EL5193ACWZ-T7 [INTERSIL]

Single 300MHz Current Feedback Amplifier with Enable; 单300MHz的电流反馈放大器启用
EL5193ACWZ-T7
型号: EL5193ACWZ-T7
厂家: Intersil    Intersil
描述:

Single 300MHz Current Feedback Amplifier with Enable
单300MHz的电流反馈放大器启用

商用集成电路 放大器 光电二极管
文件: 总19页 (文件大小:1096K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5193, EL5193A  
®
ata Sheet  
April 24, 2006  
FN7182.3  
Single 300MHz Current Feedback  
Amplifier with Enable  
Features  
• 300MHz -3dB bandwidth  
The EL5193 and EL5193A are current feedback amplifiers  
with a bandwidth of 300MHz. This makes these amplifiers  
ideal for today’s high speed video and monitor applications.  
• 4mA supply current  
• Single and dual supply operation, from 5V to 10V supply  
span  
With a supply current of just 4mA and the ability to run from  
a single supply voltage from 5V to 10V, these amplifiers are  
also ideal for hand held, portable or battery-powered  
equipment.  
• Fast enable/disable (EL5193A only)  
• Available in SOT-23 packages  
• Dual (EL5293) and triple (EL5393) available  
• High speed, 1GHz product available (EL5193)  
The EL5193A also incorporates an enable and disable  
function to reduce the supply current to 100µA typical per  
amplifier. Allowing the CE pin to float or applying a low logic  
level will enable the amplifier.  
• High speed, 6mA, 600MHz product available (EL5192,  
EL5292, and EL5392)  
• Pb-free plus anneal available (RoHS compliant)  
The EL5193 is offered in the 5 Ld SOT-23 package and the  
EL5193A is available in the 6 Ld SOT-23 as well as the  
industry-standard 8 Ld SO packages. Both operate over the  
industrial temperature range of -40°C to +85°C.  
Applications  
• Battery powered equipment  
• Hand held, portable devices  
• Video amplifiers  
Ordering Information  
PART  
TAPE &  
REEL  
PKG.  
PART NUMBER MARKING  
PACKAGE DWG. #  
• Cable drivers  
EL5193CW-T7  
P
7”  
5 Ld SOT-23 MDP0038  
5 Ld SOT-23 MDP0038  
5Ld SOT-23 MDP0038  
• RGB amplifiers  
(3K pcs)  
• Test equipment  
EL5193CW-T7A  
P
7”  
(250 pcs)  
• Instrumentation  
EL5193CWZ-T7 BAAW  
(Note)  
7”  
• Current to voltage converters  
(3K pcs) (Pb-free)  
EL5193CWZ-T7A BAAW  
(Note)  
7”  
5Ld SOT-23 MDP0038  
Pinouts  
(250 pcs) (Pb-free)  
EL5193ACW-T7  
P
7”  
6 Ld SOT-23 MDP0038  
EL5193A  
(8 LD SO)  
TOP VIEW  
(3K pcs)  
EL5193ACWZ-T7 BAAV  
(Note)  
7”  
6Ld SOT-23 MDP0038  
(3K pcs) (Pb-free)  
EL5193ACS  
5193ACS  
5193ACS  
-
7”  
13”  
-
8 Ld SO  
8 Ld SO  
8 Ld SO  
MDP0027  
MDP0027  
MDP0027  
MDP0027  
NC  
IN-  
1
2
3
4
8
7
6
5
CE  
EL5193ACS-T7  
EL5193ACS-T13 5193ACS  
VS+  
OUT  
NC  
-
+
EL5193ACSZ  
(Note)  
5193ACSZ  
8 Ld SO  
(Pb-free)  
IN+  
VS-  
EL5193ACSZ-T7 5193ACSZ  
(Note)  
7”  
8 Ld SO  
(Pb-free)  
MDP0027  
MDP0027  
EL5193  
(5 LD SOT-23)  
TOP VIEW  
EL5193ACSZ-T13 5193ACSZ  
(Note)  
13”  
8 Ld SO  
(Pb-free)  
EL5193A  
(6 LD SOT-23)  
TOP VIEW  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100% matte  
tin plate termination finish, which are RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations. Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
OUT  
VS-  
IN+  
1
2
3
6
5
4
VS+  
CE  
OUT  
VS-  
IN+  
1
2
3
5
4
VS+  
IN-  
+
-
+
-
IN-  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2004, 2006. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
EL5193, EL5193A  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . . .11V  
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . V - -0.5V to V + +0.5V  
S S  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .125°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 750Ω for A = 1, R = 400Ω for A = 2, R = 150Ω, T = 25°C unless otherwise  
S
S
F
V
F
V
L
A
specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
A
= +1  
= +2  
300  
200  
20  
MHz  
MHz  
MHz  
V/µs  
ns  
V
V
BW1  
SR  
0.1dB Bandwidth  
Slew Rate  
V
V
= -2.5V to +2.5V, A = +2  
2300  
2600  
12  
O
V
t
0.1% Settling Time  
= -2.5V to +2.5V, A = -1  
OUT V  
S
e
Input Voltage Noise  
IN- Input Current Noise  
IN+ Input Current Noise  
Differential Gain Error (Note 1)  
4.4  
nV/Hz  
pA/Hz  
pA/Hz  
%
N
i -  
17  
N
i +  
N
50  
dG  
dP  
A
A
= +2  
0.03  
0.04  
V
V
Differential Phase Error (Note 1)  
= +2  
°
DC PERFORMANCE  
V
Offset Voltage  
-10  
1
5
10  
mV  
OS  
T V  
Input Offset Voltage Temperature  
Coefficient  
Measured from T  
to T  
MAX  
µV/°C  
C
OS  
MIN  
R
Transimpedance  
300  
500  
kΩ  
OL  
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
±3  
42  
-6  
±3.3  
50  
V
CMRR  
-ICMR  
Common Mode Rejection Ratio  
dB  
- Input Current Common Mode  
Rejection  
6
µA/V  
+I  
+ Input Current  
- Input Current  
-60  
-30  
1
1
80  
30  
µA  
µA  
kΩ  
pF  
IN  
-I  
IN  
R
Input Resistance  
Input Capacitance  
45  
0.5  
IN  
IN  
C
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
R = 150Ω to GND  
±3.4  
±3.8  
95  
±3.7  
±4.0  
120  
V
V
O
L
R = 1kΩ to GND  
L
I
Output Current  
R = 10Ω to GND  
mA  
OUT  
L
SUPPLY  
I
I
Supply Current - Enabled  
Supply Current - Disabled  
No load, V = 0V  
IN  
3
4
5
mA  
µA  
SON  
No load, V = 0V  
IN  
100  
150  
SOFF  
2
EL5193, EL5193A  
Electrical Specifications V + = +5V, V - = -5V, R = 750Ω for A = 1, R = 400Ω for A = 2, R = 150Ω, T = 25°C unless otherwise  
S
S
F
V
F
V
L
A
specified. (Continued)  
PARAMETER  
PSRR  
DESCRIPTION  
CONDITIONS  
DC, V = ±4.75V to ±5.25V  
MIN  
55  
TYP  
MAX  
UNIT  
dB  
Power Supply Rejection Ratio  
75  
S
-IPSR  
- Input Current Power Supply  
Rejection  
DC, V = ±4.75V to ±5.25V  
-2  
2
µA/V  
S
ENABLE (EL5193A ONLY)  
t
t
I
I
Enable Time  
40  
600  
0.8  
0
ns  
ns  
µA  
µA  
V
EN  
Disable Time  
DIS  
CE Pin Input High Current  
CE Pin Input Low Current  
CE = V +  
6
IHCE  
ILCE  
S
CE = V -  
-0.1  
S
V
CE Input High Voltage for Power-  
down  
V + -1  
S
IHCE  
V
CE Input Low Voltage for Power-  
down  
V + -3  
V
ILCE  
S
NOTE:  
1. Standard NTSC test, AC signal amplitude = 286mV  
, f = 3.58MHz  
P-P  
3
EL5193, EL5193A  
Typical Performance Curves  
Non-Inverting Frequency Response (Gain)  
SOT-23 Package  
Non-Inverting Frequency Response (Phase)  
SOT-23 Package  
6
90  
0
A
=1  
V
A
A
=1  
=2  
V
2
-2  
A
=2  
V
V
-90  
-180  
-270  
-360  
A
=5  
V
A
=5  
V
A
=10  
V
-6  
A
=10  
V
-10  
-14  
R =750Ω  
L
R =750Ω  
F
R =150Ω  
L
F
R =150Ω  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1G  
1G  
Inverting Frequency Response (Gain)  
SOT-23 Package  
Inverting Frequency Response (Phase)  
6
2
90  
0
A
=-1  
V
A
=-1  
A =-2  
V
V
V
-2  
-90  
A
A
=-2  
=-3  
V
A
=-3  
V
-6  
-180  
-270  
-360  
-10  
R =500Ω  
L
R =500Ω  
F
F
R =150Ω  
R =150Ω  
L
-14  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
Frequency (Hz)  
Frequency Response for Various C  
-
Frequency Response for Various R  
L
IN  
10  
6
6
2
R =100Ω  
R =150Ω  
L
L
2pF added  
0pF added  
1pF added  
R =500Ω  
2
-2  
L
-2  
-6  
-10  
-6  
-10  
-14  
A
=2  
V
R =500Ω  
A
=2  
F
V
R =150Ω  
R =500Ω  
L
F
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
Frequency (Hz)  
4
EL5193, EL5193A  
Typical Performance Curves (Continued)  
Frequency Response for Various C  
Frequency Response for Various R  
F
L
14  
10  
6
6
2
A
=2  
V
33pF  
340Ω  
475Ω  
620Ω  
R =150Ω  
L
R =R =500Ω  
F
G
22pF  
15pF  
-2  
750Ω  
2
-6  
1.2kΩ  
8pF  
0pF  
-2  
-6  
-10  
-14  
A
R
=2  
V
=R  
G
F
R =150Ω  
L
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1G  
1G  
Group Delay vs Frequency  
Frequency Response for Various Common-Mode Input  
Voltages  
3.5  
3
6
2
V
=3V  
V
=0V  
CM  
CM  
A
=2  
V
R =500Ω  
F
2.5  
2
-2  
V
=-3V  
CM  
1.5  
1
-6  
A
=1  
V
R =750Ω  
F
-10  
A
=2  
V
0.5  
R =500Ω  
F
R =150Ω  
L
0
1M  
-14  
1M  
10M  
100M  
Frequency (Hz)  
1G  
10M  
100M  
Frequency (Hz)  
Transimpedance (ROL) vs Frequency  
Phase  
PSRR and CMRR vs Frequency  
10M  
1M  
20  
0
0
PSRR+  
-90  
100k  
10k  
1k  
-20  
-40  
-60  
-80  
PSRR-  
-180  
-270  
-360  
Gain  
CMRR  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
5
EL5193, EL5193A  
Typical Performance Curves (Continued)  
-3dB Bandwidth vs Supply Voltage for Non-Inverting Gains  
-3dB Bandwidth vs Supply Voltage for Inverting Gains  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
R =750Ω  
F
A
=1  
R =150Ω  
V
L
A
=-1  
V
A
A
=-2  
=-5  
V
A
A
=2  
=5  
V
V
V
R =500Ω  
F
A
=10  
9
V
R =150Ω  
L
0
5
0
6
7
8
10  
10  
1G  
5
6
7
8
9
10  
Total Supply Voltage (V)  
Total Supply Voltage (V)  
Peaking vs Supply Voltage for Non-Inverting Gains  
Peaking vs Supply Voltage for Inverting Gains  
4
3.5  
3
2.5  
2
R =750Ω  
R =500Ω  
R =150Ω  
F
F
L
R =150Ω  
A
=1  
L
V
2.5  
2
1.5  
1
A
A
=-1  
=-2  
V
1.5  
1
A
=2  
V
V
0.5  
0.5  
A
=10  
V
0
5
0
5
6
7
8
9
6
7
8
9
10  
Total Supply Voltage (V)  
Total Supply Voltage (V)  
Non-inverting Frequency Response (Gain)  
SO8 Package  
Non-Inverting Frequency Response (Phase)  
SO8 Package  
6
2
90  
0
A
=1  
A =2  
V
V
A
A
=1  
=2  
V
V
-2  
-90  
A
=5  
V
A
=5  
V
-6  
-180  
-270  
-360  
A
=10  
V
A
=10  
V
-10  
-14  
R =750Ω  
R =750Ω  
F
R =150Ω  
L
F
R =150Ω  
L
1M  
10M  
100M  
Frequency (Hz)  
1M  
10M  
100M  
Frequency (Hz)  
1G  
6
EL5193, EL5193A  
Typical Performance Curves (Continued)  
Inverting Frequency Response (Gain)  
SO8 Package  
Inverting Frequency Response (Phase)  
SO8 Package  
6
2
90  
0
A
A
=-1  
=-2  
V
A
=-1  
A =-2  
V
V
V
V
-2  
-90  
A
=-5  
A
=-5  
V
-6  
-180  
-270  
-360  
-10  
-14  
R =500Ω  
R =500Ω  
F
R =150Ω  
L
F
R =150Ω  
L
1M  
10M  
100M  
Frequency (Hz)  
1G  
160  
160  
1M  
10M  
100M  
Frequency (Hz)  
1G  
160  
10M  
-3dB Bandwidth vs Temperature for Non-Inverting Gains  
-3dB Bandwidth vs Temperature for Inverting Gains  
500  
400  
300  
200  
100  
0
250  
200  
150  
100  
50  
R =750Ω  
F
R =150Ω  
L
A
A
=-1  
=-2  
V
A
=1  
V
V
A
A
=2  
=5  
V
A
=-5  
V
V
R =500Ω  
F
R =150Ω  
L
A
=10  
10  
V
0
-40  
-40  
60  
110  
10  
60  
110  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
Peaking vs Temperature  
Voltage and Current Noise vs Frequency  
2.5  
2
1k  
100  
10  
R =150Ω  
L
A
=1  
V
1.5  
1
i +  
n
i -  
n
0.5  
0
e
n
A
=-1  
V
-0.5  
1
100  
-40  
10  
60  
110  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Ambient Temperature (°C)  
7
EL5193, EL5193A  
Typical Performance Curves (Continued)  
Closed Loop Output Impedance vs Frequency  
Supply Current vs Supply Voltage  
100  
10  
10  
8
1
6
0.1  
4
0.01  
0.001  
2
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
100  
1
0
2
4
6
8
10  
12  
Frequency (Hz)  
Supply Voltage (V)  
2nd and 3rd Harmonic Distortion vs Frequency  
Two-Tone 3rd Order Input Referred Intermodulation Intercept (IIP3)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
25  
20  
15  
10  
5
A
V
L
=+2  
A =+2  
V
V
=2V  
R =150Ω  
L
OUT  
R =100Ω  
P-P  
2nd Order  
Distortion  
3rd Order  
Distortion  
0
-5  
A
=+2  
V
R =100Ω  
L
-10  
1
10  
Frequency (MHz)  
10  
100  
Frequency (MHz)  
