HA1-2556-9 [INTERSIL]

57MHz, Wideband, Four Quadrant, Voltage Output Analog Multiplier; 57MHz ,宽带,四象限电压输出模拟乘法器
HA1-2556-9
型号: HA1-2556-9
厂家: Intersil    Intersil
描述:

57MHz, Wideband, Four Quadrant, Voltage Output Analog Multiplier
57MHz ,宽带,四象限电压输出模拟乘法器

文件: 总15页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA-2556  
Data Sheet  
September 1998  
File Number 2477.5  
57MHz, Wideband, Four Quadrant,  
Voltage Output Analog Multiplier  
Features  
• High Speed Voltage Output . . . . . . . . . . . . . . . . . 450V/µs  
• Low Multiplication Error . . . . . . . . . . . . . . . . . . . . . . .1.5%  
• Input Bias Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . 8µA  
• 5MHz Feedthrough. . . . . . . . . . . . . . . . . . . . . . . . . .-50dB  
• Wide Y Channel Bandwidth . . . . . . . . . . . . . . . . . . 57MHz  
• Wide X Channel Bandwidth . . . . . . . . . . . . . . . . . . 52MHz  
The HA-2556 is a monolithic, high speed, four quadrant,  
analog multiplier constructed in the Intersil Dielectrically  
Isolated High Frequency Process. The voltage output  
simplifies many designs by eliminating the current-to-voltage  
conversion stage required for current output multipliers. The  
HA-2556 provides a 450V/µs slew rate and maintains  
52MHz and 57MHz bandwidths for the X and Y channels  
respectively, making it an ideal part for use in video systems.  
• V 0.1dB Gain Flatness . . . . . . . . . . . . . . . . . . . . 5.0MHz  
Y
The suitability for precision video applications is  
Applications  
demonstrated further by the Y Channel 0.1dB gain flatness  
to 5.0MHz, 1.5% multiplication error, -50dB feedthrough and  
differential inputs with 8µA bias current. The HA-2556 also  
• Military Avionics  
• Missile Guidance Systems  
• Medical Imaging Displays  
• Video Mixers  
o
has low differential gain (0.1%) and phase (0.1 ) errors.  
The HA-2556 is well suited for AGC circuits as well as mixer  
applications for sonar, radar, and medical imaging  
equipment. The HA-2556 is not limited to multiplication  
applications only; frequency doubling, power detection, as  
well as many other configurations are possible.  
• Sonar AGC Processors  
• Radar Signal Conditioning  
• Voltage Controlled Amplifier  
• Vector Generators  
For MIL-STD-883 compliant product consult the  
HA-2556/883 datasheet.  
Ordering Information  
Functional Block Diagram  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
16 Ld PDIP  
HA-2556  
V +  
X
V
OUT  
HA3-2556-9  
HA9P2556-9  
HA1-2556-9  
-40 to 85  
-40 to 85  
-40 to 85  
E16.3  
+
A
-
X
Y
V -  
X
16 Ld SOIC  
M16.3  
F16.3  
16 Ld CERDIP  
+
1/SF  
Pinout  
-
HA-2556  
(PDIP, CERDIP, SOIC)  
V +  
V +  
Y
Z
Z
+
-
+
-
TOP VIEW  
V -  
V -  
Z
Y
GND  
1
2
3
4
5
6
7
8
16 V  
15 V  
A
XIO  
REF  
V
B
XIO  
NOTE: The transfer equation for the HA-2556 is:  
REF  
(V -V ) (V -V ) = S (V -V ),  
X+ X- Y+ Y- Z+ Z-  
F
V
B
14 NC  
13 V +  
YIO  
where SF = Scale Factor = 5V; V  
V
X, Y,  
V
A
YIO  
X
V
= Differential Inputs.  
Z
X
Z
V +  
12 V -  
X
Y
Y
V
-
11 V+  
Y
+
Σ
10 V -  
Z
V-  
-
9
V +  
Z
V
OUT  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
1
HA-2556  
Absolute Maximum Ratings  
Thermal Information  
o
o
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . 35V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
Thermal Resistance (Typical, Note 1)  
PDIP Package . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . .  
CERDIP Package. . . . . . . . . . . . . . . . .  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
77  
90  
75  
N/A  
N/A  
20  
o
Maximum Junction Temperature (Ceramic Package) . . . . . . . 175 C  
Maximum Junction Temperature (Plastic Packages) . . . . . . 150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
Operating Conditions  
o
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
o
o
o
(SOIC - Lead Tips Only)  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
PARAMETER  
V
= ±15V, R = 50, R = 1k, C = 20pF, Unless Otherwise Specified  
SUPPLY F L L  
o
TEST CONDITIONS  
