EL5220 [INTERSIL]

12MHz Rail-to-Rail Input-Output Op Amps; 12MHz的轨至轨输入输出运算放大器
EL5220
型号: EL5220
厂家: Intersil    Intersil
描述:

12MHz Rail-to-Rail Input-Output Op Amps
12MHz的轨至轨输入输出运算放大器

运算放大器
文件: 总12页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5120, EL5220, EL5420  
®
Data Sheet  
February 21, 2005  
FN7186.4  
12MHz Rail-to-Rail Input-Output Op Amps  
Features  
The EL5120, EL5220, and EL5420 are low power, high  
voltage, rail-to-rail input-output amplifiers. The EL5120  
contains a single amplifier, the EL5220 contains two  
amplifiers, and the EL5420 contains four amplifiers.  
Operating on supplies ranging from 5V to 15V, while  
consuming only 500µA per amplifier, the EL5120, EL5220,  
and EL5420 have a bandwidth of 12MHz (-3dB). They also  
provide common mode input ability beyond the supply rails,  
as well as rail-to-rail output capability. This enables these  
amplifiers to offer maximum dynamic range at any supply  
voltage.  
• 12MHz -3dB bandwidth  
• Supply voltage = 4.5V to 16.5V  
• Low supply current (per amplifier) = 500µA  
• High slew rate = 10V/µs  
• Unity-gain stable  
• Beyond the rails input capability  
• Rail-to-rail output swing  
• Ultra-small package  
• Pb-Free available (RoHS compliant)  
The EL5120, EL5220, and EL5420 also feature fast slewing  
and settling times, as well as a high output drive capability of  
30mA (sink and source). These features make these  
amplifiers ideal for use as voltage reference buffers in Thin  
Film Transistor Liquid Crystal Displays (TFT-LCD). Other  
applications include battery power, portable devices, and  
anywhere low power consumption is important.  
Applications  
• TFT-LCD drive circuits  
• Electronics notebooks  
• Electronics games  
The EL5420 is available in the space-saving 14-pin TSSOP  
package, the industry-standard 14-pin SO package, as well  
as the 16-pin QFN package. The EL5220 is available in the  
8-pin MSOP package and the EL5120 is available in the 5-  
pin TSOT and 8-pin HMSOP packages. All feature a  
standard operational amplifier pin out. These amplifiers are  
specified for operation over the full -40°C to +85°C  
temperature range.  
Touch-screen displays  
• Personal communication devices  
• Personal digital assistants (PDA)  
• Portable instrumentation  
• Sampling ADC amplifiers  
• Wireless LANs  
• Office automation  
• Active filters  
• ADC/DAC buffer  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-352-6832 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2004, 2005. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL5120, EL5220, EL5420  
Ordering Information (Continued)  
Ordering Information  
TAPE &  
REEL  
TAPE &  
REEL  
7” (3K pcs)  
7” (250 pcs)  
7” (3K pcs)  
PART NUMBER  
PACKAGE  
PKG. DWG. #  
MDP0046  
PART NUMBER  
EL5120IWT-T7  
EL5120IWT-T7A  
PACKAGE  
5-Pin TSOT  
5-Pin TSOT  
PKG. DWG. #  
MDP0049  
MDP0049  
MDP0049  
EL5420CLZ  
(See Note)  
16-Pin QFN  
(Pb-free)  
-
EL5420CLZ-T7  
(See Note)  
16-Pin QFN  
(Pb-free)  
7”  
MDP0046  
MDP0046  
EL5120IWTZ-T7  
(See Note)  
5-Pin TSOT  
(Pb-Free)  
EL5420CLZ-T13  
(See Note)  
16-Pin QFN  
(Pb-free)  
13”  
EL5120IWTZ-T7A  
(See Note)  
5-Pin TSOT  
(Pb-Free)  
7” (250 pcs)  
MDP0049  
EL5420CS  
EL5420CS-T7  
EL5420CS-T13  
EL5420CSZ  
(See Note)  
14-Pin SO  
14-Pin SO  
14-Pin SO  
14-Pin SO  
(Pb-free)  
-
7”  
13”  
-
MDP0027  
MDP0027  
MDP0027  
MDP0027  
EL5120IYE  
EL5120IYE-T7  
EL5120IYE-T13  
8-Pin HMSOP  
8-Pin HMSOP  
8-Pin HMSOP  
-
7”  
13”  
-
MDP0050  
MDP0050  
MDP0050  
MDP0050  
EL5120IYEZ  
(See Note)  
8-Pin HMSOP  
(Pb-Free)  
EL5420CSZ-T7  
(See Note)  
14-Pin SO  
(Pb-free)  
7”  
MDP0027  
MDP0027  
EL5120IYEZ-T7  
(See Note)  
8-Pin HMSOP  
(Pb-Free)  
7”  
MDP0050  
MDP0050  
EL5420CSZ-T13  
(See Note)  
14-Pin SO  
(Pb-free)  
13”  
EL5120IYEZ-T13  
(See Note)  
8-Pin HMSOP  
(Pb-Free)  
13”  
EL5420CR  
EL5420CR-T7  
EL5420CR-T13  
EL5420CRZ  
(Note)  
14-Pin TSSOP  
14-Pin TSSOP  
14-Pin TSSOP  
14-Pin TSSOP  
(Pb-Free)  
-
7”  
13”  
-
MDP0044  
MDP0044  
MDP0044  
MDP0044  
EL5220CY  
EL5220CY-T7  
EL5220CY-13  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
-
7”  
13”  
-
MDP0043  
MDP0043  
MDP0043  
MDP0043  
EL5220CYZ  
(See Note)  
8-Pin MSOP  
(Pb-Free)  
EL5420CRZ-T7  
(Note)  
14-Pin TSSOP  
(Pb-Free)  
7”  
MDP0044  
MDP0044  
EL5220CYZ-T7  
(See Note)  
8-Pin MSOP  
(Pb-Free)  
7”  
MDP0043  
MDP0043  
EL5420CRZ-T13  
(Note)  
14-Pin TSSOP  
(Pb-Free)  
13”  
EL5220CYZ-T13  
(See Note)  
8-Pin MSOP  
(Pb-Free)  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding  
compounds/die attach materials and 100% matte tin plate termination finish, which are  
RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
EL5420CL  
EL5420CL-T7  
EL5420CL-T13  
16-Pin QFN  
16-Pin QFN  
16-Pin QFN  
-
7”  
13”  
MDP0046  
MDP0046  
MDP0046  
Pinouts  
EL5120  
EL5220  
EL5420  
(5-PIN TSOT)  
(8-PIN MSOP)  
(16-PIN QFN)  
TOP VIEW  
TOP VIEW  
TOP VIEW  
VOUT  
VS-  
1
2
3
5
4
VS+  
VIN-  
VOUTA  
VINA-  
VINA+  
VS-  
1
2
3
4
8
7
6
5
VS+  
-
+
VOUTB  
VINB-  
VINB+  
+
-
VIN+  
VINA-  
VINA+  
VS+  
1
2
3
4
12 VIND-  
11 VIND+  
10 VS-  
-
+
THERMAL  
PAD  
EL5120  
(8-PIN HMSOP)  
TOP VIEW  
EL5420  
(14-PIN TSSOP, SO)  
TOP VIEW  
9
VINC+  
VINB+  
NC  
IN-  
1
2
3
4
8
7
6
5
NC  
VOUTA  
VINA-  
VINA+  
VS+  
1
2
3
4
5
6
7
14 VOUTD  
VS+  
OUT  
NC  
13 VIND-  
12 VIND+  
11 VS-  
-
-
+
+
+
+
-
-
-
+
IN+  
VS-  
VINB+  
VINB-  
VOUTB  
10 VINC+  
9
8
VINC-  
VOUTC  
FN7186.4  
2
February 21, 2005  
EL5120, EL5220, EL5420  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . V - - 0.5V, V +0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 30mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 10kand C = 10pF to 0V, T = 25°C, unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 0V  
2
5
12  
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
= 0V  
Average Offset Voltage Drift  
Input Bias Current  
OS  
I
V
2
50  
B
CM  
R
Input Impedance  
1
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
1.35  
CMIR  
Common-Mode Input Range  
-5.5  
50  
+5.5  
V
CMRR  
Common-Mode Rejection Ratio  
Open Loop Gain  
for V from -5.5V to +5.5V  
IN  
70  
95  
dB  
A
-4.5V V  
≤ +4.5V  
OUT  
75  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
Output Current  
I = -5mA  
-4.92  
4.92  
±120  
±30  
-4.85  
V
V
OL  
L
I = 5mA  
4.85  
60  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from ±2.25V to ±7.75V  
80  
dB  
µA  
S
I
No load  
500  
750  
S
-4.0V V  
≤ +4.0V, 20% to 80%  
10  
500  
12  
8
V/µs  
ns  
OUT  
t
Settling to +0.1% (A = +1)  
V
(A = +1), V = 2V step  
