HI5735 [INTERSIL]

12-Bit, 80 MSPS, High Speed Video D/A Converter; 12位, 80 MSPS ,高速视频D / A转换器
HI5735
型号: HI5735
厂家: Intersil    Intersil
描述:

12-Bit, 80 MSPS, High Speed Video D/A Converter
12位, 80 MSPS ,高速视频D / A转换器

转换器
文件: 总12页 (文件大小:139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5735  
12-Bit, 80 MSPS,  
High Speed Video D/A Converter  
January 1998  
Features  
Description  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . 80 MSPS The HI5735 is a 12-bit, 80 MSPS, D/A converter which is  
implemented in the Intersil BiCMOS 10V (HBC-10) process.  
Operating from +5V and -5.2V, the converter provides  
• Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650mW  
-20.48mA of full scale output current and includes an input  
data register and bandgap voltage reference. Low glitch  
energy and excellent frequency domain performance are  
achieved using a segmented architecture. The digital inputs  
are TTL/CMOS compatible and translated internally to ECL.  
All internal logic is implemented in ECL to achieve high  
switching speed with low noise. The addition of laser trim-  
ming assures 12-bit linearity is maintained along the entire  
transfer curve.  
• Integral Linearity Error . . . . . . . . . . . . . . . . . . 0.75 LSB  
• Low Glitch Energy . . . . . . . . . . . . . . . . . . . . . . . .3.0pV-s  
• TTL/CMOS Compatible Inputs  
• Improved Hold Time . . . . . . . . . . . . . . . . . . . . . . 0.25ns  
• Excellent Spurious Free Dynamic Range  
Applications  
Ordering Information  
• Professional Video  
• Cable TV Headend Equipment  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
28 Lead PDIP  
28 Lead SOIC  
HI5735KCP  
HI5735KCB  
0 to 70  
0 to 70  
E28.6  
M28.3  
Pinout  
HI5735  
(PDIP, SOIC)  
TOP VIEW  
D11 (MSB)  
1
2
3
4
5
6
7
8
9
28  
DGND  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
27 AGND  
26 REF OUT  
25 CTRL OUT  
24 CTRL IN  
23 R  
SET  
22 AV  
EE  
OUT  
21 I  
20  
I
OUT  
19 ARTN  
18 DV  
D2 10  
D1 11  
EE  
17 DGND  
16 DV  
D0 (LSB) 12  
NC 13  
CC  
15 CLOCK  
NC 14  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
File Number 4133.3  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1621  
HI5735  
Typical Application Circuit  
+5V  
HI5735  
0.01µF  
V
(16)  
CC  
D11 (MSB) (1)  
D10 (2)  
D9 (3)  
D11  
0.1µF  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
(24) CTRL IN  
(25) CTRL OUT  
D8 (4)  
-5.2V (AV  
)
EE  
D7 (5)  
(26) REF OUT  
D6 (6)  
D5 (7)  
D/A OUT  
(21) I  
OUT  
64Ω  
D4 (8)  
D3 (9)  
64Ω  
D2 (10)  
D2  
D1  
D0  
(20) I  
OUT  
D1 (11)  
(23) R  
SET  
D0 (LSB) (12)  
976Ω  
(19) ARTN  
(27) AGND  
CLK (15)  
50Ω  
DGND (17, 28)  
(22) AV  
EE  
DV (18)  
EE  
0.01µF  
0.1µF  
0.01µF  
0.1µF  
- 5.2V(AV  
)
- 5.2V(DV  
)
EE  
EE  
Functional Block Diagram  
(LSB) D0  
D1  
D2  
D3  
8 LSBs  
CURRENT  
CELLS  
R2R  
NETWORK  
D4  
DATA  
BUFFER/  
LEVEL  
12-BIT  
MASTER  
REGISTER  
D5  
D6  
D7  
D8  
ARTN  
SLAVE  
REGISTER  
SHIFTER  
227Ω  
227Ω  
15  
15  
15  
D9  
D10  
UPPER  
4-BIT  
DECODER  
SWITCHED  
CURRENT  
CELLS  
I
I
OUT  
(MSB) D11  
OUT  
REF CELL  
CTRL  
IN  
CLK  
25Ω  
+
OVERDRIVEABLE  
VOLTAGE  
REFERENCE  
CTRL  
OUT  
-
R
SET  
AV  
AGND DV  
DGND  
V
CC  
REF OUT  
EE  
EE  
1622  
HI5735  
Absolute Maximum Ratings  
Thermal Information  