Differential Gain/Phase vs DC Input Voltage at 3.58MHz  
Differential Gain/Phase vs DC Input Voltage at 3.58MHz  
0.03  
0.02  
0.01  
0
0.04  
0.03  
0.02  
0.01  
0
A
=2  
A =1  
V
V
R =R =500Ω  
R =750Ω  
F
R =500Ω  
L
dP  
dG  
F
L
G
dP  
dG  
R =150Ω  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.01  
-0.02  
-0.03  
-0.04  
-1  
-0.5  
0
0.5  
-1  
-0.5  
0
0.5  
1
DC Input Voltage  
DC Input Voltage  
8
EL5193, EL5193A  
Typical Performance Curves (Continued)  
Output Voltage Swing vs Frequency  
THD<1%  
Output Voltage Swing vs Frequency  
THD<0.1%  
10  
8
10  
8
R =500Ω  
L
R =500Ω  
L
R =150Ω  
L
6
6
R =150Ω  
L
4
4
2
2
A
=2  
A =2  
V
V
0
0
1
10  
Frequency (MHz)  
100  
1
10  
100  
Frequency (MHz)  
Small Signal Step Response  
Large Signal Step Response  
V
=±5V  
V =±5V  
S
S
R =150Ω  
A
R =R =500Ω  
R =150Ω  
L
L
V
=2  
A =2  
V
R =R =500Ω  
F G  
F
G
200mV/div  
1V/div  
10ns/div  
10ns/div  
Settling Time vs Settling Accuracy  
Transimpedance (RoI) vs Temperature  
25  
20  
15  
10  
5
625  
600  
575  
550  
525  
A
=2  
V
R =R =500Ω  
F
G
R =150Ω  
L
V
=5V output  
STEP P-P  
0
0.01  
0.1  
1
-40  
10  
60  
110  
160  
Settling Accuracy (%)  
Die Temperature (°C)  
9
EL5193, EL5193A  
Typical Performance Curves (Continued)  
PSRR and CMRR vs Temperature  
ICMR and IPSR vs Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
2
1.5  
1
PSRR  
CMRR  
110  
ICMR+  
IPSR  
0.5  
0
ICMR-  
-0.5  
-40  
10  
60  
160  
160  
160  
-40  
10  
60  
110  
160  
160  
160  
Die Temperature (°C)  
Die Temperature (°C)  
Offset Voltage vs Temperature  
Input Current vs Temperature  
2
1
60  
40  
20  
0
IB-  
0
-20  
-40  
-60  
IB+  
-1  
-2  
-40  
10  
60  
Die Temperature (°C)  
110  
-40  
10  
60  
Temperature (°C)  
110  
Positive Input Resistance vs Temperature  
Supply Current vs Temperature  
60  
50  
40  
30  
20  
10  
0
5
4
3
2
1
0
-40  
10  
60  
110  
-40  
10  
60  
110  
Temperature (°C)  
Temperature (°C)  
10  
EL5193, EL5193A  
Typical Performance Curves (Continued)  
Positive Output Swing vs Temperature for Various Loads  
Negative Output Swing vs Temperature for Various Loads  
4.2  
4.1  
4
-3.5  
-3.6  
-3.7  
-3.8  
-3.9  
-4  
150Ω  
1kΩ  
3.9  
3.8  
3.7  
3.6  
3.5  
150Ω  
1kΩ  
-4.1  
-4.2  
-40  
10  
60  
110  
160  
-40  
10  
60  
110  
160  
Temperature (°C)  
Temperature (°C)  
Output Current vs Temperature  
Slew Rate vs Temperature  
130  
125  
120  
115  
4000  
3500  
3000  
2500  
Sink  
Source  
A
=2  
V
F
L
R =R =500Ω  
R =150Ω  
G
-40  
10  
60  
110  
160  
-40  
10  
60  
110  
160  
Die Temperature (°C)  
Die Temperature (°C)  
Enable Response  
Disable Response  
500mV/div  
500mV/div  
5V/div  
5V/div  
20ns/div  
400ns/div  
11  
EL5193, EL5193A  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1
0.5  
0.45  
0.4  
435mW  
909mW  
0.35  
0.3  
SOT23-5/6  
SO8  
=110°C/W  
0.8  
0.6  
0.4  
0.2  
0
θ
=230°C/W  
JA  
θ
JA  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
JEDEC JESD51-3 LOW EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
JEDEC JESD51-3 LOW EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
0.45  
0.4  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
391mW  
0.35  
0.3  
625mW  
SO8  
θ
=160°C/W  
0.25  
0.2  
JA  
0.15  
0.1  
0.05  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
12  
EL5193, EL5193A  
Pin Descriptions  
8 LD SO  
5 LD SOT-23 6 LD SOT-23  
PIN NAME  
FUNCTION  
Not connected  
EQUIVALENT CIRCUIT  
1, 5  
2
NC  
IN-  
4
4
Inverting input  
V
+
S
IN+  
IN-  
V
-
S
Circuit 1  
3
4
6
3
2
1
3
2
1
IN+  
Non-inverting input  
Negative supply  
Output  
(See circuit 1)  
V -  
S
OUT  
V
+
S
OUT  
V
