HA5023IP [INTERSIL]

Dual 125MHz Video Current Feedback Amplifier; 双125MHz的视频电流反馈放大器
HA5023IP
型号: HA5023IP
厂家: Intersil    Intersil
描述:

Dual 125MHz Video Current Feedback Amplifier
双125MHz的视频电流反馈放大器

商用集成电路 放大器 光电二极管
文件: 总14页 (文件大小:139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA5023  
September 1998  
File Number 3393.6  
Dual 125MHz Video Current  
Feedback Amplifier  
Features  
• Wide Unity Gain Bandwidth . . . . . . . . . . . . . . . . . 125MHz  
• Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475V/µs  
• Input Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . 800µV  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03%  
• Differential Phase . . . . . . . . . . . . . . . . . . . . 0.03 Degrees  
• Supply Current (per Amplifier) . . . . . . . . . . . . . . . . 7.5mA  
• ESD Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000V  
• Guaranteed Specifications at ±5V Supplies  
The HA5023 is a wide bandwidth high slew rate dual  
amplifier optimized for video applications and gains between  
1 and 10. It is a current feedback amplifier and thus yields  
less bandwidth degradation at high closed loop gains than  
voltage feedback amplifiers.  
The low differential gain and phase, 0.1dB gain flatness, and  
ability to drive two back terminated 75cables, make this  
amplifier ideal for demanding video applications.  
The current feedback design allows the user to take  
advantage of the amplifier’s bandwidth dependency on the  
Applications  
feedback resistor. By reducing R , the bandwidth can be  
F
increased to compensate for decreases at higher closed  
loop gains or heavy output loads.  
• Video Gain Block  
• Video Distribution Amplifier/RGB Amplifier  
• Flash A/D Driver  
The performance of the HA5023 is very similar to the  
popular Intersil HA-5020.  
• Current to Voltage Converter  
• Medical Imaging  
Ordering Information  
PART NUMBER  
(BRAND)  
TEMP.  
RANGE ( C)  
PKG.  
NO.  
• Radar and Imaging Systems  
• Video Switching and Routing  
o
PACKAGE  
8 Ld PDIP  
8 Ld SOIC  
HA5023IP  
-40 to 85  
E8.3  
M8.15  
HA5023IB  
(H5023I)  
-40 to 85  
Pinout  
HA5023  
(PDIP, SOIC)  
TOP VIEW  
HA5023EVAL  
High Speed Op Amp DIP Evaluation Board  
OUT1  
-IN1  
+IN1  
V-  
1
2
3
4
8
7
6
5
V+  
OUT2  
-IN2  
+IN2  
+
-
+
-
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HA5023  
Absolute Maximum Ratings  
Thermal Information  
o
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . .36V  
DC Input Voltage (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10V  
Output Current (Note 4) . . . . . . . . . . . . . . . . .Short Circuit Protected  
ESD Rating (Note 3)  
Thermal Resistance (Typical, Note 2)  
θJA ( C/W)  
SUPPLY  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
130  
160  
o
Maximum Junction Temperature (Note 1) . . . . . . . . . . . . . . . . .175 C  
Maximum Junction Temperature (Plastic Package, Note 1) . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
o
o
Human Body Model (Per MIL-STD-883 Method 3015.7). . . 2000V  
o
(SOIC - Lead Tips Only)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
Supply Voltage Range (Typical). . . . . . . . . . . . . . . . . ±4.5V to ±15V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
o
o
1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below 175 C for die, and below 150 C  
for plastic packages. See Application Information section for safe operating area information.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
3. The non-inverting input of unused amplifiers must be connected to GND.  
4. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty cycle)  
output current should not exceed 15mA for maximum reliability.  
Electrical Specifications  
V
= ±5V, R = 1kΩ, A = +1, R = 400Ω, C 10pF,  
SUPPLY  
F
V
L
L
Unless Otherwise Specified  
(NOTE 9)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT CHARACTERISTICS  
Input Offset Voltage (V  
)
A
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
25  
Full  
Full  
Full  
25  
-
0.8  
-
3
5
mV  
mV  
mV  
IO  
-
Delta V Between Channels  
IO  
-
1.2  
5
-
3.5  
-
o
Average Input Offset Voltage Drift  
-
µV/ C  
V
V
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Note 5  
53  
-
dB  
dB  
IO  
IO  
Full  
25  
50  
-
-
±3.5V V ≤ ±6.5V  
60  
-
-
dB  
S
Full  
Full  
25  
55  
-
-
dB  
Input Common Mode Range  
Note 5  
Note 5  
±2.5  
-
-
V
Non-Inverting Input (+IN) Current  
-
-
-
-
-
-
-
-
-
-
3
-
8
µA  
Full  
25  
20  
0.15  
0.5  
0.1  
0.3  
12  
30  
15  
30  
µA  
+IN Common Mode Rejection  
1
-
µA/V  
µA/V  
µA/V  
µA/V  
µA  
(+I  
=
)
BCMR  
Full  
25  
-
+R  
IN  
+IN Power Supply Rejection  
±3.5V V ≤ ±6.5V  
-
S
Full  
25, 85  
-40  
-
Inverting Input (-IN) Current  
4
10  
6
10  
µA  
Delta -IN BIAS Current Between Channels  
25, 85  
-40  
µA  
µA  
2
HA5023  
Electrical Specifications  
V
= ±5V, R = 1kΩ, A = +1, R = 400Ω, C 10pF,  
SUPPLY  
F
V
L
L
Unless Otherwise Specified (Continued)  
(NOTE 9)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.4  
1.0  
0.2  
0.5  
-
UNITS  
µA/V  
-IN Common Mode Rejection  
Note 5  
A
A
A
A
B
B
B
25  
Full  
25  
-
-
-
-
-
-
-
-
-
µA/V  
-IN Power Supply Rejection  
±3.5V V ≤ ±6.5V  
-
µA/V  
S
Full  
25  
-
µA/V  
Input Noise Voltage  
f = 1kHz  
f = 1kHz  
f = 1kHz  
4.5  
2.5  
25.0  
nV/Hz  
pA/Hz  
pA/Hz  
+Input Noise Current  
-Input Noise Current  
25  
-
25  
-
TRANSFER CHARACTERISTICS  
Transimpedence  
Note 11  
A
A
A
A
A
A
25  
Full  
25  
1.0  
0.85  
70  
-
-
-
-
-
-
-
-
-
-
-
-
MΩ  
MΩ  
dB  
Open Loop DC Voltage Gain  
Open Loop DC Voltage Gain  
R = 400, V  
= ±2.5V  
= ±2.5V  
L
OUT  
Full  
25  
65  
dB  
R
= 100, V  
= 150Ω  
50  
dB  
L
L
OUT  
Full  
45  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
R
A
A
B
A
25  
±2.5  
±2.5  
±16.6  
±40  
±3.0  
±3.0  
±20.0  
±60  
-
-
-
-
V
V
Full  
Full  
Full  
Output Current  
R = 150Ω  
mA  
mA  
L
Output Current, Short Circuit  
POWER SUPPLY CHARACTERISTICS  
Supply Voltage Range  
V
= ±2.5V, V = 0V  
OUT  
IN  
A
A
25  
5
-
-
15  
10  
V
Quiescent Supply Current  
Full  
7.5  
mA/Op Amp  
AC CHARACTERISTICS (A = +1)  
V
Slew Rate  
Note 6  
Note 7  
Note 8  
Note 8  
Note 8  
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
275  
350  
28  
6
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth  
Rise Time  
22  
-
Fall Time  
-
6
ns  
Propagation Delay  
Overshoot  
-
6
ns  
-
4.5  
125  
50  
75  