TEMP. ( C)  
MIN  
TYP  
MAX  
UNITS  
MULTIPLIER PERFORMANCE  
Transfer Function  
(V V ) × (V V  
)
X+  
X-  
Y+  
Y-  
V
= A -------------------------------------------------------------------- – (V V  
)
OUT  
Z+  
Z-  
5
Multiplication Error  
Note 2  
25  
Full  
Full  
25  
-
-
-
-
-
-
-
1.5  
3.0  
3
%
%
6
o
Multiplication Error Drift  
Scale Factor  
0.003  
5
-
-
%/ C  
V
Linearity Error  
V , V = ±3V, Full Scale = 3V  
25  
0.02  
0.05  
0.2  
-
%
%
%
X
Y
V , V = ±4V, Full Scale = 4V  
25  
0.25  
0.5  
X
Y
V , V = ±5V, Full Scale = 5V  
25  
X
Y
AC CHARACTERISTICS  
Small Signal Bandwidth (-3dB)  
V
V
= 200mV  
= 200mV  
, V = 5V  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
57  
52  
-
MHz  
MHz  
MHz  
V/µs  
ns  
Y
X
P-P  
X
, V = 5V  
-
-
P-P  
Y
Full Power Bandwidth (-3dB)  
Slew Rate  
10V  
-
32  
-
P-P  
Note 5  
Note 6  
Note 6  
420  
450  
8
-
Rise Time  
-
-
Overshoot  
-
20  
-
%
Settling Time  
To 0.1%, Note 5  
Notes 3, 8  
-
100  
0.1  
0.1  
5.0  
4.0  
0.03  
-65  
-50  
-
ns  
Differential Gain  
Differential Phase  
-
0.2  
%
Notes 3, 8  
-
4.0  
2.0  
-
0.3  
Degrees  
MHz  
MHz  
%
V
V
0.1dB Gain Flatness  
0.1dB Gain Flatness  
200mV  
200mV  
Note 4  
200mV  
200mV  
, V = 5V, Note 8  
-
-
-
-
-
Y
X
P-P  
X
, V = 5V, Note 8  
Y
P-P  
THD + N  
1MHz Feedthrough  
5MHz Feedthrough  
, Other Ch Nulled  
, Other Ch Nulled  
-
dB  
P-P  
-
dB  
P-P  
SIGNAL INPUT (V , V , V  
Z)  
X
Y
Input Offset Voltage  
25  
Full  
Full  
25  
-
-
-
-
-
3
8
15  
25  
-
mV  
mV  
o
Average Offset Voltage Drift  
Input Bias Current  
45  
8
µV/ C  
15  
20  
µA  
µA  
Full  
12  
2
HA-2556  
Electrical Specifications  
PARAMETER  
V
= ±15V, R = 50, R = 1k, C = 20pF, Unless Otherwise Specified (Continued)  
SUPPLY  
F
L
L
o
TEST CONDITIONS  
TEMP. ( C)  
MIN  
TYP  
0.5  
1.0  
1
MAX  
UNITS  
µA  
Input Offset Current  
25  
Full  
25  
-
-
2
3
-
µA  
Differential Input Resistance  
-
MΩ  
V
Full Scale Differential Input (V , V , V )  
25  
±5  
-
-
-
X
Y
Z
V
V
Common Mode Range  
Common Mode Range  
25  
±10  
+9, -10  
78  
-
V
X
Y
25  
-
-
V
CMRR Within Common Mode Range  
Voltage Noise (Note 9)  
Full  
25  
65  
-
-
dB  
f = 1kHz  
150  
40  
-
nV/Hz  
nV/Hz  
f = 100kHz  
25  
-
-
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Current  
Output Resistance  
POWER SUPPLY  
+PSRR  
Note 10  
Full  
Full  
25  
±5.0  
±20  
-
±6.05  
±45  
-
-
V
mA  
0.7  
1.0  
Note 7  
Note 7  
Full  
Full  
Full  
65  
45  
-
80  
55  
18  
-
-
dB  
dB  
-PSRR  
Supply Current  
NOTES:  
22  
mA  
2. Error is percent of full scale, 1% = 50mV.  
3. f = 4.43MHz, V = 300mV , 0 to 1V  
offset, V = 5V.  
Y
P-P  
, V = 5V.  
DC  
X
4. f = 10kHz, V = 1V  
Y
RMS  
X
5. V  
6. V  
= 0 to ±4V.  
OUT  
OUT  
= 0 to ±100mV.  
7. V = ±12V to ±15V.  
S
8. Guaranteed by characterization and not 100% tested.  
9. V = V = 0V.  
X
Y
10. V = 5.5V, V = ±5.5V.  
X
Y
Simplified Schematic  
V+  
V
BIAS  
V
BIAS  
V
CC  
V +  
X
V -  
X
V +  
V -  
Y
Y
OUT  
V +  
Z
REF  
V -  
Z
+
-
V
A
YIO  
V-  
V
A
V
B
V
B
YIO  
XIO  
XIO  
GND  
3
HA-2556  
To accomplish this the differential input voltages are first  
Application Information  
converted into differential currents by the X and Y input  
transconductance stages. The currents are then scaled by a  
constant reference and combined in the multiplier core. The  
multiplier core is a basic Gilbert Cell that produces a  
differential output current proportional to the product of X and  
Y input signal currents. This current becomes the output for  
the HA-2557.  
Operation at Reduced Supply Voltages  
The HA-2556 will operate over a range of supply voltages,  
±5V to ±15V. Use of supply voltages below ±12V will reduce  
input and output voltage ranges. See “Typical Performance  
Curves” for more information.  
Offset Adjustment  
The HA-2556 takes the output current of the core and feeds it  
to a transimpedance amplifier, that converts the current to a  
voltage. In the multiplier configuration, negative feedback is  