-
S
Circuit 2  
7
8
5
6
5
V +  
S
Positive supply  
Chip enable  
CE  
V
+
S
CE  
V
-
S
Circuit 3  
13  
EL5193, EL5193A  
enabled when CE is 2V or less, and disabled when CE is  
Applications Information  
above 4V. Although the logic levels are not standard TTL,  
this choice of logic voltages allows the EL5193A to be  
enabled by tying CE to ground, even in 5V single supply  
applications. The CE pin can be driven from CMOS outputs.  
Product Description  
The EL5193 is a current-feedback operational amplifier that  
offers a wide -3dB bandwidth of 300MHz and a low supply  
current of 4mA per amplifier. The EL5193 works with supply  
voltages ranging from a single 5V to 10V and they are also  
capable of swinging to within 1V of either supply on the  
output. Because of their current-feedback topology, the  
EL5193 does not have the normal gain-bandwidth product  
associated with voltage-feedback operational amplifiers.  
Instead, its -3dB bandwidth to remain relatively constant as  
closed-loop gain is increased. This combination of high  
bandwidth and low power, together with aggressive pricing  
make the EL5193 the ideal choice for many low-power/high-  
bandwidth applications such as portable, handheld, or  
battery-powered equipment.  
Capacitance at the Inverting Input  
Any manufacturer’s high-speed voltage- or current-feedback  
amplifier can be affected by stray capacitance at the  
inverting input. For inverting gains, this parasitic capacitance  
has little effect because the inverting input is a virtual  
ground, but for non-inverting gains, this capacitance (in  
conjunction with the feedback and gain resistors) creates a  
pole in the feedback path of the amplifier. This pole, if low  
enough in frequency, has the same destabilizing effect as a  
zero in the forward open-loop response. The use of large-  
value feedback and gain resistors exacerbates the problem  
by further lowering the pole frequency (increasing the  
possibility of oscillation).  
For varying bandwidth needs, consider the EL5191 with  
1GHz on a 9mA supply current or the EL5192 with 600MHz  
on a 6mA supply current. Versions include single, dual, and  
triple amp packages with 5 Ld SOT-23, 16 Ld QSOP, and 8  
Ld or 16 Ld SO outlines.  
The EL5193 has been optimized with a 475Ω feedback  
resistor. With the high bandwidth of these amplifiers, these  
resistor values might cause stability problems when  
combined with parasitic capacitance, thus ground plane is  
not recommended around the inverting input pin of the  
amplifier.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Low  
impedance ground plane construction is essential. Surface  
mount components are recommended, but if leaded  
components are used, lead lengths should be as short as  
possible. The power supply pins must be well bypassed to  
reduce the risk of oscillation. The combination of a 4.7µF  
tantalum capacitor in parallel with a 0.01µF capacitor has  
been shown to work well when placed at each supply pin.  
Feedback Resistor Values  
The EL5193 has been designed and specified at a gain of +2  
with R approximately 500Ω. This value of feedback resistor  
F
gives 200MHz of -3dB bandwidth at A =2 with 2dB of  
V
peaking. With A =-2, an R of approximately 500Ω gives  
V
F
175MHz of bandwidth with 0.2dB of peaking. Since the  
EL5193 is a current-feedback amplifier, it is also possible to  
change the value of R to get more bandwidth. As seen in  
F
the curve of Frequency Response for Various R and R ,  
F
G
For good AC performance, parasitic capacitance should be  
kept to a minimum, especially at the inverting input. (See the  
