A TO D OR B TO C  
OTHER COMBINATIONS YIELD  
IMPROVED REJECTION  
-100  
-120  
-140  
-160  
V
R
= ±5V  
= 1kΩ  
= 1  
S
L
A
V
IN  
V
= 110mV  
RMS  
1
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
30M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 21. INPUT VOLTAGE NOISE SPECTRAL DENSITY  
FIGURE 22. CHANNEL SEPARATION  
5
4
100  
V
= ±5V  
= 1  
= 1kΩ  
V
= ±5V  
A = 1  
V
L
S
S
A
V
R
V
3
R
= 1kΩ  
80  
60  
40  
20  
0
L
0.1%  
= ±50mV  
= +25°C  
IN  
2
T
A
1
0
-1  
-2  
-3  
-4  
-5  
0.1%  
95  
10  
100  
LOAD CAPACITANCE (pF)  
1k  
55  
65  
75  
85  
105  
SETTLING TIME (ns)  
FIGURE 23. SMALL-SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE  
FIGURE 24. SETTLING TIME vs STEP SIZE  
FN7119.7  
May 7, 2007  
9
EL5111, EL5211, EL5411  
Typical Performance Curves (Continued)  
V
T
= ±5V  
= +25°C  
= 1  
V
T
= ±5V  
= +25°C  
= 1  
S
A
S
A
A
A
V
V
R
= 1kΩ  
R
= 1kΩ  
L
L
100mV STEP  
1V STEP  
50ns/DIV  
50ns/DIV  
FIGURE 25. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 26. SMALL SIGNAL TRANSIENT RESPONSE  
Pin Descriptions  
EL5111  
EL5111  
EL5211  
EL5411  
(TSOT-5)  
(HMSOP8) (HMSOP8) (HTSSOP14)  
NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
1
6 1 1  
VOUTA Amplifier A output  
V
S+  
V
S-  
GND  
CIRCUIT 1  
4
2
2
2
VINA-  
Amplifier A inverting input  
V
S+  
V
S-  
CIRCUIT 2  
(Reference Circuit 2)  
3
5
3
7
3
8
5
6
7
3
4
VINA+  
VS+  
Amplifier A non-inverting input  
Positive power supply  
5
VINB+  
VINB-  
Amplifier B non-inverting input  
Amplifier B inverting input  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 2)  
6
7
VOUTB Amplifier B output  
VOUTC Amplifier C output  
8
9
VINC-  
VINC+  
VS-  
Amplifier C inverting input  
10  
11  
12  
13  
14  
Amplifier C non-inverting input  
Negative power supply  
2
4
4
VIND+  
VIND-  
Amplifier D non-inverting input  
Amplifier D inverting input  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
VOUTD Amplifier D output  
NC Not connected  
1, 5, 8  
FN7119.7  
May 7, 2007  
10  
EL5111, EL5211, EL5411  
Short Circuit Current Limit  
Applications Information  
The EL5111, EL5211, and EL5411 will limit the short circuit  
current to ±180mA if the output is directly shorted to the  
positive or the negative supply. If an output is shorted  
indefinitely, the power dissipation could easily increase such  
that the device may be damaged. Maximum reliability is  
maintained if the output continuous current never exceeds  
±65mA. This limit is set by the design of the internal metal  
interconnects.  
Product Description  
The EL5111, EL5211, and EL5411 voltage feedback  
amplifiers are fabricated using a high voltage CMOS  
process. They exhibit rail-to-rail input and output capability,  
are unity gain stable and have low power consumption  
(2.5mA per amplifier). These features make the EL5111,  
EL5211, and EL5411 ideal for a wide range of general-  
purpose applications. Connected in voltage follower mode  
and driving a load of 1kΩ, the EL5111, EL5211, and EL5411  
have a -3dB bandwidth of 60MHz while maintaining a 75V/µs  
slew rate. The EL5111 is a single amplifier, the EL5211 a  
dual amplifier, and the EL5411 a quad amplifier.  
Output Phase Reversal  
The EL5111, EL5211, and EL5411 are immune to phase  
reversal as long as the input voltage is limited from V - -0.5V  
S
to V + +0.5V. Figure 28 shows a photo of the output of the  
S
device with the input voltage driven beyond the supply rails.  
Although the device's output will not change phase, the  
input's overvoltage should be avoided. If an input voltage  
exceeds supply voltage by more than 0.6V, electrostatic  
protection diodes placed in the input stage of the device  
begin to conduct and overvoltage damage could occur.  
Operating Voltage, Input, and Output  
The EL5111, EL5211, and EL5411 are specified with a single  
nominal supply voltage from 5V to 15V or a split supply with  
its total range from 5V to 15V. Correct operation is  
guaranteed for a supply range of 4.5V to 16.5V. Most  
EL5111, EL5211, and EL5411 specifications are stable over  
both the full supply range and operating temperatures of  
-40°C to +85°C. Parameter variations with operating voltage  
and/or temperature are shown in the typical performance  
curves.  
V
= ±2.5V, T = +25°C, A = 1, V = 6V  
S
A
V
IN  
P-P  
1V  
10µs  
The input common-mode voltage range of the EL5111,  
EL5211, and EL5411 extends 500mV beyond the supply  
rails. The output swings of the EL5111, EL5211, and EL5411  
typically extend to within 100mV of positive and negative  
supply rails with load currents of 5mA. Decreasing load  
currents will extend the output voltage range even closer to  
the supply rails. Figure 27 shows the input and output  
waveforms for the device in the unity-gain configuration.  
Operation is from ±5V supply with a 1kΩ load connected to  
1V  
FIGURE 28. OPERATION WITH BEYOND-THE-RAILS INPUT  
GND. The input is a 10V  
sinusoid. The output voltage is  
P-P  
Power Dissipation  
approximately 9.8V  
.
P-P  
With the high-output drive capability of the EL5111, EL5211,  
and EL5411 amplifiers, it is possible to exceed the +125°C  
'absolute-maximum junction temperature' under certain load  
current conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if load conditions need to be modified for the  
amplifier to remain in the safe operating area.  
V
= ±5V, T = +25°C, A = 1, V = 10V  
IN P-P  
S
A
V
5V  
10µs  
The maximum power dissipation allowed in a package is  
determined according to:  
T
T  
AMAX  
JMAX  
--------------------------------------------  
P
=
5V  
DMAX  
θ
JA  
(EQ. 1)  
FIGURE 27. OPERATION WITH RAIL-TO-RAIL INPUT AND  
OUTPUT  
where:  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
Θ = Thermal resistance of the package  
JA  
• P  
DMAX  
= Maximum power dissipation in the package  
FN7119.7  
May 7, 2007  
11  
EL5111, EL5211, EL5411  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY (4-LAYER) TEST BOARD -  
HTSSOP EXPOSED DIEPAD SOLDERED TO  
PCB PER JESD51-5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
P
= Σi[V × I  
+ (V + V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
(EQ. 2)  
2.632W  
when sourcing, and:  
HTSSOP14  
θ
= +38°C/W  
JA  
P
= Σi[V × I  
+ (V  
i V -) × I  
i]  
LOAD  
DMAX  
S
SMAX  
OUT  
S
(EQ. 3)  
when sinking,  
where:  
• i = 1 to 2 for dual and 1 to 4 for quad  
• V = Total supply voltage  
0
25  
50  
75 85 100  
125  
S
AMBIENT TEMPERATURE (°C)  
• I  
SMAX  
= Maximum supply current per amplifier  
FIGURE 30. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
• V  
i = Maximum output voltage of the application  
OUT  
• I  
i = Load current  
LOAD  
If we set the two P  
can solve for R  
through 36 provide a convenient way to see if the device will  
overheat. The maximum safe power dissipation can be  
found graphically, based on the package type and the  
ambient temperature. By using the previous equation, it is a  
equations equal to each other, we  
i to avoid device overheat. Figures 29  
DMAX  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
LOAD  
1.2  
TSSOP28  
1.0  
0.8  
0.6  
θ
θ
θ
θ
= +120°C/W  
JA  
TSSOP24  
= +128°C/W  
simple matter to see if P  
exceeds the device's power  
JA  
DMAX  
TSSOP20  
1.042W  
977mW  
derating curves. To ensure proper operation, it is important  
to observe the recommended derating curves shown in  
Figures 29 through 36.  
= +140°C/W  
JA  
TSSOP16  
0.4 893mW  
845mW  
= +148°C/W  
JA  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
0.2  
TSSOP14  
CONDUCTIVITY TEST BOARD  
758mW  
0.9  
θ
= +165°C/W  
125 150  
JA  
0.0  
0.8  
0
25  
50  
75 85 100  
694mW  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
HTSSOP14  
= +144°C/W  
AMBIENT TEMPERATURE (°C)  
θ
JA  
FIGURE 31. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.8  
TSSOP28  
=+75°C/W  
1.6  
0
25  
50  
75 85 100  
125  
θ
θ
θ
θ
JA  
TSSOP24  
1.4  
1.2  
1.0  
0.8  
AMBIENT TEMPERATURE (°C)  
=+85°C/W  
FIGURE 29. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JA  
TSSOP20  
1.667W  
1.471W  
=+90°C/W  
JA  
TSSOP16  
0.6 1.389W  
=+97°C/W  
JA  
1.289W  
1.250W  
0.4  
0.2  
0.0  
TSSOP14  
θ
=+100°C/W  
125 150  
JA  
0
25  
50  
75 85 100  
AMBIENT TEMPERATURE (°C)  
FIGURE 32. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7119.7  
May 7, 2007  
12  
EL5111, EL5211, EL5411  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY (SINGLE LAYER) TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY (4-LAYER) TEST BOARD  
0.350  
0.300  
0.250  
0.200  
0.150  
0.100  
0.050  
0.000  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
290mW  
483mW  
TSOT5  
= +345°C/W  
TSOT5  
= +207°C/W  
θ
JA  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 33. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 34. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
CONDUCTIVITY TEST BOARD  
0.6  
1
870mW  
0.9  
486mW  
0.5  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
0
25  
50  
75 85 100  
125  
0
25  
50  
75 85 100  
125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 35. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 36. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
Unused Amplifiers  
Power Supply Bypassing and Printed Circuit  
Board Layout  
It is recommended that any unused amplifiers in a dual and  
a quad package be configured as a unity gain follower. The  
inverting input should be directly connected to the output  
and the non-inverting input tied to the ground plane.  
The EL5111, EL5211, and EL5411 can provide gain at high  
frequency. As with any high-frequency device, good printed  
circuit board layout is necessary for optimum performance.  
Ground plane construction is highly recommended, lead  
lengths should be as short as possible and the power supply  
pins must be well bypassed to reduce the risk of oscillation.  
For normal single supply operation, where the V - pin is  
S
connected to ground, a 0.1µF ceramic capacitor should be  
placed from V + to pin to V - pin. A 4.7µF tantalum  
S
S
capacitor should then be connected in parallel, placed in the  
region of the amplifier. One 4.7µF capacitor may be used for  
multiple devices. This same capacitor combination should be  
placed at each supply pin to ground if split supplies are to be  
used.  
FN7119.7  
May 7, 2007  
13  
EL5111, EL5211, EL5411  
Thin Shrink Small Outline Package Family (TSSOP)  
MDP0044  
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY  
0.25 M C A B  
D
A
(N/2)+1  
MILLIMETERS  
N
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE  
A
A1  
A2  
b
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
6.50  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
7.80  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
9.70  
6.40  
4.40  
0.65  
0.60  
1.00  
Max  
±0.05  
PIN #1 I.D.  
E
E1  
±0.05  
+0.05/-0.06  
+0.05/-0.06  
±0.10  
0.20 C B A  
2X  
1
(N/2)  
c
N/2 LEAD TIPS  
B
D
TOP VIEW  
E
Basic  
E1  
e
±0.10  
Basic  
0.05  
H
e
L
±0.15  
C
L1  
Reference  
Rev. F 2/07  
SEATING  
PLANE  
NOTES:  
0.10 M C A B  
b
1. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
0.10 C  
N LEADS  
SIDE VIEW  
2. Dimension “E1” does not include interlead flash or protrusions.  
Interlead flash and protrusions shall not exceed 0.25mm per  
side.  
SEE DETAIL “X”  
3. Dimensions “D” and “E1” are measured at dAtum Plane H.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
END VIEW  
L1  
A2  
A
GAUGE  
PLANE  
0.25  
L
A1  
0° - 8°  
DETAIL X  
FN7119.7  
May 7, 2007  
14  
EL5111, EL5211, EL5411  
HTSSOP (Heat-Sink TSSOP) Family  
MDP0048  
HTSSOP (HEAT-SINK TSSOP) FAMILY  
0.25 M C A B  
D
A
(N/2)+1  
N
MILLIMETERS  
SYMBOL 14 LD 20 LD 24 LD 28 LD 38 LD TOLERANCE  
A
A1  
A2  
b
1.20  
1.20  
1.20  
1.20  
1.20  
Max  
PIN #1 I.D.  
E
0.075 0.075 0.075 0.075 0.075  
±0.075  
E1  
0.90  
0.25  
0.15  
5.00  
3.2  
0.90  
0.25  
0.15  
6.50  
4.2  
0.90  
0.25  
0.15  
7.80  
4.3  
0.90  
0.25  
0.15  
9.70  
5.0  
0.90  
0.22  
0.15  
9.70  
7.25  
6.40  
4.40  
3.0  
+0.15/-0.10  
+0.05/-0.06  
+0.05/-0.06  
±0.10  
0.20 C B A  
c
2X  
1
(N/2)  
N/2 LEAD TIPS  
TOP VIEW  
B
D
D1  
E
Reference  
Basic  
6.40  
4.40  
3.0  
6.40  
4.40  
3.0  
6.40  
4.40  
3.0  
6.40  
4.40  
3.0  
D1  
EXPOSED  
THERMAL PAD  
E1  
E2  
e
±0.10  
Reference  
Basic  
0.65  
0.60  
1.00  
14  
0.65  
0.60  
1.00  
20  
0.65  
0.60  
1.00  
24  
0.65  
0.60  
1.00  
28  
0.50  
0.60  
1.00  
38  
E2  
L
±0.15  
L1  
N
Reference  
Reference  
Rev. 3 2/07  
BOTTOM VIEW  
NOTES:  
1. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
0.05  
H
e
C
2. Dimension “E1” does not include interlead flash or protrusions.  
Interlead flash and protrusions shall not exceed 0.25mm per  
side.  
SEATING  
PLANE  
3. Dimensions “D” and “E1” are measured at Datum Plane H.  
0.10 M C A B  
b
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
0.10 C  
N LEADS  
SIDE VIEW  
SEE DETAIL “X”  
c
END VIEW  
L1  
A2  
A
GAUGE  
PLANE  
0.25  
L
A1  
0° - 8°  
DETAIL X  
FN7119.7  
May 7, 2007  
15  
EL5111, EL5211, EL5411  
TSOT Package Family  
MDP0049  
e1  
D
TSOT PACKAGE FAMILY  
A
MILLIMETERS  
TSOT6  
1.00  
6
4
N
SYMBOL  
TSOT5  
1.00  
0.05  
0.87  
0.38  
0.127  
2.90  
2.80  
1.60  
0.95  
1.90  
0.40  
0.60  
0.20  
5
TSOT8  
1.00  
0.05  
0.87  
0.29  
0.127  
2.90  
2.80  
1.60  
0.65  
1.95  
0.40  
0.60  
0.13  
8
TOLERANCE  
Max  
A
A1  
A2  
b
0.05  
±0.05  
E1  
E
0.87  
±0.03  
2
3
0.38  
±0.07  
0.15  
2X  
C
D
c
0.127  
2.90  
+0.07/-0.007  
Basic  
1
2
(N/2)  
0.25  
C
D
5
2X N/2 TIPS  
e
E
2.80  
Basic  
E1  
e
1.60  
Basic  
ddd  
C A-B D  
M
B
b
NX  
0.95  
Basic  
e1  
L
1.90  
Basic  
0.40  
±0.10  
L1  
ddd  
N
0.60  
Reference  
-
0.20  
0.15  
2X  
C A-B  
1
3
D
6
Reference  
Rev. B 2/07  
C
NOTES:  
A2  
1. Plastic or metal protrusions of 0.15mm maximum per side are  
not included.  
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.15mm maximum per side are  
not included.  
A1  
0.10  
NX  
C
3. This dimension is measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(TSOT6 AND TSOT8 only).  
(L1)  
H
6. TSOT5 version has no center lead (shown as a dashed line).  
A
GAUGE  
PLANE  
0.25  
c
L
4° ±4°  
FN7119.7  
May 7, 2007  
16  
EL5111, EL5211, EL5411  
HMSOP (Heat-Sink MSOP) Package Family  
MDP0050  
HMSOP (HEAT-SINK MSOP) PACKAGE FAMILY  
E
0.25 M C A B  
B
E1  
MILLIMETERS  
1
N
SYMBOL HMSOP8 HMSOP10  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
1.00  
0.075  
0.86  
0.30  
0.15  
3.00  
1.85  
4.90  
3.00  
1.73  
0.65  
0.55  
0.95  
8
1.00  
0.075  
0.86  
0.20  
0.15  
3.00  
1.85  
4.90  
3.00  
1.73  
0.50  
0.55  
0.95  
10  
-
D
(N/2)+1  
+0.025/-0.050  
±0.09  
-
-
(N/2)  
PIN #1  
I.D.  
A
+0.07/-0.08  
±0.05  
-
c
-
TOP VIEW  
D
±0.10  
1, 3  
D1  
E
Reference  
±0.15  
-
E2  
EXPOSED  
THERMAL PAD  
-
E1  
E2  
e
±0.10  
2, 3  
Reference  
Basic  
-
D1  
-
L
±0.15  
-
L1  
N
Basic  
-
BOTTOM VIEW  
Reference  
-
Rev. 1 2/07  
NOTES:  
e
H
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
C
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
0.08  
M
C A B  
b
0.10 C  
N LEADS  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
SIDE VIEW  
L1  
A
c
END VIEW  
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
A1  
3° ±3°  
DETAIL X  
FN7119.7  
May 7, 2007  
17  
EL5111, EL5211, EL5411  
Thin Shrink Small Outline Plastic Packages (TSSOP)  
M14.173  
N
14 LEAD THIN SHRINK SMALL OUTLINE PLASTIC  
INDEX  
AREA  
0.25(0.010)  
M
B M  
E
PACKAGE  
E1  
-B-  
INCHES  
MIN  
MILLIMETERS  
GAUGE  
PLANE  
SYMBOL  
MAX  
0.047  
0.006  
0.041  
0.0118  
0.0079  
0.199  
0.177  
MIN  
-
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
5.05  
4.50  
NOTES  
A
A1  
A2  
b
-
-
1
2
3
0.002  
0.031  
0.0075  
0.0035  
0.195  
0.169  
0.05  
0.80  
0.19  
0.09  
4.95  
4.30  
-
L
0.25  
0.010  
-
0.05(0.002)  
SEATING PLANE  
A
9
-A-  
D
c
-
D
3
-C-  
α
E1  
e
4
A2  
e
A1  
0.026 BSC  
0.65 BSC  
-
c
b
0.10(0.004)  
E
0.246  
0.256  
6.25  
0.45  
6.50  
0.75  
-
0.10(0.004) M  
C
A M B S  
L
0.0177  
0.0295  
6
N
14  
14  
7
NOTES:  
o
o
o
o
0
8
0
8
-
α
1. These package dimensions are within allowable dimensions of  
JEDEC MO-153-AC, Issue E.  
Rev. 2 4/06  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.15mm (0.006 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable dambar  
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimen-  
sion at maximum material condition. Minimum space between protru-  
sion and adjacent lead is 0.07mm (0.0027 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact. (Angles in degrees)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7119.7  
May 7, 2007  
18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY