HA2557/883 [INTERSIL]

Wideband Four Quadrant Analog Multiplier (Current Output); 宽带四象限模拟乘法器(电流输出)
HA2557/883
型号: HA2557/883
厂家: Intersil    Intersil
描述:

Wideband Four Quadrant Analog Multiplier (Current Output)
宽带四象限模拟乘法器(电流输出)

文件: 总14页 (文件大小:433K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA2557/883  
Wideband Four Quadrant Analog  
Multiplier (Current Output)  
July 1994  
Features  
Description  
• This Circuit is Processed in Accordance to MIL-STD- The HA-2557/883 is a monolithic, high speed, four quadrant,  
883 and is Fully Conformant Under the Provisions of analog multiplier constructed in Intersil’ Dielectrically Iso-  
Paragraph 1.2.1.  
lated High Frequency Process. The single-ended current  
output of the HA-2557/883 has a 130MHz signal bandwidth  
(RL = 50). High bandwidth and low distortion make this part  
an ideal component in video systems.  
• Low Multiplication Error . . . . . . . . . . . . . . . . 1.5% (Typ)  
• Input Bias Currents . . . . . . . . . . . . . . . . . . . . . 8µA (Typ)  
• Signal Input Feedthrough at 5MHz. . . . . . . -52dB (Typ)  
• Wide Y Channel Bandwidth . . . . . . . . . . 130MHz (Typ)  
• Wide X Channel Bandwidth . . . . . . . . . . . 75MHz (Typ)  
• Rise Time (RL = 50) . . . . . . . . . . . . . . . . . . . . 7ns (Typ)  
• Supply Current. . . . . . . . . . . . . . . . . . . . . . . 17mA (Max)  
The suitability for precision video applications is demon-  
strated further by low multiplication error (1.5%), low  
feedthrough (-52dB), and differential inputs with low bias cur-  
rents (8µA). The HA-2557/883 is also well suited for mixer  
circuits as well as AGC applications for sonar, radar, and  
medical imaging equipment.  
The current output of the HA-2557/883 allows it to achieve  
higher bandwidths than voltage output multipliers. Full scale out-  
put current is trimmed to 1.6mA. An internal 2500feedback  
resistor is also provided to accurately convert the current, if  
desired, to a full scale output voltage of ±4V. The HA-2557/883 is  
not limited to multiplication applications only; frequency doubling,  
power detection, as well as many other configurations are also  
possible.  
Applications  
• Military Avionics  
• Missile Guidance Systems  
• Medical Imaging Displays  
• Video Mixers  
• Sonar AGC Processors  
• Radar Signal Conditioning  
• Voltage Controlled Amplifier  
• Vector Generator  
Ordering Information  
TEMPERATURE  
PART NUMBER  
RANGE  
PACKAGE  
o
o
HA1-2557/883  
-55 C to +125 C 16 Lead CerDIP  
Schematic  
Pinout  
V+  
HA-2557/883  
(CERDIP)  
TOP VIEW  
VBIAS  
16  
VXIOA  
GND  
VREF  
1
2
3
4
5
6
7
8
REF  
15 VXIO  
14 NC  
13 VX+  
12 VX-  
11 V+  
10 RZ  
B
VBIAS  
VYIOB  
IOUT  
VYIO  
A
X
VX-  
VX+  
VY+  
VY-  
V-  
Y
X
VY+  
YY-  
RZ  
REF  
+
-
9
NC  
IOUT  
VYIO  
A
VYIOB  
GND  
VXIO  
B
VXIO  
A
V-  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
Spec Number 511064-883  
File Number 3638  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
8-12  
Specifications HA2557/883  
Absolute Maximum Ratings  
Thermal Information  
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±3mA  
ESD Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .< 2000V  
Thermal Resistance  
CerDIP Package . . . . . . . . . . . . . . . . . . . . 82 C/W  
Maximum Package Power Dissipation at +75 C  
CerDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.22W  
Package Power Dissipation Derating Factor above +75 C  
CerDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mW/ C  
θ
θ
JC  
27 C/W  
JA  
o
o
o
o
o
Lead Temperature (Soldering 10s). . . . . . . . . . . . . . . . . . . . +300 C  
o
o
o
Storage Temperature Range . . . . . . . . . . . . . .-65 C T +150 C  
A
o
Max Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . +175 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Operating Conditions  
o
o
Operating Supply Voltage (±V ) . . . . . . . . . . . . . . . . . . . . . . . . . . ±15V  
Operating Temperature Range . . . . . . . . . . . . -55 C T +125 C  
A
S
TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS  
Device Tested at: V  
= ±15V, R (Pin 10) not connected, Unless Otherwise Specified.  
SUPPLY  
Z
LIMITS  
GROUP A  
PARAMETERS  
SYMBOL  
CONDITIONS  
V , V = ±4V  
SUBGROUPS  
TEMPERATURE  
MIN  
MAX  
3
UNITS  
%FS  
%FS  
%FS  
%
o
Multiplication Error  
ME  
1
2, 3  
1
+25 C  
-3  
-6  
Y
X
FS = 1.6mA  
o
o
+125 C, -55 C  
6
o
Linearity Error  
LE  
V , V = ±4V  
+25 C  
-0.25  
-3  
0.25  
3
Y
X
o
R Accuracy  
RZE  
Nominal 2500Ω  
1
+25 C  
Z
o
o
2, 3  
1
+125 C, -55 C  
-5  
5
%
o
I
Offset  
I
V , V = 0V  
+25 C  
-10  
-15  
-15  
-25  
-15  
-25  
-2  
10  
15  
15  
25  
15  
25  
2
µA  
OUT  
OO  
X
Y
X
X
Y
o
o
2, 3  
1
+125 C, -55 C  
µA  
o
Input Offset Voltage (V )  
V
V
V
V
= ±4V  
+25 C  
mV  
mV  
µA  
X
XIO  
o
o
2, 3  
1
+125 C, -55 C  
o
Input Bias Current (V )  
I (V )  
= 0V, V = 4V  
+25 C  
X
B
X
Y
o
o
2, 3  
1
+125 C, -55 C  
µA  
o
Input Offset Current (V )  
I
(V )  
= 0V, V = 4V  
+25 C  
µA  
X
IO  
X
Y
o
o
2, 3  
1
+125 C, -55 C  
-3  
3
µA  
o
Common Mode (V )  
Rejection Ratio  
CMRR(V ) V CM = ±10V  
+25 C  
65  
65  
65  
65  
45  
45  
-15  
-25  
-15  
-25  
-2  
-
dB  
X
X
X
Y
V
= 4V  
o
o
2, 3  
1
+125 C, -55 C  
-
dB  
o
Power Supply (V )  
+ PSRR(V ) V+ = +12V to +17V  
+25 C  
-
dB  
X
X
Rejection Ratio  
V = 4V  
Y
o
o
2, 3  
1
+125 C, -55 C  
-
dB  
o
- PSRR(V ) V- = -12V to -17V  
+25 C  
-
dB  
X
V = 4V  
o
o
Y
2, 3  
1
+125 C, -55 C  
-
dB  
o
Input Offset Voltage (V )  
V
V
V
V
= ±4V  
+25 C  
15  
25  
15  
25  
2
mV  
mV  
µA  
Y
YIO  
X
Y
Y
o
o
2, 3  
1
+125 C, -55 C  
o
Input Bias Current (V )  
I (V )  
= 0V, V = 4V  
+25 C  
Y
B
Y
X
o
o
2, 3  
1
+125 C, -55 C  
µA  
o
Input Offset Current (V )  
I
(V )  
= 0V, V = 4V  
+25 C  
µA  
Y
IO  
Y
X
o
o
2, 3  
1
+125 C, -55 C  
-3  
3
µA  
o
Common Mode (V )  
Rejection Ratio  
CMRR(V ) V CM = +9V, -10V  
+25 C  
65  
65  
65  
65  
45  
45  
-
-
dB  
Y
Y
Y
X
V
= 4V  
o
o
2, 3  
1
+125 C, -55 C  
-
dB  
o
Power Supply (V )  
+ PSRR(V ) V+ = +12V to +17V  
+25 C  
-
dB  
Y
Y
Rejection Ratio  
V = 4V  
X
o
o
2, 3  
1
+125 C, -55 C  
-
dB  
o
- PSRR(V ) V- = -12V to -17V  
+25 C  
-
dB  
Y
V = 4V  
o
o
X
2, 3  
1
+125 C, -55 C  
-
dB  
o
Supply Current  
I
V , V = 0V  
+25 C  
17  
17  
-
mA  
mA  
MΩ  
CC  
X
Y
o
o
2, 3  
1
+125 C, -55 C  
-
o
Output Impedance  
Z
V
= ±10V  
+25 C  
1.0  
OUT  
OUT  
Spec Number 511064-883  
8-13  
HA2557/883  
TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS  
Table 2 Intentionally Left Blank. See AC Specifications in Table 3  
TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS  
= ±15V, R (Pin 10) not connected, Unless Otherwise Specified.  
Device Tested at: V  
SUPPLY  
Z
LIMITS  
PARAMETERS  
SYMBOL  
CONDITIONS  
NOTES  
TEMPERATURE  
MIN  
MAX  
UNITS  
V , CHARACTERISTICS  
