HGTP3N60C3D

更新时间:2024-09-18 02:23:29
品牌:INTERSIL
描述:6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes

HGTP3N60C3D 概述

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes 6A , 600V , UFS系列N沟道IGBT与反并联二极管超高速

HGTP3N60C3D 数据手册

通过下载HGTP3N60C3D数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
HGTP3N60C3D, HGT1S3N60C3DS  
Data Sheet  
January 2000  
File Number 4140.2  
6A, 600V, UFS Series N-Channel IGBT with  
Anti-Parallel Hyperfast Diodes  
Features  
o
• 6A, 600V at T = 25 C  
C
The HGTP3N60C3D, and HGT1S3N60C3DS are MOS  
gated high voltage switching devices combining the best  
features of MOSFETs and bipolar transistors. These devices  
have the high input impedance of a MOSFET and the low  
on-state conduction loss of a bipolar transistor. The much  
lower on-state voltage drop varies only moderately between  
25 C and 150 C. The IGBT used is the development type  
TA49113. The diode used in anti-parallel with the IGBT is the  
development type TA49055.  
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . 130ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Hyperfast Anti-Parallel Diode  
o
o
Packaging  
JEDEC TO-220AB  
The IGBT is ideal for many high voltage switching applications  
operating at moderate frequencies where low conduction losses  
are essential.  
EMITTER  
COLLECTOR  
GATE  
Formerly Developmental Type TA49119.  
COLLECTOR (FLANGE)  
Ordering Information  
PART NUMBER  
PACKAGE  
TO-220AB  
TO-263AB  
BRAND  
G3N60C3D  
G3N60C3D  
HGTP3N60C3D  
HGT1S3N60C3DS  
JEDEC TO-263AB  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB variant in tape and reel, i.e.,  
HGT1S3N60C3DS9A.  
COLLECTOR  
(FLANGE)  
Symbol  
GATE  
EMITTER  
C
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000  
1
HGTP3N60C3D, HGT1S3N60C3DS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTP3N60C3D, HGT1S3N60C3DS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
6
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
3
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
24  
±20  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 14) . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
18A at 480V  
33  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.27  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-40 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
Short Circuit Withstand Time (Note 2) at V  
GE  
= 10V (Figure 6) . . . . . . . . . . . . . . . . . . . . .t  
8
µs  
SC  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Repetitive Rating: Pulse width limited by maximum junction temperature.  
o
2. V  
= 360V, T = 125 C, R = 82Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T
= 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
-
MAX  
-
UNITS  
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
CES  
I
600  
V
µA  
mA  
V
C
GE  
CES  
CES  
o
I
V
V
= BV  
= BV  
T
T
T
T
T
= 25 C  
-
-
250  
2.0  
2.0  
2.2  
6.0  
CES  
CE  
CE  
C
C
C
C
C
o
= 150 C  
-
-
-
o
Collector to Emitter Saturation Voltage  
Gate to Emitter Threshold Voltage  
V
I
V
= I  
,
= 25 C  
1.65  
1.85  
5.5  
CE(SAT)  
C C110  
o
= 15V  
GE  
= 250µA,  
C
= 150 C  
-
V
o
V
I
= 25 C  
3.0  
V
GE(TH)  
V
= V  
CE  
GE  
Gate to Emitter Leakage Current  
Switching SOA  
I
V
= ±25V  
-
-
-
-
±250  
nA  
A
GES  
SSOA  
GE  
o
T = 150 C  
V
V
= 480V  
18  
2
-
-
J
CE(PK)  
R
= 82Ω  
= 15V  
G
= 600V  
A
CE(PK)  
V
GE  
L = 1mH  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
= I  
, V  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8.3  
10.8  
13.8  
5
-
13.5  
17.3  
-
V
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
V
GEP  
C C110 CE  
Q
IC = IC110,  
VCE = 0.5 BVCES  
V
= 15V  
G(ON)  
GE  
V
= 20V  
GE  
o
Current Turn-On Delay Time  
Current Rise Time  
t
T = 150 C  
d(ON)I  
J
I
= I  
CE  
C110  
= 0.8 BV  
t
10  
-
rI  
V
V
R
CE(PK)  
= 15V  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
325  
130  
85  
400  
275  
-
d(OFF)I  
GE  
t
= 82Ω  
fI  
G
L = 1mH  
Turn-On Energy  
E
ON  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
245  
2.0  
22  
-
OFF  
V
I
I
I
= 3A  
2.5  
28  
22  
3.75  
3.0  
EC  
EC  
EC  
EC  
t
= 3A, dI /dt = 200A/µs  
EC  
ns  
ns  
RR  
= 1A, dI /dt = 200A/µs  
EC  
17  
o
Thermal Resistance  
NOTE:  
R
IGBT  
-
C/W  
θJC  
o
Diode  
-
C/W  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A). The HGTP3N60C3D and HGT1S3N60C3DS were tested per JEDEC standard  
CE  
No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Turn-On losses include diode losses.  
2
HGTP3N60C3D, HGT1S3N60C3DS  
Typical Performance Curves  
20  
20  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, V  
CE  
PULSE DURATION = 250µs  
= 10V  
12V  
18  
16  
14  
12  
18  
16  
14  
12  
10  
8
DUTY CYCLE <0.5%  
o
T
= 25 C  
C
10V  
V
= 15V  
GE  
10  
8
o
9.0V  
8.5V  
T
T
T
= 150 C  
C
C
C
o
= 25 C  
6
6
o
= -40 C  
4
4
8.0V  
7.5V  
2
0
2
7.0V  
0
4
6
8
10  
12  
14  
0
2
4
6
8
10  
V
, GATE TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
GE  
CE  
FIGURE 1. TRANSFER CHARACTERISTICS  
FIGURE 2. SATURATION CHARACTERISTICS  
20  
18  
16  
20  
18  
16  
14  
12  
10  
8
PULSE DURATION = 250µs  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, V  
= 10V  
DUTY CYCLE <0.5%, V  
= 15V  
GE  
GE  
o
T
= 25  
C
14  
12  
10  
8
C
o
= -40 C  
T
C
o
T
= -40  
C
C
o
T
= 150 C  
C
6
6
o
o
T
C
= 150  
C
T
= 25 C  
C
4
4
2
2
0
0
0
1
2
3
4
5
0
1
2
3
4
5
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 3. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 4. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
7
14  
12  
10  
8
70  
60  
50  
40  
30  
20  
o
V
= 15V  
GE  
V
= 360V, R = 82, T = 125 C  
G J  
CE  
6
5
4
3
2
1
0
t
SC  
I
SC  
6
4
10  
0
2
0
25  
50  
75  
100  
125  
150  
10  
11  
12  
13  
14  
15  
o
T
, CASE TEMPERATURE ( C)  
V
, GATE TO EMITTER VOLTAGE (V)  
C
GE  
FIGURE 5. MAXIMUM DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 6. SHORT CIRCUIT WITHSTAND TIME  
3
HGTP3N60C3D, HGT1S3N60C3DS  
Typical Performance Curves (Continued)  
20  
500  
400  
o
o
T
= 150 C, R = 82, L = 1mH, V  
= 480V  
CE(PK)  
J
G
T
= 150 C, R = 82, L = 1mH, V  
= 480V  
CE(PK)  
J
G
V
= 10V  
= 15V  
GE  
10  
300  
200  
V
GE  
V
GE  
= 15V  
= 10V  
V
GE  
3
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
80  
300  
o
o
= 150 C, R = 82, L = 1mH, V = 480V  
CE(PK)  
T
= 150 C, R = 82, L = 1mH, V  
= 480V  
CE(PK)  
J
G
T
J
G
V
= 10V  
GE  
200  
V
= 10V or 15V  
GE  
V
= 15V  
GE  
10  
5
100  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-OFF FALL TIME vs COLLECTOR TO  
EMITTER CURRENT  
0.8  
0.5  
o
= 150 C, R = 82, L = 1mH, V = 480V  
CE(PK)  
o
= 150 C, R = 82, L = 1mH, V  
T
T
= 480V  
J
G
J
G
CE(PK)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
V
= 10V  
GE  
V
= 10V or 15V  
GE  
V
= 15V  
GE  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTP3N60C3D, HGT1S3N60C3DS  
Typical Performance Curves (Continued)  
200  
20  
18  
16  
14  
12  
10  
8
o
o
o
T
= 150 C, V  
= 15V, R = 82, L = 1mH  
J
GE G  
T
= 150 C, T = 75 C  
C
J
R
= 82, L = 1mH  
G
100  
V
= 15V  
GE  
f
f
= 0.05/(t  
D(OFF)I  
+ t )  
D(ON)I  
MAX1  
= (P - P )/(E  
ON  
+ E  
)
OFF  
MAX2  
D
C
P
P
= ALLOWABLE DISSIPATION  
= CONDUCTION DISSIPATION  
6
D
C
4
(DUTY FACTOR = 50%)  
o
V
= 10V  
5
GE  
2
R
= 3.75 C/W  
JC  
θ
10  
1
0
2
3
4
6
0
100  
200  
300  
400  
500  
600  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
V
CE(PK)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
FIGURE 13. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 14. MINIMUM SWITCHING SAFE OPERATING AREA  
600  
480  
360  
240  
120  
0
15  
12  
9
500  
FREQUENCY = 1MHz  
400  
300  
200  
100  
0
C
IES  
V
= 600V  
CE  
V
V
= 400V  
= 200V  
CE  
CE  
6
I
= 1.060mA  
C
G(REF)  
OES  
3
R
T
= 200Ω  
L
o
C
= 25 C  
RES  
C
0
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
12  
14  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
Q
, GATE CHARGE (nC)  
CE  
G
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. GATE CHARGE WAVEFORMS  
0
10  
0.5  
0.2  
t
1
0.1  
-1  
10  
P
D
0.05  
t
2
0.02  
0.01  
DUTY FACTOR, D = t / t  
1
2
PEAK T = (P X Z  
X R  
) + T  
JC C  
SINGLE PULSE  
J
D
JC  
θ
θ
-2  
10  
-5  
-4  
10  
-3  
-2  
10  
-1  
0
1
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE  
5
HGTP3N60C3D, HGT1S3N60C3DS  
Typical Performance Curves (Continued)  
15  
12  
9
30  
25  
20  
15  
10  
5
o
T
= 25 C, dI /dt = 200A/µs  
C
EC  
t
rr  
t
o
a
b
100 C  
6
o
o
25 C  
150 C  
t
3
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.5  
1
4
V
, FORWARD VOLTAGE (V)  
I
, FORWARD CURRENT (A)  
EC  
EC  
FIGURE 18. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 19. RECOVERY TIMES vs FORWARD CURRENT  
Test Circuit and Waveforms  
90%  
L = 1mH  
RHRD460  
10%  
ON  
V
V
GE  
E
E
OFF  
R
= 82Ω  
G
CE  
+
-
90%  
V
= 480V  
DD  
10%  
d(OFF)I  
I
CE  
t
t
rI  
t
fI  
t
d(ON)I  
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 21. SWITCHING TEST WAVEFORMS  
6
HGTP3N60C3D, HGT1S3N60C3DS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 13) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 4, 7, 8, 11  
and 12. The operating frequency plot (Figure 13) of a typical  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as ECCOSORBD LD26 or equivalent.  
are possible. t  
and t  
are defined in Figure 20.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM  
C
θJC  
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 13)  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
and the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P
= (V  
x I )/2.  
CE  
C
CE  
permanent damage to the oxide layer in the gate region.  
E
and E  
are defined in the switching waveforms  
OFF  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
ON  
shown in Figure 20. E  
power loss (I  
integral of the instantaneous power loss (I  
CE  
turn-off. All tail losses are included in the calculation for  
E ; i.e., the collector current equals zero (I = 0).  
OFF  
is the integral of the instantaneous  
ON  
x V ) during turn-on and E  
is the  
CE  
CE  
OFF  
x V ) during  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
CE  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
ECCOSORBD™ is a Trademark of Emerson and Cumming, Inc.  
7

HGTP3N60C3D 相关器件

型号 制造商 描述 价格 文档
HGTP3N60C3D_07 HARRIS 6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode 获取价格
HGTP5N120 FAIRCHILD 21A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes 获取价格
HGTP5N120 INTERSIL 21A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes 获取价格
HGTP5N120BN INTERSIL 21A, 1200V, NPT Series N-Channel IGBTs 获取价格
HGTP5N120BND FAIRCHILD 21A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes 获取价格
HGTP5N120BND INTERSIL 21A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes 获取价格
HGTP5N120BND RENESAS 21A, 1200V, N-CHANNEL IGBT, TO-220AB 获取价格
HGTP5N120BND ONSEMI 1200V,NPT IGBT 获取价格
HGTP5N120CN INTERSIL 25A, 1200V, NPT Series N-Channel IGBT 获取价格
HGTP5N120CND INTERSIL 25A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode 获取价格

HGTP3N60C3D 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6