HD9P6409-9 [INTERSIL]

CMOS Manchester Encoder-Decoder; CMOS曼彻斯特编码器,解码器
HD9P6409-9
型号: HD9P6409-9
厂家: Intersil    Intersil
描述:

CMOS Manchester Encoder-Decoder
CMOS曼彻斯特编码器,解码器

解码器 编码器
文件: 总12页 (文件大小:71K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD-6409  
CMOS Manchester Encoder-Decoder  
March 1997  
Features  
Description  
• Converter or Repeater Mode  
The HD-6409 Manchester Encoder-Decoder (MED) is a high  
speed, low power device manufactured using self-aligned sil-  
icon gate technology. The device is intended for use in serial  
data communication, and can be operated in either of two  
modes. In the converter mode, the MED converts Non  
return-to-Zero code (NRZ) into Manchester code and  
decodes Manchester code into Nonreturn-to-Zero code. For  
serial data communication, Manchester code does not have  
some of the deficiencies inherent in Nonreturn-to-Zero code.  
For instance, use of the MED on a serial line eliminates DC  
components, provides clock recovery, and gives a relatively  
high degree of noise immunity. Because the MED converts  
the most commonly used code (NRZ) to Manchester code,  
the advantages of using Manchester code are easily realized  
in a serial data link.  
• Independent Manchester Encoder and Decoder  
Operation  
• Static to One Megabit/sec Data Rate Guaranteed  
• Low Bit Error Rate  
• Digital PLL Clock Recovery  
• On Chip Oscillator  
• Low Operating Power: 50mW Typical at +5V  
• Available in 20 Lead Dual-In-Line and 20 Pad LCC  
Package  
Ordering Information  
In the Repeater mode, the MED accepts Manchester code  
input and reconstructs it with a recovered clock. This mini-  
mizes the effects of noise on a serial data link. A digital  
phase lock loop generates the recovered clock. A maximum  
data rate of 1MHz requires only 50mW of power.  
TEMPERATURE  
RANGE  
PKG.  
PACKAGE  
PDIP  
1 MEGABIT/SEC  
NO.  
E20.3  
M20.3  
F20.3  
o
o
-40 C to +85 C HD3-6409-9  
o
o
SOIC  
-40 C to +85 C HD9P6409-9  
o
o
Manchester code is used in magnetic tape recording and in  
fiber optic communication, and generally is used where data  
accuracy is imperative. Because it frames blocks of data, the  
HD-6409 easily interfaces to protocol controllers.  
CERDIP  
DESC  
CLCC  
DESC  
-40 C to +85 C HD1-6409-9  
o
o
-55 C to 125 C 5962-9088801MRA F20.3  
o
o
-40 C to +85 C HD4-6409-9  
J20.A  
o
o
-55 C to 125 C 5962-9088801M2A J20.A  
Pinouts  
HD-6409 (CERDIP, PDIP, SOIC)  
HD-6409 (CLCC)  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
7
8
9
V
BZI  
BOI  
20  
19  
CC  
BOO  
3
2
1
20 19  
UDI  
18 BZO  
17 SS  
BZO  
SS  
18  
17  
SD/CDS  
SDO  
4
5
6
7
8
SD/CDS  
SDO  
16 ECLK  
15 CTS  
14 MS  
SRST  
NVM  
16 ECLK  
15 CTS  
SRST  
NVM  
DCLK  
RST  
13 OX  
MS  
14  
DCLK  
12  
IX  
GND 10  
11 CO  
9
10 11 12 13  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
File Number 2951.1  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 19995-1  
HD-6409  
Block Diagram  
SDO  
NVM  
BOO  
BZO  
BOI  
DATA  
INPUT  
LOGIC  
5-BIT SHIFT  
REGISTER  
AND DECODER  
OUTPUT  
SELECT  
LOGIC  
BZI  
UDI  
COMMAND  
SYNC  
GENERATOR  
CTS  
EDGE  
DETECTOR  
SRST  
RST  
RESET  
INPUT/  
OUTPUT  
SELECT  
SD  