provided with the Z transconductance amplifier by connecting  
X and Y channel offset voltages may be nulled by using a  
20K potentiometer between the V  
or V  
adjust pin A  
YIO  
XIO  
and B and connecting the wiper to V-. Reducing the channel  
offset voltage will reduce AC feedthrough and improve the  
multiplication error. Output offset voltage can also be nulled  
V
to the Z input. The Z stage converts V to a current  
OUT  
OUT  
which is subtracted from the multiplier core before being  
applied to the high gain transimpedance amp. The Z stage, by  
virtue of it’s similarity to the X and Y stages, also cancels  
by connecting V - to the wiper of a potentiometer which is  
tied between V+ and V-.  
Z
Capacitive Drive Capability  
second order errors introduced by the dependence of V on  
BE  
When driving capacitive loads >20pF a 50resistor should  
collector current in the X and Y stages.  
be connected between V  
and V +, using V + as the  
OUT  
Z Z  
The purpose of the reference circuit is to provide a stable  
current, used in setting the scale factor to 5V. This is  
achieved with a bandgap reference circuit to produce a  
temperature stable voltage of 1.2V which is forced across a  
NiCr resistor. Slight adjustments to scale factor may be  
output (see Figure 1). This will prevent the multiplier from  
going unstable and reduce gain peaking at high frequencies.  
The 50resistor will dampen the resonance formed with the  
capacitive load and the inductance of the output at pin 8.  
Gain accuracy will be maintained because the resistor is  
inside the feedback loop.  
possible by overriding the internal reference with the V  
REF  
pin. The scale factor is used to maintain the output of the  
multiplier within the normal operating range of ±5V when  
full scale inputs are applied.  
Theory of Operation  
The HA-2556 creates an output voltage that is the product  
of the X and Y input voltages divided by a constant scale  
factor of 5V. The resulting output has the correct polarity in  
each of the four quadrants defined by the combinations of  
positive and negative X and Y inputs. The Z stage provides  
the means for negative feedback (in the multiplier  
configuration) and an input for summation into the output.  
This results in the following equation, where X, Y and Z are  
high impedance differential inputs.  
The Balance Concept  
The open loop transfer equation for the HA-2556 is:  
(V -V ) x (V  
V )  
Y-  
X+  
X-  
Y+  
------------------------------------------------------------------  
- (V -V )  
Z+ Z-  
V
= A  
OUT  
5V  
where;  
A
= Output Amplifier Open Loop Gain  
= Differential Input Voltages  
= Fixed Scaled Factor  
V
V
V
Z
X, Y,  
5V  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
REF  
NC  
NC  
NC  
An understanding of the transfer function can be gained by  
assuming that the open loop gain, A, of the output amplifier  
is infinite. With this assumption, any value of V  
generated with an infinitesimally small value for the terms  
within the brackets. Therefore we can write the equation:  
V +  
X
+
-
can be  
OUT  
V +  
Y
+
-
+15 V  
V -  
Z
+
Σ
-
-15V  
-
+
(V -V ) x (V -V )  
Y-  
X+  
X-  
Y+  
----------------------------------------------------------------  
0 =  
- (V -V )  
Z+ Z-  
V +  
V
Z
OUT  
5V  
50Ω  
20pF  
1kΩ  
which simplifies to:  
(V -V ) x (V -V ) = 5V (V -V )  
Z-  
X+  
X-  
Y+  
Y-  
Z+  
FIGURE 1. DRIVING CAPACITIVE LOAD  
This form of the transfer equation provides a useful tool to  
analyze multiplier application circuits and will be called the  
Balance Concept.  
X x Y  
-------------  
5
V
= Z =  
OUT  
4
HA-2556  
Here the Balance equation will appear as:  
Typical Applications  
Let’s first examine the Balance Concept as it applies to the  
standard multiplier configuration (Figure 2).  
(A) x (A) = 5(W)  
V +  
X
HA-2556  
V
OUT  
A
+
A
HA-2556  
W
V +  
X
-
V
X
Y
OUT  
V -  
X
A
+
A
W
-
+
X
Y
V -  
X
1/5V  
+
-
V +  
Y
V +  
Z
1/5V  
Z
B
+
-
+
-
-
V +  
Y
