EL8108IS [INTERSIL]

Video Distribution Amplifier; 视频分配放大器
EL8108IS
型号: EL8108IS
厂家: Intersil    Intersil
描述:

Video Distribution Amplifier
视频分配放大器

商用集成电路 放大器 光电二极管
文件: 总12页 (文件大小:597K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL8108  
®
Data Sheet  
June 7, 2004  
FN7417  
PRELIMINARY  
Video Distribution Amplifier  
Features  
• Drives up to 450mA from a +12V supply  
The EL8108 is a dual current feedback  
operational amplifier designed for  
video distribution solutions. This  
device features a high drive capability of 450mA while  
consuming only 5mA of supply current per amplifier and  
operating from a single 5V to 12V supply.  
• 20V differential output drive into 100Ω  
P-P  
• -85dBc typical driver output distortion at full output at  
150kHz  
• -70dBc typical driver output distortion at 3.75MHz  
• Low quiescent current of 5mA per amplifier  
• 300MHz bandwidth  
The EL8108 is available in the industry standard 8-pin SO as  
well as the thermally-enhanced 16-pin QFN package. Both  
are specified for operation over the full -40°C to +85°C  
temperature range. The EL8108 has control pins C0 and C1  
for controlling the bias and enable/disable of the outputs.  
Applications  
• Video distribution amplifiers  
The EL8108 is ideal for driving multiple video loads while  
maintaining linearity.  
Pinouts  
EL8108  
Ordering Information  
(8-PIN SO)  
TOP VIEW  
PART  
NUMBER  
PACKAGE  
8-Pin SO  
TAPE & REEL PKG. DWG. #  
OUTA  
INA-  
1
2
3
4
8
7
6
5
VS  
EL8108IS  
-
MDP0027  
MDP0027  
MDP0027  
MDP0046  
MDP0046  
MDP0046  
-
+
OUTB  
INB-  
INB+  
EL8108IS-T7  
EL8108IS-T13  
EL8108IL  
8-Pin SO  
7”  
INA+  
GND  
8-Pin SO  
13”  
-
-
+
16-Pin QFN  
16-Pin QFN  
16-Pin QFN  
EL8108IL-T7  
EL8108IL-T13  
7”  
13”  
EL8108  
(16-PIN QFN)  
TOP VIEW  
TABLE 1.  
150Ω  
150Ω  
DIFF GAIN  
0.03  
DIFF PHASE  
0.01  
1
1
2
2
3
3
2
3
4
5
6
0
1
1
2
2
3
0
0
0
0
0
NC  
INA-  
INA+  
GND  
1
2
3
4
12 NC  
0.03  
0.01  
AMP A  
AMP B  
-
-
11 INB-  
10 INB+  
0.05  
0.02  
+
+
0.06  
0.03  
POWER  
CONTROL  
LOGIC  
0.08  
0.03  
9
C1  
0.11  
0.03  
0.04  
0.01  
0.05  
0.02  
0.07  
0.02  
0.08  
0.03  
0.10  
0.03  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
1
Copyright © Intersil Americas Inc. 2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL8108  
Absolute Maximum Ratings (T = 25°C)  
A
V + Voltage to Ground . . . . . . . . . . . . . . . . . . . . . . -0.3V to +13.2V  
Ambient Operating Temperature Range . . . . . . . . . .-40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-60°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
S
IN  
V
+ Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to V +  
S
Current into any Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8mA  
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 75mA  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
PARAMETER  
V = 12V, R = 750, R = 100connected to mid supply, T = 25°C, unless otherwise specified.  
S F L A  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
HD  
-3dB Bandwidth  
R
R
= 500, A = +2  
200  
150  
-83  
-70  
-60  
-50  
800  
MHz  
MHz  
dBc  
dBc  
dBc  
dBc  
V/µs  
F
V
= 500, A = +4  
F
V
Total Harmonic Distortion, Differential  
f = 200kHz, V = 16V , R = 50Ω  
P-P  
-72  
O
L
f = 4MHz, V = 2V , R = 100Ω  
P-P  
O
L
f = 8MHz, V = 2V , R = 100Ω  
P-P  
O
L
f = 16MHz, V = 2V , R = 100Ω  
P-P  
O
L
SR  
Slew Rate, Single-ended  
Offset Voltage  
V
from -3V to +3V  
600  
1100  
OUT  
OUT  
DC PERFORMANCE  
V
-25  
-3  
+25  
+3  
mV  
mV  
MΩ  
OS  
V  
V
Mismatch  