Y
o
Bandwidth  
BW(V )  
-3dB, V = 4V,  
1
+25 C  
90  
-
-
MHz  
dB  
Y
X
V
200mV  
Y
P-P  
o
AC Feedthrough  
V
f
V
V
= 5MHz,  
= 200mV  
= Nulled  
1, 2  
+25 C  
-48  
ISO  
O
Y
X
P-P  
o
Rise and Fall Time  
Overshoot  
T , T  
V
V
= -4V to +4V Step  
= 4V,  
1
+25 C  
-
10  
ns  
R
F
Y
X
10% to 90% pts  
o
+OS, -OS  
V
V
= -4V to +4V Step  
= 4V  
1
1
+25 C  
-
10  
-
%
Y
X
o
Differential Input  
Resistance  
R
(V )  
V
= ±4V, V = 0V  
+25 C  
650  
kΩ  
IN  
Y
Y
X
V
CHARACTERISTICS  
X
o
Bandwidth  
BW(V )  
-3dB, V = 4V,  
1
+25 C  
60  
-
-
MHz  
dB  
X
Y
V
200mV  
X
P-P  
o
AC Feedthrough  
V
f
V
V
= 5MHz,  
= 200mV  
= Nulled  
1, 2  
+25 C  
-50  
ISO  
O
X
Y
P-P  
o
Rise and Fall Time  
Overshoot  
T , T  
V
V
= -4V to +4V Step  
= 4V, 10% to 90% pts  
1
1
1
+25 C  
-
-
10  
15  
-
ns  
%
R
F
X
Y
o
+OS, -OS  
V
V
= -4V to +4V Step  
= 4V  
+25 C  
X
Y
o
Differential Input  
Resistance  
R
(V )  
V
= ±4V, V = 0V  
+25 C  
650  
kΩ  
IN  
X
X
Y
NOTE:  
1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These param-  
eters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization  
based upon data from multiple production runs which reflect lot to lot and within lot variation.  
2. Offset voltage applied to minimize feedthrough signal.  
TABLE 4. ELECTRICAL TEST REQUIREMENTS  
MIL-STD-883 TEST REQUIREMENTS  
Interim Electrical Parameters (Pre Burn-In)  
Final Electrical Test Parameters  
Group A Test Requirements  
SUBGROUPS (SEE TABLE 1)  
-
1 (Note 1), 2, 3  
1, 2, 3  
Groups C and D Endpoints  
1
NOTE:  
1. PDA applies to Subgroup 1 only.  
Spec Number 511064-883  
8-14  
HA2557/883  
Die Characteristics  
DIE DIMENSIONS:  
71mils x 100mils x 19mils ± 1mils  
METALLIZATION:  
Type: Al, 1% Cu  
Thickness: 16kÅ ± 2kÅ  
GLASSIVATION:  
Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos)  
Silox Thickness: 12kÅ ± 2kÅ  
Nitride Thickness: 3.5kÅ ± 1.5kÅ  
TRANSISTOR COUNT: 72  
SUBSTRATE POTENTIAL: V-  
WORST CASE CURRENT DENSITY:  
0.47 x 105A/cm2  
Metallization Mask Layout  
HA-2557/883  
V
B (3)  
A (4)  
YIO  
V
YIO  
(13) V +  
X
V + (5)  
(12) V -  
Y
X
V - (6)  
Y
(11) V+  
Spec Number 511064-883  
8-15  
HA2557/883  
Test Circuits  
V
TRANSIENT RESPONSE  
Y
Vertical Scale: Top 5V/Div. Bottom: 100mV/Div.  
Horizontal Scale: 20ns/Div.  
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
NC  
VX+  
1
2
3
4
5
6
7
8
REF  
NC  
NC  
NC  
X
VY+  
X
Y
+15V  
NC  
-15V  
NC  
VOUT  
50Ω  
FIGURE 1. AC AND TRANSIENT RESPONSE TEST CIRCUIT  
Burn-In Circuit  
HA-2557/883 CERAMIC DIP  
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
1
REF  
2
3
4
5
6
7
8
NC  
NC  
NC  
VX+  
NC  
VY+  
X
Y
X
+15.5 V  
±0.5V  
RZ  
D2  
0.01µF  
- 15.5V  
±0.5V  
0.01µF  
D1  
NC  
IOUT  
D1 = D2 = 1N4002 OR EQUIVALENT (PER BOARD)  
Spec Number 511064-883  
8-16  
HA2557/883  
Packaging  
c1 LEAD FINISH  
F16.3 MIL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A)  
16 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE  
INCHES MILLIMETERS  
MIN  
-D-  
E
-A-  
-B-  
BASE  
METAL  
(c)  
SYMBOL  
MAX  
0.200  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
0.840  
0.310  
MIN  
-
MAX  
5.08  
0.66  
0.58  
1.65  
1.14  
0.46  
0.38  
21.34  
7.87  
NOTES  
b1  
A
b
-
-
2
3
-
M
M
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
(b)  
b1  
b2  
b3  
c
SECTION A-A  
S
S
S
D
bbb  
C A - B  
D
4
2
3
5
5
-
BASE  
Q
PLANE  
A
-C-  
c1  
D
SEATING  