o
Digital Supply Voltage V  
to DGND . . . . . . . . . . . . . . . . . . .+5.5V Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
CC  
Negative Digital Supply Voltage DV to DGND . . . . . . . . . . . -5.5V  
EE  
Negative Analog Supply Voltage AV to AGND, ARTN . . . . . -5.5V  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
Plastic Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
55  
70  
EE  
Digital Input Voltages (D11-D0, CLK) to DGND . . . . . DV  
to -0.5V  
CC  
Internal Reference Output Current . . . . . . . . . . . . . . . . . . . . ±2.5mA  
o
o
o
Voltage from CTRL IN to AV . . . . . . . . . . . . . . . . . . . . . 2.5V to 0V  
EE  
o
Control Amplifier Output Current . . . . . . . . . . . . . . . . . . . . . ±2.5mA  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300 C  
(SOIC - Lead Tips Only)  
Reference Input Voltage Range . . . . . . . . . . . . . . . . . -3.7V to AV  
EE  
Analog Output Current (I  
OUT  
) . . . . . . . . . . . . . . . . . . . . . . . . .30mA  
Operating Conditions  
Temperature Range  
HI5735BIx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications AV , DV = -4.94 to -5.46V, V = +4.75 to +5.25V, V = Internal  
REF  
EE  
EE  
CC  
o
T = 25 C for All Typical Values  
A
HI5735BI  
= 0 C TO 70 C  
o
o
T
A
PARAMETER  
SYSTEM PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
12  
-
0.75  
0.5  
20  
1
-
1.5  
1.0  
75  
10  
0.05  
-
Bits  
LSB  
LSB  
µA  
Integral Linearity Error, INL  
Differential Linearity Error, DNL  
(Note 4) (“Best Fit” Straight Line)  
-
(Note 4)  
-
Offset Error, I  
(Note 4)  
-
OS  
Full Scale Gain Error, FSE  
Offset Drift Coefficient  
(Notes 2, 4)  
(Note 3)  
-
%
o
-
-
-
µA/ C  
Full Scale Output Current, I  
20.48  
-
mA  
V
FS  
Output Voltage Compliance Range  
DYNAMIC CHARACTERISTICS  
Throughput Rate  
(Note 3)  
(Note 5)  
-1.25  
0
80  
-
-
-
-
MSPS  
ns  
Output Voltage Full Scale Step  
To ±0.5 LSB Error Band R = 50Ω  
20  
L
Settling Time, t  
SETT  
Full Scale  
(Note 3)  
Single Glitch Area, GE (Peak)  
Doublet Glitch Area, (Net)  
Output Slew Rate  
R
= 50(Note 3)  
-
-
-
5
3
-
-
-
pV-s  
pV-s  
V/µs  
L
L
R
= 50Ω, DAC Operating in Latched Mode  
1,000  
(Note 3)  
Output Rise Time  
Output Fall Time  
R
= 50Ω, DAC Operating in Latched Mode  
-
-
675  
470  
-
-
ps  
ps  
L
(Note 3)  
R
= 50Ω, DAC Operating in Latched Mode  
L
(Note 3)  
Differential Gain  
R
R
= 50(Note 3)  
= 50(Note 3)  
-
-
0.15  
0.07  
-
-
%
L
L
Differential Phase  
Deg  
1623  
HI5735  
Electrical Specifications AV , DV = -4.94 to -5.46V, V = +4.75 to +5.25V, V = Internal  
REF  
EE  
EE  
CC  
o
T = 25 C for All Typical Values (Continued)  
A
HI5735BI  
= 0 C TO 70 C  
o
o
T
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
70  
MAX  
UNITS  
dBc  
Spurious Free Dynamic Range to Nyquist  
(Note 3)  
f
f
= 40MHz, f  
= 80MHz, f  
= 2.02MHz, 20MHz Span  
= 2.02MHz, 40MHz Span  
-
-
-
-
CLK  
OUT  
70  
dBc  
CLK  
OUT  
REFERENCE/CONTROL AMPLIFIER  
Internal Reference Voltage, V  
REF  
(Note 4)  
(Note 3)  
(Note 3)  
-1.27  
-
-1.23  
50  
-1.17  
-
V
o
Internal Reference Voltage Drift  
µV/ C  
Internal Reference Output Current Sink/Source  
Capability  
-125  
-
+50  
µA  
Internal Reference Load Regulation  
Input Impedance at REF OUT pin  
I
= 0 to I  
= -125µA  
REF  
-
-
-
-
-
-
50  
1.4  
3
-
-
-
-
-
-
µV  
kΩ  
REF  
(Note 3)  
Amplifier Large Signal Bandwidth (0.6V  
Amplifier Small Signal Bandwidth (0.1V  
Reference Input Impedance  
)
Sine Wave Input, to Slew Rate Limited (Note 3)  
Sine Wave Input, to -3dB Loss (Note 3)  
(Note 3)  
MHz  
MHz  
kΩ  
P-P  
)
10  
12  
200  
P-P  
Reference Input Multiplying Bandwidth (CTL IN)  
R
= 50, 100mV Sine Wave, to -3dB Loss at  
MHz  
L
I
(Note 3)  
OUT  
DIGITAL INPUTS (D9-D0, CLK, INVERT)  
Input Logic High Voltage, V  
IH  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
(Note 3)  
2.0  
-
-
V
Input Logic Low Voltage, V  
-
-
-
-
-
-
0.8  
400  
700  
-
V
IL  
Input Logic Current, I  
Input Logic Current, I  
µA  
µA  
pF  
IH  
-
IL  
Digital Input Capacitance, C  
IN  
3.0  
TIMING CHARACTERISTICS  
Data Setup Time, t  
See Figure 1 (Note 3)  
See Figure 1 (Note 3)  
See Figure 1 (Note 3)  
See Figure 1 (Note 3)  
3.0  
0.5  
-
2.0  
0.25  
4.5  
-
-
-
-
-
ns  
ns  
ns  
ns  
SU  
Data Hold Time, t  
HLD  
Propagation Delay Time, t  
PD  
CLK Pulse Width, t  
, t  
PW1 PW2  
3.0  
POWER SUPPLY CHARACTERISITICS  
I
I
I
(Note 4)  
(Note 4)  
(Note 4)  
(Note 4)  
-
-
-
-
-
42  
70  
13  
650  
5
50  
85  
20  
-
mA  
mA  
EEA  
EED  
CCD  
mA  
Power Dissipation  
Power Supply Rejection Ratio  
NOTES:  
mW  
µA/V  
V
±5%, V ±5%  
EE  
-
CC  
2. Gain Error measured as the error in the ratio between the full scale output current and the current through R  
the ratio should be 16.  
(typically 1.28mA). Ideally  
SET  
3. Parameter guaranteed by design or characterization and not production tested.  
o
4. All devices are 100% tested at 25 C. 100% production tested at temperature extremes for military temperature devices, sample tested  
for industrial temperature devices.  
5. Dynamic Range must be limited to a 1V swing within the compliance range.  
1624  
HI5735  
Timing Diagrams  
50%  
CLK  
1
GLITCH AREA =  
/ (H x W)  
2
V
D11-D0  
HEIGHT (H)  
1
± / LSB ERROR BAND  
2
I
OUT  
t(ps)  
WIDTH (W)  
t
t
SETT  
PD  
FIGURE 1. FULL SCALE SETTLING TIME DIAGRAM  
FIGURE 2. PEAK GLITCH AREA (SINGLET) MEASUREMENT  
METHOD  
t
t
PW2  
PW1  
50%  
CLK  
t
t
SU  
t
SU  
SU  
t
HLD  
t
t
HLD  
HLD  
D11-D0  
t
PD  
I
OUT  
t
t
PD  
PD  
FIGURE 3. PROPAGATION DELAY, SETUP TIME, HOLD TIME AND MINIMUM PULSE WIDTH DIAGRAM  
1625  
HI5735  
Typical Performance Curves  
-1.21  
680  
CLOCK FREQUENCY DOES NOT  
ALTER POWER DISSIPATION  
-1.23  
-1.25  
-1.27  
640  
600  
560  
-1.29  
-50  
-30  
-10  
10  
30  
50  
70  
90  
-50  
-30  
-10  
10  
30  
50  
70  
90  
TEMPERATURE  
TEMPERATURE  
FIGURE 4. TYPICAL POWER DISSIPATION OVER  
TEMPERATURE  
FIGURE 5. TYPICAL REFERENCE VOLTAGE OVER  
TEMPERATURE  
1.5  
0.5  
0.8  
0.4  
0.0  
-0.5  
1.5  
-0.4  
-0.8  
0
600  
1200  
1800  
2400  
3000  
3600  
4200  
400  
1000  
1600  
2200  
2800  
3400  
4000  
CODE  
CODE  
FIGURE 6. TYPICAL INL  
FIGURE 7. TYPICAL DNL  
ATTEN 20dB  
RL -10.0dBm  
MKR -87.33dB  
28  
-73kHz  
10dB/  
f
= 10 MSPS  
C
24  
20  
16  
12  
S
C
-40  
-20  
-0  
20  
40  
60  
80  
100  
TEMPERATURE  
CENTER 1.237MHz  
SPAN 2.000MHz  
FIGURE 8. OFFSET CURRENT OVER TEMPERATURE  
FIGURE 9. SPURIOUS FREE DYNAMIC RANGE = 87.3dBc  
1626  
HI5735  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
PIN DESCRIPTION  
1-12  