V O  
S
BW  
-3dB Bandwidth  
R
R
R
= 10k, C = 10pF  
MHz  
MHz  
°
L
L
L
L
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 10k, C = 10pF  
L
= 10k, C = 10 pF  
50  
75  
L
CS  
Channel Separation  
f = 5MHz (EL5220 & EL5420 only)  
dB  
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
FN7186.4  
3
February 21, 2005  
EL5120, EL5220, EL5420  
Electrical Specifications V + = +5V, V - = 0V, R = 10kand C = 10pF to 2.5V, T = 25°C, unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 2.5V  
2
5
10  
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
= 2.5V  
Average Offset Voltage Drift  
Input Bias Current  
OS  
I
V
2
50  
B
CM  
R
Input Impedance  
1
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
1.35  
CMIR  
Common-Mode Input Range  
-0.5  
45  
+5.5  
150  
V
CMRR  
Common-Mode Rejection Ratio  
Open Loop Gain  
for V from -0.5V to +5.5V  
IN  
66  
95  
dB  
A
0.5V V  
≤+ 4.5V  
OUT  
75  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
Output Current  
I = -5mA  
80  
mV  
V
OL  
L
I = +5mA  
4.85  
60  
4.92  
±120  
±30  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from 4.5V to 15.5V  
80  
dB  
µA  
S
I
No load  
500  
750  
S
1V V  
4V, 20% to 80%  
10  
500  
12  
8
V/µs  
ns  
OUT  
(A = +1), V = 2V step  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
R
R
R
= 10k, C = 10pF  
MHz  
MHz  
°
L
L
L
L
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 10 k, C = 10pF  
L
= 10 k, C = 10 pF  
50  
75  
L
CS  
Channel Separation  
f = 5MHz (EL5220 & EL5420 only)  
dB  
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
FN7186.4  
4
February 21, 2005  
EL5120, EL5220, EL5420  
Electrical Specifications V + = +15V, V - = 0V, R = 10kand C = 10pF to 7.5V, T = 25°C, unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 7.5V  
2
5
14  
mV  
µV/°C  
nA  
OS  
TCV  
CM  
(Note 1)  
= 7.5V  
Average Offset Voltage Drift  
Input Bias Current  
OS  
I
V
2
50  
B
CM  
R
Input Impedance  
1
GΩ  
pF  
IN  
IN  
C
Input Capacitance  
1.35  
CMIR  
Common-Mode Input Range  
-0.5  
53  
+15.5  
150  
V
CMRR  
Common-Mode Rejection Ratio  
Open Loop Gain  
for V from -0.5V to +15.5V  
IN  
72  
95  
dB  
A
0.5V V  
14.5V  
OUT  
75  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
Output Current  
I = -5mA  
80  
mV  
V
OL  
L
I = +5mA  
14.85  
60  
14.92  
±120  
±30  
OH  
L
I
I
mA  
mA  
SC  
OUT  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Amplifier)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from 4.5V to 15.5V  
80  
dB  
µA  
S
I
No load  
500  
750  
S
1V V  
14V, 20% to 80%  
10  
500  
12  
8
V/µs  
ns  
OUT  
(A = +1), V = 2V step  
t
Settling to +0.1% (A = +1)  
V
S
V
O
BW  
-3dB Bandwidth  
R
R
R
= 10k, C = 10pF  
MHz  
MHz  
°
L
L
L
L
GBWP  
PM  
Gain-Bandwidth Product  
Phase Margin  
= 10k, C = 10pF  
L
= 10k, C = 10 pF  
50  
75  
L
CS  
Channel Separation  
f = 5MHz (EL5220 & EL5420 only)  
dB  
NOTES:  
1. Measured over operating temperature range  
2. Slew rate is measured on rising and falling edges  
FN7186.4  
5
February 21, 2005  
EL5120, EL5220, EL5420  
Typical Performance Curves  
70  
1800  
TYPICAL  
V =±5V  
S
TYPICAL  
PRODUCTION  
DISTRIBUTION  
V =±5V  
S
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
PRODUCTION  
DISTRIBUTION  
T =25°C  
A
60  
50  
40  
30  
20  
