HA5025EVAL [INTERSIL]

Triple, 125MHz Video Amplifier; 三重, 125MHz的视频放大器器
HA5025EVAL
型号: HA5025EVAL
厂家: Intersil    Intersil
描述:

Triple, 125MHz Video Amplifier
三重, 125MHz的视频放大器器

视频放大器
文件: 总14页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA5013  
Data Sheet  
September 1998  
File Number 3654.4  
Triple, 125MHz Video Amplifier  
Features  
• Wide Unity Gain Bandwidth . . . . . . . . . . . . . . . . . 125MHz  
• Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475V/µs  
• Input Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . 800µV  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03%  
• Differential Phase . . . . . . . . . . . . . . . . . . . . 0.03 Degrees  
• Supply Current (Per Amplifier) . . . . . . . . . . . . . . . . 7.5mA  
• ESD Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000V  
• Guaranteed Specifications at ±5V Supplies  
The HA5013 is a low cost triple amplifier optimized for RGB  
video applications and gains between 1 and 10. It is a  
current feedback amplifier and thus yields less bandwidth  
degradation at high closed loop gains than voltage feedback  
amplifiers.  
The low differential gain and phase, 0.1dB gain flatness, and  
ability to drive two back terminated 75cables, make this  
amplifier ideal for demanding video applications.  
The current feedback design allows the user to take  
advantage of the amplifier’s bandwidth dependency on the  
feedback resistor.  
• Low Cost  
The performance of the HA5013 is very similar to the  
popular Intersil HA-5020 single video amplifier.  
Applications  
• PC Add-On Multimedia Boards  
• Flash A/D Driver  
Pinout  
HA5013  
(PDIP, SOIC)  
TOP VIEW  
• Color Image Scanners  
• CCD Cameras and Systems  
• RGB Cable Driver  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
NC  
OUT2  
-IN2  
+IN2  
V-  
• RGB Video Preamp  
• PC Video Conferencing  
+
-
NC  
V+  
Ordering Information  
+IN1  
-IN1  
OUT1  
+IN3  
-IN3  
OUT3  
TEMP.  
PKG.  
NO.  
-
-
o
PART NUMBER RANGE ( C)  
PACKAGE  
14 Ld PDIP  
14 Ld SOIC  
HA5013IP  
-40 to 85  
-40 to 85  
E14.3  
M14.15  
8
HA5013IB  
HA5025EVAL  
High Speed Op Amp DIP Evaluation Board  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
1
HA5013  
Absolute Maximum Ratings  
Thermal Information  
o
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . 36V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V  
Output Current (Note 2) . . . . . . . . . . . . . . . . Short Circuit Protected  
ESD Rating (Note 4)  
Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
SUPPLY  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
100  
120  
o
Maximum Junction Temperature (Die Only, Note 3) . . . . . . . . . 175 C  
Maximum Junction Temperature (Plastic Package, Note 3) . . . 150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
o
o
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . 2000V  
o
(SOIC - Lead Tips Only)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
Supply Voltage Range (Typical). . . . . . . . . . . . . . . . . ±4.5V to ±15V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
2. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty cycle)  
output current should not exceed 15mA for maximum reliability.  