MANCHESTER  
ENCODER  
SD/CDS  
MS  
IX  
ECLK  
DCLK  
COUNTER  
CIRCUITS  
OSCILLATOR  
OX  
CO  
SS  
Logic Symbol  
13  
17  
11  
OX  
IX  
SS  
CLOCK  
GENERATOR  
12  
CO  
19  
18  
15  
4
16  
BOO  
BZO  
SD/CDS  
ECLK  
ENCODER  
CONTROL  
CTS  
14  
9
MS  
RST  
2
1
3
5
8
7
SDO  
BOI  
BZI  
UDI  
DCLK  
NVM  
6
SRST  
DECODER  
5-2  
HD-6409  
Pin Description  
PIN  
NUMBER TYPE SYMBOL  
NAME  
DESCRIPTION  
1
2
3
4
I
I
BZl  
BOl  
UDI  
Bipolar Zero Input  
Used in conjunction with pin 2, Bipolar One Input (BOl), to input Manchester II  
encoded data to the decoder, BZI and BOl are logical complements. When using  
pin 3, Unipolar Data Input (UDI) for data input, BZI must be held high.  
Bipolar One Input  
Used in conjunction with pin 1, Bipolar Zero Input (BZI), to input Manchester II  
encoded data to the decoder, BOI and BZI are logical complements. When using  
pin 3, Unipolar Data Input (UDI) for data input, BOl must be held low.  
I
Unipolar Data Input  
An alternate to bipolar input (BZl, BOl), Unipolar Data Input (UDl) is used to input  
Manchester II encoded data to the decoder. When using pin 1 (BZl) and pin 2  
(BOl) for data input, UDI must be held low.  
I/O  
SD/CDS Serial Data/Com-  
mand Data Sync  
In the converter mode, SD/CDS is an input used to receive serial NRZ data. NRZ  
data is accepted synchronously on the falling edge of encoder clock output  
(ECLK). In the repeater mode, SD/CDS is an output indicating the status of last  
valid sync pattern received. A high indicates a command sync and a low indicates  
a data sync pattern.  
5
6
O
O
SDO  
Serial Data Out  
Serial Reset  
The decoded serial NRZ data is transmitted out synchronously with the decoder  
clock (DCLK). SDO is forced low when RST is low.  
SRST  
In the converter mode, SRST follows RST. In the repeater mode, when RST goes  
low, SRST goes low and remains low after RST goes high. SRST goes high only  
when RST is high, the reset bit is zero, and a valid synchronization sequence is  
received.  
7
O
NVM  
Nonvalid Manchester A low on NVM indicates that the decoder has received invalid Manchester data  
and present data on Serial Data Out (SDO) is invalid. A high indicates that the  
sync pulse and data were valid and SDO is valid. NVM is set low by a low on RST,  
and remains low after RST goes high until valid sync pulse followed by two valid  
Manchester bits is received.  
8
9
O
I
DCLK  
RST  
Decoder Clock  
The decoder clock is a 1X clock recovered from BZl and BOl, or UDI to synchro-  
nously output received NRZ data (SDO).  
Reset  
In the converter mode, a low on RST forces SDO, DCLK, NVM, and SRST low.  
A high on RST enables SDO and DCLK, and forces SRST high. NVM remains  
low after RST goes high until a valid sync pulse followed by two Manchester bits  
is received, after which it goes high. In the repeater mode, RST has the same ef-  
fect on SDO, DCLK and NVM as in the converter mode. When RST goes low,  
SRST goes low and remains low after RST goes high. SRST goes high only  
when RST is high, the reset bit is zero and a valid synchronization sequence is  
received.  
10  
11  
12  
I
O
I
GND  
Ground  
Ground  
C
Clock Output  
Clock Input  
Buffered output of clock input I . May be used as clock signal for other peripherals.  
X
O
I
I is the input for an external clock or, if the internal oscillator is used, I and O  
X X X  
X
are used for the connection of the crystal.  
13  
14  
15  
O
I
O
Clock Drive  
Mode Select  
Clear to Send  
If the internal oscillator is used, O and I are used for the connection of the crys-  
tal.  
X
X
X
MS  
MS must be held low for operation in the converter mode, and high for operation  
in the repeater mode.  
I
CTS  
In the converter mode, a high disables the encoder, forcing outputs BOO, BZO high  
and ECLK low. A high to low transition of CTS initiates transmission of a Command  
sync pulse. A low on CTS enables BOO, BZO, and ECLK. In the repeater mode,  
the function of CTS is identical to that of the converter mode with the exception that  
a transition of CTS does not initiate a synchronization sequence.  
16  
O
ECLK  
Encoder Clock  
In the converter mode, ECLK is a 1X clock output used to receive serial NRZ data  
to SD/CDS. In the repeater mode, ECLK is a 2X clock which is recovered from  
BZl and BOl data by the digital phase locked loop.  
5-3  
HD-6409  
Pin Description  
PIN  
NUMBER TYPE SYMBOL  
NAME  
DESCRIPTION  
17  
I
SS  
Speed Select  
A logic high on SS sets the data rate at 1/32 times the clock frequency while a  
low sets the data rate at 1/16 times the clock frequency.  
18  
O
BZO  
BOO  
Bipolar Zero Output  
Bipolar One Out  
BZO and its logical complement BOO are the Manchester data outputs of the en-  
coder. The inactive state for these outputs is in the high state.  
19  
20  
O
I
See pin 18.  
V
V
V
is the +5V power supply pin. A 0.1µF decoupling capacitor from V (pin-  
CC  
CC  
CC  
CC  
20) to GND (pin-10) is recommended.  
NOTE: (I) Input  
(O) Output  
Encoder Operation  
The encoder uses free running clocks at 1X and 2X the data bits followed by a command sync pulse.  
2
A command  
rate derived from the system clock l for internal timing. CTS sync pulse is a 3-bit wide pulse with the first 1 1/2 bits high  
X
is used to control the encoder outputs, ECLK, BOO and followed by 1 1/2 bits low. 3 Serial NRZ data is clocked into  
BZO. A free running 1X ECLK is transmitted out of the the encoder at SD/CDS on the high to low transition of ECLK  
encoder to drive the external circuits which supply the NRZ during the command sync pulse. The NRZ data received is  
data to the MED at pin SD/CDS.  
encoded into Manchester II data and transmitted out on  
BOO and BZO following the command sync pulse. Fol-  
lowing the synchronization sequence, input data is encoded  
and transmitted out continuously without parity check or  
word framing. The length of the data block encoded is  
defined by CTS. Manchester data out is inverted.  
4
A low on CTS enables encoder outputs ECLK, BOO and  
BZO, while a high on CTS forces BZO, BOO high and holds  
ECLK low. When CTS goes from high to low 1 , a synchro-  
nization sequence is transmitted out on BOO and BZO. A  
synchronization sequence consists of eight Manchester “0”  
CTS  
1
ECLK  
DON’T CARE  
SD/CDS  
‘1’  
‘0’ ‘1’  
BZO  
BOO  
3
0
2
0
0
0
0
0
0
0
4
‘1’ ‘0’ ‘1’  
COMMAND  
SYNC  
EIGHT “0’s”  
SYNCHRONIZATION SEQUENCE  
t
t
CE5  
CE6  
FIGURE 1. ENCODER OPERATION  
Decoder Operation  
The decoder requires a single clock with a frequency 16X or Zero inputs will accept data from differential inputs such as a  
32X the desired data rate. The rate is selected on the speed comparator sensed transformer coupled bus. The Unipolar  
select with SS low producing a 16X clock and high a 32X Data input can only accept noninverted Manchester II  
clock. For long data links the 32X mode should be used as encoded data i.e. Bipolar One Out through an inverter to  
this permits a wider timing jitter margin. The internal opera- Unipolar Data Input. The decoder continuously monitors this  
tion of the decoder utilizes a free running clock synchronized data input for valid sync pattern. Note that while the MED  
with incoming data for its clocking.  
encoder section can generate only a command sync pattern,  
the decoder can recognize either a command or data sync  
pattern. A data sync is a logically inverted command sync.  
The Manchester II encoded data can be presented to the  
decoder in either of two ways. The Bipolar One and Bipolar  
5-4  
HD-6409  
There is a three bit delay between UDI, BOl, or BZI input and The decoded data at SDO is in NRZ format. DCLK is pro-  
the decoded NRZ data transmitted out of SDO.  
vided so that the decoded bits can be shifted into an external  
register on every high to low transition of this clock. Three bit  
periods after an invalid Manchester bit is received on UDI, or  
BOl, NVM goes low synchronously with the questionable  
data output on SDO. FURTHER, THE DECODER DOES  
NOT REESTABLISH PROPER DATA DECODING UNTIL  
ANOTHER SYNC PATTERN IS RECOGNIZED.  
Control of the decoder outputs is provided by the RST pin.  
When RST is low, SDO, DCLK and NVM are forced low.  
When RST is high, SDO is transmitted out synchronously  
with the recovered clock DCLK. The NVM output remains  
low after a low to high transition on RST until a valid sync  
pattern is received.  
DCLK  
UDI  
COMMAND  
1
0
0
1
0
1
0
1
0
1
0
1
0
SYNC  
SDO  
RST  
NVM  
FIGURE 2. DECODER OPERATION  
Repeater Operation  
Manchester Il data can be presented to the repeater in either A low on CTS enables ECLK, BOO, and BZO. In contrast to  
of two ways. The inputs Bipolar One In and Bipolar Zero In the converter mode, a transition on CTS does not initiate a  
will accept data from differential inputs such as a comparator synchronization sequence of eight 0’s and a command sync.  
or sensed transformer coupled bus. The input Unipolar Data The repeater mode does recognize a command or data sync  
In accepts only noninverted Manchester II coded data. The pulse. SD/CDS is an output which reflects the state of the  
decoder requires a single clock with a frequency 16X or 32X most recent sync pulse received, with high indicating a com-  
the desired data rate. This clock is selected to 16X with mand sync and low indicating a data sync.  
Speed Select low and 32X with Speed Select high. For long  
When RST is low, the outputs SDO, DCLK, and NVM are  
data links the 32X mode should be used as this permits a  
low, and SRST is set low. SRST remains low after RST goes  