%
-3dB Bandwidth  
Settling Time to 1%  
Settling Time to 0.25%  
V
= 100mV  
-
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
-
-
ns  
3
HA5023  
Electrical Specifications  
V
= ±5V, R = 1kΩ, A = +1, R = 400Ω, C 10pF,  
SUPPLY  
F
V
L
L
Unless Otherwise Specified (Continued)  
(NOTE 9)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC CHARACTERISTICS (A = +2, R = 681Ω)  
V
F
Slew Rate  
Note 6  
Note 7  
Note 8  
Note 8  
Note 8  
B
B
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
475  
26  
-
-
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth  
Rise Time  
6
Fall Time  
6
ns  
Propagation Delay  
Overshoot  
6
ns  
12  
%
-3dB Bandwidth  
Settling Time to 1%  
Settling Time to 0.25%  
Gain Flatness  
V
= 100mV  
95  
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
5MHz  
50  
100  
0.02  
0.07  
ns  
dB  
dB  
20MHz  
AC CHARACTERISTICS (A = +10, R = 383)  
V
F
Slew Rate  
Note 6  
Note 7  
Note 8  
Note 8  
Note 8  
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
350  
475  
38  
8
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth  
Rise Time  
28  
-
Fall Time  
-
9
ns  
Propagation Delay  
Overshoot  
-
9
ns  
-
1.8  
65  
75  
130  
%
-3dB Bandwidth  
Settling Time to 1%  
Settling Time to 0.1%  
V
= 100mV  
-
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
-
-
ns  
VIDEO CHARACTERISTICS  
Differential Gain (Note 10)  
Differential Phase (Note 10)  
R = 150Ω  
B
B
25  
25  
-
-
0.03  
0.03  
-
-
%
L
R = 150Ω  
Degrees  
L
NOTES:  
o
= ±2.5V. At -40 C Product is tested at V  
5. V  
6. V  
= ±2.25V because Short Test Duration does not allow self heating.  
CM  
CM  
switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points.  
OUT  
Slew Rate  
7.  
.
= 2V  
----------------------------  
FPBW =  
; V  
PEAK  
2πV  
PEAK  
8. R = 100, V  
OUT  
= 1V. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.  
L
9. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.  
10. Measured with a VM700A video tester using an NTC-7 composite VITS.  
o
11. V  
= ±2.5V. At -40 C Product is tested at V  
= ±2.25V because Short Test Duration does not allow self heating.  
OUT  
OUT  
4
HA5023  
Test Circuits and Waveforms  
+
-
DUT  
50  
HP4195  
NETWORK  
ANALYZER  
50Ω  
FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS  
(NOTE 12)  
100Ω  
(NOTE 12)  
100Ω  
DUT  
V
+
-
IN  
DUT  
V
OUT  
V
+
-
IN  
V
OUT  
50Ω  
R
L
400Ω  
50Ω  
R
100Ω  
L
R , 681Ω  
F
R
I
681Ω  
R , 1kΩ  
F
FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT  
FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT  
NOTE:  
12. A series input resistor of 100is recommended to limit input currents in case input signals are present before the HA5023 is powered up.  
Vertical Scale: V = 100mV/Div., V  
IN  
Horizontal Scale: 20ns/Div.  
= 100mV/Div.  
Vertical Scale: V = 1V/Div., V  
Horizontal Scale: 50ns/Div.  
= 1V/Div.  
OUT  
OUT  
IN  
FIGURE 4. SMALL SIGNAL RESPONSE  
FIGURE 5. LARGE SIGNAL RESPONSE  
5
Schematic Diagram (One Amplifier of Two)  
V+  
R
800  
R
5
2.5K  
2
R
10  
820  
R
R
R
15  
400  
19  
400  
Q
Q
P9  
29  
9.5  
P8  
R
27  
200  
Q
Q
P19  
Q
P11  
P14  
R
5
Q
31  
Q
P1  
P5  
R
1K  
11  
R
R
18  
17  
280 280  