o
o
3. Maximum power dissipation, including output load, must be designed to maintain junction temperature below 175 C for die, and below 150 C  
for plastic packages. See Application Information section for safe operating area information.  
4. The non-inverting input of unused amplifiers must be connected to GND.  
Electrical Specifications  
V
= ±5V, R = 1kΩ, A = +1, R = 400Ω, C 10pF, Unless Otherwise Specified  
SUPPLY  
F
V
L
L
(NOTE 9)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INPUT CHARACTERISTICS  
Input Offset Voltage (V  
A
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
25  
Full  
Full  
Full  
25  
-
0.8  
-
3
5
mV  
mV  
mV  
IO)  
-
Delta V Between Channels  
IO  
-
1.2  
5
-
3.5  
-
o
Average Input Offset Voltage Drift  
-
µV/ C  
V
V
Common Mode Rejection Ratio  
V
= ±2.5V (Note 5)  
CM  
53  
-
dB  
dB  
IO  
IO  
Full  
25  
50  
-
-
Power Supply Rejection Ratio  
±3.5V V ≤ ±6.5V  
60  
-
-
dB  
S
Full  
Full  
25  
55  
-
-
dB  
Input Common Mode Range  
V
= ±2.5V (Note 5)  
= ±2.5V (Note 5)  
±2.5  
-
-
V
CM  
Non-Inverting Input (+IN) Current  
-
-
-
-
-
-
-
-
-
-
3
-
8
µA  
Full  
25  
20  
0.15  
0.5  
0.1  
0.3  
12  
30  
15  
30  
µA  
+IN Common Mode Rejection  
1
-
µA/V  
µA/V  
µA/V  
µA/V  
µA  
V
CM  
(+I  
=
)
BCMR  
+R  
Full  
25  
-
IN  
+IN Power Supply Rejection  
±3.5V V ≤ ±6.5V  
-
S
Full  
25, 85  
-40  
-
Inverting Input (-IN) Current  
4
10  
6
10  
µA  
Delta - IN BIAS Current Between Channels  
25, 85  
-40  
µA  
µA  
2
HA5013  
Electrical Specifications  
V
= ±5V, R = 1kΩ, A = +1, R = 400Ω, C 10pF, Unless Otherwise Specified (Continued)  
SUPPLY  
F
V
L
L
(NOTE 9)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
TEST CONDITIONS  
= ±2.5V (Note 5)  
MIN  
TYP  
MAX  
0.4  
1.0  
0.2  
0.5  
-
UNITS  
µA/V  
-IN Common Mode Rejection  
V
A
A
A
A
B
B
B
25  
Full  
25  
-
-
-
-
-
-
-
-
-
CM  
µA/V  
-IN Power Supply Rejection  
±3.5V V ≤ ±6.5V  
-
µA/V  
S
Full  
25  
-
µA/V  
Input Noise Voltage  
f = 1kHz  
f = 1kHz  
f = 1kHz  
4.5  
2.5  
25.0  
nV/Hz  
pA/Hz  
pA/Hz  
+Input Noise Current  
-Input Noise Current  
25  
-
25  
-
TRANSFER CHARACTERISTICS  
Transimpedence  
V
= ±2.5V (Note 11)  
A
A
A
A
A
A
25  
Full  
25  
1.0  
0.85  
70  
-
-
-
-
-
-
-
-
-
-
-
-
MΩ  
MΩ  
dB  
OUT  
Open Loop DC Voltage Gain  
Open Loop DC Voltage Gain  
R = 400Ω, V  
= ±2.5V  
= ±2.5V  
L
OUT  
Full  
25  
65  
dB  
R = 100Ω, V  
50  
dB  
L
OUT  
Full  
45  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
R
R
= 150Ω  
= 150Ω  
A
A
B
A
25  
±2.5  
±2.5  
±3.0  
±3.0  
-
-
-
-
V
V
L
Full  
Full  
Full  
Output Current  
±16.6 ±20.0  
mA  
mA  
L
Short Circuit Output Current  
V
= ±2.5V, V  
OUT  
= 0V  
±40  
±60  
IN  
POWER SUPPLY CHARACTERISTICS  
Supply Voltage Range  
A
A
25  
5
-
-
15  
10  
V
Quiescent Supply Current  
Full  
7.5  
mA/Op Amp  
AC CHARACTERISTICS A = +1  
V
Slew Rate  
Note 6  
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
275  
350  
28  
6
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth (Note 7)  
Rise Time (Note 8)  
Fall Time (Note 8)  
Propagation Delay (Note 8)  
Overshoot  
22  
-
V
= 1V, R = 100Ω  
L
OUT  
V
= 1V, R = 100Ω  
-
6
ns  
OUT  
L
V
= 1V, R = 100Ω  
-
6
ns  
OUT  
L
-
4.5  
125  
50  
75  
%
-3dB Bandwidth  
V
= 100mV  
-
MHz  
ns  
OUT  
Settling Time  
To 1%, 2V Output Step  
To 0.25%, 2V Output Step  
-
Settling Time  
-
ns  
AC CHARACTERISTICS A = +2, R = 681Ω  
V
F
Slew Rate  
Note 6  
B
25  
-
475  
-
V/µs  
3
HA5013  
Electrical Specifications  
V
= ±5V, R = 1kΩ, A = +1, R = 400Ω, C 10pF, Unless Otherwise Specified (Continued)  
SUPPLY  
F
V
L
L
(NOTE 9)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
Full Power Bandwidth (Note 7)  
Rise Time (Note 8)  
Fall Time (Note 8)  
Propagation Delay (Note 8)  
Overshoot  
TEST CONDITIONS  
MIN  
TYP  
26  
MAX  
UNITS  
MHz  
ns  
B
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
= 1V, R = 100Ω  
6
OUT  
L
V
= 1V, R = 100Ω  
6
ns  
OUT  
L
V
= 1V, R = 100Ω  
6
ns  
OUT  
L
12  
%
-3dB Bandwidth  
V
= 100mV  
95  
MHz  
ns  
OUT  
Settling Time  
To 1%, 2V Output Step  
To 0.25%, 2V Output Step  
5MHz  
50  
Settling Time  
100  
0.02  
0.07  
ns  
Gain Flatness  
dB  
20MHz  
dB  
AC CHARACTERISTICS A = +10, R = 383Ω  
V
F
Slew Rate  
Note 6  
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
350  
475  
38  
8
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth (Note 7)  
Rise Time (Note 8)  
Fall Time (Note 8)  
Propagation Delay (Note 8)  
Overshoot  
28  
-
V
= 1V, R = 100Ω  
L
OUT  
V
= 1V, R = 100Ω  
-
9
ns  
OUT  
L
V
= 1V, R = 100Ω  
-
9
ns  
OUT  
L
-
1.8  
65  
75  
130  
%
-3dB Bandwidth  
V
= 100mV  
-
MHz  
ns  
OUT  
Settling Time  
To 1%, 2V Output Step  
To 0.1%, 2V Output Step  
-
-
ns  
VIDEO CHARACTERISTICS  
Differential Gain  
R
R
= 150, (Note 10)  
= 150, (Note 10)  
B
B
25  
25  
-
-
0.03  
0.03  
-
-
%
L
L
Differential Phase  
Degrees  
NOTES:  
o
5. At -40 C Product is tested at V  
= ±2.25V because Short Test Duration does not allow self heating.  
CM  
6. V  
switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points.  
OUT  
Slew Rate  
7.  
.
= 2V  
FPBW = ----------------------------; V  
PEAK  
2πV  
PEAK  
8. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.  
9. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.  
10. Measured with a VM700A video tester using an NTC-7 composite VITS.  
o
11. At -40 C Product is tested at V  
= ±2.25V because Short Test Duration does not allow self heating.  
OUT  
4
HA5013  
Test Circuits and Waveforms  
+
-
DUT  
50  
HP4195  
NETWORK  
ANALYZER  
50Ω  
FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS  
(NOTE 12)  
100Ω  
(NOTE 12)  
100Ω  
DUT  
V
+
-
IN  
DUT  
V
OUT  
V
+
-
IN  
V
OUT  
50Ω  
R
L
400Ω  
50Ω  
R
100Ω  
L
R , 681Ω  
F
R
I
681Ω  
R , 1kΩ  
F
FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT  
NOTE:  
12. A series input resistor of 100is recommended to limit input currents in case input signals are present before the HA5013 is powered up.  
FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT  
Vertical Scale: V = 100mV/Div., V  
= 100mV/Div.  
Horizontal Scale: 20ns/Div.  
Vertical Scale: V = 1V/Div., V = 1V/Div.  
IN OUT  
IN OUT  
Horizontal Scale: 50ns/Div.  
FIGURE 4. SMALL SIGNAL RESPONSE  
FIGURE 5. LARGE SIGNAL RESPONSE  
5
