EL5156IS-T7 [INTERSIL]

1mV Voltage Offset, 600MHz Amplifiers; 1mV的偏置电压, 600MHz的放大器
EL5156IS-T7
型号: EL5156IS-T7
厂家: Intersil    Intersil
描述:

1mV Voltage Offset, 600MHz Amplifiers
1mV的偏置电压, 600MHz的放大器

放大器
文件: 总12页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5156, EL5157, EL5256, EL5257  
®
Data Sheet  
July 2, 2004  
FN7386.2  
PRELIMINARY  
<1mV Voltage Offset, 600MHz Amplifiers  
Features  
The EL5156, EL5157, EL5256, and  
EL5257 are 600MHz bandwidth -3dB  
• 600MHz -3dB bandwidth, 240MHz 0.1dB bandwidth  
• 700V/µs slew rate  
voltage mode feedback amplifiers with  
• <1mV input offset  
DC accuracy of <0.01%, 1mV offsets and 40kV/V open loop  
gains. These amplifiers are ideally suited for applications  
ranging from precision measurement instrumentation to high  
speed video and monitor applications demanding the very  
highest linearity at very high frequency. Capable of operating  
with as little as 6.0mA of current from a single supply ranging  
from 5V to 12V and dual supplies ranging from ±2.5V to  
±5.0V these amplifiers are also well suited for handheld,  
portable and battery-powered equipment. With their  
capability to output as much as 140mA, member of this  
family is comfortable with demanding load conditions.  
• Very high open loop gains 92dB  
• Low supply current = 6mA  
• 140mA output current  
• Single supplies from 5V to 12V  
• Dual supplies from ±2.5V to ±5V  
• Fast disable on the EL5156 and EL5256  
• Low cost  
Single amplifiers are available in SOT-23 packages and  
duals in a 10-pin MSOP package for applications where  
board space is critical. Additionally, singles and duals are  
available in the industry-standard 8-pin SO package. All  
parts operate over the industrial temperature range of -40°C  
to +85°C.  
Applications  
• Imaging  
• Instrumentation  
• Video  
• Communications devices  
Ordering Information  
PART  
NUMBER  
PACKAGE  
8-Pin SO  
TAPE & REEL PKG. DWG. #  
EL5156IS  
-
MDP0027  
MDP0027  
MDP0027  
MDP0038  
MDP0038  
MDP0043  
MDP0043  
MDP0043  
MDP0027  
MDP0027  
MDP0027  
MDP0043  
MDP0043  
MDP0043  
EL5156IS-T7  
EL5156IS-T13  
EL5157IW-T7  
8-Pin SO  
7”  
8-Pin SO  
13”  
5-Pin SOT-23  
7” (3K pcs)  
EL5157IW-T7A 5-Pin SOT-23  
7” (250 pcs)  
EL5256IY  
10-Pin MSOP  
10-Pin MSOP  
10-Pin MSOP  
8-Pin SO  
-
7”  
13”  
-
EL5256IY-T7  
EL5256IY-T13  
EL5257IS  
EL5257IS-T7  
EL5257IS-T13  
EL5257IY  
8-Pin SO  
7”  
13”  
-
8-Pin SO  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
EL5257IY-T7  
EL5257IY-T13  
7”  
13”  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL5156, EL5157, EL5256, EL5257  
Pinouts  
EL5156  
EL5157  
(5-PIN SOT-23)  
TOP VIEW  
(8-PIN SO)  
TOP VIEW  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
VS+  
OUT  
NC  
-
+
+
-
IN+  
VS-  
EL5256  
(10-PIN MSOP)  
TOP VIEW  
EL5257  
(8-PIN SO)  
TOP VIEW  
INA+  
CEA  
VS-  
INA-  
OUTA  
INA-  
INA+  
VS-  
1
2
3
4
5
10  
9
1
2
3
4
8
7
6
5
VS+  
-
OUTA  
VS+  
-
+
OUTB  
INB-  
+
8
-
+
+
-
OUTB  
INB-  
CEB  
INB+  
7
INB+  
6
2
EL5156, EL5157, EL5256, EL5257  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V and GND. . . . . . . . . . . . . . . . . . . 13.2V  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . GND -0.5V to V +0.5V  
S
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Current into I +, I -, CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
N N  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, CE = +5V, R = R = 562, R = 150, T = 25°C, unless otherwise specified.  