OS  
OS  
Transimpedance  
INPUT CHARACTERISTICS  
R
V
from -4.5V to +4.5V  
0.7  
1.4  
2.5  
OL  
I +  
Non-Inverting Input Bias Current  
Inverting Input Bias Current  
-5  
5
µA  
µA  
µA  
B
I -  
-20  
-18  
5
0
+20  
+18  
B
I -  
I - Mismatch  
B
B
e
Input Noise Voltage  
-Input Noise Current  
6
nV Hz  
N
i
13  
pA/ Hz  
N
OUTPUT CHARACTERISTICS  
V
Loaded Output Swing (single ended)  
V
V
= ±6V, R = 100to GND  
±4.8  
±5  
V
V
OUT  
S
S
L
= ±6V, R = 25to GND  
±4.7  
450  
L
I
Output Current  
R
= 0Ω  
mA  
OUT  
L
SUPPLY  
V
Supply Voltage  
Single supply  
4.5  
11  
13  
18  
V
S
I
(EL8108IS only) Supply Current, Maximum Setting  
All outputs at mid supply  
14.3  
mA  
S
SUPPLY (EL8108IL ONLY)  
I + (full power) Positive Supply Current per Amplifier  
I + (medium power) Positive Supply Current per Amplifier  
All outputs at 0V, C = C = 0V  
11  
7
14.3  
8.9  
18  
11  
mA  
mA  
mA  
mA  
µA  
S
0
1
All outputs at 0V, C = 5V, C = 0V  
S
0
1
I + (low power)  
Positive Supply Current per Amplifier  
Positive Supply Current per Amplifier  
All outputs at 0V, C = 0V, C = 5V  
3.7  
4.5  
5.5  
0.5  
160  
+5  
S
0
1
I + (power down)  
All outputs at 0V, C = C = 5V  
0.1  
S
0
1
I
I
, C or C  
INH  
C , C Input Current, High  
C , C = 5V  
90  
-5  
125  
0
1
0
1
0
1
, C or C  
INL  
C , C Input Current, Low  
C , C = 0V  
µA  
0
1
0
1
0
1
2
EL8108  
Typical Performance Curves  
22  
22  
20  
18  
16  
14  
12  
10  
8
V
= ±6V, A = 5  
V
V
R
= ±6V, A = 5  
S V  
S
L
20  
18  
16  
14  
12  
10  
8
R
= 100DIFF  
= 100DIFF  
L
R
= 243Ω  
F
R
= 243Ω  
F
R
= 500Ω  
F
R
= 500Ω  
F
R
= 750Ω  
R
= 750Ω  
F
F
R
= 1kΩ  
R
= 1kΩ  
F
F
6
6
4
4
2
2
500M  
500M  
10M  
FREQUENCY (Hz)  
100M  
10M  
FREQUENCY (Hz)  
100M  
100K  
100K  
1M  
1M  
FIGURE 1. DIFFERENTIAL FREQUENCY RESPONSE WITH  
FIGURE 2. DIFFERENTIAL FREQUENCY RESPONSE WITH  
VARIOUS R (3/4 POWER MODE)  
VARIOUS R (FULL POWER MODE)  
F
F
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
VS = ±6V, AV = 5  
V
= ±6V, A = 10  
V
S
L
RL = 100DIFF  
R
= 100DIFF  
RF = 500Ω  
R
= 243Ω  
F
RF = 243Ω  
R
= 500Ω  
F
RF = 750Ω  
RF = 1kΩ  
R
= 750Ω  
F
R
= 1kΩ  
F
6
4
2
500M  
500M  
10M  
100M  
10M  
FREQUENCY (Hz)  
100M  
100K  
100K  
1M  
1M  
FREQUENCY (Hz)  
FIGURE 3. DIFFERENTIAL FREQUENCY RESPONSE WITH  
VARIOUS R (1/2 POWER MODE)  
FIGURE 4. DIFFERENTIAL FREQUENCY RESPONSE WITH  
VARIOUS R (FULL POWER MODE)  
F
F
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
V
= ±6V, A = 10  
V
V
= ±6V, A = 10  
S V  
S
L
R
= 100DIFF  
R
= 100DIFF  
L
R = 500Ω  
F
R
= 243Ω  
F
R
= 750Ω  
F
R
= 500Ω  
F
R
= 243Ω  
F
R
= 750Ω  
F
R
= 1kΩ  
F
R
= 1kΩ  
F
500M  
500M  
10M  
FREQUENCY (Hz)  
100M  
10M  
FREQUENCY (Hz)  
100M  
100K  
100K  
1M  
1M  
FIGURE 5. DIFFERENTIAL FREQUENCY RESPONSE WITH  
FIGURE 6. DIFFERENTIAL FREQUENCY RESPONSE WITH  
VARIOUS R (1/2 POWER MODE)  
VARIOUS R (3/4 POWER MODE)  
F
F
3
EL8108  
Typical Performance Curves (Continued)  
V =±6V  
V =±6V  
S
S
14  
12  
10  
8
8
6
A =2  
A =2  
V
V
R =100DIFF  
R =500Ω  
F
L
R =248Ω  
F
4
R =500Ω  
F
2
R =150Ω  
L
6
0
4
-2  
-4  
-6  
-8  
R =1kΩ  
R =25Ω  
L
F
2
R =750Ω  
F
0
R =50Ω  
L
-2  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
100K  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FIGURE 7. DIFFERENTIAL FREQUENCY RESPONSE WITH  
VARIOUS R  
FIGURE 8. FREQUENCY RESPONSE FOR VARIOUS R  
LOAD  
F
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-50  
V =±6V  
V =±6V  
S
S
EL8108IL  
EL8108IS  
EL8108IL  
EL8108IS  
A =5  
A =5  
V
V
-55  
-60  
-65  
-70  
-75  
-80  
R =50DIFF  
R =50DIFF  
L
L
R =750  
F
R =750  
F
3rd HD  
3rd HD  
2nd HD  
2nd HD  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
V
(V)  
V
(V)  
OP-P  
OP-P  
FIGURE 9. DISTORTION BETWEEN EL8108IL vs EL8108IS  
AT 2MHz  
FIGURE 10. DISTORTION BETWEEN EL8108IL vs EL8108IS  
AT 3MHz  
-40  
-40  
V =±6V  
S
V =±6V  
S
EL8108IL  
EL8108IS  
EL8108IL  
EL8108IS  
A =5  
V
A =5  
V
-45  
-50  
-55  
-60  
-65  
-70  
-75  
R =50DIFF  
R =50DIFF  
L
L
-45  
-50  
-55  
-60  
-65  
R =750  
F
R =750  
F
3rd HD  
3rd HD  
2nd HD  
2nd HD  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
V
(V)  
V
(V)  
OP-P  
OP-P  
FIGURE 11. DISTORTION BETWEEN EL8108IL vs EL8108IS  
AT 5MHz  
FIGURE 12. DISTORTION BETWEEN EL8108IL vs EL8108IS  
AT 10MHz  
4
EL8108  
Typical Performance Curves (Continued)  
-70  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
V =±6V  
V =±6V  
S
S
A =5  
A =5  
V
V
-75  
-80  
R =750  
R =750  
F
F
V
=4V  
OPP  
V
=4V  
OPP  
2nd HD  
-85  
3rd HD  
3rd HD  
-90  
2nd HD  
-95  
-100  
50  
60  
70  
80  
90 100 110 120 130 140 150  
50  
60  
70  
80  
90 100 110 120 130 140 150  
()  
R
()  
R
LOAD  
LOAD  
FIGURE 13. 2nd AND 3rd HARMONIC DISTORTION vs R  
@ 2MHz (EL8108IL)  
FIGURE 14. 2nd AND 3rd HARMONIC DISTORTION vs R  
@ 3MHz (EL8108IL)  
LOAD  
LOAD  
-50  
-40  
V =±6V  
S
V =±6V  
S
A =5  
A =5  
V
V
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
R =750  
R =750  
F
OPP  
F
OPP  
V
=4V  
V
=4V  
3rd HD  
3rd HD  
2nd HD  
80  
2nd HD  
80  
50  
60  
70  
90 100 110 120 130 140 150  
()  
50  
60  
70  
90 100 110 120 130 140 150  
()  
R
R
LOAD  
LOAD  
FIGURE 15. 2nd AND 3rd HARMONIC DISTORTION vs R  
@ 5MHz (EL8108IL)  
FIGURE 16. 2nd AND 3rd HARMONIC DISTORTION vs R  
@ 10MHz (EL8108IL)  
LOAD  
LOAD  
24  
V
= ±6V, A = 5  
V
V
R
R
= ±6V, A = 5  
S V  
S
L
F
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
R
R
= 50Ω  
= 50Ω  
L
= 750Ω  
= 750Ω  
F
C
= 47pF  
L
C
= 47pF  
L
C
= 39pF  
L
C
= 33pF  
L
C
= 0pF  
L
C
= 12pF  
= 0pF  
L
C
= 22pF  
L
6
6
C
L
0
4
500M  
500M  
10M  
100M  
10M  
FREQUENCY (Hz)  
100M  
100K  
100K  
1M  
1M  
FREQUENCY (Hz)  
FIGURE 17. FREQUENCY RESPONSE WITH VARIOUS C  
FIGURE 18. FREQUENCY RESPONSE vs VARIOUS C  
(3/4 POWER MODE)  
L
L
5
EL8108  
Typical Performance Curves (Continued)  
24  
-10  
-30  
V
= ±6V, A = 5  
V
S
L
F
22  
20  
18  
16  
14  
12  
10  
8
R
R
= 50Ω  
= 750Ω  
C
= 47pF  
L
-50  
C
= 37pF  
L
A
B
-70  
C
= 12pF  
L
B
A
-90  
C
= 0pF  
L
6
4
-110  
500M  
100M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
100K  
10K  
1M  
100K  
FREQUENCY (Hz)  
FIGURE 19. FREQUENCY RESPONSE WITH VARIOUS C  
(1/2 POWER MODE)  
FIGURE 20. CHANNEL SEPARATION vs FREQUENCY  
L
-10  
10M  
200  
3M  
300K  
100K  
30K  
10K  
3K  
150  
100  
50  
-30  
PSRR+  
PHASE  
GAIN  
PSRR-  
-50  
0
-50  
-100  
-150  
-200  
-70  
-90  
1K  
-110  
-110  
100K  
1M  
10M  
10M  
100M 200M  
1K  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 21. PSRR vs FREQUENCY  
FIGURE 22. TRANSIMPEDANCE (R ) vs FREQUENCY  
OL  
1000  
V
= ±6V, A = 1  
V
S
F
R
= 750Ω  
100  
10  
1
10  
EN  
1
0.1  
IN-  
0.01  
0.1  
0.001  
IN+  
0.0001  
100M  
1M  
10M  
10K  
100K  
10  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 23. VOLTAGE AND CURRENT NOISE vs FREQUENCY  
FIGURE 24. OUTPUT IMPEDANCE vs FREQUENCY  
6
EL8108  
Typical Performance Curves (Continued)  
150  
0.4  
0.35  
0.3  
V =±6V  
A
= 5, R = 750Ω,  
LOAD  
S
V
F
130  
120  
110  
100  
90  
R
= 100DIFF  
1/2 POWER MODE  
0.25  
0.2  
FULL POWER MODE  