Capacitance at the Inverting Input section) Even when  
ground plane construction is used, it should be removed  
from the area near the inverting input to minimize any stray  
capacitance at that node. Carbon or Metal-Film resistors are  
acceptable with the Metal-Film resistors giving slightly less  
peaking and bandwidth because of additional series  
inductance. Use of sockets, particularly for the SO package,  
should be avoided if possible. Sockets add parasitic  
inductance and capacitance which will result in additional  
peaking and overshoot.  
bandwidth and peaking can be easily modified by varying  
the value of the feedback resistor.  
Because the EL5193 is a current-feedback amplifier, its  
gain-bandwidth product is not a constant for different closed-  
loop gains. This feature actually allows the EL5193 to  
maintain about the same -3dB bandwidth. As gain is  
increased, bandwidth decreases slightly while stability  
increases. Since the loop stability is improving with higher  
closed-loop gains, it becomes possible to reduce the value  
of R below the specified 475Ω and still retain stability,  
F
resulting in only a slight loss of bandwidth with increased  
closed-loop gain.  
Disable/Power-Down  
Supply Voltage Range and Single-Supply  
Operation  
The EL5193A amplifier can be disabled placing its output in  
a high impedance state. When disabled, the amplifier supply  
current is reduced to < 150µA. The EL5193A is disabled  
when its CE pin is pulled up to within 1V of the positive  
supply. Similarly, the amplifier is enabled by floating or  
pulling its CE pin to at least 3V below the positive supply. For  
±5V supply, this means that an EL5193A amplifier will be  
The EL5193 has been designed to operate with supply  
voltages having a span of greater than 5V and less than  
10V. In practical terms, this means that the EL5193 will  
operate on dual supplies ranging from ±2.5V to ±5V. With  
single-supply, the EL5193 will operate from 5V to 10V.  
14  
EL5193, EL5193A  
As supply voltages continue to decrease, it becomes  
Current Limiting  
necessary to provide input and output voltage ranges that  
can get as close as possible to the supply voltages. The  
EL5193 has an input range which extends to within 2V of  
either supply. So, for example, on +5V supplies, the EL5193  
has an input range which spans ±3V. The output range of  
the EL5193 is also quite large, extending to within 1V of the  
supply rail. On a ±5V supply, the output is therefore capable  
of swinging from -4V to +4V. Single-supply output range is  
larger because of the increased negative swing due to the  
external pull-down resistor to ground.  
The EL5193 has no internal current-limiting circuitry. If the  
output is shorted, it is possible to exceed the Absolute  
Maximum Rating for output current or power dissipation,  
potentially resulting in the destruction of the device.  
Power Dissipation  
With the high output drive capability of the EL5193, it is  
possible to exceed the 125°C Absolute Maximum junction  
temperature under certain very high load current conditions.  
Generally speaking when R falls below about 25Ω, it is  
L
important to calculate the maximum junction temperature  
Video Performance  
(T  
) for the application to determine if power supply  
JMAX  
For good video performance, an amplifier is required to  
maintain the same output impedance and the same  
frequency response as DC levels are changed at the output.  
This is especially difficult when driving a standard video load  
of 150Ω, because of the change in output current with DC  
level. Previously, good differential gain could only be  
