HI5660EVAL1 [INTERSIL]

8-Bit, 165/125/60MSPS, High Speed D/A Converter; 8位165 /125 / 60MSPS ,高速D / A转换器
HI5660EVAL1
型号: HI5660EVAL1
厂家: Intersil    Intersil
描述:

8-Bit, 165/125/60MSPS, High Speed D/A Converter
8位165 /125 / 60MSPS ,高速D / A转换器

转换器
文件: 总11页 (文件大小:85K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5660  
Data Sheet  
November 1999  
File Number 4521.4  
8-Bit, 165/125/60MSPS, High Speed D/A  
Converter  
Features  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . .125MSPS  
• Low Power . . . . . . . . . . . . . . . 165mW at 5V, 27mW at 3V  
• Power Down Mode . . . . . . . . . . 23mW at 5V, 10mW at 3V  
• Integral Linearity Error . . . . . . . . . . . . . . . . . . . ±0.25 LSB  
• Adjustable Full Scale Output Current. . . . . 2mA to 20mA  
• SFDR to Nyquist at 10MHz Output . . . . . . . . . . . . .60dBc  
• Internal 1.2V Bandgap Voltage Reference  
The HI5660 is an 8-bit, 125MSPS, high speed, low power,  
D/A converter which is implemented in an advanced CMOS  
process. Operating from a single +3V to +5V supply, the  
converter provides 20mA of full scale output current and  
includes edge-triggered CMOS input data latches. Low glitch  
energy and excellent frequency domain performance are  
achieved using a segmented current source architecture. For  
an equivalent performance dual version, see the HI5628.  
This device complements the CommLink™ HI5X60 family of  
high speed converters offered by Intersil, which includes 8,  
10, 12, and 14-bit devices.  
• Single Power Supply from +5V to +3V  
• CMOS Compatible Inputs  
• Excellent Spurious Free Dynamic Range  
Ordering Information  
Applications  
TEMP.  
PART  
NUMBER  
RANGE  
( C)  
PKG.  
NO.  
CLOCK  
SPEED  
• Medical Instrumentation  
• Wireless Communications  
• Direct Digital Frequency Synthesis  
• Signal Reconstruction  
o
PACKAGE  
HI5660/16IB  
HI5660/16IA †  
HI5660IB  
-40 to 85 28 Ld SOIC  
M28.3  
165MHz  
-40 to 85 28 Ld TSSOP M28.173 165MHz  
-40 to 85 28 Ld SOIC M28.3 125MHz  
-40 to 85 28 Ld TSSOP M28.173 125MHz  
-40 to 85 28 Ld SOIC M28.3 60MHz  
-40 to 85 28 Ld TSSOP M28.173 60MHz  
25 Evaluation Platform 125MHz  
Test Instrumentation  
HI5660IA †  
• High Resolution Imaging Systems  
• Arbitrary Waveform Generators  
HI5660/6IB †  
HI5660/6IA  
Pinout  
HI5660EVAL1 †  
HI5660 (SOIC, TSSOP)  
TOP VIEW  
Contact factory for availability.  
D7 (MSB)  
D6  
1
2
3
4
5
6
7
8
9
CLK  
28  
27 DV  
DD  
26 DCOM  
25 NC  
D5  
D4  
D3  
24 AV  
DD  
D2  
23 NC  
D1  
22 IOUTA  
21 IOUTB  
D0 (LSB)  
DCOM  
20  
ACOM  
DCOM 10  
DCOM 11  
DCOM 12  
DCOM 13  
DCOM 14  
19 COMP1  
18 FSADJ  
17 REFIO  
16 REFLO  
15 SLEEP  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
CommLink™ is a trademark of Intersil Corporation.  
1
HI5660  
Typical Applications Circuit  
HI5660  
(15) SLEEP  
(16) REFLO  
DCOM  
ACOM  
(9-14, 25)  
DCOM  
(17) REFIO  
0.1µF  
D7 (MSB) (1)  
D6 (2)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
(18) FSADJ  
(22) IOUTA  
D5 (3)  
R
SET  
1.91kΩ  
D4 (4)  
D3 (5)  
D/A OUT  
50Ω  
50Ω  
D2 (6)  
D1 (7)  
D0 (LSB) (8)  
D0  
(21) IOUTB  
D/A OUT  
CLK (28)  
(23) NC  
50Ω  
(19) COMP1  
DCOM (26)  
0.1µF  
(20) ACOM  
FERRITE  
BEAD  
FERRITE  
BEAD  
+5V OR +3V (V  
)
DD  
(24) AV  
DD  
DV  
DD  
(27)  
+
+
10µH  
10µH  
10µF  
0.1µF  
10µF  
0.1µF  
Functional Block Diagram  
IOUTA IOUTB  
(LSB) D0  
D1  
CASCODE  
CURRENT  
SOURCE  
34  
34  
D2  
SWITCH  
MATRIX  
D3  
3 LSBs  
+
LATCH  
LATCH  
31 MSB  
D4  
D5  
UPPER  
5-BIT  
31  
SEGMENTS  
DECODER  
D6  
(MSB) D7  
COMP1  
CLK  
INT/EXT  
VOLTAGE  
REFERENCE  
BIAS  
GENERATION  
INT/EXT  
REFERENCE  
SELECT  
FSADJ  
SLEEP  
AV  
ACOM DV  
DD  
DCOM  
REFLO  
REFIO  
DD  
2
HI5660  
Absolute Maximum Ratings  
Thermal Information  
o
Digital Supply Voltage DV  
DD  
to DCOM . . . . . . . . . . . . . . . . . . +5.5V  
to ACOM. . . . . . . . . . . . . . . . . . +5.5V  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
JA  
Analog Supply Voltage AV  
DD  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . .  
70  
117  
Grounds, ACOM TO DCOM. . -0.3V To +0.3V Digital Input Voltages  
(D9-D0, CLK, SLEEP) . . . . . . . . . . . . . . . . . . . . . . . . . DV + 0.3V  
o
DD  
Internal Reference Output Current. . . . . . . . . . . . . . . . . . . . . ±50µA  
Reference Input Voltage Range. . . . . . . . . . . . . . . . . . AV + 0.3V  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
o
o
DD  
) . . . . . . . . . . . . . . . . . . . . . . . . . 24mA  
Analog Output Current (I  
OUT  
(SOIC - Lead Tips Only)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications AV = DV = +5V, V  
= Internal 1.2V, IOUTFS = 20mA, T = 25 C for All Typical Values  
A
DD  
DD  
REF  
o
o
T
= -40 C TO 85 C  
A
PARAMETER  
SYSTEM PERFORMANCE  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
8
-0.5  
-0.5  
-0.025  
-
-
-
Bits  
LSB  
LSB  
Integral Linearity Error, INL  
Differential Linearity Error, DNL  
“Best Fit” Straight Line (Note 7)  
±0.25  
±0.25  
+0.5  
+0.5  
(Note 7)  
(Note 7)  
(Note 7)  
Offset Error, I  
+0.025 % FSR  
OS  
Offset Drift Coefficient  
0.1  
-
ppm  
o
FSR/ C  
Full Scale Gain Error, FSE  
With External Reference (Notes 2, 7)  
With Internal Reference (Notes 2, 7)  
With External Reference (Note 7)  
-10  
-10  
-
±2  
±1  
+10  
+10  
-
% FSR  
% FSR  
ppm  
Full Scale Gain Drift  
±50  
o
FSR/ C  
With Internal Reference (Note 7)  
(Note 3)  
-
±100  
-
ppm  
FSR/ C  
o
Full Scale Output Current, I  
2
-
-
20  
mA  
V
FS  
Output Voltage Compliance Range  
-0.3  
1.25  
DYNAMIC CHARACTERISTICS  
Maximum Clock Rate, f  
Output Settling Time, (t  
(Notes 3, 9)  
125  
-
-
-
-
-
-
-
MHz  
ns  
CLK  
)
0.8% (±1 LSB, equivalent to 7 Bits) (Note 7)  
0.4% (±1/2 LSB, equivalent to 8 Bits) (Note 7)  
-
-
-
-
-
5
SETT  
15  
5
ns  
Singlet Glitch Area (Peak Glitch)  
Output Rise Time  
R
= 25(Note 7)  
pV•s  
ns  
L
Full Scale Step  
Full Scale Step  
1.5  
1.5  
10  
50  
30  
Output Fall Time  
ns  
Output Capacitance  
Output Noise  
pF  
IOUTFS = 20mA  
IOUTFS = 2mA  
-
-
-
-
pA/Hz  
pA/Hz  
AC CHARACTERISTICS HI5660/16IB, HI5660/16IA - 165MHz  
Spurious Free Dynamic Range,  
SFDR Within a Window  
f
= 165MSPS, f  
= 165MSPS, f  
= 125MSPS, f  
= 100MSPS, f  
= 66.7MHz, 50MHz Span (Notes 4, 7, 9)  
= 20.2MHz, 30MHz Span (Notes 4, 7, 9)  
= 32.9MHz, 10MHz Span (Notes 4, 7)  
= 5.04MHz, 4MHz Span (Notes 4, 7)  
-
-
-
-
60  
69  
70  
73  
-
-
-
-
dBc  
dBc  
dBc  
dBc  
CLK  
OUT  
OUT  
OUT  
OUT  
f
CLK  
f
CLK  
f
CLK  
3
HI5660  
o
Electrical Specifications AV = DV = +5V, V  
= Internal 1.2V, IOUTFS = 20mA, T = 25 C for All Typical Values (Continued)  
A
DD  
DD  
REF  
o
o
T
= -40 C TO 85 C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
64  
67  
46  
54  
51  
61  
48  
56  
68  
MAX  
UNITS  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Total Harmonic Distortion (THD) to  
Nyquist  
f
f
f
f
f
f
f
f
f
= 165MSPS, f  
= 100MSPS, f  
= 8.2MHz (Notes 4, 7)  
= 2.00MHz (Notes 4, 7)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
OUT  
OUT  
Spurious Free Dynamic Range,  