R
24  
140  
Q
Q
P16  
N5  
6
Q
P20  
Q
P10  
R
20  
140  
Q
P15  
Q
N12  
C
1.4pF  
1
Q
N8  
Q
P2  
Q
P12  
R
20  
28  
Q
R
60K  
P6  
1
Q
Q
-IN  
N6  
R
280  
12  
Q
P17  
Q
N1  
Q
Q
N13  
+IN  
P4  
Q
N17  
0
R
25  
P13  
R
6K  
3
C
2
1.4pF  
20  
Q
N15  
Q
N2  
R
21  
140  
Q
Q
R
N10  
N21  
Q
R
14  
280  
R
280  
R
P7  
D
1
22  
25  
140  
Q
N4  
32  
5
Q
N18  
R
1K  
Q
Q
N19  
Q
13  
N14  
N3  
Q
Q
N7  
N16  
R
7
30  
R
R
16  
400  
23  
400  
R
26  
200  
OUT  
R
800  
R
R
9
820  
4
33  
800  
Q
Q
N11  
N9  
V-  
HA5023  
traces connected to -IN, and that connections to -IN be kept  
as short as possible to minimize the capacitance from this  
node to ground.  
Application Information  
Optimum Feedback Resistor  
The plots of inverting and non-inverting frequency response,  
see Figure 8 and Figure 9 in the typical performance section,  
illustrate the performance of the HA5023 in various closed  
loop gain configurations. Although the bandwidth  
dependency on closed loop gain isn’t as severe as that of a  
voltage feedback amplifier, there can be an appreciable  
decrease in bandwidth at higher gains. This decrease may  
be minimized by taking advantage of the current feedback  
Driving Capacitive Loads  
Capacitive loads will degrade the amplifier’s phase margin  
resulting in frequency response peaking and possible  
oscillations. In most cases the oscillation can be avoided by  
placing an isolation resistor (R) in series with the output as  
shown in Figure 6.  
amplifier’s unique relationship between bandwidth and R .  
All current feedback amplifiers require a feedback resistor,  
100Ω  
F
R
V
+
-
IN  
V
OUT  
even for unity gain applications, and R , in conjunction with  
F
R
T
C
the internal compensation capacitor, sets the dominant pole  
of the frequency response. Thus, the amplifier’s bandwidth is  
L
R
F
R
I
inversely proportional to R . The HA5023 design is  
F
optimized for a 1000R at a gain of +1. Decreasing R in  
a unity gain application decreases stability, resulting in  
excessive peaking and overshoot. At higher gains the  
F
F
FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION  
RESISTOR, R  
amplifier is more stable, so R can be decreased in a trade-  
off of stability for bandwidth.  
F
The selection criteria for the isolation resistor is highly  
dependent on the load, but 27has been determined to be  
a good starting value.  
The table below lists recommended R values for various  
F
gains, and the expected bandwidth.  
Power Dissipation Considerations  
Due to the high supply current inherent in dual amplifiers, care  
must be taken to insure that the maximum junction  
GAIN  
(A  
BANDWIDTH  
(MHz)  
)
R ()  
F
CL  
-1  
+1  
750  
1000  
681  
100  
125  
95  
temperature (T , see Absolute Maximum Ratings) is not  
exceeded. Figure 7 shows the maximum ambient temperature  
versus supply voltage for the available package styles (Plastic  
J
+2  
DIP, SOIC). At ±5V  
quiescent operation both package  
DC  
o
+5  
1000  
383  
52  
styles may be operated over the full industrial range of -40 C  
o
to 85 C. It is recommended that thermal calculations, which  
+10  
-10  
65  
take into account output power, be performed by the designer.  