V +  
Z
Z
V -  
Y
V -  
Z
+
-
+
-
V -  
Y
V -  
Z
FIGURE 2. MULTIPLIER  
FIGURE 4. SQUARE  
Signals A and B are input to the multiplier and the signal W  
is the result. By substituting the signal values into the  
Balance equation you get:  
Which simplifies to:  
(A) x (B) = 5(W)  
2
A
W = ------  
And solving for W:  
A x B  
5
-------------  
W =  
The last basic configuration is the Square Root as shown in  
Figure 5. Here feedback is provided to both X and Y inputs.  
5
Notice that the output (W) enters the equation in the  
feedback to the Z stage. The Balance Equation does not test  
for stability, so remember that you must provide negative  
feedback. In the multiplier configuration, the feedback path is  
HA-2556  
V +  
X
V
OUT  
+
W
A
-
X
Y
V -  
X
connected to V + input, not V -. This is due to the inversion  
Z
Z
+
1/5V  
that takes place at the summing node just prior to the output  
amplifier. Feedback is not restricted to the Z stage, other  
feedback paths are possible as in the Divider Configuration  
shown in Figure 3.  
-
V +  
Y
V +  
Z
Z
+
-
+
-
A
V -  
Y
V -  
Z
FIGURE 5. SQUARE ROOT (FOR A > 0)  
HA-2556  
V +  
X
V
OUT  
+
A
W
-
The Balance equation takes the form:  
X
Y
V -  
X
+
(W) × (W) = 5(A)  
1/5V  
-
V +  
Y
V +  
Z
Z
B
+
-
+
-
Which equates to:  
A
V -  
Y
V -  
Z
W = 5A  
FIGURE 3. DIVIDER  
The four basic configurations (Multiply, Divide, Square and  
Square Root) as well as variations of these basic circuits  
have many uses.  
Inserting the signal values A, B and W into the Balance  
Equation for the divider configuration yields:  
(-W) (B) = 5V x (-A)  
Frequency Doubler  
For example, if ACos(ωτ) is substituted for signal A in the  
Square function, then it becomes a Frequency Doubler and  
the equation takes the form:  
Solving for W yields:  
5A  
------  
W =  
B
Notice that, in the divider configuration, signal B must remain  
(ACos(ωτ)) × (ACos(ωτ)) = 5(W)  
0 (positive) for the feedback to be negative. If signal B is  
And using some trigonometric identities gives the result:  
negative, then it will be multiplied by the V input to produce  
X-  
positive feedback and the output will swing into the rail.  
2
A
------  
W =  
(1 + Cos(2ωτ))  
10  
Signals may be applied to more than one input at a time as  
in the Squaring configuration in Figure 4:  
5
HA-2556  
input was dedicated to a slow moving control function as is  
required for Automatic Gain Control. The HA-2556 is  
versatile enough for both.  
Square Root  
The Square Root function can serve as a precision/wide  
bandwidth compander for audio or video applications. A  
compander improves the Signal to Noise Ratio for your  
Although the X and Y inputs have similar AC characteristics,  
they are not the same. The designer should consider input  
parameters such as small signal bandwidth, AC feedthrough  
and 0.1dB gain flatness to get the most performance from  
the HA-2556. The Y channel is the faster of the two inputs  
with a small signal bandwidth of typically 57MHz versus  
52MHz for the X channel. Therefore in AM Signal  
system by amplifying low level signals while attenuating or  
0.5  
compressing large signals (refer to Figure 17; X  
curve).  
This provides for better low level signal immunity to noise  
during transmission. On the receiving end the original signal  
may be reconstructed with the standard Square function.  
Communications  
Generation, the best performance will be obtained with the  
Carrier applied to the Y channel and the modulation signal  
(lower frequency) applied to the X channel.  
The Multiplier configuration has applications in AM Signal  
Generation, Synchronous AM Detection and Phase  
Detection to mention a few. These circuit configurations are  
shown in Figures 6, 7 and 8. The HA-2556 is particularly  
useful in applications that require high speed signals on all  
inputs.  
Scale Factor Control  
The HA-2556 is able to operate over a wide supply voltage  
range ±5V to ±17.5V. The ±5V range is particularly useful in  