achieved by running high idle currents through the output  
transistors (to reduce variations in output impedance.)  
These currents were typically comparable to the entire 4mA  
supply current of each EL5193 amplifier. Special circuitry  
has been incorporated in the EL5193 to reduce the variation  
of output impedance with current output. This results in dG  
and dP specifications of 0.03% and 0.04°, while driving  
150Ω at a gain of 2.  
voltages, load conditions, or package type need to be  
modified for the EL5193 to remain in the safe operating area.  
These parameters are calculated as follows:  
T
= T  
+ (θ × n × PD  
)
MAX  
JMAX  
MAX  
JA  
where:  
T
= Maximum ambient temperature  
MAX  
θ
= Thermal resistance of the package  
JA  
n = Number of amplifiers in the package  
PD = Maximum power dissipation of each amplifier in  
MAX  
the package  
Video performance has also been measured with a 500Ω  
load at a gain of +1. Under these conditions, the EL5193 has  
dG and dP specifications of 0.03% and 0.04°.  
PD for each amplifier can be calculated as follows:  
MAX  
V
OUTMAX  
----------------------------  
PD  
= (2 × V × I  
) + (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
R
L
Output Drive Capability  
In spite of its low 4mA of supply current, the EL5193 is  
capable of providing a minimum of ±95mA of output current.  
With a minimum of ±95mA of output drive, the EL5193 is  
capable of driving 50Ω loads to both rails, making it an  
excellent choice for driving isolation transformers in  
telecommunications applications.  
where:  
V = Supply voltage  
S
I
= Maximum supply current of 1A  
SMAX  
V
= Maximum output voltage (required)  
OUTMAX  
Driving Cables and Capacitive Loads  
R = Load resistance  
L
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back-termination series resistor will  
decouple the EL5193 from the cable and allow extensive  
capacitive drive. However, other applications may have high  
capacitive loads without a back-termination resistor. In these  
applications, a small series resistor (usually between 5Ω and  
50Ω) can be placed in series with the output to eliminate  
most peaking. The gain resistor (R ) can then be chosen to  
G
make up for any gain loss which may be created by this  
additional resistor at the output. In many cases it is also  
possible to simply increase the value of the feedback  
resistor (R ) to reduce the peaking.  
F
15  
EL5193, EL5193A  
Typical Application Circuits  
Inverting 200mA Output Current Distribution Amplifier  
0.1µF  
+5V  
IN+  
V
+
S
S
OUT  
IN-  
V
-
0.1µF  
-5V  
500Ω  
5Ω  
0.1µF  
V
OUT  
+5V  
IN+  
V
V
+
S
5Ω  
OUT  
IN-  
-
S
0.1µF  
-5V  
500Ω  
500Ω  
V
IN  
Fast-Settling Precision Amplifier  
500Ω  
500Ω  
0.1µF  
+5V  
IN+  
V
V
+
S
OUT  
IN-  
-
S
0.1µF  
500Ω  
500Ω  
-5V  
0.1µF  
+5V  
IN+  
V
V
+
S
V
IN  
OUT  
V
OUT  
IN-  
-
S
0.1µF  
-5V  
16  
EL5193, EL5193A  
Typical Application Circuits  
Differential Line Driver/Receiver  
0.1µF  
+5V  
0.1µF  
+5V  
IN+  
IN+  
V
V
+
V
V
+
S
S
S
OUT  
OUT  
IN-  
IN-  
-
-
S
0.1µF  
0.1µF  
-5V  
-5V  
0.1µF  
500Ω  
250Ω  
250Ω  
500Ω  
500Ω  
V
V
+
OUT  
0.1µF  
1kΩ  
1kΩ  
+5V  
IN+  
240Ω  
0.1µF  
+5V  
IN+  
V
V
+
S
0.1µF  
OUT  
V
V
+
S
-
OUT  
IN-  
OUT  
V
OUT  
-
S
IN-  
0.1µF  
-
S
-5V  
0.1µF  
-5V  
500Ω  
500Ω  
V
IN  
500Ω  
500Ω  
Transmitter  
Receiver  
17  
EL5193, EL5193A  
SO Package Outline Drawing  
18  
EL5193, EL5193A  
SOT-23 Package Outline Drawing  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
http://www.intersil.com/design/packages/index.asp  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
19  

相关型号:

EL5193C

Single 300MHz Current Feedback Amplifier
ELANTEC

EL5193CS

Single 300MHz Current Feedback Amplifier
ELANTEC

EL5193CS-T13

Single 300MHz Current Feedback Amplifier
ELANTEC

EL5193CS-T7

Single 300MHz Current Feedback Amplifier
ELANTEC

EL5193CW-T13

Single 300MHz Current Feedback Amplifier
ELANTEC

EL5193CW-T7

Single 300MHz Current Feedback Amplifier with Enable
INTERSIL

EL5193CW-T7

Single 300MHz Current Feedback Amplifier
ELANTEC

EL5193CW-T7A

Single 300MHz Current Feedback Amplifier with Enable
INTERSIL

EL5193CW5-T13

1 CHANNEL, VIDEO AMPLIFIER, PDSO5, SOT-23, 5 PIN
RENESAS

EL5193CW6-T13

Video Amplifier, 1 Channel(s), 1 Func, PDSO6, SOT-23, 6 PIN
ELANTEC

EL5193CW6-T7

Video Amplifier, 1 Channel(s), 1 Func, PDSO6, SOT-23, 6 PIN
ELANTEC

EL5193CWZ-T7

Single 300MHz Current Feedback Amplifier with Enable
INTERSIL