10  
0
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE DRIFT, TCV (µV/°C)  
OS  
FIGURE 1. EL5420 INPUT OFFSET VOLTAGE DISTRIBUTION  
FIGURE 2. EL5420 INPUT OFFSET VOLTAGE DRIFT  
10  
5
V =±5V  
S
V =±5V  
S
2.0  
0.0  
0
-5  
-2.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 3. INPUT OFFSET VOLTAGE vs TEMPERATURE  
4.97  
FIGURE 4. INPUT BIAS CURRENT vs TEMPERATURE  
-4.91  
V =±5V  
S
V =±5V  
S
I
=5mA  
OUT  
I
=-5mA  
OUT  
-4.92  
-4.93  
-4.94  
-4.95  
-4.96  
-4.97  
4.96  
4.95  
4.94  
4.93  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 5. OUTPUT HIGH VOLTAGE vs TEMPERATURE  
FIGURE 6. OUTPUT LOW VOLTAGE vs TEMPERATURE  
FN7186.4  
February 21, 2005  
6
EL5120, EL5220, EL5420  
Typical Performance Curves (Continued)  
V =±5V  
10.40  
10.35  
10.30  
10.25  
S
V =±5V  
S
100  
90  
R =10kΩ  
L
80  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. OPEN LOOP GAIN vs TEMPERATURE  
FIGURE 8. SLEW RATE vs TEMPERATURE  
700  
V =±5V  
S
T =25°C  
A
0.55  
0.5  
600  
500  
400  
300  
0.45  
-50  
0
50  
100  
150  
0
5
10  
15  
20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
FIGURE 9. EL5420 SUPPLY CURRENT PER AMPLIFIER vs  
TEMPERATURE  
FIGURE 10. EL5420 SUPPLY CURRENT PER AMPLIFIER vs  
SUPPLY VOLTAGE  
200  
20  
5
10kΩ  
150  
100  
50  
-30  
PHASE  
0
1kΩ  
-80  
560Ω  
-5  
150Ω  
-130  
-10  
V =±5V, T =25°C  
C =10pF  
L
0
S
A
-180  
-230  
GAIN  
R =10Kto GND  
A =1  
V
L
C =12pF to GND  
L
V =±5V  
S
-50  
-15  
10  
100  
1K  
10K 100K 1M  
10M 100M  
1M  
FREQUENCY (Hz)  
100M  
100K  
10M  
FREQUENCY (Hz)  
FIGURE 11. OPEN LOOP GAIN AND PHASE vs FREQUENCY  
FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS R  
L
FN7186.4  
7
February 21, 2005  
EL5120, EL5220, EL5420  
Typical Performance Curves (Continued)  
20  
10  
200  
160  
120  
80  
R =10kΩ  
L
A =1  
V
A =1  
V
V =±5V  
S
V =±5V  
S
T =25°C  
A
12pF  
50pF  
100pF  
0
-10  
-20  
-30  
40  
1000pF  
0
1M  
FREQUENCY (Hz)  
100M  
100K  
10M  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS C  
FIGURE 14. CLOSED LOOP OUTPUT IMPEDANCE vs  
FREQUENCY  
L
80  
60  
40  
20  
12  
10  
8
6
V =±5V  
S
T =25°C  
A
4
2
0
A =1  
V
R =10kΩ  
L
V =±5V  
S
C =12pF  
L
T =25°C  
A
Distortion <1%  
0
1K  
10K  
100K  
100  
1M  
10K  
100K  
1M  
10M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. MAXIMUM OUTPUT SWING vs FREQUENCY  
FIGURE 16. CMRR vs FREQUENCY  
600  
100  
80  
PSRR+  
PSRR-  
60  
40  
20  
0
10  
V =±5V  
S
T =25°C  
A
1
100  
1K  
10K  
100K  
1M  
10M  
100M  
1K  
10K  
FREQUENCY (Hz)  
100K  
1M  
100  
10M  
FREQUENCY (Hz)  
FIGURE 17. PSRR vs FREQUENCY  
FIGURE 18. INPUT VOLTAGE NOISE SPECTRAL DENSITY vs  
FREQUENCY  
FN7186.4  
8
February 21, 2005  
EL5120, EL5220, EL5420  
Typical Performance Curves (Continued)  
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
-60  
-80  
DUAL MEASURED CHANNEL A TO B  
QUAD MEASURED CHANNEL A TO D  
OR B TO C  
OTHER COMBINATIONS YIELD  
IMPROVED REJECTION  
-100  
-120  
-140  
V =±5V  
S
V =±5V  
S
R =10kΩ  
R =10kΩ  
L
L
A =1  
V
A =1  
V
V
=1V  
RMS  
V
=220mV  
RMS  
IN  
IN  
1K  
10K  
100K  
1K  
10K  
100K  
FREQUENCY (Hz)  
1M  
6M  
FREQUENCY (Hz)  
FIGURE 19. TOTAL HARMONIC DISTORTION + NOISE vs  
FREQUENCY  
FIGURE 20. CHANNEL SEPARATION vs FREQUENCY  
RESPONSE  