3/4 POWER MODE  
0.15  
0.1  
80  
3/4 POWER MODE  
70  
FULL POWER MODE  
1/2 POWER MODE  
0.05  
0
60  
50  
4.5  
5
5.5  
6
4
3.5  
3
1
2
3
4
±V (V)  
S
# OF 150LOADS  
FIGURE 25. DIFFERENTIAL BANDWIDTH vs SUPPLY VOLTAGE  
FIGURE 26. DIFFERENTIAL GAIN  
16  
14  
12  
10  
8
0.09  
V =±6V  
S
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
FULL POWER MODE  
3/4 POWER MODE  
FULL POWER MODE  
6
1/2 POWER MODE  
4
3/4 POWER MODE  
1/2 POWER MODE  
2
2
+IS  
-IS  
0
1
2
3
4
5
6
1
3
4
±V (V)  
# OF 150LOADS  
S
FIGURE 27. DIFFERENTIAL PHASE  
FIGURE 28. SUPPLY CURRENT vs SUPPLY VOLTAGE  
1
0
1.8K  
1.7K  
1.6K  
1.5K  
1.4K  
1.3K  
1.2K  
IB+  
-1  
-2  
-3  
-4  
IB-  
-5  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
-50  
-25  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 29. INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 30. SLEW RATE vs TEMPERATURE  
7
EL8108  
Typical Performance Curves (Continued)  
5
3
2.5  
2
4
3
2
1.5  
1
1
0
0.5  
0
-1  
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
-50  
-25  
0
-50  
-25  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. OFFSET VOLTAGE vs TEMPERATURE  
FIGURE 32. TRANSIMPEDANCE vs TEMPERATURE  
5.1  
16  
15.5  
15  
R
S
=100Ω  
LOAD  
V =±6V  
5.05  
5
14.5  
14  
4.95  
4.9  
13.5  
13  
4.85  
4.8  
12.5  
12  
4.75  
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
-50  
-25  
0
-50  
-25  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 33. OUTPUT VOLTAGE vs TEMPERATURE  
FIGURE 34. SUPPLY CURRENT vs TEMPERATURE  
3
A =5  
V
R =750Ω  
F
R =100DIFF  
L
2
1
0
-1  
2.5  
3
3.5  
4
V
4.5  
(±V)  
5
5.5  
6
S
FIGURE 35. DIFFERENTIAL PEAKING vs SUPPLY VOLTAGE  
8
EL8108  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY (4-LAYER) TEST BOARD  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1
3.5  
3
2.5  
2
781mW  
0.8  
0.6  
0.4  
0.2  
0
1.5  
1.136W  
1
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 36. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 37. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD - LPP EXPOSED  
DIEPAD SOLDERED TO PCB PER JESD51-5  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.2  
4.5  
4
1
833mW  
3.125W  
3.5  
3
QFN16  
=150°C/W  
0.8  
0.6  
0.4  
0.2  
0
QFN16  
=40°C/W  
θ
JA  
2.5  
2
θ
JA  
1.5  
1
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 38. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 39. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
Power Supply Bypassing and Printed Circuit  
Board Layout  
Applications Information  
Product Description  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Ground  
plane construction is highly recommended. Lead lengths  
should be as short as possible, below ¼”. The power supply  
pins must be well bypassed to reduce the risk of oscillation.  
A 4.7µF tantalum capacitor in parallel with a 0.1µF ceramic  
capacitor is adequate for each supply pin.  
The EL8108 is a dual current feedback operational amplifier  
designed for video distribution solutions. It is a dual current  
mode feedback amplifier with low distortion while drawing  
moderately low supply current. It is built using Intersil’s  
proprietary complimentary bipolar process and is offered in  
industry standard pinouts. Due to the current feedback  
architecture, the EL8108 closed-loop 3dB bandwidth is  
dependent on the value of the feedback resistor. First the  
desired bandwidth is selected by choosing the feedback  
For good AC performance, parasitic capacitances should be  
kept to a minimum, especially at the inverting input. This  