S
S
F
G
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
= +1, R = 500Ω, C = 4.7pF  
600  
180  
210  
70  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
V
L
L
A
= +2, R = 150Ω  
V
L
GBWP  
BW1  
SR  
Gain Bandwidth Product  
0.1dB Bandwidth  
Slew Rate  
R
= 150Ω  
L
A
= +2  
V
V
= -3.2V to +3.2V, A = +2, R = 150Ω  
500  
640  
700  
15  
O
O
V
L
V
= -3.2V to +3.2V, A = +1, R = 500Ω  
V
L
t
0.1% Settling Time  
A = +1  
V
S
dG  
dP  
Differential Gain Error  
A
= +2, R = 150Ω  
0.005  
0.04  
12  
%
V
L
Differential Phase Error  
Input Referred Voltage Noise  
Input Referred Current Noise  
A
= +2, R = 150Ω  
°
V
L
V
nV/Hz  
pA/Hz  
N
I
5.5  
N
DC PERFORMANCE  
Offset Voltage  
V
-1  
0.5  
-3  
1
mV  
OS  
T V  
Input Offset Voltage Temperature  
Coefficient  
Measured from T  
MIN  
to T  
MAX  
µV/°C  
C
OS  
A
Open Loop Gain  
V
is from -2.5V to 2.5V  
O
10  
40  
kV/V  
VOL  
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
Guaranteed by CMRR test  
= 2.5V to -2.5V  
-2.5  
80  
+2.5  
V
CMRR  
Common Mode Rejection Ratio  
Input Bias Current  
V
108  
-0.4  
-200  
100  
25  
dB  
µA  
nA  
nA  
MΩ  
pF  
CM  
I
EL5156 & EL5157  
EL5256 & EL5257  
-1  
+1  
B
-600  
-250  
10  
+600  
+250  
I
Input Offset Current  
Input Resistance  
Input Capacitance  
OS  
R
IN  
IN  
C
1
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
R
R
R
= 150to GND  
= 500to GND  
= 10to GND  
±3.4  
±3.6  
±80  
±3.6  
±3.8  
±140  
V
V
OUT  
L
L
L
I
Peak Output Current  
mA  
OUT  
ENABLE (EL5156 and EL5256 ONLY)  
t
t
Enable Time  
Disable Time  
200  
300  
ns  
ns  
EN  
DIS  
3
EL5156, EL5157, EL5256, EL5257  
Electrical Specifications V + = +5V, V - = -5V, CE = +5V, R = R = 562, R = 150, T = 25°C, unless otherwise specified.  
S
S
F
G
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
µA  
V
I
I
CE Pin Input High Current  
CE Pin Input Low Current  
CE = V +  
S
0
-1  
IHCE  
ILCE  
CE = V -  
5
13  
25  
S
V
V
CE Input High Voltage for Power-down  
CE Input Low Voltage for Power-up  
V + -1  
S
IHCE  
ILCE  
V + -3  
S
V
SUPPLY  
I
I
Supply Current - Enabled (per amplifier) No load, V = 0V, CE = +5V  
IN  
5.1  
5
6.0  
13  
90  
6.9  
25  
mA  
µA  
dB  
SON  
Supply Current - Disabled (per amplifier) No load, V = 0V, CE = 5V  
IN  
SOFF  
PSRR  
Power Supply Rejection Ratio  
DC, V = ±3.0V to ±6.0V  
75  
S
Typical Performance Curves  
4
3
135  
90  
45  
R =150Ω  
R =150Ω  
L
L
C =4.7pF  
C =4.7pF  
L
L
2
1
A =+1  
V
A =+2  
V
0
A =+2  
V
0
-45  
A =+5  
V
-1  
-90  
A =+10  
-2  
-3  
-135  
-180  
-225  
-270  
-315  
V
A =+10  
V
A =+5  
V
-4  
-5  
-6  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 1. SMALL SIGNAL FREQUENCY RESPONSE - GAIN  
FIGURE 2. SMALL SIGNAL FREQUENCY RESPONSE -  
PHASE FOR VARIOUS GAINS  
5
4
4
A =+1  
V
V =±5V  
C =27pF  
L
S
3
R =500Ω  
L
A =+2  
V
3
2
2
1
0
-1  
-2  
-3  
-4  
-5  
R =R =562Ω  
F G  
C =10pF  
L
R =500Ω  
L
C =4.7pF  
L
1
0
R =150Ω  
L
-1  
-2  
R =750Ω  
L
C =1pF  
L
R =50Ω  
-3  
-4  
L
-5  
-6  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 3. SMALL SIGNAL FREQUENCY RESPONSE FOR  
VARIOUS R  
FIGURE 4. SMALL SIGNAL FREQUENCY RESPONSE FOR  
VARIOUS C  
L
L
4
EL5156, EL5157, EL5256, EL5257  
Typical Performance Curves (Continued)  
5
4
3
2
1
16  
14  
12  
10  
8
A =+2  
V
A =+2  
V
180pF  
100pF  
33pF  
R =500Ω  
L
R =R =562Ω  
F
G
22pF  
10pF  
8.2pF  
4.7pF  
R =R =500Ω  
F
G
R =150Ω  
L
0
6
10pF  
0pF  
-1  
-2  
-3  
-4  
4
2
0
0pF  
-2  
-5  
-4  
100K  
1M  
10M  