SFDR to Nyquist  
= 165MSPS, f  
= 165MSPS, f  
= 125MSPS, f  
= 125MSPS, f  
= 100MSPS, f  
= 100MSPS, f  
= 100MSPS, f  
= 66.7MHz, 82.5MHz Span (Notes 4, 7, 9)  
= 20.2MHz, 82.5MHz Span (Notes 4, 7, 9)  
= 32.9MHz, 62.5MHz Span (Notes 4, 7)  
= 10.1MHz, 62.5MHz Span (Notes 4, 7)  
= 40.4MHz, 50MHz Span (Notes 4, 7)  
= 20.2MHz, 50MHz Span (Notes 4, 7)  
= 5.04MHz, 50MHz Span (Notes 4, 7)  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
AC CHARACTERISTICS HI5660IB, HI5660IA - 125MHz  
Spurious Free Dynamic Range,  
SFDR Within a Window  
f
= 125MSPS, f  
= 100MSPS, f  
= 32.9MHz, 10MHz Span (Notes 4, 7)  
= 5.04MHz, 4MHz Span (Notes 4, 7)  
-
-
-
70  
73  
67  
-
-
-
dBc  
dBc  
dBc  
CLK  
OUT  
f
CLK  
OUT  
Total Harmonic Distortion (THD) to  
Nyquist  
f
= 100MSPS, f  
= 2.00MHz (Notes 4, 7)  
OUT  
CLK  
Spurious Free Dynamic Range,  
SFDR to Nyquist  
f
= 125MSPS, f  
= 125MSPS, f  
= 100MSPS, f  
= 100MSPS, f  
= 100MSPS, f  
= 100MSPS, f  
= 32.9MHz, 62.5MHz Span (Notes 4, 7)  
= 10.1MHz, 62.5MHz Span (Notes 4, 7)  
= 40.4MHz, 50MHz Span (Notes 4, 7)  
= 20.2MHz, 50MHz Span (Notes 4, 7)  
= 5.04MHz, 50MHz Span (Notes 4, 7)  
= 2.51MHz, 50MHz Span (Notes 4, 7)  
-
-
-
-
-
-
51  
61  
48  
56  
68  
68  
-
-
-
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
CLK  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
AC CHARACTERISTICS HI5660/6IB, HI5660/6IA - 60MHz  
Spurious Free Dynamic Range,  
SFDR Within a Window  
f
= 60MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 10.1MHz, 10MHz Span (Notes 4, 7)  
= 5.02MHz, 2MHz Span (Notes 4, 7)  
= 1.00MHz, 2MHz Span (Notes 4, 7)  
-
-
-
-
-
-
-
-
-
-
-
-
62  
73  
74  
67  
68  
54  
60  
53  
67  
68  
68  
71  
-
-
-
-
-
-
-
-
-
-
-
-
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
CLK  
OUT  
OUT  
OUT  
f
CLK  
f
CLK  
Total Harmonic Distortion (THD) to  
Nyquist  
f
f
= 50MSPS, f  
= 50MSPS, f  
= 2.00MHz (Notes 4, 7)  
= 1.00MHz (Notes 4, 7)  
CLK  
CLK  
OUT  
OUT  
Spurious Free Dynamic Range,  
SFDR to Nyquist  
f
= 60MSPS, f  
= 60MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 50MSPS, f  
= 25MSPS, f  
= 20.2MHz, 30MHz Span (Notes 4, 7)  
= 10.1MHz, 30MHz Span (Notes 4, 7)  
= 20.2MHz, 25MHz Span (Notes 4, 7)  
= 5.02MHz, 25MHz Span (Notes 4, 7)  
= 2.51MHz, 25MHz Span (Notes 4, 7)  
= 1.00MHz, 25MHz Span (Notes 4, 7)  
= 5.02MHz, 25MHz Span (Notes 4, 7)  
CLK  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
f
CLK  
VOLTAGE REFERENCE  
Internal Reference Voltage, V  
FSADJ  
Voltage at Pin 18 with Internal Reference  
1.04  
1.16  
±60  
0.1  
1.28  
V
o
Internal Reference Voltage Drift  
-
-
-
-
ppm/ C  
Internal Reference Output Current  
Sink/Source Capability  
µA  
Reference Input Impedance  
-
-
1
-
-
MΩ  
Reference Input Multiplying Bandwidth (Note 7)  
1.4  
MHz  
DIGITAL INPUTS D7-D0, CLK  
Input Logic High Voltage with  
5V Supply, V  
(Note 3)  
(Note 3)  
3.5  
2.1  
5
3
-
-
V
V
IH  
Input Logic High Voltage with  
3V Supply, V  
IH  
4
HI5660  
o
Electrical Specifications AV = DV = +5V, V  
= Internal 1.2V, IOUTFS = 20mA, T = 25 C for All Typical Values (Continued)  
A
DD  
DD  
REF  
o
o
T
= -40 C TO 85 C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Logic Low Voltage with  
(Note 3)  
(Note 3)  
-
0
1.3  
V
5V Supply, V  
IL  
Input Logic Low Voltage with  
3V Supply, V  
-
0
0.9  
V
IL  
Input Logic Current, I  
-10  
-10  
-
-
-
+10  
+10  
-
µA  
µA  
pF  
IH  
IL  
Input Logic Current, I  
Digital Input Capacitance, C  
IN  
5
TIMING CHARACTERISTICS  
