HA9P5020-5ZX96 [INTERSIL]

100MHz Current Feedback Video Amplifier With Disable; 100MHz的电流反馈视频放大器具有禁用
HA9P5020-5ZX96
型号: HA9P5020-5ZX96
厂家: Intersil    Intersil
描述:

100MHz Current Feedback Video Amplifier With Disable
100MHz的电流反馈视频放大器具有禁用

商用集成电路 视频放大器 光电二极管
文件: 总23页 (文件大小:565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA-5020  
®
Data Sheet  
June 5, 2006  
FN2845.11  
100MHz Current Feedback  
Video Amplifier With Disable  
Features  
• Wide Unity Gain Bandwidth . . . . . . . . . . . . . . . . . 100MHz  
• Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800V/µs  
• Output Current . . . . . . . . . . . . . . . . . . . . . . . ±30mA (Min)  
• Drives 3.5V into 75Ω  
The HA-5020 is a wide bandwidth, high slew rate amplifier  
optimized for video applications and gains between 1 and  
10. Manufactured on Intersil’s Reduced Feature  
Complementary Bipolar DI process, this amplifier uses  
current mode feedback to maintain higher bandwidth at a  
given gain than conventional voltage feedback amplifiers.  
Since it is a closed loop device, the HA-5020 offers better  
gain accuracy and lower distortion than open loop buffers.  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03%  
• Differential Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . .0.03°  
• Low Input Voltage Noise . . . . . . . . . . . . . . . . . 4.5nV/Hz  
• Low Supply Current . . . . . . . . . . . . . . . . . . . . 10mA (Max)  
• Wide Supply Range . . . . . . . . . . . . . . . . . . . ±5V to ±15V  
• Output Enable/Disable  
The HA-5020 features low differential gain and phase and  
will drive two double terminated 75coax cables to video  
levels with low distortion. Adding a gain flatness  
performance of 0.1dB makes this amplifier ideal for  
demanding video applications. The bandwidth and slew rate  
of the HA-5020 are relatively independent of closed loop  
gain. The 100MHz unity gain bandwidth only decreases to  
60MHz at a gain of 10. The HA-5020 used in place of a  
conventional op amp will yield a significant improvement in  
the speed power product. To further reduce power, HA-5020  
has a disable function which significantly reduces supply  
current, while forcing the output to a true high impedance  
state. This allows the outputs of multiple amplifiers to be  
wire-OR’d into multiplexer configurations. The device also  
includes output short circuit protection and output offset  
voltage adjustment.  
• High Performance Replacement for EL2020  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
Applications  
• Unity Gain Video/Wideband Buffer  
• Video Gain Block  
• Video Distribution Amp/Coax Cable Driver  
• Flash A/D Driver  
• Waveform Generator Output Driver  
• Current to Voltage Converter; D/A Output Buffer  
• Radar Systems  
For multi channel versions of the HA-5020 see the HA5022  
dual with disable, HA5023 dual, HA5013 triple and HA5024  
quad with disable op amp data sheets.  
• Imaging Systems  
Pinout  
HA-5020  
(PDIP, SOIC)  
TOP VIEW  
BAL  
IN-  
1
2
3
4
8
7
6
5
DISABLE  
V+  
-
+
IN+  
V-  
OUT  
BAL  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2002, 2005-2006. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
HA-5020  
Ordering Information  
PART NUMBER  
PART MARKING  
HA3-5020-5  
HA3-5020-5Z  
TEMP. RANGE (°C)  
0 to 75  
PACKAGE  
PKG. DWG. #  
E8.3  
HA3-5020-5  
8 Ld PDIP  
HA3-5020-5Z (Note)  
HA9P5020-5  
0 to 75  
8 Ld PDIP (Pb-free)  
8 Ld SOIC  
E8.3  
50205  
0 to 75  
M8.15  
M8.15  
M8.15  
M8.15  
HA9P5020-5Z (Note)  
HA9P5020-5X96  
HA9P5020-5ZX96 (Note)  
50205Z  
50205  
0 to 75  
8 Ld SOIC (Pb-free)  
8 Ld SOIC Tape and Reel  
0 to 75  
50205Z  
0 to 75  
8 Ld SOIC Tape and Reel  
(Pb-free)  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN2845.11  
June 5, 2006  
2
HA-5020  
Absolute Maximum Ratings (Note 1)  
Thermal Information  
Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . 36V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V  
Thermal Resistance (Typical, Note 2)  
PDIP Package . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . .  
θ
(°C/W)  
120  
165  
θ
(°C/W)  
N/A  
N/A  
JA  
JC  
SUPPLY  
Output Current . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Protected  
Maximum Junction Temperature (Plastic Packages, Note 1) . . . 150°C  
Maximum Storage Temperature Range . . . . . . . . . -65°C to 150°C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300°C  
(SOIC - Lead Tips Only)  
Operating Conditions  
Temperature Range  
HA-5020-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 75°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below 150°C for plastic packages.  
1. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications  
V
= ±15V, R = 1kΩ, A = +1, R = 400Ω, C 10pF,  
SUPPLY  
F
V
L
L
Unless Otherwise Specified  
TEMP.  
(°C)  
PARAMETER  
INPUT CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Offset Voltage (Notes 3, 14)  
25  
Full  
Full  
25  
-
-
2
-
8
10  
-
mV  
mV  
Average Input Offset Voltage Drift  
-
10  
-
µV/°C  
dB  
V
Common Mode Rejection Ratio (Note 14)  
V
= ±10V  
CM  
60  
50  
64  
60  
-
-
IO  
Full  
25  
-
-
dB  
V
Power Supply Rejection Ratio (Note 14)  
±4.5V V ≤ ±18V  
-
-
dB  
IO  
S
Full  
25  
-
-
dB  
Non-Inverting Input (+IN) Current (Note 14)  
+IN Common Mode Rejection  
+IN Power Supply Rejection  
3
-
8
µA  
Full  
25  
-
20  
0.1  
0.5  
0.06  
0.2  
20  
50  
0.4  
0.5  
0.2  
0.5  
µA  
V
= ±10V  
-
-
µA/V  
µA/V  
µA/V  
µA/V  
µA  
CM  
Full  
25  
-
-
±4.5V V ≤ ±18V  
-
-
S
Full  
25  
-
-
Inverting Input (-IN) Current (Note 14)  
-IN Common Mode Rejection  
-
12  
25  
-
Full  
25  
-
µA  
V
= ±10V  
-
µA/V  
µA/V  
µA/V  
µA/V  
CM  
Full  
25  
-
-
-IN Power Supply Rejection  
±4.5V V ≤ ±18V  
-
-
S
Full  
-
-
TRANSFER CHARACTERISTICS  
Transimpedance (Notes 9, 14)  
25  
Full  
25  
3500  
1000  
70  
-
-
-
-
-
-
-
-
-
-
-
-
V/mA  
V/mA  
dB  
Open Loop DC Voltage Gain (Note 9)  
Open Loop DC Voltage Gain  
R = 400,  
L
V
= ±10V  
OUT  
Full  
25  
65  
dB  
R
= 100,  
60  
dB  
L
V
= ±2.5V  
OUT  
Full  
55  
dB  
FN2845.11  
June 5, 2006  
3
HA-5020  
Electrical Specifications  
V
= ±15V, R = 1kΩ, A = +1, R = 400Ω, C 10pF,  
SUPPLY  
F
V
L
L
Unless Otherwise Specified (Continued)  
TEMP.  
(°C)  
PARAMETER  
OUTPUT CHARACTERISTICS  
Output Voltage Swing (Note 14)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
= 150Ω  
25 to 85  
-40 to 0  
25  
±12  
±11  
±12.7  
±11.8  
±31.7  
-
-
-
-
-
V
V
L
Output Current (Guaranteed by Output Voltage Test)  
±30  
mA  
mA  
Full  
±27.5  
POWER SUPPLY CHARACTERISTICS  
Quiescent Supply Current (Note 14)  
Supply Current, Disabled (Note 14)  
Disable Pin Input Current  
Full  
Full  
Full  
Full  
Full  
-
7.5  
5
10  
7.5  
1.5  
-
mA  
mA  
mA  
µA  
DISABLE = 0V  
DISABLE = 0V  
-
-
350  
-
1.0  
-
Minimum Pin 8 Current to Disable (Note 4)  
Maximum Pin 8 Current to Enable (Note 5)  
-
20  
µA  
AC CHARACTERISTICS (A = +1)  
V
Slew Rate (Note 6)  
25  
Full  
25  
600  
800  
700  
12.7  
11.1  
5
-
-
-
-
-
-
-
-
-
-
V/µs  
V/µs  
MHz  
MHz  
ns  
500  
Full Power Bandwidth (Note 7)  
(Guaranteed by Slew Rate Test)  
9.6  
Full  
25  
8.0  
Rise Time (Note 8)  
-
-
-
-
-
-
Fall Time (Note 8)  
25  
5
ns  
Propagation Delay (Notes 8, 14)  
-3dB Bandwidth (Note 14)  
Settling Time to 1%  
25  
6
ns  
V
= 100mV  
25  
100  
45  
MHz  
ns  
OUT  
10V Output Step  
10V Output Step  
25  
Settling Time to 0.25%  
25  
100  
ns  
AC CHARACTERISTICS (A = +10, R = 383)  
V
F
Slew Rate (Notes 6, 9)  
25  
Full  
25  
900  
1100  
-
-
-
-
-
-
-
-
-
-
-
V/µs  
V/µs  
MHz  
MHz  
ns  
700  
Full Power Bandwidth (Note 7)  
(Guaranteed by Slew Rate Test)  
14.3  
17.5  
-
Full  
25  
11.1  
Rise Time (Note 8)  
-
-
-
-
-
-
8
Fall Time (Note 8)  
25  
8
ns  
Propagation Delay (Notes 8, 14)  
-3dB Bandwidth  
25  
9
ns  
V
= 100mV  
25  
60  
55  
90  
MHz  
ns  
OUT  
Settling Time to 1%  
Settling Time to 0.1%  
10V Output Step  
10V Output Step  
25  
25  
ns  
INTERSIL VALUE ADDED SPECIFICATIONS  
Input Noise Voltage (Note 14)  
f = 1kHz  
f = 1kHz  
f = 1kHz  
25  
25  
-
4.5  
2.5  
25  
-
-
-
-
-
-
nV/Hz  
pA/Hz  
pA/Hz  
V
+Input Noise Current (Note 14)  
-Input Noise Current (Note 14)  
Input Common Mode Range  
-
-
25  
Full  
Full  
25  
±10  
±25  
-
±12  
±40  
7
-I  
Adjust Range (Note 3)  
µA  
BIAS  
Overshoot (Note 14)  
%
FN2845.11  
June 5, 2006  
4
HA-5020  
Electrical Specifications  
V
= ±15V, R = 1kΩ, A = +1, R = 400Ω, C 10pF,  
SUPPLY  
F
V
L
L
Unless Otherwise Specified (Continued)  
TEMP.  
(°C)  
PARAMETER  
TEST CONDITIONS  
MIN  
±50  
-
TYP  
±65  
-
MAX  
UNITS  
mA  
Output Current, Short Circuit (Note 14)  
Output Current, Disabled (Note 14)  
V
= ±10V, V  
OUT  
= 0V  
Full  
Full  
-
IN  
DISABLE = 0V,  
= ±10V  
1
µA  
V
OUT  
Output Disable Time (Notes 10, 14)  
Output Enable Time (Notes 11, 14)  
Supply Voltage Range  
25  
25  
25  
25  
-
-
10  
200  
-
-
µs  
ns  
V
-
±15  
-
±5  
-
Output Capacitance, Disabled (Note 12)  
VIDEO CHARACTERISTICS  
Differential Gain (Notes 13, 14)  
Differential Phase (Notes 13, 14)  
Gain Flatness  
DISABLE = 0V  
6
pF  
R
R
= 150Ω  
= 150Ω  
25  
25  
25  
-
-
-
0.03  
0.03  
0.1  
-
-
-
%
°
L
L
To 5MHz  
dB  
Electrical Specifications V+ = +5V, V- = -5V, R = 1kΩ, A = +1, R = 400Ω, C 10pF, Unless Otherwise Specified.  
F
V
L
L
Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect  
lot-to-lot variation.  
TEMP.  
PARAMETER  
INPUT CHARACTERISTICS  
TEST CONDITIONS  
(°C)  
MIN  
TYP  
MAX  
UNITS  
Input Offset Voltage (Notes 3, 14)  
25  
Full  
Full  
25  
-
-
2
-
8
10  
-
mV  
mV  
Average Input Offset Voltage Drift  
-
10  
-
µV/°C  
dB  
V
V
Common Mode Rejection Ratio (Notes 14, 15)  
Power Supply Rejection Ratio (Note 14)  
50  
35  
55  
50  
-
-
IO  
Full  
25  
-
-
dB  
±3.5V V ≤ ±6.5V  
-
-
dB  
IO  
S
Full  
25  
-
-
dB  
Non-Inverting Input (+IN) Current (Note 14)  
+IN Common Mode Rejection (Note 15)  
+IN Power Supply Rejection  
3
-
8
µA  
Full  
25  
-
20  
0.1  
0.5  
0.06  
0.2  
20  
50  
0.4  
0.5  
0.2  
0.5  
µA  
-
-
µA/V  
µA/V  
µA/V  
µA/V  
µA  
Full  
25  
-
-
±3.5V V ≤ ±6.5V  
-
-
S
Full  
25  
-
-
Inverting Input (-IN) Current (Note 14)  
-IN Common Mode Rejection (Note 15)  
-IN Power Supply Rejection  
-
12  
25  
-
Full  
25  
-
µA  
-
µA/V  
µA/V  
µA/V  
µA/V  
Full  
25  
-
-
±3.5V V ≤ ±6.5V  
-
-
S
Full  
-
-
TRANSFER CHARACTERISTICS  
Transimpedance (Notes 9, 14)  
25  
Full  
25  
1000  
850  
65  
-
-
-
-
-
-
-
-
V/mA  
V/mA  
dB  
Open Loop DC Voltage Gain  
R = 400,  
L
V
= ±2.5V  
OUT  
Full  
60  
dB  
FN2845.11  
June 5, 2006  
5
HA-5020  
Electrical Specifications V+ = +5V, V- = -5V, R = 1kΩ, A = +1, R = 400Ω, C 10pF, Unless Otherwise Specified.  
F
V
L
L
Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect  
lot-to-lot variation. (Continued)  
TEMP.  
PARAMETER  
Open Loop DC Voltage Gain  
TEST CONDITIONS  
= 100,  
(°C)  
MIN  
50  
TYP  
MAX  
UNITS  
dB  
R
V
25  
-
-
-
-
L
= ±2.5V  
OUT  
Full  
45  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing (Note 14)  
25 to 85  
-40 to 0  
25  
±2.5  
±2.5  
±3.0  
±3.0  
±20  
±20  
-
-
-
-
V
V
Output Current  
(Guaranteed by Output Voltage Test)  
R
= 100Ω  
±16.6  
±16.6  
mA  
mA  
L
Full  
POWER SUPPLY CHARACTERISTICS  
Quiescent Supply Current (Note 14)  
Supply Current, Disabled (Note 14)  
Full  
Full  
Full  
-
-
-
7.5  
5
10  
7.5  
1.5  
mA  
mA  
mA  
DISABLE = 0V  
DISABLE = 0V  
1.0  
Disable Pin Input Current  
Minimum Pin 8 Current to Disable (Note 16)  
Maximum Pin 8 Current to Enable (Note 5)  
Full  
Full  
350  
-
-
-
-
µA  
µA  
20  
AC CHARACTERISTICS (A = +1)  
V
Slew Rate (Note 17)  
Full Power Bandwidth (Note 18)  
Rise Time (Note 8)  
25  
25  
25  
25  
25  
25  
25  
25  
25  
215  
400  
28  
6
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
22  
-
Fall Time (Note 8)  
-
6
ns  
Propagation Delay (Note 8)  
Overshoot  
-
6
ns  
-
4.5  
125  
50  
75  
%
-3dB Bandwidth (Note 14)  
Settling Time to 1%  
V
= 100mV  
-
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
-
Settling Time to 0.25%  
-
ns  
AC CHARACTERISTICS (A = +2, R = 681)  
V
F
Slew Rate (Note 17)  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
475  
26  
6
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth (Note 18)  
Rise Time (Note 8)  
Fall Time (Note 8)  
6
ns  
Propagation Delay (Note 8)  
Overshoot  
6
ns  
12  
95  
50  
100  
%
-3dB Bandwidth (Note 14)  
Settling Time to 1%  
V
= 100mV  
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
Settling Time to 0.25%  
ns  
AC CHARACTERISTICS (A = +10, R = 383)  
V
F
Slew Rate (Note 17)  
25  
25  
25  
25  
25  
25  
350  
475  
38  
8
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth (Note 18)  
Rise Time (Note 8)  
28  
-
Fall Time (Note 8)  
-
9
ns  
Propagation Delay (Note 8)  
Overshoot  
-
9
ns  
-
1.8  
%
FN2845.11  
June 5, 2006  
6
HA-5020  
Electrical Specifications V+ = +5V, V- = -5V, R = 1kΩ, A = +1, R = 400Ω, C 10pF, Unless Otherwise Specified.  
F
V
L
L
Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect  
lot-to-lot variation. (Continued)  
TEMP.  
PARAMETER  
-3dB Bandwidth (Note 14)  
TEST CONDITIONS  
= 100mV  
(°C)  
MIN  
TYP  
65  
MAX  
UNITS  
MHz  
ns  
V
25  
-
-
-
-
-
-
OUT  
Settling Time to 1%  
2V Output Step  
2V Output Step  
25  
75  
Settling Time to 0.25%  
25  
130  
ns  
INTERSIL VALUE ADDED SPECIFICATIONS  
Input Noise Voltage (Note 14)  
+Input Noise Current (Note 14)  
-Input Noise Current (Note 14)  
Input Common Mode Range  
Output Current, Short Circuit  
Output Current, Disabled (Note 14)  
f = 1kHz  
f = 1kHz  
f = 1kHz  
25  
25  
-
4.5  
2.5  
25  
-
-
nV/Hz  
pA/Hz  
pA/Hz  
V
-
25  
-
±2.5V  
±40  
-
-
Full  
Full  
Full  
-
V
= ±2.5V, V  
OUT  
= 0V  
±60  
-
-
mA  
IN  
DISABLE = 0V,  
= ±2.5V, V = 0V  
2
µA  
V
OUT  
IN  
Output Disable Time (Notes 14, 20)  
Output Enable Time (Notes 14, 21)  
Supply Voltage Range  
25  
25  
25  
25  
-
-
40  
40  
-
-
µs  
ns  
V
-
±15  
-
±5  
-
Output Capacitance, Disabled (Note 19)  
VIDEO CHARACTERISTICS  
Differential Gain (Notes 13, 14)  
Differential Phase (Notes 13, 14)  
Gain Flatness  
DISABLE = 0V  
6
pF  
R
R
= 150Ω  
= 150Ω  
25  
25  
25  
-
-
-
0.03  
0.03  
0.1  
-
-
-
%
°
L
L
To 5MHz  
dB  
NOTES:  
2. Suggested V  
Adjust Circuit: The inverting input current (-I  
) can be adjusted with an external 10kpot between pins 1 and 5, wiper  
BIAS  
OS  
connected to V+. Since -I  
flows through the feedback resistor (R ), the result is an adjustment in offset voltage. The amount of offset voltage  
BIAS  
adjustment is determined by the value of R (V  
F
= -I  
*R ).  
F
OS  
BIAS  
F
3. R = 100, V = 10V. This is the minimum current which must be pulled out of the Disable pin in order to disable the output. The output is  
L
IN  
considered disabled when -10mV V  
+10mV.  
OUT  
4. V = 0V. This is the maximum current that can be pulled out of the Disable pin with the HA-5020 remaining enabled. The HA-5020 is considered  
IN  
disabled when the supply current has decreased by at least 0.5mA.  
5. V  
switches from -10V to +10V, or from +10V to -10V. Specification is from the 25% to 75% points.  
OUT  
Slew Rate  
--------------------------  
6.  
FPBW =  
; V  
= 10V.  
PEAK  
2πV  
PEAK  
7. R = 100, V  
= 1V. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.  
L
OUT  
8. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.  
9. V = +10V, Disable = +15V to 0V. Measured from the 50% point of Disable to V  
IN  
= 0V.  
OUT  
OUT  
10. V = +10V, Disable = 0V to +15V. Measured from the 50% point of Disable to V  
= 10V.  
IN  
11. V = 0V, Force V  
IN OUT  
from 0V to ±10V, t = t = 50ns.  
R F  
12. Measured with a VM700A video tester using a NTC-7 composite VITS.  
13. See “Typical Performance Curves” for more information.  
14. V  
= ±2.5V. At -40°C product is tested at V  
= ±2.25V because short test duration does not allow self heating.  
CM  
CM  
15. R = 100. V = 2.5V. This is the minimum current which must be pulled out of the Disable pin in order to disable the output. The output is  
L
IN  
considered disabled when -10mV V  
+10mV.  
OUT  
16. V  
switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points.  
Slew Rate  
OUT  
--------------------------  
17. FPBW =  
; V  
= 2V .  
PEAK  
2πV  
PEAK  
18. V = 0V, Force V  
from 0V to ±2.5V, t = t = 50ns.  
R F  
IN OUT  
19. V = +2V, Disable = +5V to 0V. Measured from the 50% point of Disable to V  
= 0V.  
= 2V.  
IN  
OUT  
OUT  
20. V = +2V, Disable = 0V to +5V. Measured from the 50% point of Disable to V  
IN  
FN2845.11  
June 5, 2006  
7
HA-5020  
Test Circuits and Waveforms  
+
-
DUT  
50  
HP4195  
NETWORK  
ANALYZER  
50Ω  
FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS  
DUT  
V
+
-
IN  
V
OUT  
50Ω  
R
400Ω  
L
DUT  
V
+
-
IN  
V
OUT  
R , 681Ω  
F
50Ω  
R
100Ω  
L
R
I
681Ω  
R , 1kΩ  
F
FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT  
FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT  
V
V
IN  
IN  
V
V
OUT  
OUT  
Vertical Scale: V = 100mV/Div., V  
IN  
Horizontal Scale: 20ns/Div.  
= 100mV/Div.  
Vertical Scale: V = 1V/Div., V  
Horizontal Scale: 50ns/Div.  
= 1V/Div.  
OUT  
OUT  
IN  
FIGURE 4. SMALL SIGNAL RESPONSE  
FIGURE 5. LARGE SIGNAL RESPONSE  
FN2845.11  
June 5, 2006  
8
HA-5020  
Schematic Diagram  
FN2845.11  
June 5, 2006  
9
HA-5020  
Driving Capacitive Loads  
Application Information  
Capacitive loads will degrade the amplifier’s phase margin  
resulting in frequency response peaking and possible  
oscillations. In most cases the oscillation can be avoided by  
placing an isolation resistor (R) in series with the output as  
shown in Figure 6.  
Optimum Feedback Resistor  
The plots of inverting and non-inverting frequency response  