100M  
1G  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. SMALL SIGNAL FREQUENCY RESPONSE FOR  
FIGURE 6. SMALL SIGNAL FREQUENCY RESPONSE FOR  
VARIOUS C  
L
VARIOUS C  
L
5
5
4
3
2
A =+5  
V
R =500Ω  
L
4
R =500Ω  
C =4.7pF  
L
L
3
2
1
0
A =+1  
V
100pF  
82pF  
68pF  
22pF  
±2.0V  
1
0
-1  
±3.0V  
±4.0V  
±5.0V  
-1  
-2  
-3  
-4  
-2  
-3  
-4  
-5  
100M  
100K  
1M  
10M  
FREQUENCY (Hz)  
500M  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 8. FREQUENCY RESPONSE vs POWER SUPPLY  
FIGURE 7. SMALL SIGNAL FREQUENCY RESPONSE FOR  
VARIOUS C  
L
4
3
2
1
0
5
4
3
2
1
V =±5V  
S
R =620Ω  
F
A =+1  
V
R =150Ω  
L
A =-1  
V
-1  
-2  
-3  
-4  
-5  
-6  
0
-1  
-2  
-3  
-4  
A =-2  
A =+2  
V
V
A =+1  
V
R =500Ω  
L
A =+5  
V
C =4.7pF  
L
-5  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 10. SMALL SIGNAL INVERTING FREQUENCY  
RESPONSE FOR VARIOUS GAINS  
FIGURE 9. EL5256 SMALL SIGNAL FREQUENCY  
RESPONSE FOR VARIOUS GAINS  
5
EL5156, EL5157, EL5256, EL5257  
Typical Performance Curves (Continued)  
5
4
3
4
3
A =+1  
V
A =+1  
V
C =0.2pF  
L
C =4.7pF  
L
500Ω  
R =500Ω  
2
1
L
R =300Ω  
2
L
1
0
-1  
0
R =150Ω  
-1  
-2  
-3  
-4  
-5  
-2  
-3  
L
200Ω  
100Ω  
50Ω  
-4  
-5  
-6  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 12. EL5256 SMALL SIGNAL FREQUENCY  
FIGURE 11. SMALL SIGNAL FREQUENCY RESPONSE FOR  
VARIOUS R  
L
RESPONSE FOR VARIOUS R  
L
5
4
3
4
3
A =+5  
V
A =+2  
V
68pF  
47pF  
C =4.7pF  
L
R =500Ω  
12pF  
L
R =500Ω  
C =4.7pF  
L
L
8.2pF  
2
1
R =102Ω  
R =500Ω  
F
F
2
1
0
-1  
-2  
-3  
4.7pF  
0
-1  
-2  
-3  
-4  
-5  
0.2pF  
0pF  
22pF  
4.7pF  
0pF  
-4  
-5  
100K  
1M  
10M  
100M 200M  
100K  
1M  
10M  
100M 200M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. SMALL SIGNAL FREQUENCY RESPONSE FOR  
FIGURE 14. SMALL SIGNAL FREQUENCY RESPONSE FOR  
VARIOUS C  
VARIOUS C  
IN  
IN  
6
5
4
4
3
R =R =3kΩ  
F
G
A =+2  
V
V =±5V  
S
C =4.7pF  
L
A =+2  
V
R =R =1kΩ  
F
G
2
1
R =500Ω  
R =150Ω  
L
2kΩ  
L
C =4.7pF  
L
3
2
1
0
-1  
1kΩ  
350Ω  
500Ω  
200Ω  
562Ω  
500Ω  
250Ω  
0
-2  
-3  
-1  
-2  
-3  
-4  
-4  
-5  
-6  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 16. EL5256 SMALL SIGNAL FREQUENCY  
RESPONSE FOR VARIOUS R /R  
FIGURE 15. SMALL SIGNAL FREQUENCY RESPONSE FOR  
VARIOUS R AND R  
F
G
F
G
6
EL5156, EL5157, EL5256, EL5257  
Typical Performance Curves (Continued)  
5
5
4
3
2
1
A =+2  
CHANNEL #1  
CHANNEL #2  
V
4
3
2
1
0
R =200Ω  
L
C =4.7pF  
L
-20dBm  
10dBm  
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-5  
15dBm  
17dBm  
A =+1  
V
R =500Ω  
L
20dBm  
C =4.7pF  
L
-5  
100M  
100K  
1M  
10M  
600M  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 17. LARGE SIGNAL FREQUENCY RESPONSE FOR  
VARIOUS INPUT AMPLITUDES  
FIGURE 18. CHANNEL TO CHANNEL FREQUENCY  
RESPONSE  
0
-10  
700  
A =+1,R =500, C =5pF  
A =+5  
V
L
L
V
R =500Ω  
600  
500  
400  
300  
200  
L
-20 C =4.7pF  
L
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A =+1, R =150Ω  
V
L
A =+2,R =150Ω  
V
L
100  
0
-100  
4.5  
5.5  
6.5  
7.5  
V
8.5  
(V)  
9.5 10.5 11.5  
100K  
1M  
10M  
100M  
1G  
S
FREQUENCY (Hz)  
FIGURE 20. BANDWIDTH vs SUPPLY VOLTAGE  
FIGURE 19. EL5256 CROSS TALK vs FREQUENCY CHANNEL  
A TO B & B TO A  
4
3
2
1K  
A =+5  
V
C =4.7pF  
L
1
0
100  
500Ω  
1000Ω  
-1  
-2  
-3  
-4  
-5  
-6  
V
N
10  
100Ω  
50Ω  
I
N
1
10  
10K  
FREQUENCY (Hz)  
100  
1K  
100K  
1M  
10M  
100K  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 21. SMALL SIGNAL FREQUENCY RESPONSE FOR  
VARIOUS R  
FIGURE 22. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
L
7
EL5156, EL5157, EL5256, EL5257  
Typical Performance Curves (Continued)  
-20  
1000  
100  
10  
-30  
-40  
-50  
-60  
-70  
A =+2  
V
R =0Ω  
L
R
=R =400Ω  
G
F
1
-80  
-90  
-100  
-110  
0.01  
0.001  
1M  
10M  
100  
1K  
10K  
100K  
100M  
1M  
100K  
FREQUENCY (Hz)  
1K  
10K  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 23. CMRR  
FIGURE 24. OUTPUT IMPEDANCE  
-10  
6.1  
6
V =±5V  
S
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A =+2  
V
R =150Ω  
L
5.9  
5.8  
5.7  
I -  
S
I +  
S
5.6  
5.5  
-100  
-110  
5.4  
5.3  
100K  
1M  
10M  
100M  
1G  
4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 1010.51111.5 12  
(V)  
FREQUENCY (Hz)  
V
S
FIGURE 25. INPUT TO OUTPUT ISOLATION vs FREQUENCY -  
DISABLE  
FIGURE 26. SUPPLY CURRENT vs SUPPLY VOLTAGE  
0.8  
A =+2  
V
A =+1  
V
0.7  
R =500Ω  
L
R =500Ω  
L
SUPPLY=±5.0V  
±12.3mA  
0.6  
0.5  
C =5pF  
L
0.4  
0.3  
0.2  
0.1  
0
ENABLE  
192ns  
DISABLE  
322ns  
4.5  
5.5  
6.5  
7.5  
V
8.5  
(V)  
9.5 10.5 11.5  
TIME (400ns/DIV)  
S
FIGURE 27. ENABLE/DISABLE RESPONSE  
FIGURE 28. PEAKING vs SUPPLY VOLTAGE  
8
EL5156, EL5157, EL5256, EL5257  
Typical Performance Curves (Continued)  
A =+2  
V
R =500Ω  
L
SUPPLY=±5.0V ±12.3mA  
OUTPUT=200mV  
P-P  
0
0
FALL  
RISE  
80%-20%  
T=1.91ns  
20%-80%  
T=2.025ns  
A =+2  
V
R =500Ω  
L
SUPPLY=±5.0V ±12.3mA  
OUTPUT=200mV  
P-P  
TIME (4ns/DIV)  
TIME (4ns/DIV)  
FIGURE 30. SMALL SIGNAL FALL TIME  
FIGURE 29. SMALL SIGNAL RISE TIME  
A =+2  
V
A =+2  
V
R =500Ω  
L
R =500Ω  
SUPPLY=±5.0V ±12.3mA  
L
SUPPLY=±5.0V ±12.3mA  
OUTPUT=2.0V  
P-P  
OUTPUT=2.0V  
P-P  
0
FALL  
0
80%-20%  
T=1.7ns  
RISE  
20%-80%  
T=1.657ns  
TIME (2ns/DIV)  
TIME (2ns/DIV)  
FIGURE 32. LARGE SIGNAL FALL TIME  
FIGURE 31. LARGE SIGNAL RISE TIME  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.8  
1.6  
1.4  
1.2  
1
1.2  
1
781mW  
488mW  
1.136W  
543mW  
0.8  
0.6  
0.4  
0.2  
0
SO8  
SO8  
θ
=110°C/W  
θ
=160°C/W  
JA  
JA  
0.8  
0.6  
0.4  
0.2  
0
SOT23-5  
SOT23-5  
θ
=256°C/W  
JA  
θ
=230°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 34. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 33. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
9
EL5156, EL5157, EL5256, EL5257  
Typical Performance Curves (Continued)  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
870mW  
486mW  
MSOP8/10  
MSOP8/10  
θ
=206°C/W  
JA  
θ
=115°C/W  
JA  
0
25  
50  
75 85 100  
125  
0
25  
50  
75 85 100  
125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 35. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 36. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
10  
EL5156, EL5157, EL5256, EL5257  
and 0.04%, while driving 150at a gain of 2. Driving high  
impedance loads would give a similar or better dG and dP  
performance.  
Product Description  
The EL5156, EL5157, EL5256, and EL5257 are wide  
bandwidth, single or dual supply, low power and low offset  
voltage feedback operational amplifiers. Both amplifiers are  
internally compensated for closed loop gain of +1 or greater.  
Connected in voltage follower mode and driving a 500Ω  
load, the -3dB bandwidth is about 610MHz. Driving a 150Ω  
load and a gain of 2, the bandwidth is about 180MHz while  
maintaining a 600V/µs slew rate. The EL5156 and EL5256  
are available with a power down pin to reduce power to  
17µA typically while the amplifier is disabled.  
Driving Capacitive Loads and Cables  
The EL5156 and EL5157 families can drive 27pF loads in  
parallel with 500with less than 5dB of peaking at gain of  
+1. If less peaking is desired in applications, a small series  
resistor (usually between 5to 50) can be placed in series  
with the output to eliminate most peaking. However, this will  
reduce the gain slightly. If the gain setting is greater than 1,  
the gain resistor RG can then be chosen to make up for any  
gain loss which may be created by the additional series  
resistor at the output.  
Input, Output and Supply Voltage Range  
The EL5156 and EL5157 families have been designed to  
operate with supply voltage from 5V to 12V. That means for  
single supply application, the supply voltage is from 5V to  
12V. For split supplies application, the supply voltage is from  
±2.5V to ±5V. The amplifiers have an input common mode  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, a back-termination series resistor at the  
amplifier's output will isolate the amplifier from the cable and  
allow extensive capacitive drive. However, other applications  
may have high capacitive loads without a back-termination  
resistor. Again, a small series resistor at the output can help  
to reduce peaking.  
voltage range from 1.5V above the negative supply (V - pin)  
S
to 1.5V below the positive supply (V + pin). If the input  
S
signal is outside the above specified range, it will cause the  
output signal distorted.  
The outputs of the EL5156 and EL5157 families can swing  
Disable/Power-Down  
from -4V to 4V for V = ±5V. As the load resistance becomes  
S
The EL5156 and EL5256 can be disabled and their output  
placed in a high impedance state. The turn off time is about  
330ns and the turn on time is about 130ns. When disabled,  
the amplifier's supply current is reduced to 17µA typically,  
thereby effectively eliminating the power consumption. The  
amplifier's power down can be controlled by standard TTL or  
CMOS signal levels at the ENABLE pin. The applied logic  
lower, the output swing is lower. If the load resistor is 500,  
the output swing is about -4V at a 4V supply. If the load  
resistor is 150, the output swing is from -3.5V to 3.5V.  
Choice of Feedback Resistor and Gain Bandwidth  
Product  
For applications that require a gain of +1, no feedback  
resistor is required. Just short the output pin to the inverting  
input pin. For gains greater than +1, the feedback resistor  
forms a pole with the parasitic capacitance at the inverting  
input. As this pole becomes smaller, the amplifier's phase  
margin is reduced. This causes ringing in the time domain  
and peaking in the frequency domain. Therefore, RF can't be  
very big for optimum performance. If a large value of RF  
must be used, a small capacitor in the few Pico farad range  
in parallel with RF can help to reduce the ringing and  
peaking at the expense of reducing the bandwidth.  
signal is relative to V - pin. Letting the ENABLE pin float or  
S
applying a signal that is less than 0.8V above V - will enable  
S
the amplifier. The amplifier will be disabled when the signal  
at ENABLE pin is above V + -1.5V.  
S
Output Drive Capability  
The EL5156 and EL5157 families do not have internal short  
circuit protection circuitry. They have a typical short circuit  
current of 95mA and 70mA. If the output is shorted  
indefinitely, the power dissipation could easily overheat the  
die or the current could eventually compromise metal  
integrity. Maximum reliability is maintained if the output  
current never exceeds ±40mA. This limit is set by the design  
of the internal metal interconnect. Note that in transient  
applications, the part is robust.  
For gain of +1, RF = 0 is optimum. For the gains other than  
+1, optimum response is obtained with RF between 500to  
750.  
The EL5156 and EL5157 families have a gain bandwidth  
product of 210MHz. For gains > = 5, its bandwidth can be  
predicted by the following equation: (Gain)X(BW) = 210MHz.  
Power Dissipation  
With the high output drive capability of the EL5156 and  
EL5157 families, it is possible to exceed the 125°C absolute  
maximum junction temperature under certain load current  
conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if the load conditions or package types need to be  
modified for the amplifier to remain in the safe operating  
area.  
Video Performance  
For good video performance, an amplifier is required to  
maintain the same output impedance and the same  
frequency response as DC levels are changed at the output.  
This is especially difficult when driving a standard video load  
of 150, because of the change in output current with DC  
level. The dG and dP for these families are about 0.006%  
11  
EL5156, EL5157, EL5256, EL5257  
The maximum power dissipation allowed in a package is  
determined according to:  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, a good printed circuit  
board layout is necessary for optimum performance. Lead  
lengths should be as sort as possible. The power supply pin  
must be well bypassed to reduce the risk of oscillation. For  
T
T  
AMAX  
JMAX  
PD  
= --------------------------------------------  
MAX  
Θ
JA  
Where:  
normal single supply operation, where the V - pin is  
S
T
T
= Maximum junction temperature  
= Maximum ambient temperature  
= Thermal resistance of the package  
JMAX  
connected to the ground plane, a single 4.7µF tantalum  
capacitor in parallel with a 0.1µF ceramic capacitor from V +  
AMAX  
S
to GND will suffice. This same capacitor combination should  
be placed at each supply pin to ground if split supplies are to  
θ
JA  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the load, or:  
be used. In this case, the V - pin becomes the negative  
S
supply rail.  
For good AC performance, parasitic capacitance should be  
kept to minimum. Use of wire wound resistors should be  
avoided because of their additional series inductance. Use  
of sockets should also be avoided if possible. Sockets add  
parasitic inductance and capacitance that can result in  
compromised performance. Minimizing parasitic capacitance  
at the amplifier's inverting input pin is very important. The  
feedback resistor should be placed very close to the  
inverting input pin. Strip line design techniques are  
recommended for the signal traces.  
For sourcing:  
n
V
OUTi  
R
Li  
-----------------  
PD  
= V × I  
+
(V V  
) ×  
MAX  
S
SMAX  
S
OUTi  
i = 1  
For sinking:  
n
PD  
= V × I  
+
(V  
V ) × I  
OUTi S LOADi  
MAX  
S
SMAX  
i = 1  
Where:  
V = Supply voltage  
S
IS  
V
= Maximum quiescent supply current  
= Maximum output voltage of the application  
MAX  
OUT  
R
I
= Load resistance tied to ground  
LOAD  
= Load current  
LOAD  
N = number of amplifiers (Max = 2)  
By setting the two PD equations equal to each other, we  
MAX  
can solve the output current and R  
overheat.  
to avoid the device  
LOAD  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
12  

相关型号:

EL5156ISZ

<1mV Voltage Offset, 600MHz Amplifiers
INTERSIL

EL5156ISZ-T13

<1mV Voltage Offset, 600MHz Amplifiers
INTERSIL

EL5156ISZ-T7

<1mV Voltage Offset, 600MHz Amplifiers
INTERSIL

EL5156_06

<1mV Voltage Offset, 600MHz Amplifiers
INTERSIL

EL5156_07

<1mV Voltage Offset, 600MHz Amplifiers
INTERSIL

EL5157

1mV Voltage Offset, 600MHz Amplifiers
INTERSIL

EL5157IW

1 CHANNEL, VIDEO AMPLIFIER, PDSO5, SOT-23, 5 PIN
RENESAS

EL5157IW-T7

1mV Voltage Offset, 600MHz Amplifiers
INTERSIL

EL5157IW-T7A

1mV Voltage Offset, 600MHz Amplifiers
INTERSIL

EL5157IWZ

1 CHANNEL, VIDEO AMPLIFIER, PDSO5, SOT-23, 5 PIN
RENESAS

EL5157IWZ-T7

<1mV Voltage Offset, 600MHz Amplifiers
INTERSIL

EL5157IWZ-T7A

<1mV Voltage Offset, 600MHz Amplifiers
INTERSIL