D11 (MSB)  
Digital Data Bit 11, the Most Significant Bit thru Digital Data Bit 0, the Least Significant Bit.  
thru D0 (LSB)  
15  
13, 14  
16  
CLK  
NC  
Data Clock Pin DC to 80 MSPS.  
No Connect.  
V
Digital Logic Supply +5V.  
Digital Ground.  
CC  
17, 28  
18  
DGND  
DV  
-5.2V Logic Supply.  
EE  
23  
R
External resistor to set the full scale output current. I = 16 x (V  
FS  
/ R ). Typically 976.  
SET  
SET  
REF OUT  
27  
AGND  
ARTN  
Analog Ground supply current return pin.  
Analog Signal Return for the R/2R ladder.  
Current Output Pin.  
19  
21  
I
I
OUT  
20  
Complementary Current Output Pin.  
-5.2V Analog Supply.  
OUT  
22  
AV  
EE  
24  
CTRL IN  
CTRL OUT  
REF OUT  
Input to the current source base rail. Typically connected to CTRL OUT and a 0.1µF capacitor to AV  
Allows external control of the current sources.  
.
EE  
25  
26  
Control Amplifier Out. Provides precision control of the current sources when connected to CTRL IN such  
that I = 16 x (V / R ).  
FS SET  
REF OUT  
-1.23V (typical) bandgap reference voltage output. Can sink up to 125µA or be overdriven by an external  
reference capable of delivering up to 2mA.  
Detailed Description  
The HI5735 is a 12-bit, current out D/A converter. The DAC to minimize reflections and clock noise into the part, proper  
can convert at 80 MSPS and runs on +5V and -5.2V supplies. termination should be used. In PCB layout clock runs should  
The architecture is an R/2R and segmented switching current be kept short and have a minimum of loads. To guarantee  
cell arrangement to reduce glitch. Laser trimming is employed consistent results from board to board, controlled impedance  
to tune linearity to true 12-bit levels. The HI5735 achieves its PCBs should be used with a characteristic line impedance  
low power and high speed performance from an advanced  
BiCMOS process. The HI5735 consumes 650mW (typical)  
and has an improved hold time of only 0.25ns (typical).  
Z of 50.  
O
To terminate the clock line, a shunt terminator to ground is  
the most effective type at a 80 MSPS clock rate. A typical  
value for termination can be determined by the equation:  
Digital Inputs  
R = Z ,  
T
O
The HI5735 is a TTL/CMOS compatible D/A. Data is latched  
by a Master register. Once latched, data inputs D0 (LSB)  
thru D11 (MSB) are internally translated from TTL to ECL.  
The internal latch and switching current source controls are  
implemented in ECL technology to maintain high switching  
speeds and low noise characteristics.  
for the termination resistor. For a controlled impedance  
board with a Z of 50, the R = 50. Shunt termination is  
best used at the receiving end of the transmission line or as  
O
T
close to the HI5735 CLK pin as possible.  
Decoder/Driver  
The architecture employs a split R/2R ladder and Seg-  
mented Current source arrangement. Bits D0 (LSB) thru D7  
directly drive a typical R/2R network to create the binary  
weighted current sources. Bits D8 thru D11 (MSB) pass thru  
a “thermometer” decoder that converts the incoming data  
into 15 individual segmented current source enables. This  
split architecture helps to improve glitch, thus resulting in a  
more constant glitch characteristic across the entire output  
transfer function.  
HI5735  
DAC  
Z
= 50Ω  
