EL5172_08 [INTERSIL]

250MHz Differential Line Receivers; 250MHz的差动线路接收器
EL5172_08
型号: EL5172_08
厂家: Intersil    Intersil
描述:

250MHz Differential Line Receivers
250MHz的差动线路接收器

文件: 总16页 (文件大小:349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5172, EL5372  
®
Data Sheet  
January 25, 2008  
FN7311.8  
250MHz Differential Line Receivers  
Features  
The EL5172 and EL5372 are single and triple high  
bandwidth amplifiers designed to extract the difference  
signal from noisy environments. They are primarily targeted  
for applications such as receiving signals from twisted-pair  
lines or any application where common mode noise injection  
is likely to occur.  
• Differential input range ±2.3V  
• 250MHz 3dB bandwidth  
• 800V/µs slew rate  
• 60mA maximum output current  
• Single 5V or dual ±5V supplies  
• Low power - 5mA to 6mA per channel  
• Pb-free available (RoHS compliant)  
The EL5172 and EL5372 are stable for a gain of one and  
requires two external resistors to set the voltage gain.  
The output common mode level is set by the reference pin  
(V  
), which has a -3dB bandwidth of over 120MHz.  
REF  
Applications  
Generally, this pin is grounded but it can be tied to any  
voltage reference.  
• Twisted-pair receivers  
• Differential line receivers  
The output can deliver a maximum of ±60mA and is short  
circuit protected to withstand a temporary overload  
condition.  
• VGA over twisted-pair  
• ADSL/HDSL receivers  
The EL5172 is available in the 8 Ld SOIC and 8 Ld MSOP  
packages and the EL5372 in a 24 Ld QSOP package. Both  
are specified for operation over the full -40°C to +85°C  
temperature range.  
• Differential to single-ended amplification  
• Reception of analog signals in a noisy environment  
Pinouts  
EL5172  
(8 LD SOIC, MSOP)  
TOP VIEW  
EL5372  
(24 LD QSOP)  
TOP VIEW  
OUT  
VS-  
FB  
IN+  
IN-  
1
2
3
4
8
7
REF1  
INP1  
INN1  
NC  
1
2
3
4
5
6
7
8
9
24 NC  
+
-
23 FB1  
22 OUT1  
21 NC  
+
-
6 VS+  
5 EN  
REF  
REF2  
INP2  
INN2  
NC  
20 VSP  
19 VSN  
18 NC  
+
-
17 FB2  
16 OUT2  
15 EN  
REF3  
INP3 10  
INN3 11  
NC 12  
+
-
14 FB3  
13 OUT3  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002-2005, 2008. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
EL5172, EL5372  
Ordering Information  
PART NUMBER  
PART MARKING  
PACKAGE  
8 Ld SOIC (150 mil)  
PKG. DWG. #  
MDP0027  
EL5172IS  
5172IS  
5172IS  
5172IS  
5172ISZ  
5172ISZ  
5172ISZ  
h
EL5172IS-T7*  
8 Ld SOIC (150 mil)  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
MDP0040  
EL5172IS-T13*  
8 Ld SOIC (150 mil)  
EL5172ISZ (Note)  
EL5172ISZ-T7* (Note)  
EL5172ISZ-T13* (Note)  
EL5172IY  
8 Ld SOIC (150 mil) (Pb-free)  
8 Ld SOIC (150 mil) (Pb-free)  
8 Ld SOIC (150 mil) (Pb-free)  
8 Ld MSOP (3.0mm)  
EL5172IY-T7*  
h
8 Ld MSOP (3.0mm)  
EL5172IY-T13*  
h
8 Ld MSOP (3.0mm)  
EL5172IYZ (Note)  
EL5172IYZ-T7* (Note)  
EL5172IYZ-T13* (Note)  
EL5372IU  
BAAWA  
BAAWA  
BAAWA  
8 Ld MSOP (3.0mm) (Pb-free)  
8 Ld MSOP (3.0mm) (Pb-free)  
8 Ld MSOP (3.0mm) (Pb-free)  
24 Ld QSOP (150 mil)  
EL5372IU  
EL5372IU  
EL5372IU  
EL5372IUZ  
EL5372IUZ  
EL5372IUZ  
EL5372IU-T7*  
24 Ld QSOP (150 mil)  
EL5372IU-T13*  
24 Ld QSOP (150 mil)  
EL5372IUZ (Note)  