implies keeping the ground plane away from this pin. Carbon  
resistors are acceptable, while use of wire-wound resistors  
should not be used because of their parasitic inductance.  
Similarly, capacitors should be low inductance for best  
performance.  
resistor, R , and then the gain is set by picking the gain  
F
resistor, R . The curves at the beginning of the Typical  
G
Performance Curves section show the effect of varying both  
R and R . The 3dB bandwidth is somewhat dependent on  
F
G
the power supply voltage.  
9
EL8108  
Capacitance at the Inverting Input  
Supply Voltage Range  
Due to the topology of the current feedback amplifier, stray  
capacitance at the inverting input will affect the AC and  
transient performance of the EL8108 when operating in the  
non-inverting configuration.  
The EL8108 has been designed to operate with supply  
voltages from ±2.5V to ±6V. Optimum bandwidth, slew rate,  
and video characteristics are obtained at higher supply  
voltages. However, at ±2.5V supplies, the 3dB bandwidth at  
A = +5 is a respectable 200MHz.  
V
In the inverting gain mode, added capacitance at the  
inverting input has little effect since this point is at a virtual  
ground and stray capacitance is therefore not “seen” by the  
amplifier.  
Single Supply Operation  
If a single supply is desired, values from +5V to +12V can be  
used as long as the input common mode range is not  
exceeded. When using a single supply, be sure to either 1)  
DC bias the inputs at an appropriate common mode voltage  
and AC couple the signal, or 2) ensure the driving signal is  
within the common mode range of the EL8108.  
Feedback Resistor Values  
The EL8108 has been designed and specified with  
R = 500for A = +2. This value of feedback resistor yields  
F
V
extremely flat frequency response with little to no peaking  
out to 200MHz. As is the case with all current feedback  
amplifiers, wider bandwidth, at the expense of slight  
peaking, can be obtained by reducing the value of the  
feedback resistor. Inversely, larger values of feedback  
resistor will cause rolloff to occur at a lower frequency. See  
the curves in the Typical Performance Curves section which  
show 3dB bandwidth and peaking vs. frequency for various  
feedback resistors and various supply voltages.  
Driving Cables and Capacitive Loads  
The EL8108 was designed with driving multiple coaxial  
cables in mind. With 450mA of output drive and low output  
impedance, driving six, 75double terminated coaxial  
cables to ±11V with one EL8108 is practical.  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back termination series resistor will  
decouple the EL8108 from the capacitive cable and allow  
extensive capacitive drive.  
Bandwidth vs Temperature  
Whereas many amplifier's supply current and consequently  
3dB bandwidth drop off at high temperature, the EL8108 was  
designed to have little supply current variations with  
temperature. An immediate benefit from this is that the 3dB  
bandwidth does not drop off drastically with temperature.  
Other applications may have high capacitive loads without  
termination resistors. In these applications, an additional  
small value (5-50) resistor in series with the output will  
+5V  
EL8108  
-5V  
750  
750  
10  
EL8108  
SO Package Outline Drawing  
11  
EL8108  
QFN Package Outline Drawing  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil  
website at <http://www.intersil.com/design/packages/index.asp>  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
12  

相关型号:

EL8108IS-T13

Video Distribution Amplifier
INTERSIL

EL8108IS-T7

Video Distribution Amplifier
INTERSIL

EL8108ISZ

Video Distribution Amplifier
INTERSIL

EL8108ISZ-T13

Video Distribution Amplifier
INTERSIL

EL8108ISZ-T7

Video Distribution Amplifier
INTERSIL

EL8108_08

Video Distribution Amplifier
INTERSIL

EL814

4 PIN DIP PHOTOTRANSISTOR AC INPUT PHOTOCOUPLER
EVERLIGHT

EL814(A)-F

AC Input-Transistor Output Optocoupler, 1-Element, 5000V Isolation, ROHS COMPLIANT, DIP-4
EVERLIGHT

EL814(A)-FV

AC Input-Transistor Output Optocoupler, 1-Element, 5000V Isolation, ROHS COMPLIANT, DIP-4
EVERLIGHT

EL814A

4 PIN DIP PHOTOTRANSISTOR AC INPUT PHOTOCOUPLER
EVERLIGHT

EL814M(A)(TA)-V

4 PIN DIP PHOTOTRANSISTOR
EVERLIGHT

EL814M(A)(TB)

AC Input-Transistor Output Optocoupler, 1-Element, 5000V Isolation, ROHS COMPLIANT PACKAGE-4
EVERLIGHT