wider timing jitter margin.  
high and is not reset until a sync pulse and two valid  
The inputs UDl, or BOl, BZl are delayed approximately 1/2 manchester bits are received with the reset bit low. The reset  
bit period and repeated as outputs BOO and BZO. The 2X bit is the first data bit after the sync pulse. With RST high,  
ECLK is transmitted out of the repeater synchronously with NRZ Data is transmitted out of Serial Data Out synchro-  
BOO and BZO.  
nously with the 1X DCLK.  
INPUT  
COUNT  
1
2
3
4
5
6
7
ECLK  
UDI  
SYNC PULSE  
BZO  
BOO  
RST  
SRST  
FIGURE 3. REPEATER OPERATION  
5-5  
HD-6409  
Manchester Code  
Nonreturn-to-Zero (NRZ) code represents the binary values The synchronization advantages of using the HD-6409 and  
logic-O and Iogic-1 with a static level maintained throughout Manchester code are several fold. One is that Manchester is  
the data cell. In contrast, Manchester code represents data a self clocking code. The clock in serial data communication  
with a level transition in the middle of the data cell. Manches- defines the position of each data cell. Non self clocking  
ter has bandwidth, error detection, and synchronization codes, as NRZ, often require an extra clock wire or clock  
advantages over NRZ code.  
track (in magnetic recording). Further, there can be a phase  
variation between the clock and data track. Crosstalk  
between the two may be a problem. In Manchester, the  
serial data stream contains both the clock and the data, with  
the position of the mid bit transition representing the clock,  
and the direction of the transition representing data. There is  
no phase variation between the clock and the data.  
The Manchester II code Bipolar One and Bipolar Zero shown  
below are logical complements. The direction of the transi-  
tion indicates the binary value of data. A logic-0 in Bipolar  
One is defined as a Low to high transition in the middle of  
the data cell, and a logic-1 as a high to low mid bit transition,  
Manchester Il is also known as Biphase-L code.  
A second synchronization advantage is a result of the num-  
ber of transitions in the data. The decoder resynchronizes on  
each transition, or at least once every data cell. In contrast,  
receivers using NRZ, which does not necessarily have tran-  
sitions, must resynchronize on frame bit transitions, which  
occur far less often, usually on a character basis. This more  
frequent resynchronization eliminates the cumulative effect  
of errors over successive data cells. A final synchronization  
advantage concerns the HD-6409’s sync pulse used to ini-  
tiate synchronization. This three bit wide pattern is suffi-  
ciently distinct from Manchester data that a false start by the  
receiver is unlikely.  
The bandwidth of NRZ is from DC to the clock frequency fc/2,  
while that of Manchester is from fc/2 to fc. Thus, Manchester  
can be AC or transformer coupled, which has considerable  
advantages over DC coupling. Also, the ratio of maximum to  
minimum frequency of Manchester extends one octave, while  
the ratio for NRZ is the range of 5-10 octaves. It is much eas-  
ier to design a narrow band than a wideband amp.  
Secondly, the mid bit transition in each data cell provides the  
code with an effective error detection scheme. If noise pro-  
duces a logic inversion in the data cell such that there is no  
transition, an error indiction is given, and synchronization  
must be re-established. This places relatively stringent  
requirements on the incoming data.  
BIT PERIOD  
1
0
2
1
3
1
4
0
5
0
BINARY CODE  
NONRETURN  
TO ZERO  
BIPOLAR ONE  
BIPOLAR ZERO  
FIGURE 4. MANCHESTER CODE  
Crystal Oscillator Mode  
LC Oscillator Mode  
C1  
I
X
C1  
C1 = 32pF  
I
X
C0 = CRYSTAL + STRAY  
X1 = AT CUT PARALLEL  
RESONANCE  
16MHz  
C1 = 20pF  
C0 = 5pF  
C0  
R1  
X1  
FUNDAMENTAL  
MODE  
(TYP) = 30Ω  
C1 2C0  
L
C
-------------------------  
E
2
R
S
R1 = 15MΩ  
1
O
f
-----------------------  
X
O
2π LC  
e
C1  
O
X
C
C1  
O
FIGURE 5. CRYSTAL OSCILLATOR MODE  
FIGURE 6. LC OSCILLATOR MODE  
5-6  
HD-6409  
Using the 6409 as a Manchester Encoded UART  
BZI  
V
CC  
BIPOLAR IN  
BIPOLAR IN  
BOI  
BOO  
BIPOLAR OUT  
BIPOLAR OUT  
UDI  
BZO  
SS  
SD/CDS  
SDO  
ECLK  
CTS  
CTS  
SRST  
NVM  
MS  
OX  
DCLK  
RST  
RESET  
IX  
GND  
CO  
LOAD  
CK  
LOAD  
‘165  
QH  
SI CK LOAD QH  
‘165  
A
B
CK QH  
A
B
CK  
‘164  
‘164  
DATA IN  
‘273  
DATA IN  
‘273  
CP  
PARALLEL DATA IN  
PARALLEL DATA OUT  
FIGURE 7. MANCHESTER ENCODER UART  
5-7  
HD-6409  
Thermal Information  
Absolute Maximum Ratings  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+7.0V Thermal Resistance (Typical)  
θ
θ
JC  
JA  
o
o
Input, Output or I/O Voltage . . . . . . . . . . . GND -0.5V to V  
+0.5V  
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 1  
CC  
CERDIP. . . . . . . . . . . . . . . . . . . . . . . . . .  
CLCC Package . . . . . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . . . .  
83 C/W  
23 C/W  
o
o
95 C/W  
26 C/W  
o
75 C/W  
N/A  
N/A  
o
o
SOIC Package. . . . . . . . . . . . . . . . . . . . . 100 C/W  
o
Storage Temperature Range. . . . . . . . . . . . . . . . . .-65 C to +150 C  
Maximum Junction Temperature  
o
Ceramic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175 C  
Plastic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . +300 C  
o
o
(
Lead Tips Only for Surface Mount Packages)  
Die Characteristics  
Gate Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Gates  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Operating Conditions  
Operating Temperature Range. . . . . . . . . . . . . . . . . -40 C to +85 C  
o
o
Sync. Transition Span (t2) . . . . . . . . . . 1.5 DBP Typical, (Notes 1, 2)  
Operating Voltage Range . . . . . . . . . . . . . . . . . . . . . +4.5V to +5.5V Short Data Transition Span (t4). . . . . . .0.5DBP Typical, (Notes 1, 2)  
Input Rise and Fall Times. . . . . . . . . . . . . . . . . . . . . . . . . .50ns Max  
NOTES:  
Long Data Transition Span (t5) . . . . . . .1.0DBP Typical, (Notes 1, 2)  
Zero Crossing Tolerance (tCD5) . . . . . . . . . . . . . . . . . . . . . .(Note 3)  
1. DBP-Data Bit Period, Clock Rate = 16X, one DBP = 16 Clock Cycles; Clock Rate = 32X, one DBP = 32 Clock Cycles.  
2. The input conditions specified are nominal values, the actual input waveforms transition spans may vary by ±2 I clock cycles (16X mode)  
X
or ±6 I clock cycles (32X mode).  
X
3. The maximum zero crossing tolerance is ±2 I clock cycles (16X mode) or ±6 I clock cycles (32 mode) from the nominal.  
X
X
o
o
DC Electrical Specifications V = 5.0V ± 10%, T = -40 C to +85 (HD-6409-9)  
CC  
A
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
V
(NOTE 1) TEST CONDITIONS  
V
Logical “1” Input Voltage  
Logical “0” Input Voltage  
Logic “1” Input Voltage (Reset)  
Logic “0” Input Voltage (Reset)  
Logical “1” Input Voltage (Clock)  
Logical “0” Input Voltage (Clock)  
70% V  
-
V
V
V
V
V
V
V
V
= 4.5V  
= 4.5V  
= 5.5V  
= 4.5V  
= 5.5V  
= 4.5V  
IH  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
IN  
V
-
20% V  
-
V
IL  
CC  
V
V
V
-0.5  
-0.5  
V
IHR  
CC  
V
-
GND +0.5  
V
ILR  
V
-
GND +0.5  
+1.0  
+20  
V
IHC  
CC  
V
-
V
ILC  
I
Input Leakage Current (Except I )  
-1.0  
-20  
-10  
µA  
µA  
µA  
V
= V  
or GND, V  
= 5.5V  
= 5.5V  
I
I
X
CC  
CC  
CC  
I
Input Leakage Current (I )  
X
= V  
or GND, V  
IN  
CC  
I
I/O Leakage Current  
+10  
V
= V  
CC  
or GND, V  
= 5.5V  
CC  
O
OUT  
V
Output HIGH Voltage (All Except O )  
V
-0.4  
-
I
I
= -2.0mA, V  
CC  
= 4.5V (Note 2)  
= 4.5V (Note 2)  
OH  
X
CC  
OH  
V
Output LOW Voltage (All Except O )  
X
-
-
0.4  
V
= +2.0mA, V  
OL  
OL  
CC  
I
Standby Power Supply Current  
Operating Power Supply Current  
Functional Test  
100  
µA  
V
= V  
CC  
or GND, V  
= 5.5V,  
CCSB  
IN  
CC  
Outputs Open  
I
-
-
18.0  
-
mA  
-
f = 16.0MHz, V = V  
or GND  
CCOP  
IN  
CC  
V
= 5.5V, C = 50pF  
CC  
L
F
(Note 1)  
T
NOTES:  
1. Tested as follows: f = 16MHz, V = 70% V , V = 20% V , V  
V /2, and V V /2, V = 4.5V and 5.5V.  
CC  
IH CC IL CC OH  
CC  
OL  
CC  
2. Interchanging of force and sense conditions is permitted  
o
Capacitance T = +25 C, Frequency = 1MHz  
A
SYMBOL  
PARAMETER  
TYP  
UNITS  
TEST CONDITIONS  
All measurements are referenced to device GND  
C
Input Capacitance  
Output Capacitance  
10  
12  
pF  
pF  
IN  
C
OUT  
5-8  
HD-6409  
o
o
AC Electrical Specifications V = 5.0V ±10%, T = -40 C to +85 C (HD-6409-9)  
CC  
A
SYMBOL  
PARAMETER  
MIN  
MAX  
UNITS  
(NOTE 1) TEST CONDITIONS  
f
t
Clock Frequency  
-
16  
-
MHz  
sec  
ns  
-
-
-
-
C
Clock Period  
1/f  
C
C
t
Bipolar Pulse Width  
t +10  
C
-
1
t
One-Zero Overlap  
-
20  
20  
120  
0
t -10  
C
ns  
3
t
Clock High Time  
-
-
ns  
f = 16.0MHz  
f = 16.0MHz  
CH  
t
Clock Low Time  
ns  
CL  
t
Serial Data Setup Time  
Serial Data Hold Time  
DCLK to SDO, NVM  
-
ns  
-
-
-
-
CE1  
CE2  
CD2  
t
-
ns  
t
-
40  
40  
50  
50  
11  
11  
1.0  
1.5  
11.5  
1.0  
2.5  
3.0  
1.5  
1.5  
1.0  
3.0  
ns  
t
ECLK to BZO  
-
ns  
R2  
t
Output Rise Time (All except Clock)  
Output Fall Time (All except Clock)  
Clock Output Rise Time  
Clock Output Fall Time  
ECLK to BZO, BOO  
-
ns  
From 1.0V to 3.5V, C = 50pF, Note 2  
L
r
t
-
ns  
From 3.5V to 1.0V, C = 50pF, Note 2  
L
f
t
-
ns  
From 1.0V to 3.5V, C = 20pF, Note 2  
L
r
t
-
ns  
From 3.5V to 1.0V, C = 20pF, Note 2  
L
f
t
t
t
t
t
0.5  
0.5  
10.5  
-
DBP  
DBP  
DBP  
DBP  
DBP  
DBP  
DBP  
DBP  
DBP  
DBP  
Notes 2, 3  
Notes 2, 3  
Notes 2, 3  
Notes 2, 3  
Notes 2, 3  
Notes 2, 3  
Notes 2, 3  
Notes 2, 3  
Notes 2, 3  
Notes 2, 3  
CE3  
CE4  
CE5  
CE6  
CE7  
CD1  
CD3  
CD4  
CTS Low to BZO, BOO Enabled  
CTS Low to ECLK Enabled  
CTS High to ECLK Disabled  
CTS High to BZO, BOO Disabled  
UDI to SDO, NVM  
1.5  
2.5  
0.5  
0.5  
0.5  
2.5  
t
t
t
RST Low to CDLK, SDO, NVM Low  
RST High to DCLK, Enabled  
UDI to BZO, BOO  
t
t
R1  
R3  
UDI to SDO, NVM  
NOTES:  
1. AC testing as follows: f = 4.0MHz, V = 70% V , V = 20% V , Speed Select = 16X, V  
V /2, V V /2, V  
CC OL CC  
= 4.5V and  
CC  
IH CC IL CC OH  
5.5V. Input rise and fall times driven at 1ns/V, Output load = 50pF.  
2. Guaranteed via characteristics at initial device design and after major process and/or design changes, not tested.  
3. DBP-Data Bit Period, Clock Rate = 16X, one DBP = 16 Clock Cycles; Clock Rate = 32X, one DBP = 32 Clock Cycles.  
5-9  
HD-6409  
Timing Waveforms  
NOTE: UDI = 0, FOR NEXT DIAGRAMS  
BIT PERIOD  
BIT PERIOD  
BIT PERIOD  
BOI  
BZI  
T
1
T
T
T
3
3
2
T
1
T
2
COMMAND SYNC  
T
1
BOI  
BZI  
T
T
T
2
3
3
T
1
DATA SYNC  
T
2
T
T
1
1
BOI  
BZI  
T
T
T
T
T
3
3
3
3
3
T
1
T
T
T
T
4
4
5
5
ONE  
ZERO  
NOTE: BOI = 0, BZI = 1 FOR NEXT DIAGRAMS  
ONE  
T
T
T
2
2
2
UDI  
UDI  
COMMAND SYNC  
T
2
DATA SYNC  
ONE  
T
T
T
T
T
UDI  
4
5
5
4
4
ZERO  
ONE  
ONE  
FIGURE 8.  
t
C
t
t
f
r
t
t
CL  
r
90%  
10%  
3.5V  
1.0V  
t
CH  
t
f
FIGURE 9. CLOCK TIMING  
FIGURE 10. OUTPUT WAVEFORM  
5-10  
HD-6409  
Timing Waveforms (Continued)  
ECLK  
t
CE2  
t
CE1  
SD/CDS  
t
CE3  
BZO  
BOO  
FIGURE 11. ENCODER TIMING  
CTS  
CTS  
t
CE6  
BZO  
BOO  
ECLK  
t
CE7  
t
CE4  
BZO  
BOO  
t
CE5  
ECLK  
FIGURE 12. ENCODER TIMING  
FIGURE 13. ENCODER TIMING  
DCLK  
UDI  
t
CD5  
MANCHESTER MANCHESTER MANCHESTER MANCHESTER  
LOGIC-1 LOGIC-0 LOGIC-0 LOGIC-1  
t
CD1  
t
CD2  
SDO  
NVM  
NRZ  
LOGIC-1  
t
CD2  
NOTE: Manchester Data-In is not synchronous with Decoder Clock.  
Decoder Clock is synchronous with decoded NRZ out of SDO.  
FIGURE 14. DECODER TIMING  
50%  
RST  
RST  
50%  
t
CD3  
t
CD4  
DCLK, SDO,  
NVM  
50%  
DCLK  
FIGURE 15. DECODER TIMING  
FIGURE 16. DECODER TIMING  
5-11  
HD-6409  
Timing Waveforms (Continued)  
UDI  
MANCHESTER ‘1’  
ECLK  
MANCHESTER ‘0’  
MANCHESTER ‘0’  
MANCHESTER ‘1’  
t
R2  
t
t
R2  
R1  
BZO  
MANCHESTER ‘1’  
MANCHESTER ‘0’  
MANCHESTER ‘0’  
t
R3  
SDO  
NVM  
t
R3  
FIGURE 17. REPEATER TIMING  
Test Load Circuit  
DUT  
C
L
(NOTE)  
NOTE: INCLUDES STRAY AND JIG  
CAPACITANCE  
FIGURE 18. TEST LOAD CIRCUIT  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
Taiwan Limited  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
5-12  

相关型号:

HD9P6409-9Z

CMOS Manchester Encoder-Decoder
INTERSIL

HD9P6409-9Z96

CMOS Manchester Encoder-Decoder
INTERSIL

HDA-C(50)

Circular Connector
HRS

HDA-CTF

CTF SERIES PLASTIC D SUBMINIATURE SHELL(ACCESSORIES)
HRS

HDA-CTF(4-40)(50)

Connector Accessory
HRS

HDA-CTF(50)

Connector Accessory, Housing Item, ABS, ROHS COMPLIANT
HRS

HDA-CTF1

CTF SERIES PLASTIC D SUBMINIATURE SHELL(ACCESSORIES)
HRS

HDA-CTF1(50)

Connector Accessory
HRS

HDA-CTH

CTH SERIES METALIZED PLASTIC D SUBMINIATURE SHELL
HRS

HDA-CTH(10)

Connector Accessory
HRS

HDA-CTH(4-40)(10)

Connector Accessory
HRS

HDA-CTH1

CTH SERIES METALIZED PLASTIC D SUBMINIATURE SHELL
HRS