V =±5V  
S
V =±5V  
S
90  
4
3
2
1
0
-1  
-2  
-3  
-4  
A =1  
V
A =1  
V
R =10kΩ  
R =10kΩ  
L
L
V
=±50mV  
C =12pF  
L
IN  
0.1%  
70  
50  
30  
10  
T =25°C  
T =25°C  
A
A
0.1%  
600  
0
200  
400  
SETTLING TIME (ns)  
800  
10  
100  
1K  
LOAD CAPACITANCE (pF)  
FIGURE 21. SMALL SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE  
FIGURE 22. SETTLING TIME vs STEP SIZE  
50mV  
200ns  
1V  
1µs  
V =±5V  
V =±5V  
S
S
T =25°C  
A
T =25°C  
A
A =1  
V
A =1  
V
R =10kΩ  
R =10kΩ  
L
L
C =12pF  
L
C =12pF  
L
FIGURE 23. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 24. SMALL SIGNAL TRANSIENT RESPONSE  
FN7186.4  
February 21, 2005  
9
EL5120, EL5220, EL5420  
Pin Descriptions  
EL5120  
EL5220  
EL5420  
PIN NAME  
PIN FUNCTION  
EQUIVALENT CIRCUIT  
1
1
1
VOUTA  
Amplifier A Output  
V
S+  
V
S-  
GND  
CIRCUIT 1  
4
2
2
VINA-  
Amplifier A Inverting Input  
V
V
S+  
S-  
CIRCUIT 2  
3
5
3
8
5
6
7
3
4
VINA+  
VS+  
Amplifier A Non-Inverting Input  
Positive Power Supply  
(Reference Circuit 2)  
5
VINB+  
VINB-  
VOUTB  
VOUTC  
VINC-  
VINC+  
VS-  
Amplifier B Non-Inverting Input  
Amplifier B Inverting Input  
Amplifier B Output  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 2)  
6
7
8
Amplifier C Output  
9
Amplifier C Inverting Input  
Amplifier C Non-Inverting Input  
Negative Power Supply  
Amplifier D Non-Inverting Input  
Amplifier D Inverting Input  
Amplifier D Output  
10  
11  
12  
13  
14  
2
4
VIND+  
VIND-  
VOUTD  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
Operating Voltage, Input, and Output  
Applications Information  
The EL5120, EL5220, and EL5420 are specified with a  
single nominal supply voltage from 5V to 15V or a split  
supply with its total range from 5V to 15V. Correct operation  
is guaranteed for a supply range of 4.5V to 16.5V. Most  
EL5120, EL5220, and EL5420 specifications are stable over  
both the full supply range and operating temperatures of  
-40°C to +85°C. Parameter variations with operating voltage  
and/or temperature are shown in the typical performance  
curves.  
Product Description  
The EL5120, EL5220, and EL5420 voltage feedback  
amplifiers are fabricated using a high voltage CMOS  
process. They exhibit rail-to-rail input and output capability,  
they are unity gain stable, and have low power consumption  
(500µA per amplifier). These features make the EL5120,  
EL5220, and EL5420 ideal for a wide range of general-  
purpose applications. Connected in voltage follower mode  
and driving a load of 10kand 12pF, the EL5120, EL5220,  
and EL5420 have a -3dB bandwidth of 12MHz while  
maintaining a 10V/µs slew rate. The EL5120 is a single  
amplifier, the EL5220 is a dual amplifier, and the EL5420 is a  
quad amplifier.  
The input common-mode voltage range of the EL5120,  
EL5220, and EL5420 extends 500mV beyond the supply  
rails. The output swings of the EL5120, EL5220, and  
EL5420 typically extend to within 80mV of positive and  
negative supply rails with load currents of 5mA. Decreasing  
load currents will extend the output voltage range even  
closer to the supply rails. Figure 25 shows the input and  
FN7186.4  
10  
February 21, 2005  
EL5120, EL5220, EL5420  
output waveforms for the device in the unity-gain  
configuration. Operation is from ±5V supply with a 10kload  