Data Setup Time, t  
See Figure 3 (Note 3)  
See Figure 3 (Note 3)  
See Figure 3  
3
3
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
SU  
Data Hold Time, t  
HLD  
Propagation Delay Time, t  
1
-
PD  
CLK Pulse Width, t  
, t  
PW1 PW2  
See Figure 3 (Note 3)  
4
POWER SUPPLY CHARACTERISTICS  
AV  
DV  
Power Supply  
Power Supply  
(Note 8, 9)  
(Note 8, 9)  
2.7  
5.0  
5.0  
23  
4
5.5  
V
V
DD  
2.7  
5.5  
DD  
Analog Supply Current (I  
)
5V or 3V, IOUTFS = 20mA  
-
30  
mA  
AVDD  
5V or 3V, IOUTFS = 2mA  
-
-
mA  
Digital Supply Current (I  
DVDD  
)
5V, IOUTFS = Don’t Care (Note 5)  
3V, IOUTFS = Don’t Care (Note 5)  
5V or 3V, IOUTFS = Don’t Care  
5V, IOUTFS = 20mA (Note 6)  
5V, IOUTFS = 20mA (Note 10)  
5V, IOUTFS = 2mA (Note 6)  
3.3V, IOUTFS = 20mA (Note 10)  
3V, IOUTFS = 20mA (Note 6)  
3V, IOUTFS = 20mA (Note 10)  
3V, IOUTFS = 2mA (Note 6)  
Single Supply (Note 7)  
-
3
5
mA  
-
1.5  
1.6  
165  
150  
70  
75  
85  
67  
27  
-
-
mA  
Supply Current (I  
) Sleep Mode  
-
3
mA  
AVDD  
Power Dissipation  
-
-
mW  
mW  
mW  
mW  
mW  
mW  
mW  
% FSR/V  
-
-
-
-
-
-
-
-
-
-
-
-
Power Supply Rejection  
NOTES:  
-0.2  
+0.2  
2. Gain Error measured as the error in the ratio between the full scale output current and the current through R  
ratio should be 32.  
(typically 625µA). Ideally the  
SET  
3. Parameter guaranteed by design or characterization and not production tested.  
4. Spectral measurements made with differential transformer coupled output and no external filtering.  
5. Measured with the clock at 50MSPS and the output frequency at 1MHz.  
6. Measured with the clock at 100MSPS and the output frequency at 40MHz.  
7. See ‘Definition of Specifications’.  
8. It is recommended that the output current be reduced to 12mA or less to maintain optimum performance for operation below 3V. DV  
and  
DD  
AV  
DD  
do not have to be equal.  
9. For operation above 125MHz, it is recommended that the power supply be 3.3V or greater. The part is functional with the clock above 125MSPS  
and the power supply below 3.3V, but performance is degraded (valid for 165MHz version only).  
10. Measured with the clock at 60MSPS and the output frequency at 10MHz.  
5
HI5660  
Timing Diagrams  
50%  
CLK  
D7-D0  
1
GLITCH AREA =  
/ (H x W)  
2
V
1
/
LSB ERROR BAND  
2
HEIGHT (H)  
I
OUT  
t(ps)  
WIDTH (W)  
t
SETT  
t
PD  
FIGURE 1. OUTPUT SETTLING TIME DIAGRAM  
FIGURE 2. PEAK GLITCH AREA (SINGLET) MEASUREMENT  
METHOD  
t
t
PW2  
PW1  
50%  
CLK  
t
t
t
SU  
SU  
SU  
t
HLD  
t
t
HLD  
HLD  
D7-D0  
t
SETT  
t
PD  
I
OUT  
t
t
SETT  
SETT  
t
t
PD  
PD  
FIGURE 3. PROPAGATION DELAY, SETUP TIME, HOLD TIME AND MINIMUM PULSE WIDTH DIAGRAM  
6
HI5660  
Power Supply Rejection, is measured using a single power  
supply. Its nominal +5V is varied ±10% and the change in the  
DAC full scale output is noted.  
Definition of Specifications  
Integral Linearity Error, INL, is the measure of the worst  
case point that deviates from a best fit straight line of data  
values along the transfer curve.  
Reference Input Multiplying Bandwidth, is defined as the  
3dB bandwidth of the voltage reference input. It is measured  
by using a sinusoidal waveform as the external reference  
with the digital inputs set to all 1s. The frequency is  
increased until the amplitude of the output waveform is 0.707  
of its original value.  
Differential Linearity Error, DNL, is the measure of the  
step size output deviation from code to code. Ideally the step  
size should be 1 LSB. A DNL specification of 1 LSB or less  