CLK  
O
R
= 50Ω  
T
FIGURE 10. CLOCK LINE TERMINATION  
Rise and Fall times and propagation delay of the line will be  
affected by the Shunt Terminator. The terminator should be  
connected to DGND.  
Clocks and Termination  
The internal 12-bit register is updated on the rising edge of  
the clock. Since the HI5735 clock rate can run to 80 MSPS,  
1627  
HI5735  
Noise Reduction  
TABLE 2. INPUT CODING vs CURRENT OUTPUT  
To reduce power supply noise, separate analog and digital  
power supplies should be used with 0.1µF and 0.01µF  
ceramic capacitors placed as close to the body of the  
INPUT CODE (D11-D0)  
1111 1111 1111  
I
(mA)  
I
(mA)  
OUT  
OUT  
-20.48  
0
HI5735 as possible on the analog (AV ) and digital (DV  
)
EE EE  
supplies. The analog and digital ground returns should be  
connected together back at the device to ensure proper  
1000 0000 0000  
-10.24  
0
-10.24  
-20.48  
0000 0000 0000  
operation on power up. The V  
power pin should also be  
CC  
decoupled with a 0.1µF capacitor.  
Settling Time  
Reference  
The settling time of the HI5735 is measured as the time it  
takes for the output of the DAC to settle to within a 1/2 LSB  
error band of its final value during a full scale (code 0000...  
to 1111.... or 1111... to 0000...) transition. All claims made by  
Intersil with respect to the settling time performance of the  
HI5735 have been fully verified by the National Institute of  
Standards and Technology (NIST) and are fully traceable.  
The internal reference of the HI5735 is a -1.23V (typical)  
bandgap voltage reference with 50µV/ C of temperature drift  
o
(typical). The internal reference is connected to the Control  
Amplifier which in turn drives the segmented current cells.  
Reference Out (REF OUT) is internally connected to the  
Control Amplifier. The Control Amplifier Output (CTRL OUT)  
should be used to drive the Control Amplifier Input (CTRL  
Glitch  
IN) and a 0.1µF capacitor to analog V . This improves set-  
EE  
The output glitch of the HI5735 is measured by summing the  
area under the switching transients after an update of the  
DAC. Glitch is caused by the time skew between bits of the  
incoming digital data. Typically, the switching time of digital  
inputs are asymmetrical, meaning that the turn off time is  
faster than the turn on time (TTL designs). Unequal delay  
paths through the device can also cause one current source  
to change before another. In order to minimize this, the Inter-  
sil HI5735 employes an internal register, just prior to the cur-  
rent sources, which is updated on the clock edge. Lastly, the  
worst case glitch on traditional D/A converters usually occurs  
at the major transition (i.e., code 2047 to 2048). However,  
due to the split architecture of the HI5735, the glitch is  
moved to the 255 to 256 transition (and every subsequent  
256 code transitions thereafter). This split R/2R segmented  
current source architecture, which decreases the amount of  
current switching at any one time, makes the glitch practi-  
cally constant over the entire output range. By making the  
glitch a constant size over the entire output range, this effec-  
tively integrates this error out of the end application.  
tling time by providing an AC ground at the current source  