video applications. At ±5V the input voltage range is reduced  
to ±1.4V. The output cannot reach its full scale value with this  
restricted input, so it may become necessary to modify the  
scale factor. Adjusting the scale factor may also be useful  
when the input signal itself is restricted to a small portion of  
the full scale level. Here we can make use of the high gain  
output amplifier by adding external gain resistors.  
V +  
ACos(ω τ)  
X
HA-2556  
Α
V
OUT  
+
-
A
W
Audio  
X
Y
V -  
X
+
1/5V  
-
V +  
Y
V +  
CCos(ω τ)  
Z
C
Z
+
-
+
-
Carrier  
Generating the maximum output possible for a given input  
signal will improve the Signal to Noise Ratio and Dynamic  
Range of the system. For example, let’s assume that the  
V -  
V -  
Z
Y
AC  
--------  
W =  
(Cosω )τ + Cos+ ω )τ)  
C A C A  
10  
FIGURE 6. AM SIGNAL GENERATION  
input signals are 1V  
each. Then the maximum output  
PEAK  
for the HA-2556 will be 200mV. (1V x 1V)/(5V) = 200mV. It  
would be nice to have the output at the same full scale as  
our input, so let’s add a gain of 5 as shown in Figure 9.  
V +  
X
HA-2556  
AM Signal  
Carrier  
V
OUT  
+
W
A
-
X
Y
V -  
X
V +  
X
HA-2556  
+
V
OUT  
A
1/5V  
+
A
W
-
-
V +  
Y
X
Y
V +  
Z
V -  
X
Z
+
-
+
-
+
1kΩ  
1/5V  
R
V -  
V -  
F
Y
Z
-
V +  
Y
V +  
Z
Z
B
+
-
+
-
LIKE THE FREQUENCY DOUBLER YOU GET AUDIO CENTERED AT DC  
250Ω  
AND 2F .  
V -  
Y
V -  
Z
C
R
G
R
FIGURE 7. SYNCHRONOUS AM DETECTION  
F
ExternalGain = -------- + 1  
R
G
HA-2556  
V +  
X
ACos(ωτ)  
FIGURE 9. EXTERNAL GAIN OF 5  
V
OUT  
+
A
W
-
X
Y
One caveat is that the output bandwidth will also drop by this  
factor of 5. The multiplier equation then becomes:  
V -  
X
+
1/5V  
-
5AB  
5
V +  
Y
V +  
ACos(ωτ+φ)  
Z
W = ----------- = A × B  
Z
+
-
+
-
V -  
V -  
Z
Y
Current Output  
2
A
------  
W =  
(Cos(φ) + Cos(2ωτ + φ))  
10  
Another useful circuit for low voltage applications allows the  
user to convert the voltage output of the HA2556 to an output  
current. The HA-2557 is a current output version offering  
100MHz of bandwidth, but its scale factor is fixed and does not  
have an output amplifier for additional scaling. Fortunately the  
circuit in Figure 10 provides an output current that can be  
DC COMPONENT IS PROPORTIONAL TO COS(f)  
FIGURE 8. PHASE DETECTION  
Each input X, Y and Z has similar wide bandwidth and input  
characteristics. This is unlike earlier products where one  
6
HA-2556  
scaled with the value of R  
CONVERT  
impedance of typically 1M. The equation for I  
and provides an output  
becomes:  
Of course the HA-2556 is also well suited to standard  
multiplier applications such as Automatic Gain Control and  
Voltage Controlled Amplifier.  
OUT  
A × B  
5
1
------------- --------------------------------  
I
=
×
OUT  
R
CONVERT  
A
HA-2556  
V +  
X
2
2
W = 5(A -B )  
+
A
Video Fader  
The Video Fader circuit provides a unique function. Here Ch B  
is applied to the minus Z input in addition to the minus Y input.  
In this way, the function in Figure 11 is generated. V  
control the percentage of Ch A and Ch B that are mixed  
-
X
Y
V -  
X
5K  
5K  
+
5K  
5K  
1/5V  
V +  
Y
V +  
-
B
Z
Z
will  
+
-
+
-
MIX  
V -  
V -  
Z
Y
together to produce a resulting video image or other signal.  
FIGURE 12. DIFFERENCE OF SQUARES  
95K  
HA-2556  
V +  
V
R
CONVERT  
X
OUT  
A
+
A
I
OUT  
-
X
Y
V -  
X
HA-2556  
R
5K  
R
2
A - B  
A
1
+
V -  
V
W = 100  
X
OUT  
1/5V  
+
-
A
-
V +  
Y
V +  
X
Y
Z
B
V +  
X
Z
+
+
-
+
-
1/5V  
-
V +  
Y
V -  
Y
V -  
Z
V +  
Z
A
Z
B
+
-
+
-
FIGURE 10. CURRENT OUTPUT  
V -  
V -  
Z
Y
The Balance equation looks like:  
R
and R set scale to 1V/%, other scale factors possible.  
2
1
For A 0V.  
(V  
) × (ChA ChB) = 5(V  
ChB)  
OUT  
MIX  
FIGURE 13. PERCENTAGE DEVIATION  
Which simplifies to:  
V
HA-2556  
MIX  
5
A - B  
B + A  
-------------  
V
= ChB +  
(ChA ChB)  
V -  
V
X
W = 10  
OUT  
OUT  
+
A
-
X
Y
When V  
MIX  
is 0V the equation becomes V = Ch B and  
OUT  
V +  
X
+
Ch A is removed, conversely when V  
is 5V the equation  
values  
5V the output is a blend of Ch A and Ch B.  
MIX  
1/5V  
becomes V  
0V V  
= Ch A eliminating Ch B. For V  
MIX  
OUT  
-
V +  
Y
V +  
Z
Z
B
A
MIX  
+
-
+
-
5K  
5K  
V -  
V -  
Z
Y
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
REF  
NC  
NC  
NC  
NC  
+
MIX  
(0V to 5V)  
V
X
V
FIGURE 14. DIFFERENCE DIVIDED BY SUM S (For A + B 0V)  
+
Ch A  
Ch B  
V +  
-
Y
+
V -  
Y
Automatic Gain Control  
-
+15 V  
V -  
Figure 15 shows the HA-2556 configured in an Automatic  
Gain Control or AGC application. The HA-5127 low noise  
amplifier provides the gain control signal to the X input. This  
control signal sets the peak output voltage of the multiplier to  
match the preset reference level. The feedback network  
around the HA-5127 provides a response time adjustment.  
High frequency changes in the peak are rejected as noise or  
the desired signal to be transmitted. These signals do not  
indicate a change in the average peak value and therefore  
no gain adjustment is needed. Lower frequency changes in  
the peak value are given a gain of -1 for feedback to the  
control input. At DC the circuit is an integrator automatically  
compensating for Offset and other constant error terms.  
Z
+
Σ
-15V  
-
-
+
V +  
Z
V
OUT  
50Ω  
FIGURE 11. VIDEO FADER  
Other Applications  
As shown above, a function may contain several different  
operators at the same time and use only one HA-2556.  
Some other possible multi-operator functions are shown in  
Figures 12, 13 and 14.  
7
HA-2556  
This multiplier has the advantage over other AGC circuits, in  
that the signal bandwidth is not affected by the control signal  
gain adjustment.  
Wave Shaping Circuits  
Wave shaping or curve fitting is another class of application  
for the analog multiplier. For example, where a nonlinear  
sensor requires corrective curve fitting to improve linearity  
the HA-2556 can provide nonintegral powers in the range 1  
to 2 or nonintegral roots in the range 0.5 to 1.0 (refer to  
References). This effect is displayed in Figure 17.  
HA-2556  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
REF  
NC  
NC  
NC  
1
X
Z
0.5  
V +  
Y
X
0.8  
0.6  
0.4  
0.2  
0
Y
V+  
0.7  
X
+
Σ
V-  
-
V
OUT  
1.5  
X
50Ω  
2
X
10kΩ  
0.1µF  
1N914  
0
0.2  
0.4  
0.6  
0.8  
1
0.01µF  
10kΩ  
+15V  
INPUT (V)  
-
+
FIGURE 17. EFFECT OF NONINTEGRAL POWERS / ROOTS  
5.6V  
5kΩ  
HA-5127  
20kΩ  
A multiplier can’t do nonintegral roots “exactly”, but it can  
yield a close approximation. We can approximate  
nonintegral roots with equations of the form:  
2
0.1µF  
V
= (1 α )V + α V  
IN  
o
IN  
FIGURE 15. AUTOMATIC GAIN CONTROL  
HA-2556  
1 2  
V
= (1 α )V  
+ α V  
IN IN  
o
0.7  
Figure 18 compares the function V  
0.5  
= V  
IN  
to the  
OUT  
+ 0.5V .  
IN  
approximation V  
= 0.5V  
1
2
3
4
5
6
7
8
16 NC  
15 NC  
14 NC  
OUT  
IN  
REF  
1
NC  
NC  
NC  
0.8  
0.6  
0.4  
0.2  
13  
12  
11  
10  
9
V
+ (V )  
GAIN  
0.7  
X
X
X
Z
Y
V+  
+
Σ
V-  
-
0.5  
0.5X + 0.5X  
X
5kΩ  
500Ω  
0
0
V
IN  
-
0.2  
0.4  
0.6  
0.8  
1
+
V
OUT  
INPUT (V)  
HFA0002  
FIGURE 18. COMPARE APPROXIMATION TO NONINTEGRAL  
ROOT  
FIGURE 16. VOLTAGE CONTROLLED AMPLIFIER  
Voltage Controlled Amplifier  
This function can be easily built using an HA-2556 and a  
potentiometer for easy adjustment as shown in Figures 19 and  
20. If a fixed nonintegral power is desired, the circuit shown in  
A wide range of gain adjustment is available with the Voltage  
Controlled Amplifier configuration shown in Figure 16. Here  
the gain of the HFA0002 can be swept from 20V/V to a gain  
of almost 1000V/V with a DC voltage from 0V to 5V.  
Figure 21 eliminates the need for the output buffer amp. These  
M
circuits approximate the function  
nonintegral power or root.  
where M is the desired  
V
IN  
8
HA-2556  
Values for α to give a desired M root or power are as follows:  
HA-2556  
ROOTS - FIGURE 19  
POWERS - FIGURE 20  
1
2
3
4
5
6
7
8
16  
NC  
REF  
M
α
M
α
NC  
NC  
NC  
15 NC  
14 NC  
13  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
1
+
0.25  
0.50  
0.70  
0.85  
1
0.75  
0.5  
0.3  
0.15  
0
X
Z
+
12  
-
Y
11  
10  
9
V+  
-
+
+
Σ
V
IN  
V-  
-
1-α  
-
α
Sine Function Generators  
Similar functions can be formulated to approximate a SINE  
function converter as shown in Figure 22. With a linearly  
changing (0V to 5V) input the output will follow 0 degrees to 90  
degrees of a sine function (0V to 5V) output. This configuration  
is theoretically capable of ±2.1% maximum error to full scale.  
V
OUT  
-
0.5 M 1.0  
0V V 1V  
+
HA-5127  
IN  
FIGURE 19. NONINTEGRAL ROOTS - ADJUSTABLE  
HA-2556  
By adding a second HA-2556 to the circuit an improved fit  
may be achieved with a theoretical maximum error of ±0.5%  
as shown in Figure 23. Figure 23 has the added benefit that it  
will work for positive and negative input signals. This makes a  
convenient triangle (±5V input) to sine wave (±5V output)  
converter.  
1
2
3
4
5
6
7
8
16 NC  
15 NC  
14 NC  
13  
REF  
NC  
NC  
NC  
V
IN  
+
X
Z
+
12  
-
Y
11 V+  
10  
References  
[1] Pacifico Cofrancesco, “RF Mixers and Modulators made  
with a Monolithic Four-Quadrant Multiplier” Microwave  
Journal, December 1991 pg. 58 - 70.  
-
1-α  
+
+
Σ
V-  
-
α
9
-
[2] Richard Goller, “IC Generates Nonintegral Roots”  
Electronic Design, December 3, 1992.  
1.0 M 2.0  
0V V 1V  
V
OUT  
-
+
IN  
HA-5127  
HA-2556  
FIGURE 20. NONINTEGRAL POWERS - ADJUSTABLE  
HA-2556  
1
2
3
4
5
6
7
8
16 NC  
15 NC  
14 NC  
13  
REF  
NC  
NC  
NC  
R
R
2
6
NC  
NC  
1
2
3
4
5
6
7
8
16  
15  
470  
470  
REF  
+
NC  
NC  
NC  
V
X
Z
IN  
+
14 NC  
13  
12  
V
IN  
-
+
Y
R
1
262  
11 V+  
10  
R
5
X
Z
+
-
+
12  
1410  
+
Σ
-
V-  
-
Y
V
OUT  
R
R
11  
10  
9
1
V+  
-
9
-
+
+
Σ
V-  
-
V
OUT  
-
2
R , 644  
R , 1K  
4
3
1.2 M 2.0  
0V V 1V  
R
3
R
FIGURE 22. SINE-FUNCTION GENERATOR  
4
IN  
FIGURE 21. NONINTEGRAL POWERS - FIXED  
R
R
R
3
R
4
1
--  
5
2
3
2
--------------------  
V
IN  
V
=
------ + 1 V  
+
------ + 1  
OUT  
IN  
R
+ R  
2
R
4
1
Setting:  
R
R
R
3
R
4
1
5
2
3
--  
--------------------  
1 α =  
------ + 1  
α = ------ + 1  
R
1
+ R  
R
4
2
9
HA-2556  
(1 0.1284V  
)
V
π
IN  
IN  
71.5K  
V
23.1K  
-------------------------------------------------- -- ---------  
5sin  
V
= V  
OUT  
IN  
(0.6082 0.05V  
)
2
5
IN  
+
-
X
for; 0V V 5V  
Max Theoretical Error = 2.1%FS  
V
OUT  
IN  
X
where:  
OUT  
V
IN  
+
-
10K  
R
R
2
5.71K  
10K  
X
HA-2556  
+
;
4
0.6082 = --------------------  
5(0.1284) = --------------------  
R
+ R  
R
+ R  
2
+
-
3
4
1
Z
V
OUT  
X
Y
R
6
-
5(0.05) = --------------------  
HA-2556  
Z
Y
R
+ R  
5
6
+
-
+
Z
Y
3
5V 0.05494V  
V
IN  
5
π
2
IN  
IN  
-
Z
Y
------------------------------------------------------------------  
3.18167 + 0.0177919V  
-- ---------  
V
=
5sin  
OUT  
2
IN  
FIGURE 23. BIPOLAR SINE-FUNCTION GENERATOR  
for; -5V V 5V  
IN  
Max Theoretical Error = 0.5%FS  
Typical Performance Curves  
1.5  
1
Y = -4  
Y = -5  
Y = -3  
1
0.5  
0
0.5  
Y = -2  
Y = 0  
Y = -1  
Y = 0  
0
Y = 1  
-0.5  
-1  
Y = 3  
Y = 2  
-0.5  
Y = 4  
Y = 5  
-1  
-1.5  
-6  
-4  
-2  
0
2
4
6
-6  
-4  
-2  
0
2
4
6
X INPUT (V)  
X INPUT (V)  
FIGURE 24. X CHANNEL MULTIPLIER ERROR  
FIGURE 25. X CHANNEL MULTIPLIER ERROR  
1.5  
1
1
X = -3  
X = -2  
0.5  
0
X = -4  
X = -1  
X = 0  
X = 5  
X = 1  
0.5  
0
X = 0  
-0.5  
-1  
X = -5  
X = 2  
-0.5  
-1  
X = 4  
X = 3  
-1.5  
-6  
-4  
-2  
0
2
4
6
-6  
-4  
-2  
0
2
4
6
Y INPUT (V)  
Y INPUT (V)  
FIGURE 26. Y CHANNEL MULTIPLIER ERROR  
FIGURE 27. Y CHANNEL MULTIPLIER ERROR  
10  
HA-2556  
Typical Performance Curves (Continued)  
200  
100  
8
4
0
0
-100  
-200  
-4  
V
V
= ±100mV PULSE  
Y
X
V
V
= ±4V PULSE  
X
Y
= 5V  
DC  
= 5V  
DC  
-8  
0ns  
250ns  
500ns  
0ns  
500ns  
1µs  
50mV/DIV.; 50ns/DIV.  
2V/DIV.; 100ns/DIV.  
FIGURE 28. LARGE SIGNAL RESPONSE  
FIGURE 29. SMALL SIGNAL RESPONSE  
Y CHANNEL = 4V  
X CHANNEL = 5V  
P-P  
DC  
Y CHANNEL = 10V  
P-P  
4
3
4
X CHANNEL = 5V  
DC  
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
-3dB  
AT 32.5MHz  
10K  
100K  
1M  
10M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
FREQUENCY (Hz)  
FIGURE 30. Y CHANNEL FULL POWER BANDWIDTH  
FIGURE 31. Y CHANNEL FULL POWER BANDWIDTH  
X CHANNEL = 10V  
P-P  
X CHANNEL = 4V  
Y CHANNEL = 5V  
4
3
P-P  
DC  
4
3
Y CHANNEL = 5V  
DC  
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
FIGURE 32. X CHANNEL FULL POWER BANDWIDTH  
FIGURE 33. X CHANNEL FULL POWER BANDWIDTH  
11  
HA-2556  
Typical Performance Curves (Continued)  
0
0
-6  
V
= 5V  
DC  
V
= 5V  
DC  
Y
X
-6  
-12  
-18  
-24  
V
= 2V  
DC  
Y
V
= 2V  
DC  
X
-12  
-18  
-24  
V
= 0.5V  
DC  
Y
V
= 200mV  
P-P  
V
= 0.5V  
Y
V = 200mV  
X
X
DC  
P-P  
100M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
FIGURE 34. Y CHANNEL BANDWIDTH vs X CHANNEL  
FIGURE 35. X CHANNEL BANDWIDTH vs Y CHANNEL  
0
0
V
V
+, V - = 200mV  
Y RMS  
Y
X
V
V
+, V - = 200mV  
RMS  
X
Y
X
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
= 5V  
DC  
= 5V  
DC  
5MHz  
-26.2dB  
5MHz  
-38.8dB  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
10K  
100K  
1M  
FREQUENCY (Hz)  
10M  
100M  
FIGURE 36. Y CHANNEL CMRR vs FREQUENCY  
FIGURE 37. X CHANNEL CMRR vs FREQUENCY  
0
0
V
V
= 200mV  
P-P  
V
V
= 200mV  
X
Y
X
P-P  
= NULLED  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
= NULLED  
Y
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-49dB  
AT 5MHz  
-52.6dB  
AT 5MHz  
10K  
100K  
1M  
10M  
100M  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 38. FEEDTHROUGH vs FREQUENCY  
FIGURE 39. FEEDTHROUGH vs FREQUENCY  
12  
HA-2556  
Typical Performance Curves (Continued)  
14  
13  
12  
11  
10  
9
8
7
6
|V Z|  
IO  
5
4
3
2
1
0
8
7
|V X|  
IO  
6
5
|V Y|  
IO  
4
-100  
-50  
0
50  
100  
150  
-100  
-50  
0
50  
100  
150  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 41. INPUT BIAS CURRENT (V , V , V ) vs  
FIGURE 40. OFFSET VOLTAGE vs TEMPERATURE  
X
Y
Z
TEMPERATURE  
2
6
5
4
3
2
1
1.5  
1
X INPUT  
Y INPUT  
0.5  
0
-0.5  
-1  
4
6
8
10  
12  
14  
16  
-100  
-50  
0
50  
100  
150  
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 42. SCALE FACTOR ERROR vs TEMPERATURE  
FIGURE 43. INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE  
15  
25  
20  
X INPUT  
10  
I
Y INPUT  
CC  
I
5
EE  
15  
10  
5
0
-5  
X & Y INPUT  
-10  
-15  
0
0
5
10  
15  
20  
4
6
8
10  
12  
14  
16  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FIGURE 45. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 44. INPUT COMMON MODE RANGE vs SUPPLY  
VOLTAGE  
13  
HA-2556  
Typical Performance Curves (Continued)  
5.0  
4.8  
4.6  
4.4  
4.2  
100  
300  
500  
700  
900  
1100  
R
()  
LOAD  
FIGURE 46. OUTPUT VOLTAGE vs R  
LOAD  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
Type: Nitride (Si N ) over Silox (SiO , 5% Phos)  
71 mils x 100 mils x 19 mils  
3
4
2
Silox Thickness: 12kÅ ±2kÅ  
Nitride Thickness: 3.5kÅ ±2kÅ  
METALLIZATION:  
Type: Al, 1% Cu  
TRANSISTOR COUNT:  
Thickness: 16kÅ ±2kÅ  
84  
SUBSTRATE POTENTIAL:  
V-  
HA-2556  
Metallization Mask Layout  
V
A
V
B
VREF GND  
(2) (1)  
XIO  
(16)  
XIO  
(15)  
V
V
B
YIO  
(3)  
A
YIO  
(4)  
V +  
X
(13)  
V +  
Y
(5)  
V -  
X
(12)  
V -  
Y
(6)  
V+  
(11)  
(8)  
(9) (10)  
V + V -  
(7)  
V-  
V
OUT  
Z
Z
14  
HA-2556  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
15  

相关型号:

HA1-2556/883

Wideband Four Quadrant Analog Multiplier (Voltage Output)
INTERSIL

HA1-2556883

Wideband Four Quadrant Analog Multiplier (Voltage Output)
INTERSIL

HA1-2557-5

Analog Multiplier
ETC

HA1-2557-9

Analog Multiplier Or Divider, 1 Func, 100MHz Band Width, CDIP16
ROCHESTER

HA1-2557/883

Wideband Four Quadrant Analog Multiplier (Current Output)
INTERSIL

HA1-2557883

Wideband Four Quadrant Analog Multiplier (Current Output)
INTERSIL

HA1-2600-2

Analog IC
ETC

HA1-2602-2

Analog IC
ETC

HA1-2605-5

Analog IC
ETC

HA1-2620-2

Analog IC
ETC

HA1-2622-2

Analog IC
ETC

HA1-2622-5

Analog IC
ETC