PLANE  
L
α
E
0.220  
5.59  
S1  
eA  
A A  
e
e
0.100 BSC  
2.54 BSC  
b2  
eA/2  
b
c
eA  
eA/2  
L
0.300 BSC  
0.150 BSC  
7.62 BSC  
3.81 BSC  
-
-
M
S
S
M
S
S
D
ccc  
C A - B  
D
aaa  
C A - B  
0.125  
0.200  
3.18  
5.08  
-
Q
0.015  
0.005  
0.005  
0.060  
0.38  
0.13  
0.13  
1.52  
6
7
-
NOTES:  
S1  
S2  
-
-
-
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
o
o
o
o
90  
105  
90  
105  
-
α
aaa  
bbb  
ccc  
M
-
-
-
-
0.015  
0.030  
0.010  
0.0015  
-
-
-
-
0.38  
0.76  
0.25  
0.038  
-
-
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
-
2
8
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
N
16  
16  
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b1.  
5. This dimension allows for off-center lid, meniscus, and glass  
overrun.  
6. Dimension Q shall be measured from the seating plane to the  
base plane.  
7. Measure dimension S1 at all four corners.  
8. N is the maximum number of terminal positions.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling Dimension: Inch.  
11. Lead Finish: Type A.  
12. Materials: Compliant to MIL-M38510.  
Spec Number 511064-883  
8-17  
Semiconductor  
HA2557  
Wideband Four Quadrant  
Current Output Analog Multiplier  
DESIGN INFORMATION  
August 1999  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves  
V
BANDWIDTH  
V
BANDWIDTH  
-3dB AT 77MHz  
Y
X
-32  
-37  
-42  
-32  
-37  
-42  
-3dB at 131MHz  
100M  
IOUT INTO 50VY BANDWIDTH  
VY = 200MVP-P, VX = 4VDC  
IOUT INTO 50VX BANDWIDTH  
VX = 200mVP-P VY = 4VDC  
1M  
10M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
HA2557 INTO HA2842 AS I TO V CONVERTER V FULLPOWER  
V
TRANSIENT RESPONSE OF HA-2842 AS I TO V  
CONVERTER  
Y
Y
BANDWIDTH  
Top: V Input 0 to 4V Step  
Bottom: HA-2842 0 to 4V Response  
Y
4
INTERNAL RX AS FEEDBACK RESISTOR,  
PLUS 3pF COMPENSATION CAPACITOR  
Y = 3.5VP-P, VX = 4VDC  
2
V
0
-2  
-4  
-6  
-3dB at 24.4MHz  
1K  
10K  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
Spec Number 511064-883  
8-18  
HA2557  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves  
DRIVING HA5023 AS I TO V CONVERTER V BANDWIDTH  
V TRANSIENT RESPONSE OF HA5023 AS I TO V CONVERTER  
Y
Y
Top: V Input 0 to 4V Step  
Y
Bottom: HA5023 0 to 4V Response  
FIRST STAGE USING A 909FEEDBACK RESISTOR, OUTPUT  
OF SECOND STAGE (AMP 2) WITH 619FEEDBACK RESISTOR  
AND 220GAIN RESISTOR IN PARALLEL WITH A 10pF  
4
PLUS 220, VY = 200mVP-P, VX = 4VDC  
2
0
-3dB at 94MHz  
-2  
-4  
1M  
10M  
100M  
FREQUENCY (Hz)  
DRIVING HA5023 AS I TO V CONVERTER V BANDWIDTH  
V
TRANSIENT RESPONSE OF HA5023 AS I TO V CONVERTER  
Y
X
Top: V Input 0 to 4V Step  
X
Bottom: HA5023 0 to 4V Response  
FIRST STAGE USING A 909FEEDBACK RESISTOR, OUTPUT  
OF SECOND STAGE (AMP 2) WITH 619FEEDBACK RESISTOR  
AND 220GAIN RESISTOR IN PARALLEL WITH A  
4
2
0
10pF PLUS 220, VX = 200mVP-P, VY = 4VDC  
-3dB at 98MHz  
-2  
-4  
1M  
10M  
100M  
FREQUENCY (Hz)  
DRIVING HA5023 AS I TO V CONVERTER V FULLPOWER  
DRIVING HA5023 AS I TO V CONVERTER V FULLPOWER  
Y
X
BANDWIDTH  
BANDWIDTH  
FIRST STAGE USING A 909FEEDBACK RESISTOR OUTPUT  
OF SECOND STAGE (AMP 2) WITH 619FEEDBACK RESISTOR  
AND 220GAIN RESISTOR IN PARALLEL WITH A 10pF  
FIRST STAGE USING A 909FEEDBACK RESISTOR OUTPUT  
OF SECOND STAGE (AMP 2) WITH 619FEEDBACK RESISTOR  
AND 220GAIN RESISTOR IN PARALLEL WITH A 10pF  
4
4
2
0
PLUS 220, VY = 3.5VP-P, VX = 4VDC  
2
0
PLUS 220, VX = 3.5VP-P, VY = 4VDC  