Schematic (One Amplifier of Three)  
V+  
R
R
R
10  
820  
R
800  
R
5
2.5K  
R
15  
400  
19  
400  
2
29  
9.5  
Q
Q
P9  
P8  
R
27  
200  
Q
P19  
Q
Q
P14  
P11  
R
31  
QP1  
Q
P5  
R
1K  
11  
5
R
R
18  
17  
280 280  
R
24  
140  
Q
P16  
Q
N5  
Q
P20  
Q
P10  
R
20  
Q
P15  
140  
Q
N12  
C
1.4pF  
1
Q
N8  
Q
P2  
Q
P12  
R
28  
20  
R
60K  
1
Q
P6  
Q
Q
-IN  
N6  
R
12  
280  
Q
P17  
Q
N1  
Q
Q
N13  
+IN  
P4  
Q
N17  
R
25  
P13  
R
3
6K  
C
2
20  
1.4pF  
Q
N15  
Q
N2  
R
21  
140  
Q
Q
R
N10  
N21  
R
14  
280  
R
22  
280  
R
25  
140  
D
Q
P7  
1
Q
N4  
32  
Q
N14  
5
Q
N16  
Q
N18  
R
13  
1K  
Q
N19  
Q
Q
N3  
N7  
R
30  
7
R
R
R
23  
400  
26  
200  
16  
400  
OUT  
R
800  
R
33  
800  
R
9
820  
4
Q
N9  
Q
N11  
V-  
HA5013  
as short as possible to minimize the capacitance from this  
node to ground.  
Application Information  
Optimum Feedback Resistor  
The plots of inverting and non-inverting frequency response,  
see Figure 8 and Figure 9 in the typical performance section,  
illustrate the performance of the HA5013 in various closed loop  
gain configurations. Although the bandwidth dependency on  
closed loop gain isn’t as severe as that of a voltage feedback  
amplifier, there can be an appreciable decrease in bandwidth at  
higher gains. This decrease may be minimized by taking  
advantage of the current feedback amplifier’s unique  
Driving Capacitive Loads  
Capacitive loads will degrade the amplifier’s phase margin  
resulting in frequency response peaking and possible  
oscillations. In most cases the oscillation can be avoided by  
placing an isolation resistor (R) in series with the output as  
shown in Figure 6.  
100Ω  
R
V
+
-
IN  
relationship between bandwidth and R . All current feedback  
V
F
OUT  
amplifiers require a feedback resistor, even for unity gain  
C
L
R
T
applications, and R , in conjunction with the internal  
F
R
F
R
I
compensation capacitor, sets the dominant pole of the  
frequency response. Thus, the amplifier’s bandwidth is  
inversely proportional to R . The HA5013 design is optimized  
F
FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION  
RESISTOR, R  
for a 1000R at a gain of +1. Decreasing R in a unity gain  
F
F
application decreases stability, resulting in excessive peaking  
and overshoot. At higher gains the amplifier is more stable, so  
The selection criteria for the isolation resistor is highly  
dependent on the load, but 27has been determined to be  
a good starting value.  
R can be decreased in a trade-off of stability for bandwidth.  
F
The table below lists recommended R values for various  
F
gains, and the expected bandwidth.  
Power Dissipation Considerations  
GAIN  
(A  
BANDWIDTH  
(MHz)  
Due to the high supply current inherent in triple amplifiers,  
care must be taken to insure that the maximum junction  
)
R ()  
F
CL  
temperature (T , see Absolute Maximum Ratings) is not  
exceeded. Figure 7 shows the maximum ambient  
temperature versus supply voltage for the available package  
-1  
+1  
750  
1000  
68f1  
1000  
383  
100  
125  
95  
J
+2  
styles (PDIP, SOIC). At V = ±5V quiescent operation both  
S
package styles may be operated over the full industrial range  
+5  
52  
o
o
of -40 C to 85 C. It is recommended that thermal  
calculations, which take into account output power, be  
performed by the designer.  
+10  
-10  
65  
750  
22  
PC Board Layout  
130  
The frequency response of this amplifier depends greatly on  
the amount of care taken in designing the PC board. The  
use of low inductance components such as chip resistors  
and chip capacitors is strongly recommended. If leaded  
components are used the leads must be kept short  
especially for the power supply decoupling components and  
those components connected to the inverting input.  
120  
110  
100  
90  
PDIP  
80  
SOIC  
70  
60  
50  
Attention must be given to decoupling the power supplies. A  
large value (10µF) tantalum or electrolytic capacitor in  
parallel with a small value (0.1µF) chip capacitor works well  
in most cases.  
40  
30  
20  
10  
5
7
9
11  
13  
15  
A ground plane is strongly recommended to control noise.  
Care must also be taken to minimize the capacitance to  
ground seen by the amplifier’s inverting input (-IN). The  
larger this capacitance, the worse the gain peaking, resulting  
in pulse overshoot and possible instability. It is  
SUPPLY VOLTAGE (±V)  
FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE  
vs SUPPLY VOLTAGE  
recommended that the ground plane be removed under  
traces connected to -IN, and that connections to -IN be kept  
7
HA5013  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
SUPPLY  
V
F
L
A
Unless Otherwise Specified  
5
4
5
4
V
C
= 0.2V  
P-P  
V
C
= 0.2V  
= 10pF  
OUT  
= 10pF  
OUT  
L
F
P-P  
A
= +1, R = 1kΩ  
V
F
L
R = 750Ω  
A
= 2, R = 681Ω  
3
3
V
F
A
= -1  
= -2  
V
2
A
= 5, R = 1kΩ  
2
V
F
1
1
A
V
0
0
-1  
-1  
-2  
-3  
-4  
-2  
-3  
-4  
A
= -10  
V
A
= 10, R = 383Ω  
F
V
A
= -5  
V
-5  
-5  
2
10  
FREQUENCY (MHz)  
100  
200  
2
10  
100  
200  
FREQUENCY (MHz)  
FIGURE 8. NON-INVERTING FREQUENCY RESPONSE  
FIGURE 9. INVERTING FREQUENCY RESPONSE  
140  
130  
120  
V
C
= 0.2V  
P-P  
= 10pF  
= +1  
OUT  
+180  
+135  
0
-45  
A
= +1, R = 1kΩ  
F
V
L
A
V
+90  
+45  
0
-90  
A
= -1, R = 750Ω  
F
V
-135  
-100  
-225  
A
= +10, R = 383Ω  
F
V
-3dB BANDWIDTH  
10  
-45  
-90  
-270  
A
= -10, R = 750Ω  
F
5
0
V
-135  
-180  
-315  
-360  
V
= 0.2V  
P-P  
OUT  
= 10pF  
GAIN PEAKING  
700  
C
L
2
10  
FREQUENCY (MHz)  
100  
200  
500  
900  
1100  
1300  
1500  
FEEDBACK RESISTOR ()  
FIGURE 10. PHASE RESPONSE AS A FUNCTION OF  
FREQUENCY  
FIGURE 11. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
100  
130  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
L
A
= +2  
V
120  
95  
90  
-3dB BANDWIDTH  
110  
100  
6
-3dB BANDWIDTH  
10  
4
2
0
5
0
V
C
= 0.2V  
P-P  
90  
80  
OUT  
= 10pF  
GAIN PEAKING  
400  
L
GAIN PEAKING  
A
= +1  
V
0
200  
600  
800  
1000  
350  
500  
650  
800  
950  
1100  
LOAD RESISTOR ()  
FEEDBACK RESISTOR ()  
FIGURE 13. BANDWIDTH AND GAIN PEAKING vs LOAD  
RESISTANCE  
FIGURE 12. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
8
HA5013  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
V F L A  
SUPPLY  
Unless Otherwise Specified (Continued)  
16  
80  
V
C
= 0.1V  
P-P  
OUT  
= 10pF  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
L
L
V
= ±5V, A = +2  
V
SUPPLY  
A
= +10  
V
60  
12  
6
40  
20  
0
V
= ±15V, A = +2  
V
SUPPLY  
V
= ±5V, A = +1  
SUPPLY  
V
V
= ±15V, A = +1  
V
SUPPLY  
0
0
200  
400  
600  
800  
1000  
200  
350  
500  
650  
800  
950  
LOAD RESISTANCE ()  
FEEDBACK RESISTOR ()  
FIGURE 15. SMALL SIGNAL OVERSHOOT vs LOAD  
RESISTANCE  
FIGURE 14. BANDWIDTH vs FEEDBACK RESISTANCE  
0.08  
0.10  
FREQUENCY = 3.58MHz  
FREQUENCY = 3.58MHz  
0.08  
0.06  
0.04  
R
= 75Ω  
L
0.06  
0.04  
R
= 150Ω  
R
= 150Ω  
L
L
R
= 75Ω  
L
0.02  
0.00  
0.02  
0.00  
R
= 1kΩ  
L
R
= 1kΩ  
L
3
5
7
9
11  
13  
15  
3
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FIGURE 16. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE  
-40  
FIGURE 17. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE  
A
= +1  
V
V
C
= 2.0V  
OUT  
= 30pF  
P-P  
0
-10  
-20  
-30  
L
-50  
-60  
HD2  
-40  
-50  
3RD ORDER IMD  
CMRR  
-70  
HD2  
HD3  
-60  
-70  
-80  
NEGATIVE PSRR  
-80  
-90  
POSITIVE PSRR  
0.1  
HD3  
0.001  
0.01  
1
10  
30  
0.3  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 18. DISTORTION vs FREQUENCY  
FIGURE 19. REJECTION RATIOS vs FREQUENCY  
9
HA5013  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
SUPPLY  
V
F
L
A
Unless Otherwise Specified (Continued)  
8.0  
12  
R
= 100Ω  
= 1.0V  
= +1  
L
LOAD  
V
A
OUT  
P-P  
V
10  
8
7.5  
A
= +10, R = 383Ω  
F
V
7.0  
6.5  
6.0  
A
= +2, R = 681Ω  
F
V
6
A
= +1, R = 1kΩ  
F
V
4
3
5
7
9
11  
13  
15  
-50  
-25  
0
25  
50  
75  
100  
125  
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 20. PROPAGATION DELAY vs TEMPERATURE  
FIGURE 21. PROPAGATION DELAY vs SUPPLY VOLTAGE  
0.8  
500  
V
= 2V  
P-P  
OUT  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
0.6  
0.4  
0.2  
450  
400  
350  
300  
250  
L
+ SLEW RATE  
0
A = +2, R = 681Ω  
V F  
- SLEW RATE  
-0.2  
-0.4  
-0.6  
A
= +5, R = 1kΩ  
V
F
A
= +1, R = 1kΩ  
F
V
200  
150  
100  
-0.8  
-1.0  
-1.2  
A
= +10, R = 383Ω  
F
V
5
10  
15  
20  
25  
30  
-50  
-25  
0
25  
50  
75  
100  
125  
o
FREQUENCY (MHz)  
TEMPERATURE ( C)  
FIGURE 23. NON-INVERTING GAIN FLATNESS vs FREQUENCY  
FIGURE 22. SLEW RATE vs TEMPERATURE  
0.8  
V
C
R
= 0.2V  
P-P  
100  
80  
1000  
800  
OUT  
L
F
0.6  
0.4  
= 10pF  
A
= +10, R = 383Ω  
F
V
= 750Ω  
-INPUT NOISE CURRENT  
0.2  
A
= -1  
= -5  
V
0
600  
60  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
+INPUT NOISE CURRENT  
400  
40  
A
V
INPUT NOISE VOLTAGE  
200  
0
20  
0
A
= -2  
V
A
= -10  
V
5
10  
15  
20  
25  
30  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
FIGURE 24. INVERTING GAIN FLATNESS vs FREQUENCY  
FIGURE 25. INPUT NOISE CHARACTERISTICS  
10  
HA5013  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
V F L A  
SUPPLY  
Unless Otherwise Specified (Continued)  
1.5  
2
1.0  
0
-2  
-4  
0.5  
0.0  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 27. +INPUT BIAS CURRENT vs TEMPERATURE  
4000  
FIGURE 26. INPUT OFFSET VOLTAGE vs TEMPERATURE  
22  
3000  
20  
2000  
1000  
18  
16  
-60 -40 -20  
0
20  
40  
60  
o
80  
100 120 140  
-60 -40 -20  
0
20  
40  
60  
o
80 100 120 140  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 28. -INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 29. TRANSIMPEDANCE vs TEMPERATURE  
74  
25  
+PSRR  
72  
70  
68  
66  
64  
62  
60  
58  
o
125 C  
20  
o
55 C  
-PSRR  
15  
10  
CMRR  
o
25 C  
5
3
4
5
6
7
8
9
10 11 12  
13 14 15  
-100  
-50  
0
50  
100  
150  
200  
250  
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 31. REJECTION RATIO vs TEMPERATURE  
FIGURE 30. SUPPLY CURRENT vs SUPPLY VOLTAGE  
11  
HA5013  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
V F L A  
SUPPLY  
Unless Otherwise Specified (Continued)  
4.0  
40  
+10V  
+15V  
30  
+5V  
3.8  
20  
10  
0
3.6  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
o
DISABLE INPUT VOLTAGE (V)  
TEMPERATURE ( C)  
FIGURE 32. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE  
30  
FIGURE 33. OUTPUT SWING vs TEMPERATURE  
1.2  
1.1  
V
= ±15V  
S
20  
10  
1.0  
V
= ±10V  
S
0.9  
0.8  
V
= ±4.5V  
S
0
0.01  
0.10  
1.00  
10.00  
-60  
-40 -20  
0
40  
60  
80  
100 120 140  
20  
o
LOAD RESISTANCE (k)  
TEMPERATURE ( C)  
FIGURE 34. OUTPUT SWING vs LOAD RESISTANCE  
FIGURE 35. INPUT OFFSET VOLTAGE CHANGE BETWEEN  
CHANNELS vs TEMPERATURE  
-30  
1.5  
A
= +1  
= 2V  
V
V
OUT  
P-P  
-40  
-50  
-60  
-70  
-80  
1.0  
0.5  
0.0  
-60 -40 -20  
20  
40  
60  
o
80 100 120 140  
0
0.1  
1
10  
30  
TEMPERATURE ( C)  
FREQUENCY (MHz)  
FIGURE 36. INPUT BIAS CURRENT CHANGE BETWEEN  
CHANNELS vs TEMPERATURE  
FIGURE 37. CHANNEL SEPARATION vs FREQUENCY  
12  
HA5013  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25 C,  
SUPPLY  
V
F
L
A
Unless Otherwise Specified (Continued)  
10  
1
DISABLE = 0V  
0
R
= 100Ω  
V
= 5V  
P-P  
L
IN  
R
= 750Ω  
F
-10  
-20  
-30  
0.1  
0.01  
180  
135  
90  
45  
0
0.001  
-40  
-50  
-60  
-70  
-80  
-45  
-90  
-135  
0.001  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 38. DISABLE FEEDTHROUGH vs FREQUENCY  
FIGURE 39. TRANSIMPEDANCE vs FREQUENCY  
10  
1
R
= 400Ω  
L
0.1  
180  
135  
0.01  
0.001  
90  
45  
0
-45  
-90  
-135  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FIGURE 40. TRANSIMPEDENCE vs FREQUENCY  
13  
HA5013  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
2010µm x 3130µm x 483µm  
Type: Nitride  
Thickness: 4kÅ ±0.4kÅ  
METALLIZATION:  
TRANSISTOR COUNT:  
Type: Metal 1: AlCu (1%)  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
248  
Type: Metal 2: AlCu (1%)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
PROCESS:  
High Frequency Bipolar Dielectric Isolation  
SUBSTRATE POTENTIAL  
Unbiased  
Metallization Mask Layout  
HA5013  
NC  
NC  
OUT2  
-IN2  
NC  
+IN2  
V+  
V-  
+IN1  
+IN3  
-IN1  
OUT1  
OUT3  
-IN3  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
14  

相关型号:

HA5025IB

Quad, 125MHz Video Current Feedback Amplifier
INTERSIL

HA5025IP

Quad, 125MHz Video Current Feedback Amplifier
INTERSIL

HA5025_03

Quad, 125MHz Video Current Feedback Amplifier
INTERSIL

HA503

Peripheral IC
ETC

HA5033C

Analog IC
ETC

HA5033I

Analog IC
ETC

HA5033M

Analog IC
ETC

HA504

Peripheral IC
ETC

HA505

Peripheral IC
ETC

HA507

Peripheral IC
ETC

HA508

Peripheral IC
ETC

HA509

Peripheral IC
ETC