connected to GND. The input is a 10V sinusoid. The  
current conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if load conditions need to be modified for the  
amplifier to remain in the safe operating area.  
P-P  
output voltage is approximately 9.985V  
.
P-P  
The maximum power dissipation allowed in a package is  
determined according to:  
V =±5V  
S
T =25°C  
A
A =1  
V
T
T  
AMAX  
Θ
V
=10V  
IN  
P-P  
JMAX  
P
= --------------------------------------------  
DMAX  
JA  
where:  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
θ = Thermal resistance of the package  
JA  
• P  
DMAX  
= Maximum power dissipation in the package  
FIGURE 25. OPERATION WITH RAIL-TO-RAIL INPUT AND  
OUTPUT  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
Short Circuit Current Limit  
The EL5120, EL5220, and EL5420 will limit the short circuit  
current to ±120mA if the output is directly shorted to the  
positive or the negative supply. If an output is shorted  
indefinitely, the power dissipation could easily increase such  
that the device may be damaged. Maximum reliability is  
maintained if the output continuous current never exceeds  
±30mA. This limit is set by the design of the internal metal  
interconnects.  
P
= Σi × [V × I  
+ (V + V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
when sourcing, and:  
P
= Σi × [V × I  
+ (V  
i V -) × I  
i]  
LOAD  
DMAX  
S
SMAX  
OUT  
S
when sinking.  
where:  
Output Phase Reversal  
The EL5120, EL5220, and EL5420 are immune to phase  
• i = 1 to 2 for dual and 1 to 4 for quad  
• V = Total supply voltage  
reversal as long as the input voltage is limited from (V -)  
S
S
-0.5V to (V +) +0.5V. Figure 26 shows a photo of the output  
S
of the device with the input voltage driven beyond the supply  
rails. Although the device's output will not change phase, the  
input's overvoltage should be avoided. If an input voltage  
exceeds supply voltage by more than 0.6V, electrostatic  
protection diodes placed in the input stage of the device  
begin to conduct and overvoltage damage could occur.  
• I  
= Maximum supply current per amplifier  
SMAX  
• V  
• I  
i = Maximum output voltage of the application  
i = Load current  
OUT  
LOAD  
If we set the two P  
can solve for R  
equations equal to each other, we  
DMAX  
i to avoid device overheat. Figures 27  
LOAD  
and 28 provide a convenient way to see if the device will  
overheat. The maximum safe power dissipation can be  
found graphically, based on the package type and the  
ambient temperature. By using the previous equation, it is a  
1V  
100µs  
simple matter to see if P  
exceeds the device's power  
DMAX  
derating curves. To ensure proper operation, it is important  
to observe the recommended derating curves in Figures 27  
and 28.  
V =±2.5V  
S
T =25°C  
A
A =1  
V
IN  
V
=6V  
P-P  
1V  
FIGURE 26. OPERATION WITH BEYOND-THE-RAILS INPUT  
Power Dissipation  
With the high-output drive capability of the EL5120, EL5220,  
and EL5420 amplifiers, it is possible to exceed the 125°C  
“absolute-maximum junction temperature” under certain load  
FN7186.4  
11  
February 21, 2005  
EL5120, EL5220, EL5420  
Unused Amplifiers  
It is recommended that any unused amplifiers in a dual and  
a quad package be configured as a unity gain follower. The  
inverting input should be directly connected to the output  
and the non-inverting input tied to the ground plane.  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
3
2.5  
2
2.500W  
QFN16  
θ
=40°C/W  
JA  
Driving Capacitive Loads  
TSSOP14  
=100°C/W  
The EL5120, EL5220, and EL5420 can drive a wide range of  
capacitive loads. As load capacitance increases, however,  
the -3dB bandwidth of the device will decrease and the  
peaking increase. The amplifiers drive 10pF loads in parallel  
with 10kwith just 1.5dB of peaking, and 100pF with 6.4dB  
of peaking. If less peaking is desired in these applications, a  
small series resistor (usually between 5and 50) can be  
placed in series with the output. However, this will obviously  
reduce the gain slightly. Another method of reducing peaking  
is to add a “snubber” circuit at the output. A snubber is a  
shunt load consisting of a resistor in series with a capacitor.  
Values of 150and 10nF are typical. The advantage of a  
snubber is that it does not draw any DC load current or  
reduce the gain  
θ
JA  
1.5  
1
1.136W  
SO14  
1.0W  
θ
=88°C/W  
JA  
870mW  
0.5  
0
MSOP8  
=115°C/W  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 27. PACKAGE POWER DISSIPATION VS AMBIENT  
TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
833mW  
667mW  
Power Supply Bypassing and Printed Circuit  
Board Layout  
SO14  
θ
=120°C/W  
JA  
The EL5120, EL5220, and EL5420 can provide gain at high  
frequency. As with any high-frequency device, good printed  
circuit board layout is necessary for optimum performance.  
Ground plane construction is highly recommended, lead  
lengths should be as short as possible and the power supply  
pins must be well bypassed to reduce the risk of oscillation.  
QFN16  
=150°C/W  
606mW  
486mW  
θ
JA  
MSOP8  
TSSOP14  
JA  
θ
=206°C/W  
JA  
θ
=165°C/W  
For normal single supply operation, where the V - pin is  
S
connected to ground, a 0.1µF ceramic capacitor should be  
0
25  
50  
75 85 100  
125 150  
placed from V + to pin to V - pin. A 4.7µF tantalum  
S
S
AMBIENT TEMPERATURE (°C)  
capacitor should then be connected in parallel, placed in the  
region of the amplifier. One 4.7µF capacitor may be used for  
multiple devices. This same capacitor combination should be  
placed at each supply pin to ground if split supplies are to be  
used.  
FIGURE 28. PACKAGE POWER DISSIPATION VS AMBIENT  
TEMPERATURE  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7186.4  
12  
February 21, 2005  

相关型号:

EL5220C

12MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5220CY

12MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5220CY

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5220CY-13

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5220CY-13

DUAL OP-AMP, 12000uV OFFSET-MAX, 8MHz BAND WIDTH, PDSO10, MSOP-10
RENESAS

EL5220CY-T13

12MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5220CY-T7

12MHz Rail-to-Rail Input-Output Op Amps
ELANTEC

EL5220CY-T7

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5220CYZ

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5220CYZ-T13

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5220CYZ-T7

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL

EL5220ILZ-T13

12MHz Rail-to-Rail Input-Output Op Amps
INTERSIL