-3dB at 80MHz  
-3dB at 80MHz  
-2  
-4  
-2  
-4  
1M  
10M  
100M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Spec Number 511064-883  
8-19  
HA2557  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Typical Performance Curves  
INPUT BIAS CURRENT  
ABSOLUTE VALUE OFFSET VOLTAGE  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
|VIOX|  
8
7
6
|VIOY|  
5
0
-100  
-50  
0
50  
100  
150  
4
TEMPERATURE (oC)  
-100  
-50  
0
50  
100  
150  
TEMPERATURE (oC)  
SCALE FACTOR ERROR  
INPUT VOLTAGE RANGE  
2
1.5  
1
6
5
4
3
2
X INPUT  
0.5  
0
Y INPUT  
-0.5  
-1  
1
4
6
8
10  
12  
14  
16  
-100  
-50  
0
50  
100  
150  
±SUPPLY VOLTAGE (V)  
TEMPERATURE (oC)  
INPUT COMMON MODE RANGE  
15  
10  
5
X INPUT  
Y INPUT  
0
-5  
X AND Y INPUT  
-10  
-15  
4
6
8
10  
12  
14  
16  
±SUPPLY VOLTAGE (V)  
Spec Number 511064-883  
8-20  
HA2557  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Applications Information  
Operation at Reduced Supply Voltages  
products where one input was dedicated to a slow moving  
control function as is required for Automatic Gain Control.  
The HA-2557 is versatile enough for both.  
The HA-2557 will operate over a range of supply voltages,  
±5V to ±15V. Use of supply voltages below ±12V will reduce  
input and output voltage ranges. See “Typical Performance  
Curves” for more information.  
Offset Adjustment  
ACOS(ωΑτ) VX+  
+
-
The channel offset voltage may be nulled by using a 20K poten-  
tiometer between the VYIO or VXIO adjust pin A and B and con-  
necting the wiper to V-. Reducing the channel offset voltage will  
reduce AC feedthrough and improve the multiplication error.  
AUDIO  
X
VX-  
1/10kVΩ  
VY+  
X
IOUT  
RZ  
CCOS(ωCτ)  
Y
+
-
CARRIER  
Theory of Operation  
VY-  
The HA-2557 creates an output current that is the product of  
the X and Y input voltages divided by a constant scale factor  
of 10kV. The resulting output has the correct polarity in  
each of the four quadrants defined by the combinations of  
positive and negative X and Y inputs. This results in the fol-  
lowing equation, where X and Y are high impedance differ-  
ential inputs:  
AC  
--------------  
(Cos (ωC ω ) τ + Cos (ωC + ω ) τ)  
A A  
20kVΩ  
I
=
OUT  
FIGURE 2. AM SIGNAL GENERATION  
X x Y  
I
= ------------  
OUT  
VX+  
10kVΩ  
AM SIGNAL  
CARRIER  
+
-
X
Y
VX-  
To accomplish this the differential input voltages are first  
converted into differential currents by the X and Y input  
transconductance stages. The currents are then scaled by a  
constant reference and combined in the multiplier core. The  
multiplier core is a basic Gilbert Cell that produces a differ-  
ential output current proportional to the product of X and Y  
input signal currents. This current is converted into the out-  
put for the HA-2557.  
1/10KVΩ  
X
IOUT  
RZ  
VY+  
+
-
VY-  
LIKE THE FREQUENCY DOUBLER YOU GET  
AUDIO CENTERED AT DC AND 2FC.  
The purpose of the reference circuit is to provide a stable  
current, used in setting the scale factor. This is achieved with  
a bandgap reference circuit to produce a temperature stable  
voltage of 1.2V which is forced across a NiCr resistor. Slight  
adjustments to scale factor may be possible by overriding  
the internal reference with the VREF pin. The scale factor is  
used to maintain the output of the multiplier within the nor-  
mal operating range of ±1.6mA when full scale inputs are  
applied.  
FIGURE 3. SYNCHRONOUS AM DETECTION  
VX+  
VX-  
ACOS(ωτ)  
+
-
X
Y
IOUT  
X
1/10kVΩ  
Communications  
RZ  
VY+  
+
ACOS(ωτ+φ)  
The multiplier function of the HA-2557 has applications in  
AM Signal Generation, Synchronous AM Detection and  
Phase Detection. These circuit configurations are shown in  
Figure 2, Figure 3 and Figure 4. By feeding a signal into both  
X and Y inputs a Square function results that is useful as a  
Frequency Doubler as shown in Figure 5. The HA-2557 is  
particularly useful in applications that require the interaction  
of high speed signals. Both inputs X and Y have similar wide  
bandwidth and input characteristics. This is unlike earlier  
-
VY-  
2
A
--------------  
(Cos (φ) + Cos (2ωτ + φ) )  
I
=
OUT  
20kVΩ  
DC COMPONENT IS PROPORTIONAL TO COS(Φ)  
FIGURE 4. PHASE DETECTION  
Spec Number 511064-883  
8-21  
HA2557  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
VX+  
ACOS(ωτ)  
16 NC  
15 NC  
+
-
1
2
3
4
5
6
7
8
REF  
X
Y
VX-  
NC  
NC  
NC  
IOUT  
1/10KVΩ  
VY+  
X
14  
13  
12  
11  
10  
9
NC  
VX  
RZ  
+
-
X
0.01µ  
VY  
VY-  
0.01µ  
Y
X
+15V  
2.5K  
RZ  
1.0µ  
-15V  
(ACos (ωτ) × ACos (ωτ) ) = 10kV(I  
)
1.0µ  
OUT  
NC  
IOUT  
WHICH EVALUATES TO:  
2
A
--------  
I
=
20K (1 + Cos (2ωτ) )  
3pF  
OUT  
FIGURE 5. FREQUENCY DOUBLER  
-
VOUT  
+
HA-2842  
Although the X and Y inputs have similar AC characteristics,  
they are not the same. The designer should consider input  
parameters such as small signal bandwidth and ac  
feedthrough to get the most performance from the HA-2557.  
The Y channel is the faster of the two inputs with a small sig-  
nal bandwidth of typically 130MHz verses 75MHz for the X  
channel. Therefore in AM Signal Generation, the best perfor-  
mance will be obtained with the Carrier applied to the Y  
channel and the modulation signal (lower frequency) applied  
to the X channel.  
10kΩ  
0.1µF  
1N914  
10kΩ  
+15V  
0.01µF  
-
+
5kΩ  
HA-5127  
5.6V  
20kΩ  
Operation Over a Wide Supply Range  
0.1µF  
The HA-2557 is able to operate over a wide supply voltage  
range ±5V to ±17.5V. The ±5V range is particularly useful in  
video applications. At ±5V the input voltage range is reduced  
to ±1.4V limiting the fullscale output current. Another current  
output option is the HA-2556 voltage output multiplier config-  
ured for current output with an output sensing resistor (Refer  
to the HA-2556 datasheet).  
FIGURE 6. AUTOMATIC GAIN CONTROL  
This multiplier has the advantage over other AGC circuits, in  
that the signal bandwidth is not affected by the control signal  
gain adjustment.  
Voltage Output Conversion  
Automatic Gain Control  
The HA-2842 is an excellent choice to perform the output  
current to voltage conversion as shown in Figure 7. The  
combination of 400V/µs slew rate and 80MHz Gain Band-  
width product will maintain signal dynamics while providing a  
full scale ±4V output. The HA-2842 also provides a hefty out-  
put drive capability of 100mA.  
Figure 6 shows the HA-2557 configured in an Automatic  
Gain Control or AGC application. The HA-2842 serves as an  
output I to V converter using RZ which is trimmed to provide  
an accurate 4V Fullscale conversion. Refer to Voltage  
Output Conversion for more details about this function. The  
HA-5127 low noise amplifier provides the gain control signal  
to the X input. This control signal sets the peak output volt-  
age of the multiplier to match the preset reference level. The  
feedback network around the HA-5127 provides a response  
time adjustment. High frequency changes in the peak are  
rejected as noise or the desired signal to be transmitted.  
These signals do not indicate a change in the average peak  
value and therefore no gain adjustment is needed. Lower  
frequency changes in the peak value are given a gain of -1  
for feedback to the control input. At DC the circuit is an inte-  
grator automatically compensating for offset and other con-  
stant error terms.  
This voltage feedback amplifier takes advantage of the inter-  
nal RZ resistor, trimmed to provide an accurate 4V fullscale  
conversion. The parasitic capacitance at the negative input  
of the HA-2842 must be compensated with a 3pF capacitor  
from pin 2 to pin 6. This compensation will also insure that  
the amp will see a noise gain of 2 at its crossover frequency,  
the minimum required for stability with this device. The full  
power bandwidth curve and large signal pulse response for  
this circuit are shown in Typical Performance Curves. The  
fast slew rate of the HA-2842 results in a minimal reduction  
of bandwidth for large signals.  
Spec Number 511064-883  
8-22  
HA2557  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
Another choice for an I to V converter that takes better The optimum bandwidth is achieved in stage 1 with a 909Ω  
advantage of the wide bandwidth of the HA-2557, is to use feedback resistor. This voltage is then gained up by the sec-  
the HA5023 Dual 100MHz current feedback amp. The opti- ond stage to provide a ±4V Fullscale Voltage output with a  
mum bandwidth of a current feedback amp is obtained with a bandwidth in excess of 90MHz. The 10pF capacitor and the  
fixed feedback resistor. Therefore scaling the I to V conver- additional 220resistor improve gain flatness and reduce  
sion to a convenient value requires two stages. Fortunately gain peaking. The HA5023 also provides excellent Full  
the HA5023 provides two wideband amplifiers in a single 8 Power Bandwidth (-3dB at 80MHz for a 3.5VP-P signal).  
pin Mini-DIP or SOIC package, while their current feedback Refer to Typical Performance Curves for more information.  
architecture provides signal gain with minimal reduction in  
bandwidth. This circuit configuration is shown in Figure 8.  
16 NC  
15 NC  
1
2
3
4
5
6
7
8
16 NC  
15 NC  
1
2
3
4
5
6
7
8
REF  
REF  
NC  
NC  
NC  
NC  
NC  
NC  
14  
13  
12  
11  
10  
9
NC  
14  
13  
12  
11  
10  
9
NC  
VX  
VX  
X
0.01µ  
X
0.01µ  
VY  
VY  
Y
X
0.01µ  
Y
X
0.01µ  
+15V  
+15V  
2.5K  
RZ  
1.0µ  
1.0µ  
2.5K  
RZ  
-15V  
NC  
NC  
-15V  
1.0µ  
IOUT  
1.0µ  
IOUT  
909Ω  
1 of 2  
NC  
3pF  
10pF  
220Ω  
619Ω  
2
3
220Ω  
2
6
5
2 of 2  
6
-
-
8
VOUT  
-
+
+
1
VOUT  
HA5023  
(1/2)  
HA-2842  
+
0.01µ  
1.0µ  
0.01µ  
1.0µ  
3
0.01µ  
4
HA5023  
(1/2)  
1.0µ  
0.01µ  
1.0µ  
8
+15V -15V  
+15V -15V  
FIGURE 8. VOLTAGE OUTPUT CONVERSION  
FIGURE 7. VOLTAGE OUTPUT CONVERSION  
Spec Number 511064-883  
8-23  
HA2557  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Device Tested at V  
= 15V, R (Pin 10) Not Connected, Unless Otherwise Specified.  
Z
SUPPLY  
PARAMETERS  
SYMBOL  
CONDITIONS  
V , V = ±4V  
TEMPERATURE  
TYPICAL  
±1.5  
±3.0  
±0.003  
±0.02  
±0.05  
10  
UNITS  
%FS  
o
Multiplication Error  
ME  
+25 C  
Y
X
o
o
+125 C, -55 C  
%FS  
o
o
o
Multiplication Error Drift  
Linearity Error  
METC  
LE3V  
LE4V  
SF  
V , V = ±4V  
+125 C, -55 C  
%FS/ C  
Y
X
o
V , V = ±3V  
+25 C  
%FS  
%FS  
kVΩ  
nV/Hz  
nV/Hz  
dB  
Y
X
o
V , V = ±4V  
+25 C  
Y
X
o
Scale Factor  
+25 C  
o
Voltage Noise  
E (1kHz)  
f = 1kHz, V = 0V, V = 0V  
+25 C  
150  
40  
N
X
Y
o
E (100kHz)  
f = 100kHz, V = 0V, V = 0V  
+25 C  
N
X
Y
o
Positive Power Supply  
Rejection Ratio  
+PSRR  
-PSRR  
V + = +12V to +15V,  
+25 C  
80  
S
V - = -15V  
S
o
o
+125 C, -55 C  
80  
dB  
o
Negative Power Supply  
Rejection Ratio  
V - = -12V to -15V,  
+25 C  
55  
dB  
S
V + = +15V  
S
o
o
+125 C, -55 C  
55  
dB  
o
Supply Current  
I
V , V = 0V  
+25 C  
13  
mA  
CC  
X
Y
o
o
+125 C, -55 C  
13  
mA  
INPUT CHARACTERISTICS  
Input Offset Voltage  
o
V
V
= ±4V  
= ±4V  
+25 C  
±4  
±8  
mV  
mV  
IO  
Y
o
o
+125 C, -55 C  
o
o
o
Input Offset Voltage Drift  
Input Bias Current  
V
TC  
V
V
+125 C, -55 C  
±35  
±8  
µV/ C  
IO  
Y
X
o
I
= 0V, V = 4V  
+25 C  
µA  
µA  
µA  
µA  
V
B
Y
o
o
+125 C, -55 C  
±12  
±0.5  
±1.0  
±4  
o
Input Offset Current  
I
V
= 0V, V = 4V  
+25 C  
IO  
X
Y
o
o
+125 C, -55 C  
o
Differential Input Range  
+25 C  
Spec Number 511064-883  
8-24  
HA2557  
DESIGN INFORMATION(Continued)  
The information contained in this section has been developed through characterization by Intersil Semiconductor and is for use as  
application and design information only. No guarantee is implied.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Device Tested at V  
= 15V, R (Pin 10) Not Connected, Unless Otherwise Specified.  
Z
SUPPLY  
PARAMETERS  
SYMBOL  
CONDITIONS  
TEMPERATURE  
TYPICAL  
UNITS  
V
CHARACTERISTICS  
Y
o
Bandwidth  
BW(V )  
-3dB, V = 4V, V 200mV  
P-P  
+25 C  
130  
-52  
MHz  
dB  
Y
X
Y
o
AC Feedthrough  
V
(5MHz)  
f
= 5MHz, V = 200mV  
+25 C  
ISO  
O
Y
P-P  
V
= Nulled (Note 1)  
X
o
Rise and Fall Time  
T , T  
V = -4V to +4V Step, V = 4V,  
10% to 90% pts  
+25 C  
7
1
ns  
R
F
Y
X
o
Differential Input  
Resistance  
R
(V )  
V
= ±4V, V = 0V  
+25 C  
MΩ  
IN  
Y
Y
X
V
CHARACTERISTICS  
X
o
Bandwidth  
BW(V )  
-3dB, V = 4V,  
+25 C  
75  
MHz  
dB  
X
Y
V
200mV  
X
P-P  
o
AC Feedthrough  
V
(5MHz)  
f
V
V
= 5MHz,  
= 200mV  
= nulled (Note 1)  
+25 C  
-54  
ISO  
O
X
Y
P-P  
o
Rise and Fall Time  
T , T  
V
= -4V to +4V step, V = 4V,  
+25 C  
7
1
ns  
R
F
X
Y
10% to 90% pts  
o
Differential Input  
Resistance  
R
(V )  
V
= ±4V, V = 0V  
+25 C  
MΩ  
IN  
X
X
Y
OUTPUT CHARACTERISTICS  
Output Offset Current  
o
I
V , V = 0V  
+25 C  
2.4  
5.6  
µA  
µA  
OO  
X
Y
o
o
+125 C, -55 C  
o
Full Scale Output Current  
Output Resistance  
Output Capacitance  
NOTE:  
I
FS  
V , V = ±4V  
+25 C  
±1.6  
1.5  
mA  
MΩ  
pF  
OUT  
X
Y
o
Z
V
= ±10V  
+25 C  
OUT  
OUT  
o
C
+25 C  
6.5  
OUT  
1. Offset voltage applied to minimize feedthrough signal.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Spec Number 511064-883  
8-25  

相关型号:

HA2557883

Wideband Four Quadrant Analog Multiplier (Current Output)
INTERSIL

HA2600

Voltage-Feedback Operational Amplifier
ETC

HA2601

Peripheral IC
ETC

HA2602

Peripheral IC
ETC

HA2603

Peripheral IC
ETC

HA2604

Peripheral IC
ETC

HA2605

Peripheral IC
ETC

HA2607

Voltage-Feedback Operational Amplifier
ETC

HA2608

Peripheral IC
ETC

HA2609

Peripheral IC
ETC

HA2610

Peripheral IC
ETC

HA2611

Peripheral IC
ETC