illustrate the performance of the HA-5020 in various closed  
loop gain configurations. Although the bandwidth dependency  
on closed loop gain isn’t as severe as that of a voltage  
feedback amplifier, there can be an appreciable decrease in  
bandwidth at higher gains. This decrease may be minimized  
by taking advantage of the current feedback amplifier’s unique  
R
V
+
-
IN  
V
OUT  
R
C
L
T
R
F
R
I
relationship between bandwidth and R . All current feedback  
F
amplifiers require a feedback resistor, even for unity gain  
FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION  
RESISTOR, R  
applications, and R , in conjunction with the internal  
compensation capacitor, sets the dominant pole of the  
frequency response. Thus, the amplifier’s bandwidth is  
F
The selection criteria for the isolation resistor is highly  
dependent on the load, but 27has been determined to be  
a good starting value.  
inversely proportional to R . The HA-5020 design is optimized  
F
for a 1000R at a gain of +1. Decreasing R in a unity gain  
F
F
application decreases stability, resulting in excessive peaking  
Enable/Disable Function  
and overshoot. At higher gains the amplifier is more stable, so  
R can be decreased in a trade-off of stability for bandwidth.  
F
When enabled the amplifier functions as a normal current  
feedback amplifier with all of the data in the electrical  
specifications table being valid and applicable. When  
disabled the amplifier output assumes a true high  
impedance state and the supply current is reduced  
significantly.  
The table below lists recommended R values for various  
F
gains, and the expected bandwidth.  
BANDWIDTH  
GAIN (A  
-1  
)
R
()  
(MHz)  
100  
125  
95  
CL  
F
750  
1000  
681  
The circuit shown in Figure 7 is a simplified schematic of the  
enable/disable function. The large value resistors in series  
with the DISABLE pin makes it appear as a current source to  
the driver. When the driver pulls this pin low current flows out  
of the pin and into the driver. This current, which may be as  
large as 350µA when external circuit and process variables  
are at their extremes, is required to insure that point “A”  
achieves the proper potential to disable the output. The  
driver must have the compliance and capability of sinking all  
of this current.  
+1  
+2  
+5  
1000  
383  
52  
+10  
-10  
65  
750  
22  
PC Board Layout  
The frequency response of this amplifier depends greatly on  
the amount of care taken in designing the PC board. The use  
of low inductance components such as chip resistors and  
chip capacitors is strongly recommended. If leaded  
components are used the leads must be kept short  
especially for the power supply decoupling components and  
those components connected to the inverting input.  
+V  
CC  
R
R
33  
6
R
10  
15K  
D
Q
P18  
1
R
R
7
8
15K  
A
ENABLE/  
DISABLE INPUT  
Q
P3  
Attention must be given to decoupling the power supplies. A  
large value (10µF) tantalum or electrolytic capacitor in  
parallel with a small value (0.1µF) chip capacitor works well  
in most cases.  
FIGURE 7. SIMPLIFIED SCHEMATIC OF ENABLE/DISABLE  
FUNCTION  
When V  
CC  
is +5V the DISABLE pin may be driven with a  
A ground plane is strongly recommended to control noise. Care  
must also be taken to minimize the capacitance to ground seen  
by the amplifier’s inverting input (-IN). The larger this  
dedicated TTL gate. The maximum low level output voltage  
of the TTL gate, 0.4V, has enough compliance to insure that  
the amplifier will always be disabled even though D will not  
1
capacitance, the worse the gain peaking, resulting in pulse  
overshoot and possible instability. It is recommended that the  
ground plane be removed under traces connected to -IN, and  
that connections to -IN be kept as short as possible to minimize  
the capacitance from this node to ground.  
turn on, and the TTL gate will sink enough current to keep  
point “A” at its proper voltage. When V  
is greater than +5V  
CC  
the DISABLE pin should be driven with an open collector  
device that has a breakdown rating greater than V  
.
CC  
FN2845.11  
June 5, 2006  
10  
HA-5020  
Referring to Figure 7, it can be seen that R will act as a pull-up  
such as an A/D converter. The first problem is the low source  
impedance which tends to make amplifiers oscillate and  
causes gain errors. The second problem is the multiplexer  
which supplies no gain, introduces all kinds of distortion and  
limits the frequency response. Using op amps which have an  
enable/disable function, such as the HA-5020, eliminates the  
multiplexer problems because the external mux chip is not  
needed, and the HA-5020 can drive low impedance (large  
capacitance) loads if a series isolation resistor is used.  
6
resistor to +V if the DISABLE pin is left open. In those cases  
CC  
where the enable/disable function is not required on all circuits  
some circuits can be permanently enabled by letting the  
DISABLE pin float. If a driver is used to set the enable/disable  
level, be sure that the driver does not sink more than 20µA  
when the DISABLE pin is at a high level. TTL gates, especially  
CMOS versions, do not violate this criteria so it is permissible to  
control the enable/disable function with TTL.  
Referring to Figure 9, both inputs are terminated in their  
characteristic impedance; 75is typical for video  
Typical Applications  
Two Channel Video Multiplexer  
applications. Since the drivers usually are terminated in their  
characteristic impedance the input gain is 0.5, thus the  
Referring to the amplifier U in Figure 8, R terminates the  
1A  
cable in its characteristic impedance of 75, and R back  
terminates the cable in its characteristic impedance. The  
amplifier is set up in a gain configuration of +2 to yield an  
overall network gain of +1 when driving a double terminated  
1
amplifiers, U , are configured in a gain of +2 to set the circuit  
2
4
gain equal to one. Resistors R and R determine the  
2
3
amplifier gain, and if a different gain is desired R should be  
2
changed according to the equation G = (1 + R /R ). R sets  
3
2
3
the frequency response of the amplifier so you should refer  
to the manufacturers data sheet before changing its value.  
R , C and D are an asymmetrical charge/discharge time  
cable. The value of R can be changed if a different network  
3
gain is desired. R holds the disable pin at ground thus  
5
inhibiting the amplifier until the switch, S , is thrown to  
1
5
1
1
circuit which configures U as a break before make switch to  
position 1. At position 1 the switch pulls the disable pin up to  
the plus supply rail thereby enabling the amplifier. Since all  
of the actual signal switching takes place within the amplifier,  
it’s differential gain and phase parameters, which are 0.03%  
and 0.03° respectively, determine the circuit’s performance.  
1
prevent both amplifiers from being active simultaneously. If  
this design is extended to more channels the drive logic  
must be designed to be break before make. R is enclosed  
4
in the feedback loop of the amplifier so that the large open  
loop amplifier gain of U will present the load with a small  
closed loop output impedance while keeping the amplifier  
stable for all values of load capacitance.  
The other circuit, U , operates in a similar manner.  
1B  
2
When the plus supply rail is 5V the disable pin can be driven  
by a dedicated TTL gate as discussed earlier. If a multiplexer  
IC or its equivalent is used to select channels its logic must be  
break before make. When these conditions are satisfied the  
HA-5020 is often used as a remote video multiplexer, and the  
multiplexer may be extended by adding more amplifier ICs.  
The circuit shown in Figure 9 was tested for the full range of  
capacitor values with no oscillations being observed; thus,  
problem one has been solved. The frequency and gain  
characteristics of the circuit are now those of the amplifier  
and independent of any multiplexing action; thus, problem  
two has been solved. The multiplexer transition time is  
approximately 15µs with the component values shown.  
Low Impedance Multiplexer  
Two common problems surface when you try to multiplex  
multiple high speed signals into a low impedance source  
VIDEO INPUT #1  
R
75  
4
U
1A  
+5V IN  
0.1µF  
+5V  
10µF  
VIDEO OUTPUT  
TO 75LOAD  
+
-
+
R
1
75  
R
2000  
5
R
681  
2
R
681  
3
1
R
100  
2
11  
-5V IN  
0.1µF  
-5V  
10µF  
R
75  
VIDEO INPUT #2  
9
U
1B  
3
+5V  
S
1
+
ALL  
OFF  
NOTES:  
21. U is HA-5020.  
R
6
75  
1
R
10  
2000  
R
22. All resistors in Ω.  
7
R
681  
8
681  
23. S is break before make.  
1
24. Use ground plane.  
FIGURE 8. TWO CHANNEL HIGH IMPEDANCE MULTIPLEXER  
FN2845.11  
June 5, 2006  
11  
HA-5020  
R
INPUT B  
INPUT A  
3A  
R
R
681  
1A  
75  
2A  
681  
R
4A  
27  
U
2A  
-
+
D
-5V  
1A  
1N4148  
R
1B  
75  
0.01µF  
R
5A  
R
681  
U
3B  
1C  
2000  
R
2B  
681  
U
2B  
CHANNEL  
SWITCH  
R
4B  
C
1A  
0.047µF  
-
OUTPUT  
+
27  
+5V  
0.01µF  
R
5B  
U
1D  
NOTES:  
25. U : HA-5020.  
U
1B  
2000  
U
C
1A  
1B  
0.047µF  
INHIBIT  
2
R
100K  
6
26. U : CD4011.  
1
D
1B  
1N4148  
FIGURE 8. LOW IMPEDANCE MULTIPLEXER  
V = ±15V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, unless otherwise specified  
SUPPLY  
Typical Performance Curves  
V
F
L
A
100  
100  
2.5  
2.0  
1.5  
1.0  
A
= +10  
V
-INPUT NOISE CURRENT  
INPUT NOISE VOLTAGE  
V
= ±15V  
SUPPLY  
10  
10  
V
= ±4.5V  
SUPPLY  
V
= ±10V  
0.5  
0.0  
SUPPLY  
+INPUT NOISE CURRENT  
1
10  
1
100k  
100  
1k  
10k  
-60  
-40  
-20  
0
20  
40  
60  
80 100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FIGURE 9. INPUT NOISE vs FREQUENCY (AVERAGE OF 18  
UNITS FROM 3 LOTS)  
FIGURE 10. INPUT OFFSET VOLTAGE vs TEMPERATURE  
(ABSOLUTE VALUE AVERAGE OF 30 UNITS  
FROM 3 LOTS)  
0
-0.5  
-1.0  
2.0  
1.8  
V
= ±15V  
SUPPLY  
1.6  
1.4  
V
V
= ±15V  
= ±10V  
SUPPLY  
SUPPLY  
V
= ±10V  
SUPPLY  
-1.5  
V
= ±4.5V  
SUPPLY  
-2.0  
-2.5  
1.2  
1.0  
V
= ±4.5V  
SUPPLY  
-60  
-40  
-20  
0
20  
40  
60  
80 100 120 140  
-60  
-40  
-20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 11. +INPUT BIAS CURRENT vs TEMPERATURE  
(AVERAGE OF 30 UNITS FROM 3 LOTS)  
FIGURE 12. -INPUT BIAS CURRENT vs TEMPERATURE  
(ABSOLUTE VALUE AVERAGE OF 30 UNITS  
FROM 3 LOTS)  
FN2845.11  
June 5, 2006  
12  
HA-5020  
Typical Performance Curves  
V
= ±15V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, unless otherwise specified (Continued)  
SUPPLY  
V
F
L
A
8
7
6
5
4
6
125°C  
5
V
= ±15V  
SUPPLY  
25°C  
-55°C  
V
= ±10V  
SUPPLY  
4
3
2
1
V
= ±4.5V  
SUPPLY  
3
5
7
9
11  
13  
15  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
FIGURE13. TRANSIMPEDANCEvsTEMPERATURE(AVERAGE  
OF 30 UNITS FROM 3 LOTS)  
FIGURE 14. SUPPLY CURRENT vs SUPPLY VOLTAGE  
(AVERAGE OF 30 UNITS FROM 3 LOTS)  
7
9
8
DISABLE = 0V  
V
= ±4.5V  
V
= ±10V  
V
= ±15V  
SUPPLY  
6
SUPPLY  
SUPPLY  
-55°C  
7
6
5
4
3
2
1
0
5
25°C  
4
125°C  
3
2
1
0
1
3
5
7
9
11  
13  
15  
3
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
DISABLE INPUT VOLTAGE (V)  
FIGURE 15. DISABLE SUPPLY CURRENT vs SUPPLY VOLTAGE  
(AVERAGE OF 30 UNITS FROM 3 LOTS)  
FIGURE 16. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE  
0
1.0  
DISABLE = 0V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= 5V  
IN  
P-P  
V
= +10V  
= -10V  
0.5  
0
OUT  
R
= 750Ω  
F
V
OUT  
-0.5  
-1.0  
0
2M 4M  
6M 8M 10M 12M 14M 16M 18M 20M  
FREQUENCY (Hz)  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
FIGURE 17. DISABLE MODE FEEDTHROUGH vs FREQUENCY  
FIGURE 18. DISABLED OUTPUT LEAKAGE vs TEMPERATURE  
(AVERAGE OF 30 UNITS FROM 3 LOTS)  
FN2845.11  
June 5, 2006  
13  
HA-5020  
Typical Performance Curves  
V
= ±15V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, unless otherwise specified (Continued)  
SUPPLY  
V
F
L
A
3
2
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
20  
18  
16  
14  
12  
10  
8
V
= 0.2V  
P-P  
= 10pF  
OUT  
C
L
1
0
A
= +1  
V
-1  
-2  
-3  
-4  
-5  
-6  
-7  
ENABLE TIME  
A
= +2  
V
0.8  
0.6  
6
0.4  
4
DISABLE TIME  
A
= +6  
V
A = +10  
V
0.2  
0.0  
2
0
-10 -8  
-6  
-4  
-2  
0
2
4
6
8
10  
0
24M  
48M  
72M  
96M  
120M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
FIGURE 19. ENABLE/DISABLE TIME vs OUTPUT VOLTAGE  
(AVERAGE OF 9 UNITS FROM 3 LOTS)  
FIGURE 20. NON-INVERTING GAIN vs FREQUENCY  
2
+180  
1
0
V
= 0.2V  
P-P  
= 10pF  
= 750Ω  
OUT  
C
R
+135  
+90  
+45  
0
A
= -1  
L
F
V
A
= -2  
V
+45  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
A
= -1  
V
A
= -6  
V
A
= -10  
V
-45  
A
= -2  
V
-45  
-90  
A
= +1  
V
-90  
-135  
-180  
-225  
-270  
A
= +2  
= +6  
V
V
A = -6  
V
-135  
-180  
A
= -10  
24M  
V
A
A
= +10  
48M  
V
0
48M  
72M  
96M  
120M  
0
24M  
72M  
96M  
120M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 21. INVERTING FREQUENCY RESPONSE  
FIGURE 22. PHASE vs FREQUENCY  
105  
100  
95  
20  
15  
10  
5
110  
100  
5
4
C
= 10pF  
L
C
= 10pF  
L
-3dB BANDWIDTH  
GAIN PEAKING  
V
= 0.2V  
P-P  
OUT  
V
= 0.2V  
P-P  
OUT  
-3dB BANDWIDTH  
90  
3
80  
70  
60  
2
1
0
90  
GAIN PEAKING  
85  
0
1.5k  
700  
900  
1.1k  
1.3k  
0
200  
400  
600  
800  
1000  
LOAD RESISTANCE ()  
FEEDBACK RESISTOR ()  
FIGURE 23. BANDWIDTH AND GAIN PEAKING vs LOAD  
RESISTANCE  
FIGURE 24. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
FN2845.11  
June 5, 2006  
14  
HA-5020  
Typical Performance Curves  
V
= ±15V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, unless otherwise specified (Continued)  
SUPPLY  
V
F
L
A
80  
70  
60  
50  
40  
30  
20  
10  
100  
20  
15  
10  
5
C
= 10pF, A = +10  
V
L
C
= 10pF, A = +2  
V
L
V
= 0.2V  
OUT  
P-P  
V
= 0.2V  
P-P  
OUT  
95  
90  
85  
80  
GAIN PEAKING = 0dB  
-3dB BANDWIDTH  
GAIN PEAKING  
0
1.2k  
200  
400  
600  
800  
1000  
400  
600  
800  
1.0k  
FEEDBACK RESISTOR ()  
FEEDBACK RESISTOR ()  
FIGURE 25. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
FIGURE 26. BANDWIDTH vs FEEDBACK RESISTANCE  
75  
70  
0
A
= +10  
V
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
PSRR  
65  
CMRR  
+PSRR  
60  
CMRR  
-PSRR  
1M  
55  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
10k  
100k  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FIGURE 27. REJECTION RATIOS vs TEMPERATURE  
(AVERAGE OF 30 UNITS FROM 3 LOTS)  
FIGURE 28. REJECTION RATIOS vs FREQUENCY  
30  
25  
20  
15  
10  
5
3.5  
(±V  
) - (±V )  
OUT  
SUPPLY  
V
= ±15V  
= ±10V  
V
= ±15V  
SUPPLY  
SUPPLY  
3.0  
2.5  
2.0  
1.5  
V
= ±10V  
SUPPLY  
V
SUPPLY  
V
= ±4.5V  
SUPPLY  
V
= ±4.5V  
SUPPLY  
0
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
10  
100  
1k  
10k  
LOAD RESISTANCE ()  
TEMPERATURE (°C)  
FIGURE 29. OUTPUT SWING OVERHEAD vs TEMPERATURE  
(AVERAGE OF 30 UNITS FROM 3 LOTS)  
FIGURE 30. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE  
FN2845.11  
June 5, 2006  
15  
HA-5020  
Typical Performance Curves  
V
= ±15V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, unless otherwise specified (Continued)  
SUPPLY  
V
F
L
A
7.0  
6.5  
6.0  
5.5  
5.0  
100  
90  
R
= 100Ω  
LOAD  
80  
V
= 1V  
OUT  
P-P  
-ISC  
70  
+ISC  
60  
50  
40  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. SHORT CIRCUIT CURRENT LIMIT vs TEMPERATURE  
FIGURE 32. PROPAGATION DELAY vs TEMPERATURE  
(AVERAGE OF 18 UNITS FROM 3 LOTS)  
11.0  
15  
V
= 100mV  
, C = 10pF  
OUT  
P-P L  
A
= +10  
V
(R = 383)  
V
= ±5V  
10.0  
9.0  
F
SUPPLY  
A
= +2  
V
10  
5
A
= +1  
V
8.0  
7.0  
6.0  
5.0  
A
A
= +2  
= +1  
V
= ±15V  
V
V
SUPPLY  
= +1  
A
V
R
V
= 100Ω  
LOAD  
= 1V  
A
= +2  
V
OUT  
P-P  
0
0
200  
400  
600  
800  
1000  
3
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
LOAD RESISTANCE ()  
FIGURE 33. PROPAGATION DELAY vs SUPPLY VOLTAGE  
(AVERAGE OF 18 UNITS FROM 3 LOTS)  
FIGURE 34. SMALL SIGNAL OVERSHOOT vs LOAD  
RESISTANCE  
0.07  
-50  
FREQUENCY = 3.58MHz  
V
= 2V  
O
P-P  
= 30pF  
C
L
0.06  
0.05  
RD  
-60  
-70  
-80  
-90  
3
ORDER IMD  
HD2 (GEN)  
R
R
= 75Ω  
LOAD  
RD  
3
ORDER IMD  
0.04  
0.03  
0.02  
0.01  
(GENERATOR)  
HD3  
= 150Ω  
LOAD  
HD2  
R
= 1K  
LOAD  
HD3 (GEN)  
3
5
7
9
11  
13  
15  
1M  
FREQUENCY (Hz)  
10M  
SUPPLY VOLTAGE (±V)  
FIGURE 35. DISTORTION vs FREQUENCY  
FIGURE 36. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE  
(AVERAGE OF 18 UNITS FROM 3 LOTS)  
FN2845.11  
June 5, 2006  
16  
HA-5020  
Typical Performance Curves  
V
= ±15V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, unless otherwise specified (Continued)  
SUPPLY  
V
F
L
A
1200  
1000  
800  
0.07  
FREQUENCY = 3.58MHz  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
V
= 20V  
P-P  
OUT  
R
= 75Ω  
LOAD  
+SLEW RATE  
-SLEW RATE  
R
= 150Ω  
LOAD  
R
= 1K  
LOAD  
600  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140  
3
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
FIGURE 37. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE  
(AVERAGE OF 18 UNITS FROM 3 LOTS)  
FIGURE 38. SLEW RATE vs TEMPERATURE  
(AVERAGE OF 30 UNITS FROM 3 LOTS)  
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, Unless Otherwise Specified  
SUPPLY  
V
F
L
A
5
4
5
4
3
A
+ 2  
V
3
2
1
2
1
A
= -1  
V
0
-1  
-2  
-3  
-4  
-5  
A
+ 1  
0
V
A
= -2  
V
-1  
-2  
-3  
-4  
-5  
A
+ 10  
V
A
= -10  
V
2M  
10M  
FREQUENCY (Hz)  
100M  
200M  
2M  
10M  
FREQUENCY (Hz)  
100M  
200M  
FIGURE 39. NON-INVERTING FREQUENCY RESPONSE  
FIGURE 40. INVERTING FREQUENCY RESPONSE  
140  
5
V
C
A
= 0.2V  
P-P  
= 10pF  
= +1  
OUT  
4
3
2
1
180  
135  
90  
A
+ 1  
V
L
V
130  
120  
A
- 1  
V
A
+ 10  
45  
V
A
- 10  
10  
-3dB BANDWIDTH  
V
0
-1  
-2  
-3  
0
-45  
-90  
-135  
-180  
5
0
GAIN PEAKING  
-4  
-5  
500  
700  
900  
1100  
1300  
1500  
2M  
10M  
FREQUENCY (Hz)  
100M  
200M  
FEEDBACK RESISTOR ()  
FIGURE 41. PHASE RESPONSE AS A FUNCTION OF  
FREQUENCY  
FIGURE 42. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
FN2845.11  
June 5, 2006  
17  
HA-5020  
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
100  
130  
V
= 0.2V  
P-P  
OUT  
C
A
= 10pF  
= +2  
L
V
120  
110  
95  
90  
-3dB BANDWIDTH  
6
-3dB BANDWIDTH  
10  
100  
4
2
0
5
0
V
C
A
= 0.2V  
P-P  
= 10pF  
= +1  
90  
80  
OUT  
GAIN PEAKING  
L
V
GAIN PEAKING  
0
200  
400  
600  
800  
1000  
350  
500  
650  
800  
950  
1100  
FEEDBACK RESISTOR ()  
LOAD RESISTOR ()  
FIGURE 43. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
FIGURE 44. BANDWIDTH AND GAIN PEAKING vs LOAD  
RESISTANCE  
80  
A
= +1  
V
V
C
A
= 0.2V  
P-P  
OUT  
L
V
0
= 10pF  
= +10  
-10  
60  
-20  
-30  
-40  
-50  
40  
20  
0
CMRR  
-60  
-70  
-80  
NEGATIVE PSRR  
POSITIVE PSRR  
0.1M  
200  
350  
500  
650  
800  
950  
0.001M  
0.01M  
1M  
10M 30M  
FEEDBACK RESISTOR ()  
FREQUENCY (Hz)  
FIGURE 45. BANDWIDTH vs FEEDBACK RESISTANCE  
FIGURE 46. REJECTION RATIOS vs FREQUENCY  
8.0  
500  
R
V
A
= 100Ω  
OUT  
= +1  
V
= 2V  
P-P  
L
OUT  
= 1.0V  
450  
400  
350  
300  
250  
P-P  
V
+ SLEW RATE  
7.5  
- SLEW RATE  
7.0  
6.5  
6.0  
200  
150  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 47. PROPAGATION DELAY vs TEMPERATURE  
FIGURE 48. SLEW RATE vs TEMPERATURE  
FN2845.11  
June 5, 2006  
18  
HA-5020  
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
0.8  
0.6  
0.4  
0.2  
0
0.8  
V
C
R
= 0.2V  
P-P  
= 10pF  
= 750Ω  
OUT  
V
C
= 0.2V  
P-P  
0.6  
0.4  
0.2  
0
OUT  
= 10pF  
L
F
L
A
= -1  
V
A
= +2, R = 681Ω  
F
V
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-0.2  
-0.4  
-0.6  
A
= +5, R = 1kΩ  
V
F
A
= -5  
V
A
= +1, R = 1kΩ  
F
V
A
= -10  
V
-0.8  
-1.0  
-1.2  
A
= -2  
V
A
= 10, R = 383Ω  
V
F
5M  
10M  
15M  
20M  
25M  
30M  
5M  
10M  
15M  
20M  
25M  
30M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 49. NON-INVERTING GAIN FLATNESS vs FREQUENCY  
FIGURE 50. INVERTING GAIN FLATNESS vs FREQUENCY  
74  
100  
80  
1000  
800  
A
= 10, R = 383Ω  
F
V
+PSRR  
72  
70  
68  
66  
64  
62  
60  
58  
-INPUT NOISE CURRENT  
600  
60  
-PSRR  
+INPUT NOISE CURRENT  
400  
40  
+INPUT NOISE VOLTAGE  
200  
0
20  
0
CMRR  
-100  
-50  
0
50  
100  
150  
200  
250  
0.01k  
0.1k  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FIGURE 51. INPUT NOISE CHARACTERISTICS  
FIGURE 52. REJECTION RATIO vs TEMPERATURE  
4.0  
3.8  
32  
20  
30  
18  
ENABLE  
28  
26  
24  
22  
16  
14  
12  
10  
ENABLE  
20  
8
18  
16  
14  
12  
6
4
2
0
DISABLE  
DISABLE  
3.6  
-2.5 -2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
FIGURE 53. OUTPUT SWING vs TEMPERATURE  
FIGURE 54. ENABLE/DISABLE TIME vs OUTPUT VOLTAGE  
FN2845.11  
June 5, 2006  
19  
HA-5020  
Typical Performance Curves V  
= ±5V, A = +1, R = 1kΩ, R = 400Ω, T = 25°C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
10  
1
DISABLE = 0V  
0
V
= 5V  
R = 100Ω  
L
IN P-P  
= 750Ω  
R
F
-10  
-20  
-30  
0.1  
0.01  
180  
135  
90  
0.001  
-40  
-50  
-60  
-70  
-80  
45  
0
-45  
-90  
-135  
0.1M  
1M  
10M  
20M  
0.001M  
0.01M  
0.1M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 55. DISABLE FEEDTHROUGH vs FREQUENCY  
FIGURE 56. TRANSIMPEDANCE vs FREQUENCY  
10  
1
R
= 400Ω  
L
0.1  
180  
135  
90  
0.01  
0.001  
45  
0
-45  
-90  
-135  
0.001M  
0.01M  
0.1M  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 57. TRANSIMPEDENCE vs FREQUENCY  
FN2845.11  
June 5, 2006  
20  
HA-5020  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
1640µm x 1520µm x 483µm  
Type: Nitride over Silox  
Silox Thickness: 12kÅ ±2kÅ  
Nitride Thickness: 3.5kÅ ±1kÅ  
METALLIZATION:  
Type: Aluminum, 1% Copper  
Thickness: 16kÅ ±2kÅ  
TRANSISTOR COUNT:  
62  
SUBSTRATE POTENTIAL (Powered Up):  
PROCESS:  
V-  
High Frequency Bipolar Dielectric Isolation  
Metallization Mask Layout  
HA-5020  
BAL  
DISABLE  
V+  
2
1
8
7
IN-  
6
OUT  
3
4
5
IN+  
V-  
BAL  
FN2845.11  
June 5, 2006  
21  
HA-5020  
Dual-In-Line Plastic Packages (PDIP)  
E8.3 (JEDEC MS-001-BA ISSUE D)  
N
8 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
E1  
INDEX  
AREA  
INCHES  
MILLIMETERS  
1 2  
3
N/2  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-B-  
-C-  
A
A1  
A2  
B
-
4
-A-  
D
E
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.15  
0.204  
9.01  
0.13  
7.62  
6.10  
4
BASE  
PLANE  
0.195  
0.022  
0.070  
0.014  
0.400  
-
4.95  
0.558  
1.77  
0.355  
10.16  
-
-
A2  
A
-
SEATING  
PLANE  
L
C
L
B1  
C
8, 10  
D1  
B1  
eA  
-
A
A
1
D1  
e
D
5
eC  
C
B
eB  
D1  
E
5
0.010 (0.25) M  
C
B S  
0.325  
0.280  
8.25  
7.11  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between  
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
English and Metric dimensions, the inch dimensions control.  
e
e
6
A
B
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
-
0.430  
0.150  
-
10.92  
3.81  
7
3. Symbols are defined in the “MO Series Symbol List” in Section  
2.2 of Publication No. 95.  
L
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated  
N
8
8
in JEDEC seating plane gauge GS-3.  
Rev. 0 12/93  
5. D, D1, and E1 dimensions do not include mold flash or protru-  
sions. Mold flash or protrusions shall not exceed 0.010 inch  
(0.25mm).  
e
6. E and  
pendicular to datum  
7. e and e are measured at the lead tips with the leads uncon-  
are measured with the leads constrained to be per-  
A
-C-  
.
B
C
strained. e must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions.  
Dambar protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3,  
E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch  
(0.76 - 1.14mm).  
FN2845.11  
June 5, 2006  
22  
HA-5020  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 6/05  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN2845.11  
June 5, 2006  
23  

相关型号:

HA9P5033-5

250MHz Video Buffer
INTERSIL

HA9P5033-9

HA9P5033-9
RENESAS

HA9P5101-9

10MHz, Low Noise, Operational Amplifiers
INTERSIL

HA9P5104-9

Dual and Quad, 8MHz and 60MHz, Low Noise Operational Amplifiers
INTERSIL

HA9P5111-5

OP-AMP, 4000uV OFFSET-MAX, 100MHz BAND WIDTH, PDSO8, SOIC-8
RENESAS

HA9P5112-5

IC,OP-AMP,DUAL,BIPOLAR,SOP,8PIN,PLASTIC
RENESAS

HA9P5114-9

Dual and Quad, 8MHz and 60MHz, Low Noise Operational Amplifiers
INTERSIL

HA9P5127-5

8.5MHz, Ultra-Low Noise Precision Operational Amplifier
INTERSIL

HA9P5127-5Z

8.5MHz, Ultra-Low Noise Precision Operational Amplifier
INTERSIL

HA9P5127-5ZX96

8.5MHz, Ultra-Low Noise Precision Operational Amplifier
INTERSIL

HA9P5141-5

Operational Amplifier
ETC

HA9P5147-9

120MHz, Ultra-Low Noise Precision Operational Amplifiers
INTERSIL