ICL7665 [INTERSIL]

CMOS Micropower Over/Under Voltage Detector; CMOS微功耗过压/欠压检测器
ICL7665
型号: ICL7665
厂家: Intersil    Intersil
描述:

CMOS Micropower Over/Under Voltage Detector
CMOS微功耗过压/欠压检测器

文件: 总11页 (文件大小:89K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICL7665S  
Data Sheet  
April 1999  
File Number 3182.4  
CMOS Micropower Over/Under Voltage  
Detector  
Features  
• Guaranteed 10µA Maximum Quiescent Current Over  
Temperature  
The ICL7665S Super CMOS Micropower Over/Under  
Voltage Detector contains two low power, individually  
programmable Voltage detectors on a single CMOS chip.  
Requiring typically 3µA for operation, the device is intended  
for battery-operated systems and instruments which require  
high or low voltage warnings, settable trip points, or fault  
monitoring and correction. The trip points and hysteresis of  
the two voltage detectors are individually programmed via  
external resistors. An internal bandgap-type reference  
provides an accurate threshold voltage while operating from  
any supply in the 1.6V to 16V range.  
• Guaranteed Wider Operating Voltage Range Over Entire  
Operating Temperature Range  
• 2% Threshold Accuracy (ICL7665SA)  
• Dual Comparator with Precision Internal Reference  
o
• 100ppm/ C Temperature Coefficient of Threshold Voltage  
• 100% Tested at 2V  
• Output Current Sinking Ability . . . . . . . . . . . . Up to 20mA  
• Individually Programmable Upper and Lower Trip Voltages  
and Hysteresis Levels  
The ICL7665S, Super Programmable Over/Under Voltage  
Detector is a direct replacement for the industry standard  
ICL7665B offering wider operating voltage and temperature  
ranges, improved threshold accuracy (ICL7665SA), and  
temperature coefficient, and guaranteed maximum supply  
current. All improvements are highlighted in the electrical  
characteristics section. All critical parameters are  
guaranteed over the entire commercial and industrial  
temperature ranges.  
Applications  
• Pocket Pagers  
• Portable Instrumentation  
• Charging Systems  
• Memory Power Back-Up  
• Battery Operated Systems  
• Portable Computers  
• Level Detectors  
Ordering Information  
TEMP. RANGE  
o
PART NUMBER  
ICL7665SCBA  
ICL7665SCPA  
ICL7665SACBA  
ICL7665SACPA  
ICL7665SIBA  
( C)  
PACKAGE  
8 Ld SOIC (N)  
8 Ld PDIP  
PKG. NO.  
M8.15  
E8.3  
Pinout  
0 to 70  
ICL7665S  
(SOIC, PDIP)  
TOP VIEW  
0 to 70  
0 to 70  
8 Ld SOIC (N)  
8 Ld PDIP  
M8.15  
E8.3  
0 to 70  
1
2
3
4
8
7
6
5
OUT 1  
HYST 1  
SET 1  
GND  
V+  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
8 Ld SOIC (N)  
8 Ld PDIP  
M8.15  
E8.3  
OUT 2  
SET 2  
HYST 2  
ICL7665SIPA  
ICL7665SAIBA  
ICL7665SAIPA  
8 Ld SOIC (N)  
8 Ld PDIP  
M8.15  
E8.3  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
3-62  
ICL7665S  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +18V  
Output Voltages OUT1 and OUT2 . . . . . . . . . . . . . . . . .-0.3V to 18V  
(with respect to GND) (Note 2)  
Output Voltages HYST1 and HYST2 . . . . . . . . . . . . . .-0.3V to +18V  
(with respect to V+) (Note 2)  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
PDIP Package . . . . . . . . . . . . . . . . . . .  
Plastic SOIC Package . . . . . . . . . . . . .  
150  
180  
N/A  
N/A  
o
Maximum Junction Temperature (Plastic) . . . . . . . . . . . . . . . .150 C  
Maximum Junction Temperature (CERDIP). . . . . . . . . . . . . . .175 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
o
o
Input Voltages SET1 and SET2 . . . . . (GND -0.3V) to (V+ V- +0.3V)  
(Note 2)  
o
Maximum Sink Output OUT1 and OUT2 . . . . . . . . . . . . . . . . . 25mA  
Maximum Source Output Current  
(SOIC - Lead Tips Only)  
HYST1 and HYST2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -25mA  
Operating Conditions  
Temperature Range  
ICL7665SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
ICL7665SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
o
o
o
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
2. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voltages greater than (V+  
+0.3V) or less than (GND - 0.3V) may cause destructive device latchup. For these reasons, it is recommended that no inputs from external  
sources not operating from the same power supply be applied to the device before its supply is established, and that in multiple supply systems,  
the supply to the ICL7665S be turned on first. If this is not possible, current into inputs and/or outputs must be limited to ±0.5mA and voltages  
must not exceed those defined above.  
o
Electrical Specifications The specifications below are applicable to both the ICL7665S and ICL7665SA. V+ = 5V, T = 25 C,  
A
Test Circuit Figure 7. Unless Otherwise Specified  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
1.6  
1.8  
1.8  
1.8  
1.8  
TYP  
MAX  
16  
UNITS  
o
Operating Supply Voltage  
V+  
ICL7665S  
T = 25 C  
A
-
-
-
-
-
V
V
V
V
V
o
o
0 C T 70 C  
16  
A
o
o
-25 C T 85 C  
16  
A
o
o
ICL7665SA  
0 C T 70 C  
16  
A
o
o
-25 C T 85 C  
16  
A
Supply Current  
I+  
GND V  
, V  
V+, All Outputs Open Circuit  
V+ = 2V  
SET1 SET2  
o
o
0 C T 70 C  
-
2.5  
2.6  
10  
10  
µA  
µA  
µA  
µA  
µA  
µA  
V
A
V+ = 9V  
-
V+ = 15V  
-
2.9  
10  
o
o
-40 C T 85 C  
V+ = 2V  
-
2.5  
10  
A
V+ = 9V  
-
2.6  
10  
V+ = 15V  
-
1.20  
1.20  
1.275  
1.275  
-
2.9  
10  
Input Trip Voltage  
V
V
V
V
ICL7665S  
1.30  
1.30  
1.30  
1.30  
200  
100  
0.03  
1.40  
1.40  
1.325  
1.325  
-
SET1  
SET2  
SET1  
SET2  
V
ICL7665SA  
V
V
Temperature Coefficient of  
V  
ICL7665S  
ppm  
ppm  
%/V  
SET  
V
SET  
T  
ICL7665SA  
-
-
Supply Voltage Sensitivity of  
, V  
V  
R
, R  
, R  
, R  
= 1MΩ,  
-
-
SET  
OUT1 OUT2 HYST1 2HYST2  
V
2V V+ 10V  
SET1 SET2  
V  
S
3-63  
ICL7665S  
o
Electrical Specifications The specifications below are applicable to both the ICL7665S and ICL7665SA. V+ = 5V, T = 25 C,  
A
Test Circuit Figure 7. Unless Otherwise Specified  
(Continued)  
PARAMETER  
SYMBOL TEST CONDITIONS  
MIN  
TYP  
10  
MAX  
200  
-100  
2000  
-500  
0.5  
UNITS  
nA  
nA  
nA  
nA  
V
Output Leakage Currents of  
OUT and HYST  
I
V
= 0V or V  
2V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
OLK  
SET  
SET  
o
I
-10  
HLK  
OLK  
I
V+ = 15V, T = 70 C  
-
A
I
-
HLK  
Output Saturation Voltages  
Output Saturation Voltages  
Output Saturation Voltages  
Output Saturation Voltages  
V
V
I
= 2V,  
= 2mA  
V+ = 2V  
V+ = 5V  
V+ = 15V  
V+ = 2V  
V+ = 5V  
V+ = 15V  
V+ = 2V  
V+ = 5V  
V+ = 15V  
V+ = 2V, I  
V+ = 5V, I  
0.2  
OUT1  
SET1  
OUT1  
0.1  
0.3  
V
0.06  
-0.15  
-0.05  
-0.02  
0.2  
0.2  
V
V
V
= 2V,  
= -0.5mA  
-0.30  
-0.15  
-0.10  
0.5  
V
HYST1  
SET1  
I
HYST1  
V
V
V
V
= 0V,  
= 2mA  
V
OUT2  
SET2  
OUT2  
I
0.15  
0.11  
-0.25  
-0.43  
-0.35  
0.01  
1.0  
0.3  
V
0.25  
-0.8  
-1.0  
-0.8  
10  
V
V
V
= 2V  
= -0.2mA  
= -0.5mA  
V
HYST2  
SET2  
HYST2  
HYST2  
V
V+ = 15V, I  
= -0.5mA  
V
HYST2  
V
Input Leakage Current  
I
GND V  
V+  
= 4.7k,  
nA  
mV  
mV  
SET  
SET  
SET  
Input for Complete Output  
V  
R
R
ICL7665S  
-
SET  
OUT  
Change  
= 20k,  
HYST  
ICL7665SA  
0.1  
-
V
LO = 1% V+,  
OUT  
V
HI = 99% V+  
OUT  
Difference in Trip Voltages  
V
-
R , R  
OUT HYST  
= 1mW  
-
±5  
±50  
mV  
SET1  
V
SET2  
Output/Hysteresis  
Difference  
R
, R  
= 1mW ICL7665S  
ICL7665SA  
-
-
±1  
-
-
mV  
mV  
OUT HYST  
±0.1  
NOTES:  
o
o
3. Derate above 25 C ambient temperature at 4mW/ C  
4. All significant improvements over the industry standard ICL7665 are highlighted.  
AC Electrical Specifications  
PARAMETER  
OUTPUT DELAY TIMES  
Input Going HI  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
t
t
t
t
t
t
t
V
R
R
Switched between 1.0V to 1.6V  
SET  
-
-
-
-
-
-
-
-
85  
90  
55  
55  
75  
80  
60  
60  
-
-
-
-
-
-
-
-
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
SO1D  
SH1D  
SO2D  
SH2D  
SO1D  
SH1D  
SO2D  
SH2D  
= 4.7k, C = 12pF  
OUT  
L
= 20k, C = 12pF  
HYST  
L
Input Going LO  
V
R
R
Switched between 1.6V to 1.0V  
SET  
= 4.7k, C = 12pF  
OUT  
L
= 20k, C = 12pF  
HYST  
L
3-64  
ICL7665S  
AC Electrical Specifications  
(Continued)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
0.6  
0.8  
7.5  
0.7  
0.6  
0.7  
4.0  
1.8  
MAX  
UNITS  
µs  
Output Rise Times  
t
t
t
t
t
t
t
t
V
R
R
Switched between 1.0V to 1.6V  
SET  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
O1R  
O2R  
H1R  
H2R  
O1F  
O2F  
H1F  
H2F  
= 4.7k, C = 12pF  
OUT  
L
µs  
= 20k, C = 12pF  
HYST  
L
µs  
µs  
Output Fall Times  
V
R
R
Switched between 1.0V to 1.6V  
µs  
SET  
= 4.7k, C = 12pF  
OUT  
L
µs  
= 20k, C = 12pF  
HYST  
L
µs  
µs  
Functional Block Diagram  
V+  
HYST2  
SET1  
-
+
HYST1  
REF  
+
-
OUT2  
SET2  
OUT1  
GND  
CONDITIONS (Note 5)  
V
V
V
V
> 1.3V, OUT1 Switch ON, HYST1 Switch ON  
< 1.3V, OUT1 Switch OFF, HYST1 Switch OFF  
> 1.3V, OUT2 Switch OFF, HYST2 Switch ON  
< 1.3V, OUT2 Switch ON, HYST2 Switch OFF  
SET1  
SET1  
SET2  
SET2  
NOTE:  
5. See Electrical Specifications for exact thresholds.  
3-65  
ICL7665S  
Typical Performance Curves  
2.0  
2.0  
1.5  
1.0  
0.5  
0
V+ = 2V  
V+ = 2V  
1.5  
V+ = 5V  
1.0  
V+ = 9V  
V+ = 5V  
V+ = 9V  
0.5  
0
V+ = 15V  
V+ = 15V  
0
5
10  
OUT2 (mA)  
15  
20  
0
5
10  
15  
20  
I
OUT1 (mA)  
I
OUT  
OUT  
FIGURE 1. OUT1 SATURATION VOLTAGE AS A FUNCTION  
OF OUTPUT CURRENT  
FIGURE 2. OUT2 SATURATION VOLTAGE AS A FUNCTION  
OF OUTPUT CURRENT  
-20  
-16  
-12  
-8  
-4  
0
-5.0  
-4.0  
-3.0  
-2.0  
-1.0  
0
0
0
o
o
T
= 25 C  
T
= 25 C  
A
A
-1.0  
-2.0  
-0.4  
-0.8  
V+ = 15V  
V+ = 15V  
V+ = 9V  
-3.0  
-4.0  
-5.0  
-1.2  
-1.6  
-2.0  
V+ = 9V  
V+ = 2V  
HYST2 OUTPUT CURRENT (mA)  
V+ = 5V  
V+ = 2V  
V+ = 5V  
HYST1 OUTPUT CURRENT (mA)  
FIGURE 3. HYST1 OUTPUT SATURATION VOLTAGE vs  
HYST1 OUTPUT CURRENT  
FIGURE 4. HYST2 OUTPUT SATURATION VOLTAGE vs  
HYST2 OUTPUT CURRENT  
5.0  
5.0  
0V V  
, V  
V+  
0V V V+  
, V  
SET1 SET2  
SET1 SET2  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
o
T
= -20 C  
A
V+ = 15V  
V+ = 9V  
o
T
= 25 C  
A
V+ = 2V  
o
T
= 70 C  
A
-25  
0
+20  
+40  
+60  
0
2
4
6
8
10  
12  
14  
16  
o
AMBIENT TEMPERATURE ( C)  
SUPPLY VOLTAGE (V+)  
FIGURE 5. SUPPLY CURRENT AS A FUNCTION OF AMBIENT  
TEMPERATURE  
FIGURE 6. SUPPLY CURRENT AS A FUNCTION OF SUPPLY  
VOLTAGE  
3-66  
ICL7665S  
in battery applications. In line operated systems, the rate-of-  
rise of the supply is limited by other considerations, and is  
normally not a problem.  
Detailed Description  
As shown in the Functional Diagram, the ICL7665S consists  
of two comparators which compare input voltages on the  
SET1 and SET2 terminals to an internal 1.3V bandgap  
reference. The outputs from the two comparators drive open-  
drain N-channel transistors for OUT1 and OUT2, and open-  
drain P-channel transistors for HYST1 and HYST2 outputs.  
Each section, the Under Voltage Detector and the Over  
Voltage Detector, is independent of the other, although both  
use the internal 1.3V reference. The offset voltages of the  
If the SET voltages must be applied before the supply  
voltage V+, the input current should be limited to less than  
0.5mA by appropriate external resistors, usually required for  
voltage setting anyway. A similar precaution should be taken  
with the outputs if it is likely that they will be driven by other  
circuits to levels outside the supplies at any time.  
two comparators will normally be unequal so V  
will  
SET1  
V
V
,
1.6V  
1.0V  
SET1  
SET2  
generally not quite equal V  
SET2  
.
INPUT  
OUT1  
t
t
The input impedance of the SET1 and SET2 pins are  
extremely high, and for most practical applications can be  
ignored. The four outputs are open-drain MOS transistors,  
and when ON behave as low resistance switches to their  
respective supply rails. This minimizes errors in setting up  
the hysteresis, and maximizes the output flexibility. The  
operating currents of the bandgap reference and the  
comparators are around 100nA each.  
O1R  
SO1D  
t
V+  
(5V)  
O1F  
t
SO1D  
GND  
t
t
SH1D  
H1F  
V+  
(5V)  
t
H1R  
HYST1  
OUT2  
GND  
t
SH1D  
t
t
t
SO2D  
O2F  
SO2D  
t
V+  
(5V)  
GND  
t
O2R  
V+  
t
SH2  
D
t
SH2D  
t
4.7kΩ  
OUT1  
V+  
(5V)  
H2F  
H2R  
HYST2  
GND  
HYST1  
OUT2  
4.7  
kΩ  
1 OUT1  
V+  
8
7
6
5
FIGURE 8. SWITCHING WAVEFORMS  
2 HYST1OUT2  
3 SET1 SET2  
4 GND HYST2  
INPUT  
Simple Threshold Detector  
HYST2  
Figure 9 shows the simplest connection of the ICL7665S for  
threshold detection. From the graph 9B, it can be seen that  
at low input voltage OUT1 is OFF, or high, while OUT2 is  
ON, or low. As the input rises (e.g., at power-on) toward  
20  
kΩ  
20  
kΩ  
12  
pF  
12  
pF  
12  
pF  
12  
pF  
V
(usually the eventual operating voltage), OUT2 goes  
NOM  
high on reaching V  
1.6V  
1.0V  
. If the voltage rises above V  
as  
TR2 NOM  
much as V  
, OUT1 goes low. The equation giving V  
are from Figure 9A:  
TR1  
SET1  
FIGURE 7. TEST CIRCUITS  
and V  
SET2  
=
R
R
V
; V =  
SET2  
11  
(R + R  
12  
(R + R )  
22  
SET1  
Precautions  
V
V
)
IN  
IN  
11  
21  
12  
Junction isolated CMOS devices like the ICL7665S have an  
inherent SCR or 4-layer PNPN structure distributed  
Since the voltage to trip each comparator is nominally 1.3V,  
the value V for each trip point can be found from  
IN  
throughout the die. Under certain circumstances, this can be  
triggered into a potentially destructive high current mode.  
This latchup can be triggered by forward-biasing an input or  
output with respect to the power supply, or by applying  
excessive supply voltages. In very low current analog  
circuits, such as the ICL7665S, this SCR can also be  
triggered by applying the input power supply extremely  
rapidly (“instantaneously”), e.g., through a low impedance  
battery and an ON/OFF switch with short lead lengths. The  
rate-of-rise of the supply voltage can exceed 100V/µs in  
such a circuit. A low impedance capacitor (e.g., 0.05µF disc  
ceramic) between the V+ and GND pins of the ICL7665S  
can be used to reduce the rate-of-rise of the supply voltage  
(R + R  
11  
)
(R + R  
11  
)
V
V
=
21  
22  
21  
22  
TR1  
SET1  
= 1.3  
for detector 1  
R
R
11  
11  
and  
V
(R + R  
12  
)
(R + R  
12  
)
=
TR2  
= 1.3  
for detector 2  
V
R
R
SET2  
12  
12  
3-67  
ICL7665S  
V
IN  
OUT  
ON  
R
R
P1  
P2  
V+  
OUT1  
SET1  
OUT2  
SET2  
R
R
R
R
21  
11  
22  
V
V
V V  
L1 U1  
L2  
U2  
12  
OFF  
V
IN  
V
NOM  
DETECTOR 2  
DETECTOR 1  
FIGURE 9A. CIRCUIT CONFIGURATION  
FIGURE 10B. TRANSFER CHARACTERISTICS  
FIGURE 10. THRESHOLD DETECTOR WITH HYSTERESIS  
V
OUT  
OFF  
Either detector may be used alone, as well as both together,  
in any of the circuits shown here.  
When V is very close to one of the trip voltage, normal  
IN  
variations and noise may cause it to wander back and forth  
across this level, leading to erratic output ON and OFF  
conditions. The addition of hysteresis, making the trip points  
slightly different for rising and falling inputs, will avoid this  
condition.  
ON  
V
V
V
NOM  
TR2  
TR1  
DETECTOR 2  
DETECTOR 1  
Threshold Detector with Hysteresis  
Figure 10A shows how to set up such hysteresis, while  
Figure 10B shows how the hysteresis around each trip point  
produces switching action at different points depending on  
FIGURE 9B. TRANSFER CHARACTERISTICS  
FIGURE 9. SIMPLE THRESHOLD DETECTOR  
V
IN  
whether V is rising or falling (the arrows indicated direction  
IN  
of change. The HYST outputs are basically switches which  
short out R or R when V is above the respective trip  
31 32 IN  
R
R
32  
point. Thus if the input voltage rises from a low value, the trip  
31  
V+  
point will be controlled by R , R , and R , until the trip  
1N 2N 3N  
HYST1  
HYST2  
point is reached. As this value is passed, the detector  
changes state, R is shorted out, and the trip point  
R
R
21  
22  
3N  
SET1  
OUT1  
SET2  
OUT2  
becomes controlled by only R and R , a lower value.  
1N 2N  
The input will then have to fall to this new point to restore the  
initial comparator state, but as soon as this occurs, the trip  
point will be raised again.  
OVERVOLTAGE  
R
OVERVOLTAGE  
12  
R
11  
An alternative circuit for obtaining hysteresis is shown in  
Figure 11. In this configuration, the HYST pins put the extra  
resistor in parallel with the upper setting resistor. The values  
of the resistors differ, but the action is essentially the same.  
The governing equations are given in Table 1. These ignore  
the effects of the resistance of the HYST outputs, but these  
can normally be neglected if the resistor values are above  
about 100k.  
FIGURE 10A. CIRCUIT CONFIGURATION  
(R + R  
12  
)
(R + R  
12  
)
22  
V
V
=
22  
TR2  
SET2  
= 1.3  
for detector 2  
R
R
12  
12  
3-68  
ICL7665S  
Applications  
V
IN  
Single Supply Fault Monitor  
Figure 12 shows an over/under voltage fault monitor for a  
single supply. The over voltage trip point is centered around  
5.5V and the under voltage trip point is centered around  
4.5V. Both have some hysteresis to prevent erratic output  
ON and OFF conditions. The two outputs are connected in a  
wired OR configuration with a pullup resistor to generate a  
power OK signal.  
R
R
P
P
V+  
R
R
R
R
OUT1  
OUT2  
21  
11  
22  
12  
R
R
32  
31  
HYST1  
SET1  
HYST2  
SET2  
+5V SUPPLY  
FIGURE 11. AN ALTERNATIVE HYSTERESIS CIRCUIT  
R
21  
324KΩ  
V+  
249KΩ  
R
22  
HYST1 HYST2  
TABLE 1. SET-POINT EQUATIONS  
NO HYSTERESIS  
7.5MΩ  
5%  
13MΩ  
5%  
R
R
32  
31  
V
V
SET2  
SET1  
R
+ R  
11  
21  
Over-Voltage V  
=
x V  
x V  
TRIP  
SET1  
SET2  
100KΩ  
100KΩ  
R
11  
OUT1  
OUT2  
OPEN VOLTAGE  
DETECTOR  
R
+ R  
12  
22  
V
V
= 4.55V  
= 4.45V  
Over-Voltage V  
=
U
L
TRIP  
OPEN VOLTAGE  
DETECTOR  
V+  
R
12  
HYSTERESIS PER FIGURE 10A  
+ R + R31  
V
V
= 5.55V  
= 5.45V  
1MΩ  
U
L
POWER  
OK  
R
11  
21  
V
=
x V  
U1  
SET1  
R
11  
TRIP  
+ R  
FIGURE 12. FAULT MONITOR FOR A SINGLE SUPPLY  
Over-Voltage V  
R
11  
21  
Multiple Supply Fault Monitor  
The ICL7665S can simultaneously monitor several supplies  
when connected as shown in Figure 13. The resistors are  
V
=
x V  
SET1  
L1  
R
11  
R
+ R + R  
22  
12  
32  
V
=
x V  
SET2  
U2  
chosen such that the sum of the currents through R  
,
21A  
R
12  
R
, and R is equal to the current through R when the  
21B 31 11  
Under-Voltage V  
TRIP  
two input voltage are at the desired low voltage detection  
R
+ R  
12  
22  
point. The current through R at this point is equal to  
11  
1.3V/R . The voltage at the V  
V
=
x V  
SET2  
L2  
input depends on the  
11  
SET  
R
12  
voltage of both supplies being monitored. The trip voltage of  
one supply while the other supply is at the nominal voltage  
will be different that the trip voltage when both supplies are  
below their nominal voltages.  
HYSTERESIS PER FIGURE 11  
R
+ R  
21  
11  
V
=
x V  
SET1  
U1  
R
11  
The other side of the ICL7665S can be used to detect the  
absence of negative supplies. The trip points for OUT1  
depend on both the negative supply voltages and the actual  
voltage of the +5V supply.  
Over-Voltage V  
TRIP  
R
R
21 31  
R
R
+
11  
R
R
+
V
=
21  
x V  
SET1  
L1  
31  
11  
R
+ R  
22  
12  
V
=
x V  
SET2  
U2  
R
12  
Over-Voltage V  
TRIP  
R
R
22 32  
R
R
+
12  
12  
V
=
x V  
SET2  
L2  
R
+ R  
32  
22  
3-69  
ICL7665S  
V
is greater than 1.3V, OUT1 is low, but when V  
SET1  
SET1  
drops below 1.3V, OUT1 goes high shutting off the  
ICL7663S. OUT2 is used for low battery warning. When  
is greater than 1.3V, OUT2 is high and the low battery  
+5V  
274kΩ  
R
V+  
21A  
HYST1 HYST2  
V
+5V  
SET2  
warning is on. When V  
100kΩ  
22  
MΩ  
R
drops below 1.3V, OUT2 is low  
21  
SET2  
and the low battery warning goes off. The trip voltage for low  
battery warning can be set higher than the trip voltage for  
shutdown to give advance low battery warning before the  
battery is disconnected.  
V
V
SET2  
SET1  
49.9kΩ  
301  
kΩ  
787  
kΩ  
+5V  
R
11  
OUT1  
OUT2  
+15V  
1.02MΩ  
1
MΩ  
R
-5V  
-15V  
21B  
Power Fail Warning and Powerup/Powerdown  
Reset  
POWER  
OK  
Figure 15 shows a power fail warning circuit with  
powerup/powerdown reset. When the unregulated DC input  
is above the trip point, OUT1 is low. When the DC input  
drops below the trip point, OUT1 shuts OFF and the power  
fail warning goes high. The voltage on the input of the 7805  
FIGURE 13. MULTIPLE SUPPLY FAULT MONITOR  
Combination Low Battery Warning and Low  
Battery Disconnect  
will continue to provide 5V out at 1A until V is less than  
IN  
When using rechargeable batteries in a system, it is  
7.3V, this circuit will provide a certain amount of warning  
before the 5V output begins to drop.  
important to keep the batteries from being overdischarged.  
The circuit shown in Figure 14 provides a low battery  
warning and also disconnects the low battery from the rest of  
the system to prevent damage to the battery. OUT1 is used  
to shutdown the ICL7663S when the battery voltage drops to  
the value where the load should be disconnected. As long as  
The ICL7665S OUT2 is used to prevent a microprocessor  
from writing spurious data to a CMOS battery backup  
memory by causing OUT2 to go low when the 7805 5V  
output drops below the ICL7665S trip point.  
+5V  
100Ω  
1A  
R
R
32  
31  
V+  
1MΩ  
HYST1  
HYST2  
SET2  
V+  
OUT1  
OUT2  
SENSE  
+
-
R
R
21  
22  
ICL7665S  
GND  
ICL7663S  
SET1  
OUT1  
V+  
SHUTDOWN  
V
SET  
GND  
R
R
12  
11  
OUT2  
1MΩ  
LOW BATTERY SHUTDOWN  
LOW BATTERY WARNING  
FIGURE 14. LOW BATTERY WARNING AND LOW BATTERY DISCONNECT  
3-70  
ICL7665S  
7805  
5V REGULATOR  
UNREGULATED  
DC INPUT  
4700µF  
470µF  
BACKUP  
BATTERY  
V+  
HYST1  
HYST2  
22MΩ  
1MΩ  
5.86kΩ  
ICL7665S  
V
V
SET1  
SET2  
715kΩ  
2.2MΩ  
OUT1  
OUT2  
130kΩ  
RESET OR  
WRITE  
1MΩ  
ENABLE  
1MΩ  
POWER  
FAIL  
WARNING  
FIGURE 15. POWER FAIL WARNING AND POWERUP/POWERDOWN RESET  
Simple High/Low Temperature Alarm  
AC Power Fail and Brownout Detector  
Figure 16 illustrates a simple high/low temperature alarm  
which uses the ICL7665S with an NPN transistor. The  
Figure 17 shows a circuit that detects AC undervoltage by  
monitoring the secondary side of the transformer. The  
voltage at the top of R is determined by the V of the  
capacitor, C , is charged through R when OUT1 is OFF.  
1
BE  
1 1  
transistor and the position of R ’s wiper arm. This voltage  
With a normal 100 VAC input to the transformer, OUT1 will  
1
has a negative temperature coefficient. R is adjusted so  
discharge C once every cycle, approximately every 16.7ms.  
1
1
that V  
equals 1.3V when the NPN transistor’s  
When the AC input voltage is reduced, OUT1 will stay OFF,  
SET2  
temperature reaches the temperature selected for the high  
temperature alarm. When this occurs, OUT2 goes low. R is  
so that C does not discharge. When the voltage on C  
1
1
reaches 1.3V, OUT2 turns OFF and the power fail warning  
2
adjusted so that V  
equals 1.3V when the NPN  
goes high. The time constant, R C , is chosen such that it  
SET1  
1
1
transistor’s temperature reaches the temperature selected  
for the low temperature alarm. When the temperature drops  
below this limit, OUT1 goes low.  
takes longer than 16.7ms to charge C 1.3V.  
1
3-71  
ICL7665S  
+
-
5V  
470kΩ  
LOW TEMPERATURE  
LIMIT ADJUST  
V+  
R
3
TEMPERATURE  
SENSOR  
(GENERAL PURPOSE  
HYST1  
HYST2  
NPN TRANSISTOR)  
R
4
22MΩ  
22kΩ  
R
6
ICL7665S  
27kΩ  
R
2
V
V
SET1  
SET2  
1MΩ  
R
5
OUT1  
OUT2  
R
1.5MΩ  
7
10KΩ  
HIGH  
R
1
V+  
ALARM SIGNAL  
FOR DRIVING  
LEDS, BELLS,  
ETC.  
TEMPERATURE  
LIMIT ADJUST  
1MΩ  
FIGURE 16. SIMPLE HIGH/LOW TEMPERATURE ALARM  
7805  
5V REGULATOR  
5V, 1A  
4700µF  
20V  
CENTERED  
TAPPED  
TRANS.  
110VAC  
60Hz  
+5V  
HYST2  
ICL7665S  
HYST1  
601kΩ  
R
1
1MΩ  
V
V
SET2  
SET1  
100kΩ  
POWER FAIL  
WARNING  
1MΩ  
OUT1  
OUT2  
C
1
1MΩ  
FIGURE 17. AC POWER FAIL AND BROWNOUT DETECTOR  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
3-72  

相关型号:

ICL7665A

µ.P Voltage Monitor with Dual Over/Undervoltage Detection
MAXIM

ICL7665AC/D

Microprocessor Voltage Monitor with
MAXIM

ICL7665ACJA

Microprocessor Voltage Monitor with
MAXIM

ICL7665ACJA+

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, CDIP8, DIP-8
MAXIM

ICL7665ACPA

Microprocessor Voltage Monitor with
MAXIM

ICL7665ACPA-2

Voltage Detector
ETC

ICL7665ACSA

Microprocessor Voltage Monitor with
MAXIM

ICL7665ACSA+

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, SOIC-8
MAXIM

ICL7665ACSA-T

Power Supply Support Circuit, Fixed, 2 Channel, CMOS, PDSO8, 0.150 INCH, SOIC-8
MAXIM

ICL7665ACTV

Microprocessor Voltage Monitor with
MAXIM

ICL7665AEPA

Microprocessor Voltage Monitor with
MAXIM

ICL7665AESA

Microprocessor Voltage Monitor with
MAXIM