EL5372IUZ-T7* (Note)  
EL5372IUZ-T13* (Note)  
24 Ld QSOP (150 mil) (Pb-free)  
24 Ld QSOP (150 mil) (Pb-free)  
24 Ld QSOP (150 mil) (Pb-free)  
*Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100%  
matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J  
STD-020.  
FN7311.8  
January 25, 2008  
2
EL5172, EL5372  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage (V + to V -) . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V  
Maximum Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +135°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
S
S
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, V = 0V, R = 500Ω, R = 0, R = OPEN, C = 2.7pF, Unless Otherwise  
S
S
A
IN  
L
F
G
L
Specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
=1, C = 2.7pF  
250  
70  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
V
L
A
=2, R = 1000Ω, C = 2.7pF  
F L  
V
A
=10, R = 1000Ω, C = 2.7pF  
10  
V
F
L
BW  
SR  
±0.1dB Bandwidth  
A
=1, C = 2.7pF  
25  
V
L
Slew Rate  
V
V
V
= 3V , 20% to 80%, EL5172  
P-P  
550  
550  
800  
700  
10  
1000  
1000  
OUT  
OUT  
OUT  
= 3V , 20% to 80%, EL5372  
P-P  
t
t
Settling Time to 0.1%  
= 2V  
P-P  
STL  
Output Overdrive Recovery Time  
Gain Bandwidth Product  
20  
ns  
OVR  
GBWP  
100  
120  
600  
26  
MHz  
MHz  
V/µs  
nV/Hz  
pA/Hz  
dBc  
dBc  
dBc  
dBc  
%
V
V
V
BW (-3dB)  
SR  
V
V
-3dB Bandwidth  
Slew Rate  
A =1, C = 2.7pF  
V L  
REF  
REF  
N
REF  
REF  
V
= 2V , 20% to 80%  
P-P  
OUT  
Input Voltage Noise  
at f = 11kHz  
at f = 11kHz  
I
Input Current Noise  
2
N
HD2  
Second Harmonic Distortion  
V
V
V
V
= 1V , 5MHz  
P-P  
-66  
-63  
-84  
-76  
0.04  
0.41  
90  
OUT  
OUT  
OUT  
OUT  
= 2V , 50MHz  
P-P  
HD3  
Third Harmonic Distortion  
= 1V , 5MHz  
P-P  
= 2V , 50MHz  
P-P  
dG  
Differential Gain at 3.58MHz  
Differential Phase at 3.58MHz  
Channel Separation at 100kHz  
R
R
= 150Ω, A = 2  
V
L
L
dθ  
= 150Ω, A = 2  
°
V
e
EL5372 only  
dB  
S
INPUT CHARACTERISTICS  
Input Referred Offset Voltage  
Input Bias Current (V , V  
V
±7  
-6  
±25  
-3  
mV  
µA  
kΩ  
pF  
V
OS  
I
, V  
)
-14  
IN  
IN INB REF  
R
Differential Input Resistance  
300  
1
IN  
IN  
C
Differential Input Capacitance  
Differential Input Range  
DMIR  
±2.1  
3.3  
±2.38  
3.5  
-4.5  
3.7  
-3.9  
±2.5  
-4.3  
-3.6  
CMIR+  
CMIR-  
Common Mode Positive Input Range at V +, V  
IN  
-
-
V
IN  
Common Mode Positive Input Range at V +, V  
IN  
IN  
V
V
Reference Input Positive Voltage Range  
Reference Input Negative Voltage Range  
V
V
+ = V - = 0V  
IN  
3.3  
V
REFIN+  
REFIN-  
IN  
IN  
+ = V - = 0V  
IN  
FN7311.8  
January 25, 2008  
3
EL5172, EL5372  
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, V = 0V, R = 500Ω, R = 0, R = OPEN, C = 2.7pF, Unless Otherwise  
S
S
A
IN  
L
F
G
L
Specified. (Continued)  
PARAMETER  
CMRR  
DESCRIPTION  
CONDITIONS  
= ±2.5V  
MIN  
75  
TYP  
95  
1
MAX  
UNIT  
dB  
Input Common Mode Rejection Ratio  
Gain Accuracy  
V
V
IN  
IN  
Gain  
= 1  
0.985  
1.015  
V
OUTPUT CHARACTERISTICS  
V
Positive Output Voltage Swing  
Negative Output Voltage Swing  
Maximum Output Current  
Output Impedance  
R
R
R
= 500Ω to GND  
= 500Ω to GND  
= 10Ω  
3.3  
3.63  
-3.87  
±95  
V
V
OUT  
L
L
L
-3.5  
I
(Max)  
OUT  
±60  
mA  
mΩ  
R
100  
OUT  
SUPPLY  
V
Supply Operating Range  
V + to V -  
4.75  
4.6  
11  
7
V
SUPPLY  
S
S
I
I
Power Supply Current Per Channel - Enabled  
Positive Power Supply Current - Disabled  
5.6  
80  
mA  
µA  
µA  
µA  
dB  
S (on)  
+
-
EN pin tied to 4.8V, EL5172  
EN pin tied to 4.8V, EL5372  
100  
5
S (off)  
S (off)  
1.7  
-120  
58  
I
Negative Power Supply Current - Disabled  
Power Supply Rejection Ratio  
-150  
50  
-90  
PSRR  
V from ±4.5V to ±5.5V  
S
ENABLE  
t
t
Enable Time  
150  
1.4  
ns  
µs  
V
EN  
DS  
Disable Time  
V
V
EN Pin Voltage for Power-up  
EN Pin Voltage for Shut-down  
EN Pin Input Current High Per Channel  
EN Pin Input Current Low Per Channel  
V + - 1.5  
S
IH  
V + - 0.5  
S
V
IL  
I
I
At V  
At V  
= 5V  
= 0V  
40  
-3  
60  
µA  
µA  
IH-EN  
IL-EN  
EN  
EN  
-10  
FN7311.8  
January 25, 2008  
4
EL5172, EL5372  
Pin Descriptions  
EL5172  
EL5372  
PIN NAME  
FB  
PIN FUNCTION  
1
2
3
4
5
6
7
8
Feedback input  
Non-inverting input  
Inverting input  
IN+  
IN-  
REF  
Sets the common mode output voltage level  
EN  
Enabled when this pin is floating or the applied voltage V + - 1.5  
S
VS+  
Positive supply voltage  
VS-  
Negative supply voltage  
OUT  
Output voltage  
1, 5, 9  
2, 6, 10  
3, 7, 11  
REF1, 2, 3  
INP1, 2, 3  
INN1, 2, 3  
NC  
Reference input, controls common-mode output voltage  
Non-inverting inputs  
Inverting inputs  
4, 8, 12, 18, 21, 24  
No connect; grounded for best crosstalk performance  
Non-inverting outputs  
13, 16, 22  
OUT1, 2, 3  
FB1, 2, 3  
EN  
14, 17, 23  
Feedback from outputs  
15  
19  
20  
Enabled when this pin is floating or the applied voltage V + - 1.5  
S
VSN  
Negative supply  
Positive supply  
VSP  
FN7311.8  
January 25, 2008  
5
Connection Diagrams  
R
G
R
= 0Ω  
F
-5V  
1
2
3
4
FB  
OUT  
8
7
6
5
VOUT  
500Ω  
C
2.7pF  
R
L
L
INP  
INN  
INP  
INN  
VSN  
VSP  
EN  
REF  
REF  
EL5172  
EN  
R
R
R
S3  
50Ω  
S2  
50Ω  
S2  
50Ω  
+5V  
+5V  
R
R
G
REF1  
INP1  
INN1  
1
2
3
4
5
6
7
8
9
REF1  
NC 24  
FB1 23  
OUT1 22  
NC 21  
F
INP1  
INN1  
NC  
OUT1  
C
2.7pF  
L1  
R
L1  
500Ω  
REF2  
INP2  
INN2  
REF2  
INP2  
INN2  
NC  
VSP 20  
VSN 19  
NC 18  
R
R
G
G
R
R
F
F
FB2 17  
OUT2 16  
EN 15  
OUT2  
OUT3  
REF3  
INP3  
INN3  
REF3  
R
500Ω  
L2  
10 INP3  
11 INN3  
12 NC  
FB3 14  
OUT3 13  
R
R
R
R
R
R
R
50Ω  
R
R
SR3  
50Ω  
SP1  
50Ω  
SN1  
50Ω  
SR1  
50Ω  
SP2  
50Ω  
SN2  
50Ω  
SR2  
50Ω  
SP3  
SN3  
50Ω  
R
500Ω  
L3  
C
2.7pF  
C
-5V  
L2  
L3  
2.7pF  
EL5372  
ENABLE  
EL5172, EL5372  
Typical Performance Curves  
A
= 1, R = 500Ω, C = 2.7pF  
A = 1, R = 100Ω, C = 2.7pF  
V L L  
V
L
L
4
3
4
3
2
2
1
1
0
0
V
= ±5V  
S
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
-6  
V
= ±5V  
S
V
= ±2.5V  
S
V
= ±2.5V  
S
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. FREQUENCY RESPONSE vs SUPPLY VOLTAGE  
FIGURE 2. FREQUENCY RESPONSE vs SUPPLY VOLTAGE  
V
= ±5V, R = 500Ω, C = 2.7pF  
L L  
V
= ±5V, A = 1, R = 500Ω  
V L  
S
S
5
4
4
3
C
= 56pF  
L
3
2
C = 33pF  
L
2
1
C
= 15pF  
L
1
0
A
= 1  
0
-1  
-2  
-3  
-4  
-5  
-6  
V
-1  
-2  
-3  
-4  
-5  
C
= 10pF  
L
A
= 2  
V
C
= 2.7pF  
L
A
= 5  
V
A
= 10  
V
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. FREQUENCY RESPONSE vs VARIOUS GAIN  
FIGURE 4. FREQUENCY RESPONSE vs C  
L
V
= ±5V, A = 1, R = 500Ω  
V
= ±5V, A = 2, R = 500Ω, C = 2.7pF  
V L L  
S
V
L
S
5
4
4
3
C
= 56pF  
L
3
2
C
= 33pF  
L
2
1
R
= 1kΩ  
F
1
0
C
= 15pF  
L
R
= 500Ω  
F
0
-1  
-2  
-3  
-4  
-5  
-6  
-1  
-2  
-3  
-4  
-5  
C
= 10pF  
R
= 200Ω  
L
F
C
= 2.7pF  
L
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. FREQUENCY RESPONSE vs C  
FIGURE 6. FREQUENCY RESPONSE FOR VARIOUS R  
F
L
FN7311.8  
January 25, 2008  
7
EL5172, EL5372  
Typical Performance Curves (Continued)  
A
= 1, R = 500Ω, C = 2.7pF  
V
L
L
4
3
270  
225  
180  
135  
90  
60  
50  
40  
2
1
30  
0
20  
V
= ±5V  
S
-1  
-2  
-3  
-4  
-5  
-6  
45  
10  
0
0
V
= ±2.5V  
S
-45  
-90  
-135  
-180  
-10  
-20  
-30  
-40  
1M  
10M  
100M  
1G  
1M  
FREQUENCY (Hz)  
10k  
100k  
10M  
100M  
500M  
FREQUENCY (Hz)  
FIGURE 7. FREQUENCY RESPONSE FOR V  
FIGURE 8. OPEN LOOP GAIN  
REF  
100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
10  
1
PSRR+  
PSRR-  
0.1  
10k  
100k  
1M  
10M  
100M  
100k  
FREQUENCY (Hz)  
1k  
10k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 9. OUTPUT IMPEDANCE vs FREQUENCY  
FIGURE 10. PSRR vs FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1k  
100  
10  
E
N
I
N
1
10  
10M  
10k  
FREQUENCY (Hz)  
100k  
1M  
100M  
1G  
100  
1k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 11. CMRR vs FREQUENCY  
FIGURE 12. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
FN7311.8  
January 25, 2008  
8
EL5172, EL5372  
Typical Performance Curves (Continued)  
V
= ±5V, R = 500Ω, f = 5MHz  
S
L
0
-10  
-20  
-30  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
CH1 <=> CH2, CH2 <=> CH3  
-50  
-60  
-70  
HD3 (A = 1)  
V
CH1 <=> CH3  
-80  
-90  
-100  
100k  
10M  
4
1M  
100M  
1G  
1
2
3
5
7
6
FREQUENCY (Hz)  
V
(V)  
OP-P  
FIGURE 13. CHANNEL ISOLATION vs FREQUENCY  
FIGURE 14. HARMONIC DISTORTION vs OUTPUT VOLTAGE  
V
V
= ±5V, f = 5MHz, V  
= 1V @A = 1,  
OP-P V  
V
V
= ±5V, R = 500Ω, V  
= 1V FOR A = 1,  
OP-P V  
S
S
L
= 2V @A = 2  
= 2V for A = 2  
OP-P  
V
OP-P  
V
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-80  
-40  
-50  
-60  
-70  
HD3 (A = 1)  
V
-80  
-90  
HD3 (A = 1)  
V
-100  
100 200 300 400 500 600 700 800 900 1000  
(Ω)  
0
5
10  
15  
20  
25  
30  
35  
40  
R
LOAD  
FREQUENCY (MHz)  
FIGURE 15. HARMONIC DISTORTION vs LOAD RESISTANCE  
FIGURE 16. HARMONIC DISTORTION vs FREQUENCY  
50mV/DIV  
0.5V/DIV  
10ns/DIV  
10ns/DIV  
FIGURE 17. SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 18. LARGE SIGNAL TRANSIENT RESPONSE  
FN7311.8  
January 25, 2008  
9
EL5172, EL5372  
Typical Performance Curves (Continued)  
M = 400ns, CH1 = 200mV/DIV, CH2 = 5V/DIV  
M = 100ns, CH1 = 200mV/DIV, CH2 = 5V/DIV  
CH1  
CH1  
CH2  
CH2  
400ns/DIV  
100ns/DIV  
FIGURE 19. ENABLED RESPONSE  
FIGURE 20. DISABLED RESPONSE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.2  
1.4  
1.136W  
909mW  
870mW  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
870mW  
QSOP24  
θ
= +88°C/W  
JA  
0.8  
0.6  
QSOP24  
625mW  
θ
= +115°C/W  
JA  
SOIC8  
SOIC8  
= +160°C/W  
θ
= +110°C/W  
JA  
θ
JA  
0.4 486mW  
MSOP8/10  
= +115°C/W  
θ
JA  
MSOP8  
0.2  
θ
= +206°C/W  
JA  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
Simplified Schematic  
V +  
S
I
I
I
I
R
R
4
1
2
3
4
3
R
R
D1  
D2  
Q
8
V
VIN+  
VIN-  
FBP  
FBN  
Q
7
B1  
Q
Q
Q
Q
1
2
3
4
Q
9
x1  
V
OUT  
Q
6
25  
V
B2  
C
C
R
R
1
2
V -  
S
FN7311.8  
January 25, 2008  
10  
EL5172, EL5372  
Choice of Feedback Resistor and Gain Bandwidth  
Product  
Description of Operation and Application  
Information  
For applications that require a gain of +1, no feedback  
resistor is required. Just short the OUT pin to the FB pin. For  
gains greater than +1, the feedback resistor forms a pole  
with the parasitic capacitance at the inverting input. As this  
pole becomes smaller, the amplifier's phase margin is  
reduced. This causes ringing in the time domain and  
Product Description  
The EL5172 and EL5372 are wide bandwidth, low power  
and single/differential ended to single ended output  
amplifiers. The EL5172 is a single channel differential to  
single ended amplifier. The EL5372 is a triple channel  
differential to single ended amplifier. The EL5172 and  
EL5372 are internally compensated for closed loop gain of  
+1 or greater. Connected in gain of 1 and driving a 500Ω  
load, the EL5172 and EL5372 have a -3dB bandwidth of  
250MHz. Driving a 150Ω load at gain of 2, the bandwidth is  
about 50MHz. The bandwidth at the REF input is about  
450MHz. The EL5172 and EL5372 are available with a  
power-down feature to reduce the power while the amplifier  
is disabled.  
peaking in the frequency domain. Therefore, R has some  
F
maximum value that should not be exceeded for optimum  
performance. If a large value of R must be used, a small  
F
capacitor in the few Pico farad range in parallel with R can  
F
help to reduce the ringing and peaking at the expense of  
reducing the bandwidth.  
The bandwidth of the EL5172 and EL5372 depends on the  
load and the feedback network. R and R appear in  
F
G
parallel with the load for gains other than +1. As this  
combination gets smaller, the bandwidth falls off.  
Input, Output and Supply Voltage Range  
Consequently, R also has a minimum value that should not  
be exceeded for optimum bandwidth performance. For a  
The EL5172 and EL5372 have been designed to operate  
with a single supply voltage of 5V to 10V or a split supplies  
with its total voltage from 5V to 10V. The amplifiers have an  
input common mode voltage range from -4.3V to 3.3V for  
±5V supply. The differential mode input range (DMIR)  
between the two inputs is about from -2.3V to +2.3V. The  
input voltage range at the REF pin is from -3.6V to 3.3V. If  
the input common mode or differential mode signal is outside  
the above-specified ranges, it will cause the output signal to  
be distorted.  
F
gain of +1, R = 0 is optimum. For the gains other than +1,  
F
optimum response is obtained with R between 500Ω to  
F
1kΩ. For A = 2 and R = R = 1kΩ, the BW is about 80MHz  
V
F
G
and the frequency response is very flat.  
The EL5172 and EL5372 have a gain bandwidth product of  
100MHz. For gains 5, its bandwidth can be predicted by  
Equation 1:  
(EQ. 1)  
Gain × BW = 100MHz  
The output of the EL5172 and EL5372 can swing from -3.8V  
to 3.6V at 500Ω load at ±5V supply. As the load resistance  
becomes lower, the output swing is reduced respectively.  
Driving Capacitive Loads and Cables  
The EL5172 and EL5372 can drive 56pF capacitance in  
parallel with 500Ω load to ground with 4dB of peaking at gain  
of +1. If less peaking is desired in applications, a small  
series resistor (usually between 5Ω to 50Ω) can be placed in  
series with each output to eliminate most peaking. However,  
this will reduce the gain slightly. If the gain setting is greater  
Over All Gain Settings  
The gain setting for the EL5172 and the EL5372 is similar to  
the conventional operational amplifier. The output voltage is  
equal to the difference of the inputs plus V  
times the gain.  
and then  
REF  
R
than 1, the gain resistor R can then be chosen to make up  
for any gain loss which may be created by the additional  
series resistor at the output.  
F
G
--------  
V
= (V + V - + V  
) × 1 +  
O
IN  
IN  
REF  
R
G
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, a back-termination series resistor at the  
amplifier's output will isolate the amplifier from the cable and  
allow extensive capacitive drive. However, other applications  
may have high capacitive loads without a back-termination  
resistor. Again, a small series resistor at the output can help  
to reduce peaking.  
EN  
V
V
+
+
-
IN  
-
IN  
Σ
G/B  
V
O
V
+
-
REF  
FB  
R
F
Disable/Power-Down  
R
G
The EL5172 and EL5372 can be disabled and its outputs  
placed in a high impedance state. The turn-off time is about  
1.4µs and the turn-on time is about 150ns. When disabled,  
FIGURE 23.  
the amplifier's supply current is reduced to 80µA for I + and  
S
FN7311.8  
January 25, 2008  
11  
EL5172, EL5372  
120µA for I - typically, thereby effectively eliminating the  
For sourcing, use Equation 3:  
S
power consumption. The amplifier's power-down can be  
controlled by standard CMOS signal levels at the ENABLE  
V
OUT  
(EQ. 3)  
(EQ. 4)  
-------------------  
PD  
=
V
× I  
+ (V + V ) ×  
OUT  
× i  
MAX  
S
SMAX  
S
R
LOAD  
pin. The applied logic signal is relative to V + pin. Letting the  
S
EN pin float or applying a signal that is less than 1.5V below  
For sinking, use Equation 4:  
V + will enable the amplifier. The amplifier will be disabled  
S
when the signal at EN pin is above V + - 0.5V. If a TTL  
S
signal is used to control the enabled/disabled function,  
Figure 24 could be used to convert the TTL signal to CMOS  
PD  
= [V × I  
+ (V  
V -) × I  
] × i  
LOAD  
MAX  
S
SMAX  
OUT  
S
signal.  
Where:  
• V = Total supply voltage  
5V  
S
10k  
• I  
= Maximum quiescent supply current per channel  
= Maximum output voltage of the application  
SMAX  
EN  
1k  
CMOS/TTL  
• V  
OUT  
• R  
= Load resistance  
LOAD  
• I  
= Load current  
LOAD  
• i = Number of channels  
By setting the two PD  
FIGURE 24.  
Output Drive Capability  
equations equal to each other, we  
MAX  
The EL5172 and EL5372 have internal short circuit  
protection. Its typical short circuit current is ±95mA. If the  
output is shorted indefinitely, the power dissipation could  
easily increase such that the part will be destroyed.  
Maximum reliability is maintained if the output current never  
exceeds ±60mA. This limit is set by the design of the internal  
metal interconnections.  
can solve the output current and R  
overheat.  
to avoid the device  
LOAD  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, a good printed circuit  
board layout is necessary for optimum performance. Lead  
lengths should be as short as possible. The power supply  
pin must be well bypassed to reduce the risk of oscillation.  
Power Dissipation  
With the high output drive capability of the EL5172 and  
EL5372, it is possible to exceed the +135°C absolute  
maximum junction temperature under certain load current  
conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if the load conditions or package types need to be  
modified for the amplifier to remain in the safe operating  
area.  
For normal single supply operation, where the V - pin is  
connected to the ground plane, a single 4.7µF tantalum  
capacitor in parallel with a 0.1µF ceramic capacitor from V +  
to GND will suffice. This same capacitor combination should  
be placed at each supply pin to ground if split supplies are to  
S
S
be used. In this case, the V - pin becomes the negative  
S
supply rail.  
For good AC performance, parasitic capacitance should be  
kept to a minimum. Use of wire wound resistors should be  
avoided because of their additional series inductance. Use  
of sockets should also be avoided if possible. Sockets add  
parasitic inductance and capacitance that can result in  
compromised performance. Minimizing parasitic capacitance  
at the amplifier's inverting input pin is very important. The  
feedback resistor should be placed very close to the  
inverting input pin. Strip line design techniques are  
recommended for the signal traces.  
The maximum power dissipation allowed in a package is  
determined according to Equation 2:  
T
T  
AMAX  
JMAX  
(EQ. 2)  
--------------------------------------------  
PD  
=
MAX  
Θ
JA  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
θ = Thermal resistance of the package  
JA  
Assuming the REF pin is tied to GND for V = ±5V  
S
application, the maximum power dissipation actually  
produced by an IC is the total quiescent supply current times  
the total power supply voltage, plus the power in the IC due  
to the load, or:  
FN7311.8  
January 25, 2008  
12  
EL5172, EL5372  
Typical Applications  
0Ω  
50  
50  
V
V
FB  
50Ω  
50Ω  
EL5173,  
EL5373  
OR  
EL5172,  
EL5372  
IN  
EL5172,  
EL5372  
V
OUT  
V
V
INB  
Z
= 100Ω  
O
REF  
FIGURE 25. TWISTED PAIR CABLE RECEIVER  
As the signal is transmitted through a cable, the high  
frequency signal will be attenuated. One way to compensate  
for this loss is to boost the high frequency gain at the  
receiver side.  
R
R
R
2
3
1
GAIN  
(dB)  
C
1
1 + R /R  
2
1
V
V
FB  
IN  
50Ω  
50Ω  
EL5172,  
EL5372  
V
OUT  
V
V
INB  
1 + R /(R + R )  
2
1
3
Z
= 100Ω  
O
REF  
f
f
f
A
C
FIGURE 26. COMPENSATED LINE RECEIVER  
Level Shifter and Signal Summer  
The EL5172 and EL5372 contains two pairs of differential  
pair input stages, which make sure that the inputs are all  
high impedance inputs. To take advantage of the two high  
impedance inputs, the EL5172 and EL5372 can be used as  
a signal summer to add two signals together. One signal can  
be applied to VIN+, the second signal can be applied to REF  
and V - is ground. The output is equal to Equation 5:  
IN  
V
= (V + + V  
) × Gain  
REF  
(EQ. 5)  
O
IN  
Also, the EL5172 and EL5372 can be used as a level shifter  
by applying a level control signal to the REF input.  
FN7311.8  
January 25, 2008  
13  
EL5172, EL5372  
Small Outline Package Family (SO)  
A
D
h X 45¬  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL ‚Äö  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4¬¨Ðó  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN7311.8  
January 25, 2008  
14  
EL5172, EL5372  
Quarter Size Outline Plastic Packages Family (QSOP)  
A
MDP0040  
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY  
D
(N/2)+1  
N
INCHES  
SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.056  
0.010  
0.008  
0.193  
0.236  
0.154  
0.025  
0.025  
0.041  
16  
0.068  
0.006  
0.056  
0.010  
0.008  
0.341  
0.236  
0.154  
0.025  
0.025  
0.041  
24  
0.068  
0.006  
0.056  
0.010  
0.008  
0.390  
0.236  
0.154  
0.025  
0.025  
0.041  
28  
Max.  
±0.002  
±0.004  
±0.002  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
PIN #1  
I.D. MARK  
E
E1  
-
-
-
1
(N/2)  
c
-
B
D
1, 3  
0.010 C A B  
E
-
e
E1  
e
2, 3  
H
-
C
SEATING  
L
±0.009  
Basic  
-
PLANE  
L1  
N
-
0.007 C A B  
b
0.004 C  
Reference  
-
Rev. F 2/07  
L1  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not  
included.  
A
2. Plastic interlead protrusions of 0.010” maximum per side are not  
included.  
c
SEE DETAIL "X"  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
0.010  
A2  
GAUGE  
PLANE  
L
A1  
4¬¨Ðó  
DETAIL X  
FN7311.8  
January 25, 2008  
15  
EL5172, EL5372  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
MILLIMETERS  
N
SYMBOL  
MSOP8  
1.10  
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
MSOP10  
1.10  
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
-
±0.05  
-
E
E1  
PIN #1  
I.D.  
±0.09  
-
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
1
B
(N/2)  
E
±0.15  
-
E1  
e
±0.10  
2, 3  
Basic  
-
e
H
C
L
±0.15  
-
SEATING  
PLANE  
L1  
N
Basic  
-
Reference  
-
M
C A B  
b
0.08  
0.10 C  
Rev. D 2/07  
N LEADS  
NOTES:  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3¬¨Ðó  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7311.8  
January 25, 2008  
16  

相关型号:

EL5173

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173IS

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173IS-T13

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173IS-T7

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173ISZ

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173ISZ-T13

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173ISZ-T7

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173IY

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173IY-T13

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173IY-T7

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173IYZ

450MHz Differential Twisted-Pair Drivers
INTERSIL

EL5173IYZ-T13

450MHz Differential Twisted-Pair Drivers
INTERSIL