750  
22  
140  
130  
PC Board Layout  
The frequency response of this amplifier depends greatly on  
the amount of care taken in designing the PC board. The  
use of low inductance components such as chip resistors  
and chip capacitors is strongly recommended. If leaded  
components are used the leads must be kept short  
especially for the power supply decoupling components and  
those components connected to the inverting input.  
120  
110  
100  
90  
PDIP  
SOIC  
80  
70  
60  
50  
Attention must be given to decoupling the power supplies. A  
large value (10µF) tantalum or electrolytic capacitor in  
parallel with a small value (0.1µF) chip capacitor works well  
in most cases.  
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE  
vs SUPPLY VOLTAGE  
A ground plane is strongly recommended to control noise.  
Care must also be taken to minimize the capacitance to  
ground seen by the amplifier’s inverting input (-IN). The  
larger this capacitance, the worse the gain peaking, resulting  
in pulse overshoot and possible instability. It is  
recommended that the ground plane be removed under  
7
HA5023  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
SUPPLY  
V
F
L
A
Unless Otherwise Specified  
5
5
4
V
C
= 0.2V  
V
= 0.2V  
P-P  
OUT  
= 10pF  
P-P  
OUT  
A
= +1, R = 1kΩ  
4
3
V
F
C
= 10pF  
L
L
A
= 2, R = 681Ω  
R = 750Ω  
F
3
2
V
F
A
= -1  
= -2  
V
2
A
= 5, R = 1kΩ  
F
V
1
1
A
V
0
0
-1  
-1  
-2  
-3  
-4  
-2  
-3  
-4  
A
= -10  
V
A
= 10, R = 383Ω  
F
V
A
= -5  
V
-5  
-5  
2
10  
FREQUENCY (MHz)  
100  
200  
2
10  
FREQUENCY (MHz)  
100  
200  
FIGURE 8. NON-INVERTING FREQENCY RESPONSE  
FIGURE 9. INVERTING FREQUENCY RESPONSE  
140  
130  
120  
V
= 0.2V  
P-P  
180  
135  
90  
OUT  
= 10pF  
0
-45  
-90  
A
= +1, R = 1kΩ  
F
V
C
L
A
= +1  
V
A
= -1, R = 750Ω  
F
V
45  
0
-135  
-100  
-225  
A
= +10, R = 383Ω  
F
V
10  
-3dB BANDWIDTH  
-45  
-90  
-270  
A
= -10, R = 750Ω  
F
5
0
V
-135  
-180  
-315  
-360  
V
= 0.2V  
P-P  
OUT  
= 10pF  
GAIN PEAKING  
700 900  
C
L
500  
1100  
1300  
1500  
2
10  
FREQUENCY (MHz)  
100  
200  
FEEDBACK RESISTOR ()  
FIGURE 11. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
FIGURE 10. PHASE RESPONSE AS A FUNCTION OF  
FREQUENCY  
130  
100  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
L
A
= +2  
V
120  
95  
90  
-3dB BANDWIDTH  
110  
100  
6
-3dB BANDWIDTH  
10  
4
2
5
0
V
C
= 0.2V  
P-P  
90  
80  
OUT  
= 10pF  
GAIN PEAKING  
L
A
= +1  
V
GAIN PEAKING  
0
1000  
0
200  
400  
600  
800  
350  
500  
650  
800  
950  
1100  
LOAD RESISTOR ()  
FEEDBACK RESISTOR ()  
FIGURE 13. BANDWIDTH AND GAIN PEAKING vs LOAD  
RESISTANCE  
FIGURE 12. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
8
HA5023  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
V F L A  
SUPPLY  
Unless Otherwise Specified (Continued)  
80  
60  
16  
V
C
= 0.1V  
P-P  
V
= 0.2V  
P-P  
= 10pF  
= +10  
OUT  
= 10pF  
OUT  
C
A
L
L
V
= ±5V, A = +2  
V
V
SUPPLY  
12  
6
40  
20  
0
V
= ±15V, A = +2  
V
SUPPLY  
V
= ±5V, A = +1  
SUPPLY  
V
V
= ±15V, A = +1  
V
SUPPLY  
0
0
200  
400  
600  
800  
1000  
200  
350  
500  
650  
800  
950  
LOAD RESISTANCE ()  