base node. The Full Scale Output Current is controlled by  
the REF OUT pin and the set resistor (R  
). The ratio is:  
SET  
I
(Full Scale) = (V  
/R ) x 16.  
REF OUT SET  
OUT  
The internal reference (REF OUT) can be overdriven with a  
more precise external reference to provide better  
performance over temperature. Figure 11 illustrates a typical  
external reference configuration.  
HI5735  
-1.25V  
R
(26) REF OUT  
-5.2V  
FIGURE 11. EXTERNAL REFERENCE CONFIGURATION  
Outputs  
In measuring the output glitch of the HI5735 the output is  
terminated into a 64load. The glitch is measured at any  
one of the current cell carry (code 255 to 256 transition or  
any multiple thereof) throughout the DACs output range.  
The outputs I  
and I  
OUT  
are complementary current  
or I in proportion  
OUT  
outputs. Current is steered to either I  
OUT  
OUT  
to the digital input code. The sum of the two currents is always  
equal to the full scale current minus one LSB. The current out-  
put can be converted to a voltage by using a load resistor. Both  
current outputs should have the same load resistor (64typi-  
cally). By using a 64load on the output, a 50effective output  
The glitch energy is calculated by measuring the area under  
the voltage-time curve. Figure 13 shows the area considered  
as glitch when changing the DAC output. Units are typically  
specified in picoVolt-seconds (pV-s).  
resistance (R  
) is achieved due to the 227(±15%) parallel  
OUT  
resistance seen looking back into the output. This is the nomi-  
nal value of the R2R ladder of the DAC. The 50output is  
needed for matching the output with a 50line. The load resis-  
tor should be chosen so that the effective output resistance  
HI5735  
100MHz  
SCOPE  
(R  
) matches the line resistance. The output voltage is:  
LOW PASS  
FILTER  
(21) I  
OUT  
OUT  
V
= I x R  
.
OUT  
OUT  
OUT  
64Ω  
50Ω  
I
is defined in the reference section. I is not trimmed  
OUT  
OUT  
to 12 bits, so it is not recommended that it be used in  
conjunction with I in a differential-to-single-ended appli-  
OUT  
cation. The compliance range of the output is from -1.25V to  
0V, with a 1V voltage swing allowed within this range.  
FIGURE 12. GLITCH TEST CIRCUIT  
P-P  
1628  
HI5735  
Definition of Specifications  
Applications  
Integral Linearity Error, INL, is the measure of the worst  
case point that deviates from a best fit straight line of data  
values along the transfer curve.  
Bipolar Applications  
Differential Linearity Error, DNL, is the measure of the  
error in step size between adjacent codes along the con-  
verter’s transfer curve. Ideally, the step size is 1 LSB from  
one code to the next, and the deviation from 1 LSB is known  
as DNL. A DNL specification of greater than -1 LSB guaran-  
tees monotonicity.  
a (mV)  
Feedthru, is the measure of the undesirable switching noise  
coupled to the output.  
GLITCH ENERGY = (a x t)/2  
Output Voltage Full Scale Settling Time, is the time  
t (ns)  
required from the 50% point on the clock input for a full scale  
1
step to settle within an ± / LSB error band.  
2
FIGURE 13. MEASURING GLITCH ENERGY  
Output Voltage Small Scale Settling Time, is the time  
required from the 50% point on the clock input for a 100mV  
step to settle within an / LSB error band. This is used by  
2
applications reconstructing highly correlated signals such as  
sine waves with more than 5 points per cycle.  
1
To convert the output of the HI5735 to a bipolar 4V swing, the  
following applications circuit is recommended. The reference  
can only provide 125µA of drive, so it must be buffered to  
create the bipolar offset current needed to generate the -2V  
output with all bits “off”. The output current must be converted  
to a voltage and then gained up and offset to produce the  
proper swing. Care must be taken to compensate for the  
voltage swing and error  
Glitch Area, GE, is the switching transient appearing on the  
output during a code transition. It is measured as the area  
under the curve and expressed as  
specification (typically pV•s).  
a picoVolt•Time  
Differential Gain, A , is the gain error from an ideal sine  
V
wave with a normalized amplitude.  
5kΩ  
Differential Phase, Φ, is the phase error from an ideal  
sine wave.  
-
-
REF OUT  
(26)  
+
+
5kΩ  
60Ω  
1/2 CA2904  
1/2 CA2904  
Signal to Noise Ratio, SNR, is the ratio of a fundamental to  
the noise floor of the analog output. The first 5 harmonics  
are ignored, and an output filter of / the clock frequency is  
2
used to eliminate alias products.  
1
0.1µF  
240Ω  
240Ω  
HI5735  
Total Harmonic Distortion, THD, is the ratio of the DAC  
50Ω  
output fundamental to the RMS sum of the harmonics. The  
I
V
OUT  
OUT  
(21)  
-
1
first 5 harmonics are included, and an output filter of / the  
2
+
clock frequency is used to eliminate alias products.  
HFA1100  
Spurious Free Dynamic Range, SFDR, is the amplitude  
difference from a fundamental to the largest harmonically or  
FIGURE 14. BIPOLAR OUTPUT CONFIGURATION  
non-harmonically related spur. A sine wave is loaded into the  
1
D/A and the output filtered at  
/
the clock frequency to  
2
eliminate noise from clocking alias terms.  
Intermodulation Distortion, IMD, is the measure of the  
sum and difference products produced when a two tone  
input is driven into the D/A. The distortion products created  
will arise at sum and difference frequencies of the two tones.  
IMD can be calculated using the following equation:  
20Log (RMS of Sum and Difference Distortion Products)  
IMD =  
.
------------------------------------------------------------------------------------------------------------------------------------------------------  
(RMS Amplitude of the Fundamental)  
1629  
HI5735  
Die Characteristics  
DIE DIMENSIONS:  
DIE ATTACH:  
161.5 mils x 160.7 mils x 19 mils ±1 mil  
Silver Filled Epoxy  
METALLIZATION:  
SUBSTRATE POTENTIAL (Powered Up):  
Type: AlSiCu  
Thickness: M1 - 8kÅ, M2 - 17kÅ  
V
EED  
PASSIVATION:  
Type: Sandwich Passivation  
Undoped Silicon Glass (USG) + Nitride  
Thickness: USG - 8kÅ, Nitride - 4.2kÅ  
Total 12.2kÅ ± +2kÅ  
Metallization Mask Layout  
HI5735  
D11  
D8  
D9  
D10  
DGND  
CTRL OUT  
CTRL IN  
D7  
D6  
R
SET  
D5  
AV  
EE  
D4  
I
OUT  
D3  
D2  
I
OUT  
ARTN  
D1  
D0  
CLK  
DV  
CC  
DGND  
DV  
EE  
1630  
HI5735  
Dual-In-Line Plastic Packages (PDIP)  
E28.6 (JEDEC MS-001-BF ISSUE D)  
28 LEAD NARROW BODY DUAL-IN-LINE PLASTIC  
PACKAGE  
N
E1  
INDEX  
AREA  
1 2  
3
N/2  
INCHES  
MILLIMETERS  
-B-  
-C-  
SYMBOL  
MIN  
MAX  
0.250  
-
MIN  
-
MAX  
6.35  
-
NOTES  
-A-  
A
A1  
A2  
B
-
4
D
E
0.015  
0.125  
0.014  
0.030  
0.008  
1.380  
0.005  
0.600  
0.485  
0.39  
3.18  
0.356  
0.77  
0.204  
4
BASE  
PLANE  
A2  
0.195  
0.022  
0.070  
0.015  
1.565  
-
4.95  
0.558  
1.77  
0.381  
39.7  
-
-
A
SEATING  
PLANE  
-
L
C
L
B1  
C
8
D1  
B1  
eA  
A1  
A
D1  
-
e
C
eC  
B
D
35.1  
5
eB  
0.010 (0.25)  
C
B
S
M
D1  
E
0.13  
15.24  
12.32  
5
0.625  
0.580  
15.87  
14.73  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between English and  
Metric dimensions, the inch dimensions control.  
0.100 BSC  
0.600 BSC  
2.54 BSC  
15.24 BSC  
-
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
e
e
6
A
B
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication No. 95.  
-
0.700  
0.200  
-
17.78  
5.08  
7
L
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated in  
JEDEC seating plane gauge GS-3.  
N
28  
28  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
Rev. 0 12/93  
e
6. E and  
are measured with the leads constrained to be perpendic-  
A
-C-  
ular to datum  
.
7. e and e are measured at the lead tips with the leads unconstrained.  
B
C
e
must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions. Dambar  
protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).  
1631  
HI5735  
Small Outline Plastic Packages (SOIC)  
M28.3 (JEDEC MS-013-AE ISSUE C)  
N
28 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
AREA  
M
M
B
0.25(0.010)  
H
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
MAX  
2.65  
0.30  
0.51  
0.32  
18.10  
7.60  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.0200  
0.0125  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0091  
0.6969  
0.2914  
-
-A-  
0.7125 17.70  
3
o
D
h x 45  
0.2992  
7.40  
4
-C-  
0.05 BSC  
1.27 BSC  
-
α
H
h
0.394  
0.01  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
0.016  
6
M
M
S
B
0.25(0.010)  
C
A
N
α
28  
28  
7
o
o
o
o
0
8
0
8
-
NOTES:  
Rev. 0 12/93  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2  
of Publication Number 95.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusion and gate burrs shall not exceed  
0.15mm (0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. In-  
terlead flash and protrusions shall not exceed 0.25mm (0.010  
inch) per side.  
5. The chamfer on the body is optional. If it is not present, a visual  
index feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are not necessarily exact.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
1632  

相关型号:

HI5735KCB

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5735KCB96

PARALLEL, WORD INPUT LOADING, 0.02us SETTLING TIME, 12-BIT DAC, PDSO28
RENESAS

HI5735KCBZ

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5735KCP

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5735_04

12-Bit, 80 MSPS, High Speed Video D/A Converter
INTERSIL

HI5740

3V, Dual 10-Bit, 20/ 40/60 MSPS A/D Converter with Internal Voltage Reference (2 pages) FN4821
ETC

HI5741

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741-EVS

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIB

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIB-T

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIBZ

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIBZ-T

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL