HSP45106JC-25 [INTERSIL]

16-Bit Numerically Controlled Oscillator; 16位数控振荡器
HSP45106JC-25
型号: HSP45106JC-25
厂家: Intersil    Intersil
描述:

16-Bit Numerically Controlled Oscillator
16位数控振荡器

振荡器 外围集成电路 时钟
文件: 总14页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HSP45106  
Data Sheet  
October 1999  
File Number 2809.5  
16-Bit Numerically Controlled Oscillator  
Features  
The Intersil HSP45106 is a high performance 16-bit  
quadrature Numerically Controlled Oscillator (NCO16). The  
NCO16 simplifies applications requiring frequency and  
phase agility such as frequency-hopped modems, PSK  
modems, spread spectrum communications, and precision  
signal generators. As shown in the block diagram, the  
HSP45106 is divided into a Phase/Frequency Control  
Section (PFCS) and a Sine/Cosine Section.  
• 25.6MHz, 33MHz Versions  
• 32-Bit Center and Offset Frequency Control  
• 16-Bit Phase Control  
• 8 Level PSK Supported Through Three Pin Interface  
• Simultaneous 16-Bit Sine and Cosine Outputs  
• Output in Two’s Complement or Offset Binary  
• <0.008Hz Tuning Resolution at 33MHz  
• Serial or Parallel Outputs  
The inputs to the Phase/Frequency Control Section consist  
of a microprocessor interface and individual control lines.  
The frequency resolution is 32 bits, which provides for  
resolution of better than 0.008Hz at 33MHz. User  
• Spurious Frequency Components <-90dBc  
• 16-Bit Microprocessor Compatible Control Interface  
programmable center frequency and offset frequency  
registers give the user the capability to perform phase  
coherent switching between two sinusoids of different  
frequencies. Further, a programmable phase control register  
Applications  
o
• Direct Digital Synthesis  
allows for phase control of better than 0.006 . In applications  
requiring up to 8-level PSK, three discrete inputs are  
provided to simplify implementation.  
• Quadrature Signal Generation  
• Spread Spectrum Communications  
• PSK Modems  
The output of the PFCS is a 28-bit phase which is input to  
the Sine/Cosine Section for conversion into sinusoidal  
amplitude. The outputs of the Sine/Cosine Section are two  
16-bit quadrature signals. The spurious free dynamic range  
of this complex vector is greater than 90dBc.  
• Modulation - FM, FSK, PSK (BPSK, QPSK, 8PSK)  
• Frequency Hopping Communications  
• Precision Signal Generation  
For added flexibility when using the NCO16 in conjunction  
with DAC’s, a choice of either parallel or serial outputs with  
either two’s complement or offset binary encoding is  
provided. In addition, a synchronization signal is available  
which indicates serial word boundaries.  
• Related Products  
- Use with Data Acquisition Parts HI5731 or HI5741  
Ordering Information  
TEMP.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
84 Ld PLCC  
84 Ld PLCC  
84 Ld PLCC  
85 Ld CPGA  
PKG. NO.  
N84.1.15  
N84.1.15  
N84.1.15  
G85.A  
HSP45106JC-25  
HSP45106JI-25  
HSP45106JC-33  
HSP45106GC-33  
0 to 70  
-40 to 85  
0 to 70  
0 to 70  
Block Diagram  
SIN/COS  
ARGUMENT  
MICROPROCESSOR  
16  
16  
INTERFACE  
SINE  
PHASE/  
FREQUENCY  
CONTROL  
32  
SINE/  
COSINE  
SECTION  
CLOCK  
COSINE  
SECTION  
DISCRETE  
CONTROL SIGNALS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HSP45106  
Pinouts  
85 PIN CPGA  
TOP VIEW  
11  
10  
9
8
7
6
5
4
3
2
1
DAC  
STRB  
L
GND SIN0  
SIN1  
SIN3  
SIN5  
SIN4  
SIN9 SIN12 SIN13 SIN14  
L
K
BINFMT  
INITPAC  
V
CLK  
SIN2  
V
SIN8  
SIN7  
SIN10 GND SIN15  
SIN11  
OES  
OEC  
COS0  
COS1  
K
J
CC  
CC  
PAR/  
SER  
SIN6  
J
EN  
COS2 COS3  
H
G
PACI  
H
G
PHAC  
ENTI  
REG  
INITT INHOF  
ENPO ENOF  
COS6 COS4 COS5  
ENCF  
REG  
COS7 COS8  
V
CC  
F
E
F
E
REG  
REG  
CS  
GND  
WR  
COS11 COS10 COS9  
GND COS12  
D
V
TEST  
D
CC  
INDEX  
MOD2 MOD0  
C10  
C12  
C9  
C6  
COS15 COS13  
PIN  
C
B
A
C
B
A
MOD1  
A2  
A1  
C15  
C13  
V
C4  
C1  
TICO COS14  
CC  
PMSEL  
11  
A0  
10  
GND  
9
C0  
8
C0  
7
C0  
6
C0  
5
C0  
4
C0  
3
C2  
2
C0  
1
PIN ‘A1’  
ID  
85 PIN CPGA  
BOTTOM VIEW  
1
2
3
4
5
6
7
8
9
10  
SIN0  
11  
DAC  
STRB  
L
K
J
SIN14  
OES  
SIN13 SIN12  
SIN9  
SIN4  
SIN5  
SIN3 SIN1  
SIN2 CLK  
GND  
L
COS0  
COS1  
SIN15 GND SIN10  
SIN11  
SIN8  
SIN7  
V
V
BINFMT  
INITPAC  
K
CC  
CC  
PAR/  
SER  
OEC  
SIN6  
J
EN  
PHAC  
H
G
COS3 COS2  
PACI  
H
G
ENTI  
REG  
COS5 COS4 COS6  
INHOF INITT  
ENOF ENPO ENCF  
V
COS8 COS7  
CC  
F
E
F
E
REG  
REG  
REG  
COS9 COS10 COS11  
COS12 GND  
WR  
GND  
CS  
D
TEST  
V
D
CC  
INDEX  
COS13 COS15  
PIN  
C
B
A
C6  
C9  
C10  
C12  
MOD0 MOD2  
C
B
A
COS14 TICO  
C1  
C4  
V
C13  
C15  
A1  
A2  
MOD1  
CC  
C0  
1
C2  
2
C0  
3
C0  
4
C0  
5
C0  
6
C0  
7
C0  
8
GND  
9
A0  
10  
PMSEL  
11  
PIN ‘A1’  
ID  
2
HSP45106  
Pinouts (Continued)  
84 LEAD PLCC  
TOP VIEW  
11 10 9  
8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
PMSEL  
MOD0  
MOD1  
MOD2  
TEST  
TICO  
COS15  
COS14  
COS13  
GND  
COS12  
COS11  
COS10  
COS9  
COS8  
COS7  
COS6  
COS5  
COS4  
V
CC  
WR  
GND  
CS  
ENCFREG  
ENOFREG  
INHOFR  
ENTIREG  
INITTAC  
ENPOREG  
INPHAC  
PACI  
V
CC  
COS3  
COS2  
COS1  
COS0  
OEC  
INITPAC  
BINFMT  
PAR/SER  
V
DACSTRB  
CC  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
Pin Descriptions  
NAME  
TYPE  
DESCRIPTION  
V
+5 power supply pin.  
Ground.  
CC  
GND  
C(15:0)  
A(2:0)  
CS  
I
I
I
I
Control input bus for loading phase, frequency, and timer data into the PFCS. C0 is LSB.  
Address pins for selecting destination of C(15:0) data (Table 2). A0 is the LSB  
Chip select (active low). Enables data to be written into Control Registers by WR.  
WR  
Write enable (active low). Data is clocked into the register selected by A(2:0) on the rising edge of WR when CS  
is low.  
CLK  
I
I
Clock. All registers, except the Control Registers clocked with WR, are clocked (when enabled) by the rising edge  
of CLK.  
ENPOREG  
Phase Offset Register Enable (active low). Registered on chip by CLK. When active, after being clocked onto chip,  
ENPOREG enables the clocking of data into the Phase Offset Register. Allows ROM address to be updated  
regardless of ENPHAC.  
ENOFREG  
ENCFREG  
ENPHAC  
ENTIREG  
INHOFR  
I
I
I
I
I
Offset Frequency Register Enable (active low). Registered on chip by CLK. When active, after being clocked onto  
chip, ENOFREG enables the clocking of data into the Offset Frequency Register.  
Center Frequency Register Enable (active low). Registered on chip by CLK. When active, after being clocked onto  
chip, ENCFREG enables the clocking of data into the Center Frequency Register.  
Phase Accumulator Register Enable (active low). Registered on chip by CLK. When active, after being clocked onto  
chip, ENPHAC enables the clocking of data into the Phase Accumulator Register.  
Timer Increment Register Enable (active low). Registered on chip by CLK. When active, after being clocked onto  
chip, ENTIREG enables the clocking of data into the Timer Increment Register.  
Inhibit Offset Frequency Register Output (active low). Registered on chip by CLK. When active, after being clocked  
onto chip, INHOFR zeroes the data path from the Offset Frequency Register to the Frequency Adder. New data  
can be still clocked into the Offset Frequency Register. INHOFR does not affect the contents of the register.  
INITPAC  
I
I
Initialize Phase Accumulator (active low). Registered on chip by CLK. Zeroes the feedback path in the Phase  
Accumulator. Does not clear the Phase Accumulator Register.  
MOD(2:0)  
Modulation Control Inputs. When selected with the PMSEL line, these bits add an offset of 0, 45, 90, 135, 180,  
225, 270, or 315 degrees to the current phase (i.e., modulate the output). The lower 13 bits of the phase control  
are set to zero. These bits are registered when the Phase Offset Register is enabled.  
3
HSP45106  
Pin Descriptions (Continued)  
NAME  
TYPE  
DESCRIPTION  
PMSEL  
I
Phase Modulation Select input. Registered on chip by CLK. This input determines the source of the data clocked  
into the Phase Offset Register. When high, the Phase Input Register is selected. When low, the external  
modulation pins (MOD(2:1)) control the three most significant bits of the Phase Offset Register and the 13 least  
significant bits are set to zero.  
PACI  
I
I
Phase Accumulator Carry Input (active low). Registered on chip by CLK.  
INITTAC  
Initialize Timer Accumulator (active low). This input is registered on chip by CLK. When active, after being clocked  
onto chip, INITTAC enables the clocking of data into the Timer increment Register, and also zeroes the feedback  
path in the Timer Accumulator.  
TEST  
I
I
Test Select Input. Registered on chip by CLK. This input is active high. When active, this input enables test busses  
to the outputs instead of the sine and cosine data.  
PAR/SER  
Parallel/Serial Output Select. This input is registered on chip by CLK. When low, the sine and cosine outputs are  
in serial mode. The Output Shift Registers will load in new data after ENPHAC goes low and will start shifting the  
data out after ENPHAC goes high. When this input is high, the Output Registers are loaded every clock and no  
shifting takes place.  
BINFMT  
I
Format. This input is registered on chip by CLK. When low, the MSB of the SIN and COS are inverted to form an  
offset binary (unsigned) number.  
OES  
OEC  
TICO  
I
I
Three-state control for bits SIN(15:0). Outputs are enabled when OES is low.  
Three-state control for bits COS(15:0). Outputs are enabled when OEC is low.  
O
Timer Accumulator Carry Output. Active low, registered. This output goes low when a carry is generated by the  
Timer Accumulator.  
DACSTRB  
SIN(15:0)  
O
O
DAC Strobe (active low). In serial mode, this output will go low when the first bit of a new output word is valid at  
the shift register output. This pin is active only in serial mode.  
Sine Output Data. When parallel mode is enabled, data is output on SIN(15:0). When serial mode is enabled,  
output data bits are shifted out of SIN15 and SIN0. The bit stream on SIN15 is provided MSB first while the bit  
stream on SIN0 is provided LSB first.  
COS(15:0)  
Index Pin  
O
Cosine Output Data. When parallel mode is enabled, data is output on COS(15:0). When serial mode is enabled,  
output data bits are shifted out of COS15 and COS0. The bit stream on COS15 is provided MSB first while the bit  
stream in COS0 is provided LSB first.  
Used to align chip in socket or on circuit board. Must be left as a no connect in circuit. (CPGA Package only).  
Functional Description  
Phase/Frequency Control Section  
The 16-bit Numerically Controlled Oscillator (NCO16)  
produces a digital complex sinusoid waveform whose  
frequency and phase are controlled through a standard  
microprocessor interface and discrete inputs. The NCO16  
generates 16-bit sine and cosine vectors at a maximum  
sample rate of 33MHz. The NCO16 can be preprogrammed  
to produce a constant (CW) sine and cosine output for Direct  
Digital Synthesis (DDS) applications. Alternatively, the  
phase and frequency inputs can be updated in real time to  
produce a FM, PSK, FSK, or MSK modulated waveform. To  
simplify PSK generation, a 3 pin interface is provided to  
support modulation of up to 8 levels.  
The phase and frequency of the quadrature outputs are  
controlled by the PFCS (Figure 1). The PFCS generates a  
32-bit word which represents the instantaneous phase  
(Sin/Cos argument) of the sine and cosine waves being  
generated. This phase is incremented on the rising edge of  
each CLK by the preprogrammed amounts in the phase and  
Frequency Control Registers. As the instantaneous phase  
32  
steps from 0 through full scale (2 - 1), the phase of the  
o
quadrature outputs proceeds from 0 around the unit circle  
counter clockwise.  
The PFCS is comprised of a Phase Accumulator Section,  
Phase Offset adder, Input Section, and a Timer Accumulator  
Section. The Phase Accumulator computes the  
As shown in Figure 1, the HSP45106 Block Diagram, the  
NCO16 is comprised of a Phase and Frequency Control  
Section (PFCS) and Sine/ Cosine Section. The PFCS stores  
the phase and frequency control inputs and uses them to  
calculate the phase angle of a rotating complex vector. The  
Sine/Cosine Section performs a lookup on this phase and  
generates the appropriate amplitude values for the sine and  
cosine. These quadrature outputs may be configured as  
serial or parallel with either two's complement or offset  
binary format.  
instantaneous phase angle from user programmed values in  
the Center and Offset Frequency Registers. This angle is  
then fed into the Phase Offset adder where it is offset by the  
preprogrammed value in the Phase Offset Register. The Input  
Section routes data from a microprocessor compatible control  
bus and discrete input signals into the appropriate configuration  
registers. The Timer Accumulator supplies a pulse to mark the  
passage of a user programmed period of time.  
4
HSP45106  
M U X  
0
1
M U X  
0
1
M U X  
0
1
M U X  
0
1
5
HSP45106  
The number of steps required for this transition depends on  
Input Section  
the phase increment calculated by the frequency adder. For  
example, if the Center and Offset Frequency Registers are  
programmed such that the output of the Frequency Adder is  
4000 0000 hex, the Phase Accumulator will step the phase  
from 0 to 360 degrees every 4 clock cycles. Thus, for a  
30MHz CLK, the quadrature outputs will have a frequency of  
30/4MHz or 7.5MHz. In general, the frequency of the  
quadrature output is determined by:  
The Input Section loads the data on C(15:0) into one of the  
seven input registers, the LSB and MSB Center Frequency  
Input Registers, the LSB and MSB Offset Frequency  
Registers, the LSB and MSB Timer Input Registers, and the  
Phase Input Register. The destination depends on the state of  
A(2:0) when CS and WR are low (Table 1).  
TABLE 1. ADDRESS DECODE MAPPING  
MOD(2:0) DECODING  
32  
(EQ. 1)  
F
= (N × f  
2 ), or  
LO  
CLK  
A2  
A1  
A0  
CS  
WR  
FUNCTION  
0
0
0
0
Load least significant bits of  
Center Frequency input.  
f
32  
OUT  
(EQ. 2)  
-------------  
N = INT  
2
,
f
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
0
0
0
0
Load most significant bits of  
Center Frequency input.  
CLK  
Load least significant bits of  
Offset Frequency input.  
where N is the 32 bits of frequency control word that is  
programmed. INT[•] is the integer of the computation. For  
example, if the control word is 20000000 hexadecimal and the  
clock frequency is 30MHz, then the output frequency would  
Load most significant bits of  
Offset Frequency input.  
Load least significant bits of  
Timing Interval input.  
be f  
/8, or 3.75MHz.  
CLK  
Load most significant bits of  
Timing Interval input.  
The Frequency Adder sums the contents of both the Center  
and Offset Frequency Registers to produce a phase  
increment. By enabling INHOFR, the output of the Offset  
Frequency Register is disabled so that the output frequency is  
determined from the Center Frequency Register alone. For  
BFSK modems, INHOFR can be asserted/ de-asserted to  
toggle the quadrature outputs between two programmed  
frequencies. NOTE: Enabling/disabling INHOFR preserves  
the contents of the Offset Frequency Register.  
1
1
1
1
0
1
0
0
1
Load Phase Register  
Reserved  
X
X
X
X
Input Disabled  
Once the Input Registers have been loaded, the control inputs  
ENCFREG, ENOFREG, ENTIREG, ENCTIREG, and  
ENPOREG will allow the Input Registers to be downloaded to  
the PFCS Control Registers with the input CLK. The control  
inputs are latched on the rising edge of CLK and the Control  
Registers are updated on the rising edge of the following CLK.  
For example, to load the Center Frequency Register, the data  
is loaded into the LSB and MSB Center Frequency Input  
Register, and ENCFREG is set to zero; the next rising edge of  
CLK will pass the registered version of ENCFREG,  
R.ENCFREG, to the clock enable of the Center Frequency  
Register; this register then gets loaded on the following rising  
edge of CLK. The contents of the Input Registers are  
downloaded to the Control Registers every clock, if the control  
inputs are enabled.  
The Block Diagram shown in Figure 2 illustrates the method of  
reading the phase accumulator of the NCO16 from a  
microprocessor. The setup shown is very similar to that used  
when the part is used for generating a complex sinusoid,  
except that the internal SIN/COS lookup is bypassed by  
setting the TEST pin to a logic 1(high). While the TEST pin is  
high, the phase accumulator continues to drive the inputs of  
the SIN/COS Generator while the most significant 28 bits of  
the phase accumulator are multiplexed out onto the output  
pins. Because of this, the part can be operated in two modes,  
one where the SIN/COS Generator is permanently bypassed,  
and one where the phase accumulator output is brought out to  
the outputs as a check.  
Phase Accumulator Section  
The Phase Accumulator adds the 32-bit output of the  
Frequency Adder with the contents of a 32-bit Phase  
Accumulator Register on every clock cycle. When the sum  
causes the adder to overflow, the accumulation continues with  
the least significant 32 bits of the result.  
Figure 2 illustrates a circuit for reading out the phase  
accumulator all the time. In this case, a microprocessor loads  
the frequency and phase registers of the NCO16. This is fairly  
straightforward, except for the Start Logic Block, which needs  
to be synchronous to the oscillator clock and the  
Initializing the Phase Accumulator Register is done by putting  
a low on the INITPAC and ENPHAC lines. This zeroes the  
feedback path to the accumulator, so that the register is  
loaded with the current value of the Frequency Adder on the  
next clock.  
microprocessor interface. This has been left as an undefined  
function, since it is dependent on the implementation. Also  
note that all COS outputs (COS(15:0)) are connected,  
although only COS(15:4) are valid in this application. The  
microprocessor reads the sine and cosine data busses as if  
they were RAMs, using the decoded address bus to select  
one or the other.  
The frequency of the quadrature outputs is based on the  
number of clock cycles required to step from 0 to full scale.  
6
HSP45106  
The timing for loading the Center Frequency Register (MSB  
WRITE  
WRITE  
LS INPUT  
REGISTER  
MS INPUT  
REGISTER  
and LSB) and data being output on COS(15:0) and SIN(15:0)  
is shown in Figure 3. This timing is independent of whether  
the output data represents the phase accumulator data or the  
SIN/COS Generator output.  
WR  
CS  
When it is desired for the output of the NCO16 to be switched  
back and forth between sine/cosine and the phase  
A0-2  
accumulator, a circuit such as the one shown in Figure 4 could  
be used. In this case, the sinusoidal output cannot be  
interrupted, so the phase accumulator must be read out  
between samples. This is possible due to the fact that the  
TEST signal is simply the control line for a multiplexer on the  
output of the SIN/COS Generator, but carries with it a  
limitation on the maximum possible clock rate. Since TEST is  
a synchronous input, the output of the NCO16 must be either  
driven by the SIN/COS Generator or the phase accumulator  
for an entire clock cycle. Therefore, the part must be driven at  
twice the desired speed at all times so there is a clock cycle  
available for TEST, when necessary. Note that the processor  
must be driven from the same clock that generates the NCO  
clock in order to maintain synchronous operation.  
C0-15  
TRANSFER DATA  
TO CENTER OR OFFSET  
FREQUENCY REGISTER  
ENCFREG,  
ENOFREG  
NEW  
FREQUENCY  
DATA  
COS0-15,  
SIN0-15  
CLK  
FIGURE 3. NCO16 PIPELINE DELAY  
HSP45106  
MICROPROCESSOR  
MICROPROCESSOR  
HSP45106  
MOD0(2:0) (15:0)  
PMSEL  
GND  
DAC  
DAC  
SIN0-15  
V
GND  
V
MOD0-2  
CC  
DATA  
WE  
ADDRESS  
C(15:0)  
WR  
SIN0-15  
COS0-15  
PMSEL  
C0-15  
WR  
A0-2  
CS  
ENPOREG  
ENCFREG  
OES  
CC  
COS(15:0)  
DATA  
WE  
ADDRESS  
A(2:0)  
CS  
ENPOREG  
ENCFREG  
OES  
>
REGISTER  
OEC  
ENOFREG  
V
CC  
DECODE  
OEC  
ENPHAC  
ENTIGEG  
INHOFR  
INITPAC  
PACI  
INITTAC  
TEST  
PAR/SER  
BINFMT  
CLK  
GND  
V
V
ENOFREG  
ENPHAC  
ENTIGEG  
INHOFR  
INITPAC  
PACI  
INITTAC  
TEST  
PAR/SER  
BINFMT  
CLK  
CC  
CC  
GND  
DECODE  
GND  
V
CC  
GND  
V
CC  
START  
LOGIC  
V
CC  
V
V
CC  
CC  
V
V
CC  
CC  
START  
LOGIC  
V
CC  
V
V
CC  
CC  
OSCILLATOR  
÷2  
FIGURE 2. CIRCUIT FOR READING PHASE ACCUMULATOR  
OF NCO16  
OSCILLATOR  
FIGURE 4. CIRCUIT FOR READING PHASE ACCUMULATOR  
OF NCO16 WHILE GENERATING SINUSOID  
7
HSP45106  
values are computed to reduce the amount of ROM needed.  
Phase Offset Adder  
The magnitude of the error in the computed value of the  
complex vector is less than -90.2dB. The error in the sine or  
cosine alone is approximately 2dB better. The 20-bit phase  
word maps into 2p radians so that the angular resolution is  
The output of the Phase Accumulator goes to the Phase  
Offset Adder, which adds the 16-bit contents of the Phase  
Offset Register to the 16 MSBs of the phase. Twenty-eight  
(28) bits of the resulting 32-bit number forms the  
20  
(2p)/2 . An address of zero corresponds to 0 radians and  
instantaneous phase which is fed to the Sine/Cosine Section.  
20  
an address of hex FFFFF corresponds to 2π-((2π)/2  
)
The user has the option of loading the Phase Offset Registers  
with the contents of the Phase Input Register or with the  
MOD(2:0) inputs depending on the state of PMSEL. When  
PMSEL is high, the contents of the Phase Input Register are  
loaded. If PMSEL is low, MOD(2:0) encode the upper 3 bits of  
the Phase Offset Register while the lower 13 bits are cleared.  
The MOD(2:0) inputs simplify PSK modulation by providing a  
3 input interface to phase modulate the carrier as shown in  
Table 2. The control input ENPOREG acts as a clock enable  
and must be low to enable clocking of data into the Phase  
Offset Register.  
radians. The outputs of the Sine/Cosine Section are two's  
complement sine and cosine values. The ROM contents have  
been scaled by (2 -1)/(2 +1) for symmetry about zero.  
16  
16  
To simplify interfacing with D/A converters, the format of the  
Sine/cosine outputs may be changed to offset binary by  
enabling BINFMT. When BINFMT is enabled, the MSB of the  
Sine and Cosine outputs (SIN15 and COS15 when the  
outputs are in parallel mode) are inverted. Depending upon  
the state of BINFMT, the output is centered around midscale  
and ranges from 8001H to 7FFFH (two's complement mode)  
or 0001H to FFFFH (offset binary mode).  
TABLE 2. MODULATION CONTROL MAP  
MOD(2:0) DECODING  
Serial output mode is chosen by enabling PAR/SER. In this  
mode the user loads the Output Shift Registers with  
Sine/Cosine ROM output by enabling ENPHAC. After  
ENPHAC goes inactive the data is shifted out serially. For  
example, to clock out one 16-bit Sine/Cosine output,  
ENPHAC would be active for one cycle to load the output  
Shift Register, and would then go inactive for the following 15  
cycles to clock the remaining bits out. Output bit streams are  
provided in formats with either MSB first or LSB first. The  
MSB first format is available on the SIN15 and COS15  
output pins. The LSB first format is available on the SIN0  
and COS0 output pins. In MSB first format, zero’s follow the  
LSB if a new output word is not loaded into the Shift  
Register. In LSB first format, the sine extension bit follows  
the MSB if a new data word is not loaded. The output signal  
DACSTRB is provided to signal the first bit of a new output  
word is valid (Figure 6). NOTE: All unused pins of  
SIN(15:0) and COS(15:0) should be left floating.  
PHASE SHIFT  
MOD2  
MOD1  
MOD0  
(DEGREES)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
45  
90  
135  
270  
315  
180  
225  
Timer Accumulator Section  
The Timer Accumulator consists of a register which is  
incremented on every clock. The amount by which it  
increments is loaded into the Timer Increment Input  
Registers and is latched into the Timer Increment Register  
on rising edges of CLK while ENTIREG is low. The output of  
the Timer Accumulator is the accumulator carry out, TICO.  
TICO can be used as a timer to enable the periodic sampling  
of the output of the NCO-16. The number programmed into  
this register equals:  
A test mode is supplied which enables the user to access  
the phase input to the Sine/Cosine ROM. If TEST and  
PAR/SER are both high, the 28 MSBs of the phase input to  
the Sine/Cosine Section are made available on SIN(15:0)  
and COS(15:4). The SIN(15:0) outputs represent the MSW  
of the address.  
f
32  
OUT  
-------------  
N = INT  
2
,
(EQ. 3)  
f
CLK  
The Timing Diagrams in Figure 7, 8 and 9 show the pipeline  
delays through the HSP45106 NCO16 from the time that  
data is applied to the inputs until the outputs are affected by  
the change. The delay is shown as a number of clock cycles,  
with no attempt made to accurately represent the setup and  
hold times or the clock to output delays.  
where INT[x] is the integer portion of the result of the  
computation.  
Sine/Cosine Section  
The Sine/Cosine Section (Figure 5) converts the  
instantaneous phase from the PFCS Section into the  
appropriate amplitude values for the sine and cosine  
outputs. It takes the most significant 20 bits of the PFCS  
output and passes them through a Sine/Cosine look up to  
form the 16-bit quadrature outputs. The sine and cosine  
8
HSP45106  
16 COSINE  
/
DACSTRB  
20  
ADDRESS  
DECODE  
SINE/COSINE  
ROM  
FORMAT  
CONTROL  
SIN/COS  
ARGUMENT  
/
16 SINE  
/
SIN (15:0)  
16  
16  
/
/
OUTPUT  
CONTROL  
28  
/
COS (15:0)  
BINFMT  
R.ENPHAC, TEST, PAR/SER  
OES  
OEC  
FIGURE 5. SINE/COSINE SECTION BLOCK DIAGRAM  
0
1
2
3
4
5
6
10  
7
9
CLK  
8
t
ECS  
ENPHAC  
t
DSO  
DACSTRB  
SERIAL DATA OUTPUT  
BIT  
0
1
2
3
FIGURE 6. SERIAL OUTPUT I/O TIMING DIAGRAM  
CLK  
CS  
WRITE  
MS INPUT  
REGISTER  
WRITE  
LS INPUT  
REGISTER  
WR  
A(2:0)  
C(15:0)  
TRANSFER DATA  
TO CENTER OR OFFSET  
FREQUENCY REGISTER  
ENCFREG  
ENOFREG  
NEW  
FREQUENCY  
DATA  
COS(15:0),  
SIN(15:0)  
FIGURE 7. FREQUENCY TO OUTPUT DELAY  
9
HSP45106  
CLK  
WR  
WRITE  
PHASE INPUT  
REGISTER  
A(2:0)  
C(15:0)  
TRANSFER DATA TO  
PHASE REGISTER  
ENPOREG  
NEW  
PHASE  
DATA  
COS(15:0),  
SIN(15:0)  
FIGURE 8. PHASE TO OUTPUT DELAY  
CLK  
MOD0-2  
PMSEL  
TRANSFER DATA TO  
PHASE REGISTER  
ENPOREG  
NEW  
PHASE  
DATA  
COS(15:0),  
SIN(15:0)  
FIGURE 9. PHASE MODULATION TO OUTPUT DELAY  
10  
HSP45106  
o
Absolute Maximum Ratings T = 25 C  
Thermal Information  
A
o
o
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8.0V  
Input, Output or I/O Voltage Applied . . . . .GND -0.5V to V +0.5V  
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Class 1  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
CC  
PLCC Package. . . . . . . . . . . . . . . . . . .  
CPGA Package . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
36  
36  
N/A  
7
o
PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 C  
CPGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . . . . .300 C  
Operating Conditions  
o
Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . .+4.75V to +5.25V  
o
o
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
o
(PLCC - Lead Tips Only)  
Die Characteristics  
Backside Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
CC  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
DC Electrical Specifications  
PARAMETER  
Logical One Input Voltage  
Logical Zero Input Voltage  
High Level Clock Input  
SYMBOL  
TEST CONDITIONS  
MIN  
2.0  
-
MAX  
-
UNITS  
V
V
V
V
V
V
= 5.25V  
= 4.75V  
= 5.25V  
= 4.75V  
IH  
CC  
CC  
CC  
CC  
V
0.8  
-
V
IL  
V
3.0  
-
V
IHC  
Low Level Clock Input  
V
0.8  
-
V
ILC  
Output HIGH Voltage  
V
I
I
= -400µA, V  
= 4.75V  
= 4.75V  
CC  
2.6  
-
V
OH  
OH  
CC  
Output LOW Voltage  
V
= +2.0mA, V  
0.4  
10  
10  
500  
180  
V
OL  
OL  
Input Leakage Current  
I
V
= V  
or GND, V  
= 5.25V  
-10  
-10  
-
µA  
µA  
µA  
mA  
I
IN  
CC  
CC  
I/O Leakage Current  
I
V
= V  
or GND, V  
= 5.25V  
CC  
O
OUT  
CC  
or GND, V  
Standby Power Supply Current  
Operating Power Supply Current  
I
V
= V  
= 5.25V, Note 4  
CCSB  
IN  
CC  
CC  
I
f = 25.6MHz, V = V  
or GND  
-
CCOP  
IN  
CC  
V
= 5.25V, Notes 2 and 4  
CC  
o
Capacitance T = 25 C, Note 3  
A
PARAMETER  
Input Capacitance  
SYMBOL  
TEST CONDITIONS  
FREQ = 1MHz, V = Open. All  
measurements are referenced to device  
ground  
MIN  
MAX  
10  
UNITS  
pF  
C
-
-
IN  
CC  
Output Capacitance  
C
10  
pF  
O
NOTES:  
2. Power supply current is proportional to operating frequency. Typical rating for I  
is 7mA/MHz.  
CCOP  
3. Not tested, but characterized at initial design and at major process/design changes.  
4. Output load per test load circuit with switch open and C = 40pF.  
L
11  
HSP45106  
o
o
AC Electrical Specifications  
V
= 5.0V 5%, T = 0 C to 70 C (Note 5)  
CC A  
25.6MHz  
33MHz  
PARAMETER  
SYMBOL  
NOTES  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
CLK Period  
CLK High  
CLK Low  
WR Period  
WR High  
WR Low  
t
39  
15  
15  
39  
15  
15  
13  
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
30  
12  
12  
30  
12  
12  
13  
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CP  
t
ns  
CH  
t
ns  
CL  
t
ns  
WP  
WH  
t
ns  
t
ns  
WL  
Setup Time A(2:0), CS to WR Going High  
Hold Time A(2:0), CS from WR Going High  
Setup Time C(15:0) to WR Going High  
Hold Time C(15:0) from WR Going High  
Setup Time WR High to CLK High  
t
ns  
AWS  
AWH  
CWS  
CWH  
t
ns  
t
15  
0
15  
0
ns  
t
ns  
t
Note 6  
16  
15  
0
12  
15  
0
ns,  
ns  
WC  
Setup Time MOD(2:0) to CLK Going High  
Hold Time MOD(2:0) from CLK Going High  
t
MCS  
MCH  
t
ns  
Setup Time ENPOREG, ENOFREG, ENCFREG,  
ENPHAC, ENTIREG, INHOFR, PMSEL, INITPAC,  
BINFMT, TEST, PAR/SER, PACI, INITTAC  
to CLK Going High  
t
12  
12  
ns  
ECS  
Hold Time ENPOREG, ENOFREG, ENCFREG,  
ENPHAC, ENTIREG, INHOFR, PMSEL, INITPAC,  
BINFMT, TEST, PAR/SER, PACI, INITTAC  
from CLK Going High  
t
0
-
0
-
ns  
ECH  
CLK to Output Delay SIN(15:0), COS(15:0), TICO  
CLK to Output Delay DACSTRB  
Output Enable Time  
t
-
2
-
18  
18  
12  
15  
8
-
2
-
15  
15  
12  
15  
8
ns  
ns  
ns  
ns  
ns  
DO  
t
DSO  
t
OE  
Output Disable Time  
t
Note 7  
Note 7  
-
-
OD  
Output Rise, Fall Time  
t
-
-
RF  
NOTES:  
5. AC testing is performed as follows: Input levels (CLK Input) 4.0V and 0V; input levels (all other inputs) 0V and 3.0V; timing reference levels (CLK)  
2.0V; all others 1.5V. Output load per test load circuit with switch closed and C = 40pF. Output transition is measured at V  
> 1.5V and V  
OL  
L
OH  
< 1.5V.  
6. If ENOFREG, ENCFREG, ENTIREG, or ENPOREG are active, care must be taken to not violate setup and hold times to these registers when  
writing data into the chip via the C(15:0) port.  
7. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or changes.  
12  
HSP45106  
AC Test Load Circuit  
S
1
DUT  
C
(NOTE)  
L
I
1.5V  
I
OL  
OH  
SWITCH S1 OPEN FOR I  
AND I  
CCOP  
CCSB  
EQUIVALENT CIRCUIT  
NOTE: Test head capacitance.  
Waveforms  
t
CP  
t
t
CL  
CH  
CLK  
t
t
t
MCS  
MCH  
MOD(2:1)  
t
ECS  
ECH  
ENABLE/CONTROL  
SIGNALS  
t
DO  
SIN(15:0), COS(15:0), TICO  
t
DSO  
DACSTRB  
(SERIAL MODE ONLY)  
t
WC  
FIGURE 10. SYNCHRONOUS TIMING  
t
WC  
t
WP  
t
WL  
t
WH  
WR  
t
AWS  
t
AWH  
A(2:0), CS  
t
CWS  
t
CWH  
C(15:0)  
FIGURE 11. ASYNCHRONOUS TIMING  
13  
HSP45106  
Waveforms (Continued)  
1.5V  
1.5V  
OES, OEC  
t
t
OD  
OE  
COS(15:0),  
SIN(15:0)  
1.7V  
1.3V  
HIGH  
HIGH  
IMPEDANCE  
IMPEDANCE  
FIGURE 12. OUTPUT ENABLE, DISABLE TIMING  
2.0V  
0.8V  
2.0V  
0.8V  
t
t
RF  
RF  
FIGURE 13. OUTPUT RISE AND FALL TIMES  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
14  

相关型号:

HSP45106JC-2596

16-BIT, DSP-NUM CONTROLLED OSCILLATOR, PQCC84
RENESAS

HSP45106JC-33

16-Bit Numerically Controlled Oscillator
INTERSIL

HSP45106JC-33Z

16-Bit Numerically Controlled Oscillator; PLCC84; Temp Range: 0&deg; to 70&deg;
RENESAS

HSP45106JI-25

16-Bit Numerically Controlled Oscillator
INTERSIL

HSP45106JI-25

DSP-NUM CONTROLLED OSCILLATOR, PQCC84
RENESAS

HSP45106_04

16-Bit Numerically Controlled Oscillator
INTERSIL

HSP45116

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116-DB

HSP45116 Daughter Board
INTERSIL

HSP45116/883

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116883

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116A

Numerically Controlled Oscillator/ Modulator
INTERSIL

HSP45116AVC-52

Numerically Controlled Oscillator/Modulator
INTERSIL