FEEDBACK RESISTOR ()  
FIGURE 15. SMALL SIGNAL OVERSHOOT vs LOAD  
RESISTANCE  
FIGURE 14. BANDWIDTH vs FEEDBACK RESISTANCE  
0.08  
0.10  
FREQUENCY = 3.58MHz  
FREQUENCY = 3.58MHz  
0.08  
0.06  
0.04  
R
= 75Ω  
L
0.06  
0.04  
R
= 150Ω  
L
R
= 150Ω  
L
R
= 75Ω  
L
0.02  
0.00  
0.02  
0.00  
R
= 1kΩ  
L
R
= 1kΩ  
L
3
5
7
9
11  
13  
15  
3
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FIGURE 17. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE  
FIGURE 16. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE  
-40  
A
= +1  
V
V
C
= 2.0V  
OUT  
= 30pF  
P-P  
0
-10  
-20  
-30  
L
-50  
-60  
HD  
2
3RD ORDER IMD  
-40  
-50  
CMRR  
-70  
-80  
-90  
HD2  
HD  
3
-60  
-70  
-80  
NEGATIVE PSRR  
POSITIVE PSRR  
0.1  
HD  
3
0.3  
1
10  
0.001  
0.01  
1
10  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 18. DISTORTION vs FREQUENCY  
FIGURE 19. REJECTION RATIOS vs FREQUENCY  
9
HA5023  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
SUPPLY  
V
F
L
A
Unless Otherwise Specified (Continued)  
12  
8.0  
R
V
= 100Ω  
L
R
LOAD  
= 1.0V  
V
OUT  
P-P  
OUT  
A
= +1  
V
10  
8
7.5  
A
= +10, R = 383Ω  
F
V
7.0  
6.5  
6.0  
A
= +2, R = 681Ω  
F
V
6
A
= +1, R = 1kΩ  
F
V
4
-50  
-25  
0
25  
50  
75  
100  
125  
3
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (C)  
FIGURE 20. PROPAGATION DELAY vs TEMPERATURE  
FIGURE 21. PROPAGATION DELAY vs SUPPLY VOLTAGE  
500  
0.8  
V
= 2V  
P-P  
OUT  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
0.6  
0.4  
0.2  
0
450  
400  
350  
300  
250  
L
+ SLEW RATE  
A
= +2, R = 681Ω  
F
V
- SLEW RATE  
-0.2  
-0.4  
-0.6  
A
= +5, R = 1kΩ  
V
F
A
= +1, R = 1kΩ  
F
200  
150  
100  
V
-0.8  
-1.0  
-1.2  
A
= +10, R = 383Ω  
V
F
-50  
-25  
0
25  
50  
75  
100  
125  
5
10  
15  
20  
25  
30  
o
TEMPERATURE ( C)  
FREQUENCY (MHz)  
FIGURE 22. FIGURE 22. SLEW RATE vs TEMPERATURE  
FIGURE 23. NON-INVERTING GAIN FLATNESS vs FREQUENCY  
0.8  
100  
80  
1000  
800  
V
C
R
= 0.2V  
P-P  
= 10pF  
= 750Ω  
OUT  
0.6  
0.4  
A
= +10, R = 383Ω  
F
V
L
F
-INPUT NOISE CURRENT  
0.2  
0
A
= -1  
600  
V
60  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
+INPUT NOISE CURRENT  
400  
40  
A
= -5  
V
INPUT NOISE VOLTAGE  
200  
0
20  
0
A
= -2  
V
A
= -10  
V
5
10  
15  
20  
25  
30  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
FIGURE 24. INVERTING GAIN FLATNESS vs FREQUENCY  
FIGURE 25. INPUT NOISE CHARACTERISTICS  
10  
HA5023  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
V F L A  
SUPPLY  
Unless Otherwise Specified (Continued)  
1.5  
2
1.0  
0
0.5  
0.0  
-2  
-4  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 27. +INPUT BIAS CURRENT vs TEMPERATURE  
4000  
FIGURE 26. INPUT OFFSET VOLTAGE vs TEMPERATURE  
22  
3000  
20  
2000  
1000  
18  
16  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 28. -INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 29. TRANSIMPEDANCE vs TEMPERATURE  
74  
25  
+PSRR  
-PSRR  
72  
70  
68  
66  
64  
62  
60  
o
125 C  
o
20  
15  
55 C  
10  
5
o
CMRR  
25 C  
58  
-100  
3
4
5
6
7
8
9
10 11 12  
13 14 15  
-50  
0
50  
100  
150  
200  
250  
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 31. REJECTION RATIO vs TEMPERATURE  
FIGURE 30. SUPPLY CURRENT vs SUPPLY VOLTAGE  
11  
HA5023  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
V F L A  
SUPPLY  
Unless Otherwise Specified (Continued)  
4.0  
40  
+15V  
+10V  
30  
20  
+5V  
3.8  
10  
0
3.6  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
o
DISABLE INPUT VOLTAGE (V)  
TEMPERATURE ( C)  
FIGURE 32. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE  
30  
FIGURE 33. OUTPUT SWING vs TEMPERATURE  
1.2  
1.1  
V
= ±15V  
CC  
20  
10  
1.0  
V
= ±10V  
CC  
0.9  
0.8  
V
= ±4.5V  
CC  
0
0.01  
0.10  
1.00  
10.00  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
o
LOAD RESISTANCE (k)  
TEMPERATURE ( C)  
FIGURE 34. OUTPUT SWING vs LOAD RESISTANCE  
FIGURE 35. INPUT OFFSET VOLTAGE CHANGE BETWEEN  
CHANNELS vs TEMPERATURE  
-30  
1.5  
A
= +1  
= 2V  
V
V
OUT  
P-P  
-40  
-50  
-60  
-70  
-80  
1.0  
0.5  
0.0  
-60 -40 -20  
20  
40  
60  
80 100 120 140  
0
0.1  
1
10  
30  
o
TEMPERATURE ( C)  
FREQUENCY (MHz)  
FIGURE 36. INPUT BIAS CURRENT CHANGE BETWEEN  
CHANNELS vs TEMPERATURE  
FIGURE 37. CHANNEL SEPARATION vs FREQUENCY  
12  
HA5023  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
V F L A  
SUPPLY  
Unless Otherwise Specified (Continued)  
10  
1
DISABLE = 0V  
0
R
= 100Ω  
V
= 5V  
P-P  
L
IN  
R
= 750Ω  
F
-10  
-20  
-30  
0.1  
0.01  
180  
135  
90  
45  
0
0.001  
-40  
-50  
-60  
-70  
-80  
-45  
-90  
-135  
0.1  
1
10  
20  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 38. DISABLE FEEDTHROUGH vs FREQUENCY  
FIGURE 39. TRANSIMPEDANCE vs FREQUENCY  
10  
1
R
= 400Ω  
L
0.1  
180  
135  
90  
0.01  
0.001  
45  
0
-45  
-90  
-135  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FIGURE 40. TRANSIMPEDENCE vs FREQUENCY  
13  
HA5023  
SUBSTRATE POTENTIAL (Powered Up):  
Die Characteristics  
V-  
DIE DIMENSIONS:  
PASSIVATION:  
1650µm x 2540µm x 483µm  
Type: Nitride  
Thickness: 4kÅ ±0.4kÅ  
METALLIZATION:  
Type: Metal 1: AlCu (1%)  
TRANSISTOR COUNT:  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
124  
Type: Metal 2: AlCu (1%)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
PROCESS:  
High Frequency Bipolar Dielectric Isolation  
Metallization Mask Layout  
HA5023  
OUT  
NC  
V+  
-IN1  
+IN1  
NC  
OUT2  
NC  
V-  
+IN  
-IN  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
14  

相关型号:

HA5023IPZ

Dual 125MHz Video Current Feedback Amplifier
INTERSIL

HA5023MJ/883

Dual 125MHz Video Current Feedback Amplifier
INTERSIL

HA5023_06

Dual 125MHz Video Current Feedback Amplifier
INTERSIL

HA5024

Quad 125MHz Video Current Feedback Amplifier with Disable
INTERSIL

HA5024EVAL

Quad 125MHz Video Current Feedback Amplifier with Disable
INTERSIL

HA5024IB

Quad 125MHz Video Current Feedback Amplifier with Disable
INTERSIL

HA5024IB

VIDEO AMPLIFIER, PDSO20, SOIC-20
ROCHESTER

HA5024IBZ

Quad 125MHz Video Current Feedback Amplifier with Disable
INTERSIL

HA5024IBZ96

Quad 125MHz Video Current Feedback Amplifier with Disable
INTERSIL

HA5024IP

Quad 125MHz Video Current Feedback Amplifier with Disable
INTERSIL

HA5024IP

VIDEO AMPLIFIER, PDIP20, PLASTIC, DIP-20
ROCHESTER

HA5024IPZ

Quad 125MHz Video Current Feedback Amplifier with Disable
INTERSIL