EL5144 [INTERSIL]

100MHz Single-Supply Rail-to-Rail Amplifiers; 100MHz的单电源轨到轨放大器
EL5144
型号: EL5144
厂家: Intersil    Intersil
描述:

100MHz Single-Supply Rail-to-Rail Amplifiers
100MHz的单电源轨到轨放大器

放大器
文件: 总19页 (文件大小:498K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5144, EL5146, EL5244, EL5246, EL5444  
®
Data Sheet  
April 13, 2005  
FN7177.1  
100MHz Single-Supply Rail-to-Rail  
Amplifiers  
Features  
• Rail-to-rail output swing  
The EL5144 series amplifiers are voltage-feedback, high  
speed, rail-to-rail amplifiers designed to operate on a single  
+5V supply. They offer unity gain stability with an unloaded -  
3dB bandwidth of 100MHz. The input common-mode voltage  
range extends from the negative rail to within 1.5V of the  
positive rail. Driving a 75double terminated coaxial cable,  
the EL5144 series amplifiers drive to within 150mV of either  
rail. The 200V/µs slew rate and 0.1%/0.1° differential  
gain/differential phase makes these parts ideal for composite  
and component video applications. With their voltage-  
feedback architecture, these amplifiers can accept reactive  
feedback networks, allowing them to be used in analog  
filtering applications These amplifiers will source 90mA and  
sink 65mA.  
• -3dB bandwidth = 100MHz  
• Single-supply +5V operation  
• Power-down to 2.6µA  
• Large input common-mode range 0V < V  
• Diff gain/phase = 0.1%/0.1°  
• Low power 35mW per amplifier  
< 3.5V  
CM  
• Space-saving SOT23-5, MSOP8 & 10, & QSOP16  
packages  
Pb-Free available (RoHS compliant)  
Applications  
The EL5146 and EL5246 have a power-savings disable  
feature. Applying a standard TTL low logic level to the CE  
(Chip Enable) pin reduces the supply current to 2.6µA within  
10ns. Turn-on time is 500ns, allowing true break-before-  
make conditions for multiplexing applications. Allowing the  
CE pin to float or applying a high logic level will enable the  
amplifier.  
• Video amplifiers  
• 5V analog signal processing  
• Multiplexers  
• Line drivers  
• Portable computers  
• High speed communications  
• Sample & hold amplifiers  
• Comparators  
For applications where board space is critical, singles are  
offered in a 5-pin SOT-23 package, duals in 8- and 10-pin  
MSOP packages, and quads in a 16-pin QSOP package.  
Singles, duals, and quads are also available in industry-  
standard pinouts in SO and PDIP packages. All parts  
operate over the industrial temperature range of -40°C to  
+85°C.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-352-6832 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2003, 2005. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL5144, EL5146, EL5244, EL5246, EL5444  
Ordering Information (Continued)  
Ordering Information  
PART NUMBER  
PACKAGE  
TAPE & REEL PKG. DWG. #  
PART NUMBER  
EL5144CW-T7  
EL5144CW-T7A  
PACKAGE  
5-Pin SOT-23*  
5-Pin SOT-23*  
TAPE & REEL PKG. DWG. #  
EL5246CYZ  
(See Note)  
10-Pin MSOP  
(Pb-free)  
-
MDP0043  
MDP0043  
MDP0043  
7” (3K pcs)  
7” (250 pcs)  
7” (3K pcs)  
MDP0038  
MDP0038  
MDP0038  
EL5246CYZ-T7  
(See Note)  
10-Pin MSOP  
(Pb-free)  
7”  
EL5144CWZ-T7  
(See Note)  
5-Pin SOT-23*  
(Pb-free)  
EL5246CYZ-T13  
(See Note)  
10-Pin MSOP  
(Pb-free)  
13”  
EL5144CWZ-T7A 5-Pin SOT-23*  
7” (250 pcs)  
MDP0038  
(See Note)  
(Pb-free)  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
EL5444CN  
14-Pin PDIP  
14-Pin SOIC  
14-Pin SOIC  
14-Pin SOIC  
-
-
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
EL5146CN  
-
-
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
EL5444CS  
EL5146CS  
EL5444CS-T7  
EL5444CS-T13  
7”  
13”  
-
EL5146CS-T7  
EL5146CS-T13  
7”  
13”  
-
EL5444CSZ  
(See Note)  
14-Pin SOIC  
(Pb-free)  
EL5146CSZ  
(See Note)  
8-Pin SOIC  
(Pb-free)  
EL5444CSZ-T7  
(See Note)  
14-Pin SOIC  
(Pb-free)  
7”  
MDP0027  
MDP0027  
EL5146CSZ-T7  
(See Note)  
8-Pin SOIC  
(Pb-free)  
7”  
MDP0027  
MDP0027  
EL5444CSZ-T13  
(See Note)  
14-Pin SOIC  
(Pb-free)  
13”  
EL5146CSZ-T13  
(See Note)  
8-Pin SOIC  
(Pb-free)  
13”  
EL5444CU  
16-Pin QSOP  
16-Pin QSOP  
-
13”  
-
MDP0040  
MDP0040  
MDP0040  
EL5244CN  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
-
-
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
EL5444CU-T13  
EL5244CS  
EL5444CUZ  
(See Note)  
16-Pin QSOP  
(Pb-free)  
EL5244CS-T7  
EL5244CS-T13  
7”  
13”  
-
EL5444CUZ-T7  
(See Note)  
16-Pin QSOP  
(Pb-free)  
7”  
MDP0040  
MDP0040  
EL5244CSZ  
(See Note)  
8-Pin SOIC  
(Pb-free)  
EL5444CUZ-T13  
(See Note)  
16-Pin QSOP  
(Pb-free)  
13”  
EL5244CSZ-T7  
(See Note)  
8-Pin SOIC  
(Pb-free)  
7”  
MDP0027  
MDP0027  
*EL5144CW symbol is .Jxxx where xxx represents date  
EL5244CSZ-T13  
(See Note)  
8-Pin SOIC  
(Pb-free)  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which are RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations. Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
EL5244CY  
8-Pin MSOP  
8-Pin MSOP  
-
13”  
-
MDP0043  
MDP0043  
MDP0043  
EL5244CY-T13  
EL5244CYZ  
(See Note)  
8-Pin MSOP  
(Pb-free)  
EL5244CYZ-T7  
(See Note)  
8-Pin MSOP  
(Pb-free)  
7”  
MDP0043  
MDP0043  
EL5244CYZ-T13  
(See Note)  
8-Pin MSOP  
(Pb-free)  
13”  
EL5246CN  
14-Pin PDIP  
14-Pin SOIC  
14-Pin SOIC  
14-Pin SOIC  
-
-
MDP0031  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
EL5246CS  
EL5246CS-T7  
EL5246CS-T13  
7”  
13”  
-
EL5246CSZ  
(See Note)  
14-Pin SOIC  
(Pb-free)  
EL5246CSZ-T7  
(See Note)  
14-Pin SOIC  
(Pb-free)  
7”  
MDP0027  
MDP0027  
EL5246CSZ-T13  
(See Note)  
14-Pin SOIC  
(Pb-free)  
13”  
EL5246CY  
10-Pin MSOP  
10-Pin MSOP  
-
MDP0043  
MDP0043  
EL5246CY-T13  
13”  
2
EL5144, EL5146, EL5244, EL5246, EL5444  
s
Pinouts  
EL5144  
(5-PIN SOT-23)  
TOP VIEW  
EL5146 & EL5146  
(8-PIN SO, PDIP)  
TOP VIEW  
OUT  
GND  
IN+  
1
2
3
5
4
VS  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
VS  
-
+
-
+
IN-  
IN+  
OUT  
NC  
GND  
EL5244  
(8-PIN SOIC, PDIP, MSOP)  
EL5246  
(10-PIN MSOP)  
TOP VIEW  
EL5246  
(14-PIN SOIC, PDIP)  
TOP VIEW  
TOP VIEW  
OUT  
1
2
3
4
8
7
6
5
V
IN  
+
1
2
3
4
5
10 IN  
-
A
1
2
3
4
5
6
7
14  
IN  
-
IN  
+
A
S
A
A
A
-
-
IN  
-
-
OUT  
CEA  
GND  
CEB  
9
8
7
6
OUT  
NC  
13  
12  
11  
10  
9
OUT  
A
B
A
A
+
+
+
IN  
+
IN  
-
V
S
CEA  
NC  
A
B
B
-
+
-
IN  
+
+
GND  
OUT  
GND  
CEB  
NC  
V
S
B
IN  
+
IN  
-
NC  
B
B
+
-
OUT  
B
8
IN  
+
IN  
-
B
B
EL5444  
(14-PIN SOIC, PDIP)  
EL5444  
(16-PIN QSOP)  
TOP VIEW  
TOP VIEW  
1
14 OUT  
1
16  
15  
OUT  
OUT  
D
OUT  
A
D
A
IN  
-
2
3
4
5
6
7
8
2
3
4
5
6
7
13  
12  
11  
10  
9
IN  
IN  
-
IN  
-
IN  
-
A
D
A
D
IN  
+
14 IN  
+
IN  
+
+
A
D
A
D
13 GND  
V
GND  
V
V
S
+
S
IN  
12  
11  
GND  
IN  
+
B
S
+
C
C
IN  
IN  
-
IN  
+
-
B
IN  
-
B
C
IN  
-
10 IN  
OUT  
8
B
OUT  
C
B
C
9
OUT  
C
OUT  
B
3
EL5144, EL5146, EL5244, EL5246, EL5444  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V and GND. . . . . . . . . . . . . . . . . . . . .+6V  
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . GND -0.5V to V +0.5V  
S
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V = +5V, GND = 0V, T = 25°C, CE = +2V, unless otherwise specified.  
S A  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
d
d
Differential Gain Error (Note 1)  
Differential Phase Error (Note 1)  
Bandwidth  
G = 2, R = 150to 2.5V, R = 1kΩ  
0.1  
0.1  
100  
60  
%
G
P
L
F
G = 2, R = 150to 2.5V, R = 1kΩ  
°
L
F
BW  
-3dB, G = 1, R = 10kΩ, R = 0  
MHz  
MHz  
MHz  
MHz  
V/µs  
L
F
-3dB, G = 1, R = 150Ω, R = 0  
L
F
BW1  
GBWP  
SR  
Bandwidth  
±0.1dB, G = 1, R = 150to GND, R = 0  
8
L
F
Gain Bandwidth Product  
Slew Rate  
60  
G = 1, R = 150to GND, R = 0, V = 0.5V  
150  
200  
L
F
O
to 3.5V  
t
Settling Time  
to 0.1%, V  
= 0V to 3V  
OUT  
35  
ns  
S
DC PERFORMANCE  
A
V
Open Loop Voltage Gain  
Offset Voltage  
R = no load, V = 0.5V to 3V  
OUT  
54  
40  
65  
50  
dB  
dB  
VOL  
L
R = 150to GND, V  
= 0.5V to 3V  
L
OUT  
V
V
= 1V, SOT23-5 and MSOP packages  
25  
15  
mV  
OS  
CM  
CM  
= 1V, All other packages  
= 0V & 3.5V  
mV  
T V  
Input Offset Voltage Temperature  
Coefficient  
10  
2
mV/°C  
C
OS  
I
Input Bias Current  
V
100  
3.5  
nA  
B
CM  
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
CMRR 47dB  
0
V
CMRR  
Common Mode Rejection Ratio  
DC, V  
DC, V  
= 0 to 3.0V  
= 0 to 3.5V  
50  
47  
60  
60  
dB  
dB  
GΩ  
pF  
CM  
CM  
R
C
Input Resistance  
Input Capacitance  
1.5  
1.5  
IN  
IN  
OUTPUT CHARACTERISTICS  
V
Positive Output Voltage Swing  
R = 150to 2.5V (Note 2)  
4.70  
4.20  
4.95  
4.85  
4.65  
4.97  
0.15  
0
V
V
OP  
L
R = 150to GND (Note 2)  
L
R = 1kto 2.5V (Note 2)  
V
L
V
Negative Output Voltage Swing  
R = 150to 2.5V (Note 2)  
0.30  
V
ON  
L
R = 150to GND (Note 2)  
V
L
R = 1kto 2.5V (Note 2)  
0.03  
90  
0.05  
120  
-80  
V
L
+I  
Positive Output Current  
Negative Output Current  
R = 10to 2.5V  
60  
mA  
mA  
OUT  
L
-I  
R = 10to 2.5V  
-50  
-65  
OUT  
L
ENABLE (EL5146 & EL5246 ONLY)  
4
EL5144, EL5146, EL5244, EL5246, EL5444  
Electrical Specifications  
V
= +5V, GND = 0V, T = 25°C, CE = +2V, unless otherwise specified. (Continued)  
S
A
PARAMETER  
DESCRIPTION  
Enable Time  
CONDITIONS  
EL5146, EL5246  
MIN  
TYP  
500  
MAX  
UNIT  
ns  
t
t
I
I
EN  
Disable Time  
EL5146, EL5246  
10  
ns  
DIS  
CE pin Input High Current  
CE pin Input Low Current  
CE = 5V, EL5146, EL5246  
CE = 0V, EL5146, EL5246  
0.003  
-1.2  
1
mA  
mA  
V
IHCE  
ILCE  
-3  
V
CE pin Input High Voltage for Power EL5146, EL5246  
Up  
2.0  
IHCE  
V
CE pin Input Low Voltage for Power EL5146, EL5246  
Down  
0.8  
V
ILCE  
SUPPLY  
Is  
Supply Current - Enabled (per  
amplifier)  
No load, V = 0V, CE = 5V  
IN  
7
8.8  
5
mA  
mA  
ON  
Is  
Supply Current - Disabled (per  
amplifier)  
No load, V = 0V, CE = 0V  
IN  
2.6  
OFF  
PSOR  
PSRR  
Power Supply Operating Range  
Power Supply Rejection Ratio  
4.75  
50  
5.0  
60  
5.25  
V
DC, V = 4.75V to 5.25V  
dB  
S
NOTES:  
1. Standard NTSC test, AC signal amplitude = 286mV  
, f = 3.8MHz, V  
P-P  
is swept from 0.8V to 3.4V, R is DC-coupled.  
OUT L  
2. R is total load resistance due to feedback resistor and load resistor.  
L
5
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves  
Non-Inverting Frequency Response (Gain)  
Non-Inverting Frequency Response (Phase)  
2
0
A
=1, R =0Ω  
F
V
0
-45  
A
=1, R =0Ω  
F
V
A
=2, R =1kΩ  
A =5.6, R =1kΩ  
V F  
V
F
-2  
-4  
-6  
-8  
-90  
A
=5.6, R =1kΩ  
A
=2, R =1kΩ  
V
F
V
F
-135  
-180  
V
=1.5V  
V
=1.5V  
CM  
R =150Ω  
CM  
R =150Ω  
L
L
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
100M  
Frequency (Hz)  
Inverting Frequency Response (Gain)  
Inverting Frequency Response (Phase)  
2
0
180  
135  
90  
45  
0
A
=-1  
A =-1  
V
V
A
=-2  
A =-2  
V
V
-2  
-4  
-6  
-8  
A
=-5.6  
A =-5.6  
V
V
V
=1.5V  
V
=1.5V  
CM  
F
L
CM  
R =1kΩ  
R =1kΩ  
R =150Ω  
F
R =150Ω  
L
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
100M  
3dB Bandwidth vs Die Temperature for Various Gains  
3dB Bandwidth vs Die Temperature for Various Gains  
100  
80  
60  
40  
20  
0
150  
120  
90  
60  
30  
0
R =150Ω  
R =10kΩ  
L
L
A
=1, R =0Ω  
F
V
A
=1, R =0Ω  
F
V
A
=2, R =1kΩ  
F
V
A
=2, R =1kΩ  
F
V
A
=5.6, R =1kΩ  
V
F
A =5.6, R =1kΩ  
V F  
-55  
-15  
25  
65  
105  
145  
-55  
-15  
25  
65  
105  
145  
Die Temperature (°C)  
Die Temperature (°C)  
6
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves (Continued)  
Frequency Response for Various R  
Frequency Response for Various C  
L
L
V
=1.5V  
V
=1.5V  
CM  
R =0Ω  
CM  
R =150Ω  
C =100pF  
L
4
2
8
4
F
L
A
=1  
A =1  
V
V
C =47pF  
L
R =10kΩ  
L
0
0
R =520Ω  
L
C =22pF  
L
-2  
-4  
-4  
-8  
C =0pF  
L
R =150Ω  
L
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
100M  
100M  
145  
Frequency (Hz)  
Frequency Response for Various R and R  
Group Delay vs Frequency  
F
G
10  
8
2
0
R =R =2kΩ  
F
G
A
=2  
V
R =R =1kΩ  
F
G
R =1kΩ  
F
6
-2  
-4  
-6  
R =R =560Ω  
F
G
4
A
=1  
V
R =1Ω  
F
2
V
=1.5V  
CM  
R =150Ω  
A
L
V
=2  
0
1M  
1M  
10M  
100M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Open Loop Gain and Phase vs Frequency  
Open Loop Voltage Gain vs Die Temperature  
0
80  
70  
60  
50  
40  
30  
80  
60  
40  
20  
0
R =1kΩ  
45  
90  
L
Phase  
No Load  
R =150Ω  
L
135  
Gain  
R =150Ω  
L
180  
225  
1k  
10k  
100k  
1M  
10M  
100M  
-55  
-15  
25  
65  
105  
Frequency (Hz)  
Die Temperature (°C)  
7
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves (Continued)  
Voltage Noise vs Frequency - Video Amp  
Closed Loop Output Impedance vs Frequency  
10k  
1k  
200  
20  
2
R =0Ω  
F
A
=2  
V
100  
10  
0.2  
10  
100  
1k  
10k 100k  
1M  
10M 100M  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Offset Voltage vs Die Temperature  
(6 Typical Samples)  
PSRR and CMRR vs Frequency  
20  
0
12  
6
CMRR  
-20  
-40  
-60  
-80  
PSRR-  
0
-6  
-12  
PSRR+  
-55  
-15  
25  
65  
105  
145  
1k  
10k  
100k  
1M  
10M  
100M  
Die Temperature (°C)  
Frequency (Hz)  
Output Voltage Swing vs Frequency for THD < 1%  
Output Voltage Swing vs Frequency for THD < 0.1%  
5
4
3
2
1
0
5
4
3
2
1
0
R =1kΩ  
R =1kΩ  
F
V
F
A
=2  
A =2  
V
R =500to 2.5V  
L
R =150to 2.5V  
R =500to 2.5V  
L
L
R =150to 2.5V  
L
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
100M  
Frequency (Hz)  
8
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves (Continued)  
Large Signal Pulse Response (Single Supply)  
Small Signal Pulse Response (Single Supply)  
4
3
2
1
0
1.9  
1.7  
1.5  
1.3  
1.1  
V
=5V  
V =5V  
S
S
R =150to 0V  
R =1kΩ  
A
R =150to 0V  
L
L
R =1kΩ  
F
F
V
=2  
A =2  
V
Time (20ns/div)  
Time (20ns/div)  
Large Signal Pulse Response (Split Supplies)  
Small Signal Pulse Response (Split Supply)  
4
2
0.4  
0.2  
0
V
=±2.5V  
V =±2.5V  
S
S
R =150to 0V  
R =1kΩ  
A
R =150to 0V  
L
L
R =1kΩ  
F
F
V
=2  
A =2  
V
0
-2  
-4  
-0.2  
-0.4  
Time (20ns/div)  
Time (20ns/div)  
Settling Time vs Settling Accuracy  
Slew Rate vs Die Temperature  
100  
80  
60  
40  
20  
0
250  
200  
150  
R =1kΩ  
L
R =500Ω  
F
V
STEP  
A
V
=-1  
=3V  
0.01  
0.1  
Settling Accuracy (%)  
1
-55  
-15  
25  
65  
105  
145  
Die Temperature (°C)  
9
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves (Continued)  
Differential Phase for R Tied to 0V  
Differential Gain for R Tied to 0V  
L
L
R =0Ω  
R =0Ω  
F
V
F
0.08  
0.04  
0
0.2  
0.1  
0
A
=1  
A =1  
V
R =10kΩ  
L
R =10kΩ  
L
R =150Ω  
L
R =150Ω  
L
-0.04  
-0.08  
-0.1  
-0.2  
0.25  
1.75  
(V)  
3.25  
0.25  
1.75  
V (V)  
OUT  
3.25  
V
OUT  
Differential Gain for R Tied to 2.5V  
Differential Phase for R Tied to 2.5V  
L
L
R =0Ω  
R =0Ω  
F
V
F
0.2  
0.1  
0
0.2  
0.1  
0
A
=1  
A =1  
V
R =10kΩ  
L
R =10kΩ  
L
-0.1  
-0.2  
-0.1  
-0.2  
R =150Ω  
L
R =150Ω  
L
0.5  
2
3.5  
0.5  
2
3.5  
V
(V)  
V
(V)  
OUT  
OUT  
Differential Gain for R Tied to 0V  
Differential Phase for R Tied to 0V  
L
L
R =1kΩ  
R =1kΩ  
F
V
F
V
0.2  
0.1  
0
R =150Ω  
0.2  
0.1  
0
L
R =150Ω  
A
=2  
A =2  
L
R =10kΩ  
L
R =10kΩ  
L
-0.1  
-0.2  
-0.1  
-0.2  
0.5  
2
3.5  
0.5  
2
3.5  
V
(V)  
V
(V)  
OUT  
OUT  
10  
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves (Continued)  
Differential Gain for R Tied to 2.5V  
Differential Phase for R Tied to 2.5V  
L
L
R =1kΩ  
R =1kΩ  
F
V
F
0.2  
0.1  
0
0.2  
0.1  
0
A
=2  
A =2  
V
R =10kΩ  
L
R =150Ω  
L
R =150Ω  
-0.1  
-0.2  
-0.1  
-0.2  
L
R =10kΩ  
L
0.5  
2
3.5  
0.5  
2
3.5  
V
(V)  
V
(V)  
OUT  
OUT  
2nd and 3rd Harmonic Distortion vs Frequency  
2nd and 3rd Harmonic Distortion vs Frequency  
-25  
-35  
-45  
-55  
-65  
-75  
-25  
-35  
-45  
-55  
-65  
-75  
HD3  
HD3  
HD2  
HD2  
V
=0.25V to 2.25V  
V
=0.5V to 2.5V  
OUT  
R =100to 0V  
OUT  
R =100to 0V  
L
L
1M  
10M  
100M  
1M  
10M  
Frequency (Hz)  
100M  
Frequency (Hz)  
2nd and 3rd Harmonic Distortion vs. Frequency  
Channel to Channel Crosstalk - Duals and Quads  
(Worst Channel)  
-25  
-35  
-45  
-55  
-65  
-75  
0
-20  
HD3  
-40  
HD2  
-60  
-80  
V =1Vto 3V  
OUT
L
R =100to 0V  
-100  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
11  
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves (Continued)  
Supply Current (per Amp) vs Supply Voltage  
Output Current vs Die Temperature  
120  
100  
80  
R =10to 2.5V  
L
8
6
4
2
0
Source  
60  
Sink  
25  
40  
20  
-55  
0
1
2
3
4
5
-15  
65  
105  
105  
105  
145  
145  
145  
Supply Voltage (V)  
Die Temperature (°C)  
Supply Current - ON (per Amp) vs Die Temperature  
Supply Current - OFF (per Amp) vs Die  
Temperature  
9
8
7
6
5
4
5
4
3
2
1
0
-55  
-15  
25  
65  
105  
145  
-55  
-15  
25  
65  
Die Temperature (°C)  
Die Temperature (°C)  
Positive Output Voltage Swing vs Die Temperature  
Negative Output Voltage Swing vs Die  
Temperature  
5
4.9  
4.8  
4.7  
4.6  
4.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
R =150Ω  
L
R =150to 2.5V  
L
R =150to 2.5V  
L
R =150to 0V  
L
R =150to 0V  
L
-55  
-15  
25  
65  
105  
145  
-55  
-15  
25  
65  
Die Temperature (°C)  
Die Temperature (°C)  
12  
EL5144, EL5146, EL5244, EL5246, EL5444  
Typical Performance Curves (Continued)  
Output Voltage from Either Rail vs Die  
Temperature for Various Effective R  
OFF Isolation - EL5146 & EL5246  
LOAD  
300  
100  
-20  
-40  
EL5146CS &  
EL5146CN  
-60  
EL5246CS  
10  
-80  
EL5246CN  
-100  
Effective R  
-15  
= R //R to V /2  
L F S  
LOAD  
1
-55  
-120  
10k  
25  
65  
105  
145  
100k  
1M  
10M  
100M  
Die Temperature (°C)  
Frequency (Hz)  
Maximum Power Dissipation vs. Ambient  
Temperature Singles (T = 150°C)  
Maximum Power Dissipation vs. Ambient  
Temperature Duals (T  
= 150°C)  
JMAX  
JMAX  
2.0  
1.6  
1.2  
0.8  
0.4  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
PDIP-14, ΘJA = 87°C/W  
PDIP-8, ΘJA = 107°C/W  
SOIC-14, ΘJA = 120°C/W  
PDIP, ΘJA = 110°C/W  
SOIC, ΘJA = 161°C/W  
SOIC-8, ΘJA = 159°C/W  
MSOP-8,10, ΘJA = 206°C/W  
SOT23-5, ΘJA = 256°C/W  
-50  
-20  
10  
40  
70  
100  
-50  
-20  
10  
40  
70  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
Maximum Power Dissipation vs. Ambient  
Temperature Quads (T = 150°C)  
JMAX  
2.5  
2.0  
1.5  
1.0  
0.5  
0
PDIP-14, ΘJA = 83°C/W  
SOIC-14, ΘJA = 118°C/W  
QSOP-16, ΘJA = 158°C/W  
-50  
-20  
10  
40  
70  
100  
Ambient Temperature (°C)  
13  
EL5144, EL5146, EL5244, EL5246, EL5444  
Pin Descriptions  
8-PIN  
SO/PDIP/ 16-PIN  
5-PIN  
SOT23 SO/PDIP  
8-PIN  
14-PIN  
14-PIN  
16-PIN  
QSOP  
MSOP  
MSOP SO/PDIP SO/PDIP  
NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
5
2
7
4
8
8
3
11  
4
4
4,5  
VS  
Positive Power  
Supply  
4
11  
12,13  
GND  
IN+  
Ground or  
Negative Power  
Supply  
3
3
Noninverting  
Input  
V
S
GND  
Circuit 1  
(Reference Circuit 1)  
4
1
2
6
IN-  
Inverting Input  
OUT  
Amplifier Output  
V
S
GND  
Circuit 2  
3
1
1
3
3
INA+  
Amplifier A  
Noninverting  
Input  
(Reference Circuit 1)  
2
1
5
10  
9
14  
13  
7
2
1
5
2
1
6
INA-  
OUTA  
INB+  
Amplifier A  
Inverting Input  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 1)  
Amplifier A  
Output  
5
Amplifier B  
Noninverting  
Input  
6
7
6
7
8
9
6
7
7
8
INB-  
OUTB  
INC+  
Amplifier B  
Inverting Input  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 1)  
Amplifier B  
Output  
10  
11  
Amplifier C  
Noninverting  
Input  
9
8
10  
9
INC-  
OUTC  
IND+  
Amplifier C  
Inverting Input  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 1)  
Amplifier C  
Output  
12  
14  
Amplifier D  
Noninverting  
Input  
13  
15  
IND-  
Amplifier D  
(Reference Circuit 1)  
Inverting Input  
14  
EL5144, EL5146, EL5244, EL5246, EL5444  
Pin Descriptions (Continued)  
8-PIN  
5-PIN  
SOT23 SO/PDIP  
8-PIN  
SO/PDIP/ 16-PIN  
14-PIN  
14-PIN  
16-PIN  
QSOP  
MSOP  
MSOP SO/PDIP SO/PDIP  
NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
(Reference Circuit 2)  
14  
16  
OUTD  
Amplifier D  
Output  
8
CE  
Enable(Enabled  
when high)  
V
S
+
1.4V  
GND  
Circuit 3  
2
4
3
5
CEA  
CEB  
NC  
Enable Amplifier (Reference Circuit 3)  
A (Enabled  
when high)  
Enable Amplifier (Reference Circuit 3)  
B (Enabled  
when high)  
1,5  
2,6,  
10,12  
No Connect. Not  
internally  
connected.  
suffice. This same capacitor combination should be placed  
at each supply pin to ground if split supplies are to be used.  
In this case, the GND pin becomes the negative supply rail.  
Description of Operation and Applications  
Information  
Product Description  
For good AC performance, parasitic capacitance should be  
kept to a minimum. Use of wire wound resistors should be  
avoided because of their additional series inductance. Use of  
sockets, particularly for the SO package, should be avoided  
if possible. Sockets add parasitic inductance and  
The EL5144 series is a family of wide bandwidth, single  
supply, low power, rail-to-rail output, voltage feedback  
operational amplifiers. The family includes single, dual, and  
quad configurations. The singles and duals are available with  
a power down pin to reduce power to 2.6µA typically. All the  
amplifiers are internally compensated for closed loop  
feedback gains of +1 or greater. Larger gains are acceptable  
but bandwidth will be reduced according to the familiar Gain-  
Bandwidth Product.  
capacitance that can result in compromised performance.  
Input, Output, and Supply Voltage Range  
The EL5144 series has been designed to operate with a  
single supply voltage of 5V. Split supplies can be used so  
long as their total range is 5V.  
Connected in voltage follower mode and driving a high  
impedance load, the EL5144 series has a -3dB bandwidth of  
100MHz. Driving a 150load, they have a -3dB bandwidth  
of 60MHz while maintaining a 200V/µs slew rate. The input  
common mode voltage range includes ground while the  
output can swing rail to rail.  
The amplifiers have an input common mode voltage range  
that includes the negative supply (GND pin) and extends to  
within 1.5V of the positive supply (V pin). They are  
S
specified over this range.  
The output of the EL5144 series amplifiers can swing rail to  
rail. As the load resistance becomes lower in value, the  
ability to drive close to each rail is reduced. However, even  
with an effective 150load resistor connected to a voltage  
halfway between the supply rails, the output will swing to  
within 150mV of either rail.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high-frequency device, good printed circuit  
board layout is necessary for optimum performance. Ground  
plane construction is highly recommended. Lead lengths  
should be as short as possible. The power supply pin must  
be well bypassed to reduce the risk of oscillation For normal  
single supply operation, where the GND pin is connected to  
the ground plane, a single 4.7µF tantalum capacitor in  
parallel with a 0.1µF ceramic capacitor from V to GND will  
S
15  
EL5144, EL5146, EL5244, EL5246, EL5444  
Figure 1 shows the output of the EL5144 series amplifier  
Video Performance  
swinging rail to rail with R = 1k, A = +2 and R = 1M.  
F
V
L
For good video signal integrity, an amplifier is required to  
maintain the same output impedance and the same  
Figure 2 is with R = 150Ω.  
L
frequency response as DC levels are changed at the output.  
This can be difficult when driving a standard video load of  
150, because of the change in output current with DC level.  
A look at the Differential Gain and Differential Phase curves  
for various supply and loading conditions will help you obtain  
5V  
optimal performance. Curves are provided for A = +1 and  
V
+2, and R = 150and 10ktied both to ground as well as  
L
2.5V. As with all video amplifiers, there is a common mode  
sweet spot for optimum differential gain/differential phase.  
0V  
For example, with A = +2 and R = 150tied to 2.5V, and  
V
L
the output common mode voltage kept between 0.8V and  
3.2V, dG/dP is a very low 0.1%/0.1°. This condition  
corresponds to driving an AC-coupled, double terminated  
FIGURE 1.  
75coaxial cable. With A = +1, R = 150tied to ground,  
V
L
and the video level kept between 0.85V and 2.95V, these  
amplifiers provide dG/dP performance of 0.05%/0.20°. This  
condition is representative of using the EL5144 series  
amplifier as a buffer driving a DC coupled, double  
5V  
terminated, 75coaxial cable. Driving high impedance  
loads, such as signals on computer video cards, gives  
similar or better dG/dP performance as driving cables.  
Driving Cables and Capacitive Loads  
0V  
The EL5144 series amplifiers can drive 50pF loads in  
parallel with 150with 4dB of peaking and 100pF with 7dB  
of peaking. If less peaking is desired in these applications, a  
small series resistor (usually between 5and 50) can be  
placed in series with the output to eliminate most peaking.  
However, this will obviously reduce the gain slightly. If your  
FIGURE 2.  
Choice of Feedback Resistor, R  
F
gain is greater than 1, the gain resistor (R ) can then be  
G
These amplifiers are optimized for applications that require a  
gain of +1. Hence, no feedback resistor is required.  
However, for gains greater than +1, the feedback resistor  
forms a pole with the input capacitance. As this pole  
becomes larger, phase margin is reduced. This causes  
ringing in the time domain and peaking in the frequency  
chosen to make up for any gain loss which may be created  
by this additional resistor at the output. Another method of  
reducing peaking is to add a “snubber” circuit at the output. A  
snubber is a resistor in a series with a capacitor, 150and  
100pF being typical values. The advantage of a snubber is  
that it does not draw DC load current.  
domain. Therefore, R has some maximum value that  
F
should not be exceeded for optimum performance. If a large  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back-termination series resistor will de-  
couple the EL5144 series amplifier from the cable and allow  
extensive capacitive drive. However, other applications may  
have high capacitive loads without a back-termination  
resistor. Again, a small series resistor at the output can  
reduce peaking.  
value of R must be used, a small capacitor in the few  
F
picofarad range in parallel with R can help to reduce this  
F
ringing and peaking at the expense of reducing the  
bandwidth.  
As far as the output stage of the amplifier is concerned, R +  
F
R
appear in parallel with R for gains other than +1. As this  
G
L
combination gets smaller, the bandwidth falls off.  
Consequently, R also has a minimum value that should not  
be exceeded for optimum performance.  
F
Disable/Power-Down  
The EL5146 and EL5246 amplifiers can be disabled, placing  
its output in a high-impedance state. Turn off time is only  
10ns and turn on time is around 500ns. When disabled, the  
amplifier’s supply current is reduced to 2.6µA typically,  
thereby effectively eliminating power consumption. The  
amplifier’s power down can be controlled by standard TTL or  
CMOS signal levels at the CE pin. The applied logic signal is  
For A = +1, R = 0is optimum. For A = -1 or +2 (noise  
V
F
V
gain of 2), optimum response is obtained with R between  
F
300and 1k. For A = -4 or +5 (noise gain of 5), keep R  
V
F
between 300and 15k.  
16  
EL5144, EL5146, EL5244, EL5246, EL5444  
relative to the GND pin. Letting the CE pin float will enable  
the amplifier. Hence, the 8-pin PDIP and SOIC single amps  
are pin compatible with standard amplifiers that don’t have a  
power down feature.  
If we set the two PD equations equal to each other, we  
MAX  
can solve for R :  
L
V
× (V - V  
)
OUT  
OUT  
S
R
= ---------------------------------------------------------------------------------------------  
L
T
- T  
JMAX  
AMAX  
--------------------------------------------  
- (V × I  
)
SMAX  
S
N × θ  
Short Circuit Current Limit  
JA  
The EL5144 series amplifiers do not have internal short  
circuit protection circuitry. Short circuit current of 90mA  
sourcing and 65mA sinking typically will flow if the output is  
trying to drive high or low but is shorted to half way between  
the rails. If an output is shorted indefinitely, the power  
dissipation could easily increase such that the part will be  
destroyed. Maximum reliability is maintained if the output  
current never exceeds ±50mA. This limit is set by internal  
metal interconnect limitations. Obviously, short circuit  
conditions must not remain or the internal metal connections  
will be destroyed.  
Assuming worst case conditions of T = +85°C,  
A
V
= V /2V, V = 5.5V, and I = 8.8mA per amplifier,  
OUT  
S
S
SMAX  
below is a table of all packages and the minimum RL  
allowed.  
PART  
PACKAGE  
SOT23-5  
SOIC-8  
MINIMUM R  
L
EL5144CW  
EL5146CS  
EL5146CN  
EL5244CS  
EL5244CN  
EL5244CY  
EL5246CY  
EL5246CS  
EL5246CN  
EL5444CU  
EL5444CS  
EL5444CN  
37  
21  
14  
48  
30  
69  
69  
34  
23  
139  
85  
51  
PDIP-8  
SOIC-8  
Power Dissipation  
PDIP-8  
With the high output drive capability of the EL5144 series  
amplifiers, it is possible to exceed the 150°C Absolute  
Maximum junction temperature under certain load current  
conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if load conditions or package type need to be  
modified for the amplifier to remain in the safe operating  
area.  
MSOP-8  
MSOP-10  
SOIC-14  
PDIP-14  
QSOP-16  
SOIC-14  
PDIP-14  
The maximum power dissipation allowed in a package is  
determined according to:  
T
- T  
AMAX  
EL5144 Series Comparator Application  
JMAX  
PD  
= --------------------------------------------  
MAX  
θ
The EL5144 series amplifier can be used as a very fast,  
single supply comparator. Most op amps used as a  
comparator allow only slow speed operation because of  
output saturation issues. The EL5144 series amplifier  
doesn’t suffer from output saturation issues. Figure 3 shows  
the amplifier implemented as a comparator. Figure 4 is a  
JA  
where:  
T
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
θ
= Thermal resistance of the package  
JA  
PD  
= Maximum power dissipation in the package  
MAX  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the load, or:  
V
OUT  
R
L
---------------  
PD  
= N × V × I  
+ (V - V ) ×  
OUT  
MAX  
S
SMAX  
S
where:  
N = Number of amplifiers in the package  
V = Total supply voltage  
S
I
= Maximum supply current per amplifier  
SMAX  
V
= Maximum output voltage of the application  
OUT  
R = Load resistance tied to ground  
L
17  
EL5144, EL5146, EL5244, EL5246, EL5444  
graph of propagation delay vs. overdrive as a square wave is  
presented at the input of the comparator.  
directly together. Isolation resistors at each output are not  
necessary.  
+5V  
V
3V  
10MHz  
1
IN  
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
PP  
EL5146  
0.1µF  
V
OUT  
-
+
+
-
+
V
IN  
V
OUT  
+2.5V  
R
L
EL5246  
+5V  
Select  
FIGURE 3.  
4.7µF 0.1µF  
+
-
150Ω  
V
2.4V  
5MHz  
2
IN  
Propagation Delay vs. Overdrive for Amplifier  
Used as a Comparator  
PP  
8
1000  
100  
10  
FIGURE 5.  
5V  
Negative Going Signal  
V
OUT  
Positive Going Signal  
0V  
5V  
0V  
0.01  
0.1  
1.0  
Overdrive (V)  
Select  
FIGURE 4.  
FIGURE 6.  
Multiplexing with the EL5144 Series Amplifier  
Besides normal power down usage, the CE pin on the  
EL5146 and EL5246 series amplifiers also allow for  
multiplexing applications. Figure 5 shows an EL5246 with its  
outputs tied together, driving a back terminated 75video  
Free Running Oscillator Application  
Figure 7 is an EL5144 configured as a free running oscillator.  
To first order, R  
and C determine the frequency of  
OSC  
OSC  
oscillation according to:  
0.72  
load. A 3V  
and a 2.4V  
10MHz sine wave is applied at Amp A input,  
5MHz square wave to Amp B. Figure 6  
P-P  
P-P  
F
= ---------------------------------------  
OSC  
R
× C  
OSC  
shows the SELECT signal that is applied, and the resulting  
output waveform at V . Observe the break-before-make  
OSC  
OUT  
operation of the multiplexing. Amp A is on and V  
is being  
For rail to rail output swings, maximum frequency of  
oscillation is around 15MHz. If reduced output swings are  
acceptable, 25MHz can be achieved. Figure 8 shows the  
IN1  
passed through to the output of the amplifier. Then Amp A  
turns off in about 10ns. The output decays to ground with an  
R C time constants. 500ns later, Amp B turns on and V  
IN2  
L
L
is passed through to the output. This break-before-make  
operation ensures that more than one amplifier isn’t trying to  
drive the bus at the same time. Notice the outputs are tied  
18  
EL5144, EL5146, EL5244, EL5246, EL5444  
oscillator for R  
OSC  
= 510, C  
= 240pF and  
OSC  
F
= 6MHz.  
OSC  
470K  
+5V  
1
5
470K  
470K  
0.1µF  
R
C
OSC  
2
3
4
OSC  
FIGURE 7.  
5V  
V
OUT  
0V  
FIGURE 8.  
5V  
0V  
FIGURE 9.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
19  

相关型号:

EL5144C

100 MHz Single Supply Rail to Rail Amplifier
ELANTEC

EL5144CW

100 MHz Single Supply Rail to Rail Amplifier
ELANTEC

EL5144CW

VIDEO AMPLIFIER, PDSO5, SOT-23, 5 PIN
RENESAS

EL5144CW-T13

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL

EL5144CW-T13

Video Amplifier, 1 Channel(s), 1 Func, PDSO5, SOT-23, 5 PIN
ELANTEC

EL5144CW-T7

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL

EL5144CW-T7

Video Amplifier, 1 Channel(s), 1 Func, PDSO5, SOT-23, 5 PIN
ELANTEC

EL5144CW-T7A

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL

EL5144CWZ

1 CHANNEL, VIDEO AMPLIFIER, PDSO5, SOT-23, 5 PIN
RENESAS

EL5144CWZ-T7

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL

EL5144CWZ-T7

1 CHANNEL, VIDEO AMPLIFIER, PDSO5, ROHS COMPLIANT, SOT-23, 5 PIN
RENESAS

EL5144CWZ-T7A

100MHz Single-Supply Rail-to-Rail Amplifiers
INTERSIL