guarantees monotonicity.  
Output Settling Time, is the time required for the output  
voltage to settle to within a specified error band measured  
from the beginning of the output transition. In the case of the  
HI5660, the measurement was done by switching from code  
0 to 64, or quarter scale. Termination impedance was 25Ω  
due to the parallel resistance of the output 50and the  
oscilloscope’s 50input. This also aids the ability to resolve  
the specified error band without overdriving the oscilloscope.  
Internal Reference Voltage Drift, is defined as the  
maximum deviation from the value measured at room  
temperature to the value measured at either T  
or T .  
MAX  
MIN  
The units are ppm per degree C.  
Detailed Description  
The HI5660 is an 8-bit, current out, CMOS, digital to analog  
converter. Its maximum update rate is 165MSPS and can be  
powered by either single or dual power supplies in the  
recommended range of +3V to +5V. It consumes less than  
165mW of power when using a +5V supply with the data  
switching at 100MSPS. The architecture is based on a  
segmented current source arrangement that reduces glitch  
by reducing the amount of current switching at any one time.  
The five MSBs are represented by 31 major current sources  
of equivalent current. The three LSBs are comprised of  
binary weighted current sources. Consider an input pattern  
to the converter which ramps through all the codes from 0 to  
255. The three LSB current sources would begin to count up.  
When they reached the all high state (decimal value of 7)  
and needed to count to the next code, they would all turn off  
and the first major current source would turn on. To continue  
counting upward, the 3 LSBs would count up another 7  
codes, and then the next major current source would turn on  
and the three LSBs would all turn off. The process of the  
single, equivalent, major current source turning on and the  
three LSBs turning off each time the converter reaches  
another 7 codes greatly reduces the glitch at any one  
switching point. In previous architectures that contained all  
binary weighted current sources or a binary weighted  
resistor ladder, the converter might have a substantially  
larger amount of current turning on and off at certain, worst-  
case transition points such as midscale and quarter scale  
transitions. By greatly reducing the amount of current  
switching at certain ‘major’ transitions, the overall glitch of  
the converter is dramatically reduced, improving settling  
times and transient problems.  
Singlet Glitch Area, is the switching transient appearing on  
the output during a code transition. It is measured as the  
area under the overshoot portion of the curve and is  
expressed as a Volt-Time specification.  
Full Scale Gain Error, is the error from an ideal ratio of 32  
between the output current and the full scale adjust current  
(through R  
).  
SET  
Full Scale Gain Drift, is measured by setting the data inputs  
to all ones and measuring the output voltage through a  
known resistance as the temperature is varied from T  
to  
. It is defined as the maximum deviation from the value  
MIN  
T
MAX  
measured at room temperature to the value measured at  
either T or . The units are ppm of FSR (full scale  
MIN  
MAX  
range) per degree C.  
Total Harmonic Distortion, THD, is the ratio of the DAC output  
fundamental to the RMS sum of the first five harmonics.  
Spurious Free Dynamic Range, SFDR, is the amplitude  
difference from the fundamental to the largest harmonically or  
non-harmonically related spur within the specified window.  
Output Voltage Compliance Range, is the voltage limit  
imposed on the output. The output impedance load should  
be chosen such that the voltage developed does not violate  
the compliance range.  
Offset Error, is measured by setting the data inputs to all  
zeros and measuring the output voltage through a known  
resistance. Offset error is defined as the maximum deviation  
of the output current from a value of 0mA.  
Digital Inputs and Termination  
Offset Drift, is measured by setting the data inputs to all  
The HI5660 digital inputs are guaranteed to CMOS levels.  
However, TTL compatibility can be achieved by lowering the  
supply voltage to 3V due to the digital threshold of the input  
buffer being approximately half of the supply voltage. The  
internal register is updated on the rising edge of the clock. To  
minimize reflections, proper termination should be  
zeros and measuring the output voltage through a known  
resistance as the temperature is varied from T  
to  
. It  
MAX  
MIN  
is defined as the maximum deviation from the value  
measured at room temperature to the value measured at  
either T or T . The units are ppm of FSR (full scale  
MIN  
MAX  
range) per degree C.  
implemented. If the lines driving the clock and the digital  
7
HI5660  
inputs are 50lines, then 50termination resistors should  
be placed as close to the converter inputs as possible  
connected to the digital ground plane (if separate grounds  
are used).  
Outputs  
IOUTA and IOUTB are complementary current outputs. The  
sum of the two currents is always equal to the full scale  
output current minus one LSB. If single ended use is  
desired, a load resistor can be used to convert the output  
current to a voltage. It is recommended that the unused  
output be either grounded or equally terminated. The voltage  
developed at the output must not violate the output voltage  
Ground Plane(s)  
If separate digital and analog ground planes are used, then  
all of the digital functions of the device and their  
corresponding components should be over the digital ground  
plane and terminated to the digital ground plane. The same  
is true for the analog components and the analog ground  
plane.  
compliance range of -0.3V to 1.25V. R  
should be  
LOAD  
chosen so that the desired output voltage is produced in  
conjunction with the output full scale current, which is  
described above in the ‘Reference’ section. If a known line  
impedance is to be driven, then the output load resistor  
should be chosen to match this impedance. The output  
voltage equation is:  
Noise Reduction  
To minimize power supply noise, 0.1µF capacitors should  
be placed as close as possible to the converter’s power  
supply pins, AV  
designed using separate digital and analog ground planes,  
and DV . Also, should the layout be  
DD  
DD  
V
= I  
OUT  
X R .  
LOAD  
OUT  
These outputs can be used in a differential-to-single-ended  
arrangement to achieve better harmonic rejection. The  
SFDR measurements in this data sheet were performed with  
a 1:1 transformer on the output of the DAC (see Figure 1).  
With the center tap grounded, the output swing of pins 21  
and 22 will be biased at zero volts. It is important to note  
here that the negative voltage output compliance range limit  
these capacitors should be terminated to the digital ground  
for DV  
and to the analog ground for AV . Additional  
DD  
DD  
filtering of the power supplies on the board is  
recommended.  
Voltage Reference  
The internal voltage reference of the device has a nominal  
value of +1.2V with a ±60 ppm/oC drift coefficient over the  
full temperature range of the converter. It is recommended  
that a 0.1µF capacitor be placed as close as possible to the  
REFIO pin, connected to the analog ground. The REFLO  
pin (16) selects the reference. The internal reference can  
be selected if pin 16 is tied low (ground). If an external  
reference is desired, then pin 16 should be tied high (to the  
analog supply voltage) and the external reference driven  
into REFIO, pin 17. The full scale output current of the  
converter is a function of the voltage reference used and  
is -300mV, imposing a maximum of 600mV  
amplitude  
P-P  
with this configuration. The loading as shown in Figure 1 will  
result in a 500mV signal at the output of the transformer if  
the full scale output current of the DAC is set to 20mA.  
V
= (2 x I  
x R )V  
OUT EQ  
OUT  
50Ω  
100Ω  
50Ω  
IOUTB  
IOUTA  
PIN 21  
50Ω  
PIN 22  
HI5660  
the value of R  
. I should be within the 2mA to 20mA  
SET OUT  
range, through operation below 2mA is possible, with  
performance degradation.  
If the internal reference is used, V  
FSADJ  
will equal  
FIGURE 4.  
approximately 1.16V (pin 18). If an external reference is  
used, V will equal the external reference. The  
FSADJ  
calculation for I  
V
= 2 x I  
x R , where R is ~12.5.  
EQ EQ  
OUT  
OUT  
(full scale) is:  
OUT  
I
(Full Scale) = (V  
/R  
)x 32.  
OUT  
FSADJ SET  
If the full scale output current is set to 20mA by using the  
internal voltage reference (1.16V) and a 1.86kR  
SET  
resistor, then the input coding to output current will resemble  
the following:  
TABLE 1. INPUT CODING vs OUTPUT CURRENT  
INPUT CODE (D7-D0)  
111 11111  
IOUTA (mA)  
IOUTB (mA)  
20  
10  
0
0
100 00000  
10  
20  
000 00000  
8
HI5660  
Pin Descriptions  
PIN NO.  
PIN NAME  
PIN DESCRIPTION  
1-8  
D7 (MSB) Through Digital Data Bit 7, (Most Significant Bit) through Digital Data Bit 0, (Least Significant Bit).  
D0 (LSB)  
9-14  
15  
DCOM  
SLEEP  
Connect to digital ground.  
Control Pin for Power-Down mode. Sleep Mode is active high; Connect to ground for Normal Mode. Sleep  
pin has internal 20µA active pulldown current.  
16  
17  
18  
REFLO  
REFIO  
FSADJ  
Connect to analog ground to enable internal 1.2V reference or connect to AV  
ence.  
to disable internal refer-  
DD  
Reference voltage input if internal reference is disabled. Reference voltage output if internal reference is en-  
abled. Use 0.1µF cap to ground when internal reference is enabled.  
Full Scale Current Adjust. Use a resistor to ground to adjust full scale output current. Full Scale Output  
Current = 32 x V  
/R .  
FSADJ SET  
19  
20  
21  
COMP1  
ACOM  
IOUTB  
For use in reducing bandwidth/noise. Recommended: connect 0.1µF to AV  
.
DD  
Analog Ground.  
The complimentary current output of the device. Full scale output current is achieved when all input bits  
are set to binary 0.  
22  
23  
IOUTA  
NC  
Current output of the device. Full scale output current is achieved when all input bits are set to binary 1.  
Internally connected to ACOM via a resistor. Recommend leave disconnected. Adding a capacitor to  
ACOM for upward compatibility is valid. Grounding to ACOM is valid. (For upward compatibility to 12-bit  
and 14-bit devices, pin 23 needs the ability to have a 0.1µF capacitor to ACOM.)  
24  
25  
26  
27  
28  
AV  
DD  
Analog Supply (+3V to +5V).  
NC  
DCOM  
DV  
No Connect (for upward compatibility to 12 and 14b, pin 25 needs to be grounded to ACOM).  
Digital Ground.  
Digital Supply (+3V to +5V).  
DD  
CLK  
Input for clock. Positive edge of clock latches data.  
9
HI5660  
Thin Shrink Small Outline Plastic Packages (TSSOP)  
M28.173  
N
28 LEAD THIN SHRINK SMALL OUTLINE PLASTIC  
PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
E
E1  
-B-  
INCHES  
MIN  
MILLIMETERS  
GAUGE  
PLANE  
SYMBOL  
MAX  
0.047  
0.006  
0.051  
0.0118  
0.0079  
0.386  
0.177  
MIN  
-
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
9.80  
4.50  
NOTES  
A
A1  
A2  
b
-
-
1
2
3
0.002  
0.031  
0.0075  
0.0035  
0.378  
0.169  
0.05  
0.80  
0.19  
0.09  
9.60  
4.30  
-
L
-
0.25  
0.010  
0.05(0.002)  
SEATING PLANE  
A
9
-A-  
D
c
-
D
E1  
e
3
-C-  
4
α
A2  
e
A1  
0.026 BSC  
0.65 BSC  
-
c
b
0.10(0.004)  
E
0.246  
0.256  
6.25  
0.45  
6.50  
0.75  
-
0.10(0.004) M  
C
A M B S  
L
0.0177  
0.0295  
6
N
α
28  
28  
7
o
o
o
o
NOTES:  
0
8
0
8
-
1. These package dimensions are within allowable dimensions of  
JEDEC MO-153-AE, Issue E.  
Rev. 0 6/98  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.15mm (0.006 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable dambar  
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimen-  
sion at maximum material condition. Minimum space between protru-  
sion and adjacent lead is 0.07mm (0.0027 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact. (Angles in degrees)  
10  
HI5660  
Small Outline Plastic Packages (SOIC)  
M28.3 (JEDEC MS-013-AE ISSUE C)  
N
28 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
0.25(0.010)  
M
B M  
H
AREA  
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
MAX  
2.65  
0.30  
0.51  
0.32  
18.10  
7.60  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.0200  
0.0125  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0091  
0.6969  
0.2914  
-
-A-  
0.7125 17.70  
3
o
h x 45  
D
0.2992  
7.40  
4
0.05 BSC  
1.27 BSC  
-
-C-  
α
H
h
0.394  
0.01  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
0.016  
6
0.25(0.010) M  
C
A M B S  
N
α
28  
28  
7
o
o
o
o
0
8
0
8
-
NOTES:  
Rev. 0 12/93  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2  
of Publication Number 95.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusion and gate burrs shall not exceed  
0.15mm (0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. In-  
terlead flash and protrusions shall not exceed 0.25mm (0.010  
inch) per side.  
5. The chamfer on the body is optional. If it is not present, a visual  
index feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are not necessarily exact.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
11  

相关型号:

HI5660IA

8-Bit, 165/125/60MSPS, High Speed D/A Converter
INTERSIL

HI5660IB

8-Bit, 165/125/60MSPS, High Speed D/A Converter
INTERSIL

HI5660IBZ

8-Bit, 125/60MSPS, High Speed D/A Converter
INTERSIL

HI5660_04

8-Bit, 125/60MSPS, High Speed D/A Converter
INTERSIL

HI5662

Dual 8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5662/6IN

Dual 8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5662EVAL2

Dual 8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5662IN

HI5662IN
RENESAS

HI5667

8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5667/6CA

8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5667/6CB

8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5667EVAL2

8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL