ICM7216A [INTERSIL]

8-Digit, Multi-Function, Frequency Counters/Timers; 8位,多功能,频率计数器/定时器
ICM7216A
型号: ICM7216A
厂家: Intersil    Intersil
描述:

8-Digit, Multi-Function, Frequency Counters/Timers
8位,多功能,频率计数器/定时器

计数器
文件: 总17页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICM7216A, ICM7216B,  
ICM7216D  
8-Digit, Multi-Function,  
August 1997  
Frequency Counters/Timers  
Features All Versions  
Description  
• Functions as a Frequency Counter (DC to 10MHz)  
The ICM7216A and ICM7216B are fully integrated Timer  
Counters with LED display drivers. They combine a high  
• Four Internal Gate Times: 0.01s, 0.1s, 1s, 10s in  
Frequency Counter Mode  
frequency oscillator,  
a decade timebase counter, an  
8-decade data counter and latches, a 7-segment decoder,  
digit multiplexers and 8-segment and 8-digit drivers which  
directly drive large multiplexed LED displays. The counter  
inputs have a maximum frequency of 10MHz in frequency  
and unit counter modes and 2MHz in the other modes. Both  
inputs are digital inputs. In many applications, amplification  
and level shifting will be required to obtain proper digital  
signals for these inputs.  
• Directly Drives Digits and Segments of Large Multi-  
plexed LED Displays (Common Anode and Common  
Cathode Versions)  
• Single Nominal 5V Supply Required  
• Highly Stable Oscillator, Uses 1MHz or 10MHz Crystal  
• Internally Generated Decimal Points, Interdigit Blanking,  
Leading Zero Blanking and Overflow Indication  
The ICM7216A and ICM7216B can function as a frequency  
counter, period counter, frequency ratio (f /f ) counter, time  
A
B
• Display Off Mode Turns Off Display and Puts Chip Into  
Low Power Mode  
interval counter or as a totalizing counter. The counter uses  
either a 10MHz or 1MHz quartz crystal timebase. For period  
and time interval, the 10MHz timebase gives a 0.1µs  
resolution. In period average and time interval average, the  
resolution can be in the nanosecond range. In the frequency  
mode, the user can select accumulation times of 0.01s, 0.1s,  
1s and 10s. With a 10s accumulation time, the frequency  
can be displayed to a resolution of 0.1Hz in the least  
significant digit. There is 0.2s between measurements in all  
ranges.  
• Hold and Reset Inputs for Additional Flexibility  
Features ICM7216A and ICM7216B  
• Functions Also as a Period Counter, Unit Counter,  
Frequency Ratio Counter or Time Interval Counter  
• 1 Cycle, 10 Cycles, 100 Cycles, 1000 Cycles in Period,  
Frequency Ratio and Time Interval Modes  
The ICM7216D functions as a frequency counter only, as  
described above.  
• Measures Period From 0.5µs to 10s  
All versions of the ICM7216 incorporate leading zero  
blanking. Frequency is displayed in kHz. In the ICM7216A  
and ICM7216B, time is displayed in µs. The display is  
multiplexed at 500Hz with a 12.2% duty cycle for each digit.  
The ICM7216A is designed for common anode displays with  
typical peak segment currents of 25mA. The ICM7216B and  
ICM7216D are designed for common cathode displays with  
typical peak segment currents of 12mA. In the display off  
mode, both digit and segment drivers are turned off,  
enabling the display to be used for other functions.  
Features ICM7216D  
• Decimal Point and Leading Zero Banking May Be  
Externally Selected.  
Ordering Information  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
ICM7216AlJl  
ICM7216BlPl  
ICM7216DlPl  
-25 to 85 28 Ld CERDIP  
-25 to 85 28 Ld PDIP  
-25 to 85 28 Ld PDIP  
F28.6  
E28.6  
E28.6  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
File Number 3166.1  
9-10  
ICM7216A, ICM7216B, ICM7216D  
Pinouts  
ICM7216A  
COMMON ANODE  
(CERDIP)  
ICM7216B  
COMMON CATHODE  
(PDIP)  
TOP VIEW  
TOP VIEW  
CONTROL INPUT  
1
28 INPUT A  
CONTROL INPUT  
INPUT B  
1
2
3
4
5
6
7
8
9
28 INPUT A  
INPUT B  
2
3
4
5
6
7
8
9
27 HOLD INPUT  
26 OSC OUTPUT  
25 OSC INPUT  
27 HOLD INPUT  
26 OSC OUTPUT  
25 OSC INPUT  
FUNCTION INPUT  
DECIMAL POINT  
OUTPUT  
FUNCTION INPUT  
DIGIT 1 OUTPUT  
DIGIT 3 OUTPUT  
DIGIT 2 OUTPUT  
DIGIT 4 OUTPUT  
SEG e OUTPUT  
24 EXT OSC INPUT  
23 DIGIT 1 OUTPUT  
22 DIGIT 2 OUTPUT  
21 DIGIT 3 OUTPUT  
24 EXT OSC INPUT  
DECIMAL POINT  
OUTPUT  
SEG g OUTPUT  
SEG a OUTPUT  
23  
22 SEG g OUTPUT  
V
V
21 SEG e OUTPUT  
SS  
SS  
SEG d OUTPUT  
20  
DIGIT 5 OUTPUT  
20  
DIGIT 4 OUTPUT  
19 DIGIT 5 OUTPUT  
18 V  
SEG a OUTPUT  
19 SEG d OUTPUT  
18 V  
SEG b OUTPUT 10  
SEG c OUTPUT 11  
SEG f OUTPUT 12  
RESET INPUT 13  
RANGE INPUT 14  
DIGIT 6 OUTPUT 10  
DIGIT 7 OUTPUT 11  
DIGIT 8 OUTPUT 12  
RESET INPUT 13  
RANGE INPUT 14  
DD  
DD  
17 DIGIT 6 OUTPUT  
16 DIGIT 7 OUTPUT  
15 DIGIT 8 OUTPUT  
17 SEG b OUTPUT  
16 SEG c OUTPUT  
15 SEG f OUTPUT  
ICM7216D  
COMMON CATHODE  
(PDIP)  
TOP VIEW  
CONTROL INPUT  
MEASUREMENT IN PROGRESS  
DIGIT 1 OUTPUT  
1
2
3
4
5
6
7
8
9
28 INPUT A  
27 HOLD INPUT  
26 OSC OUTPUT  
25 OSC INPUT  
DIGIT 3 OUTPUT  
DIGIT 2 OUTPUT  
24 EXT OSC INPUT  
23 DECIMAL POINT OUTPUT  
22 SEG g OUTPUT  
21 SEG e OUTPUT  
DIGIT 4 OUTPUT  
V
SS  
DIGIT 5 OUTPUT  
DIGIT 6 OUTPUT  
20  
SEG a OUTPUT  
19 SEG d OUTPUT  
18 V  
DIGIT 7 OUTPUT 10  
DIGIT 8 OUTPUT 11  
DD  
RESET INPUT 12  
17 SEG b OUTPUT  
16 SEG c OUTPUT  
15 SEG f OUTPUT  
EX. DECIMAL POINT INPUT 13  
RANGE INPUT 14  
9-11  
ICM7216A, ICM7216B, ICM7216D  
Functional Block Diagram  
EXT  
OSC  
INPUT  
OSC  
INPUT  
3
8
8
OSC  
SELECT  
DIGIT  
DRIVERS  
DECODER  
DIGIT  
OUTPUTS  
(8)  
OSC  
OUTPUT  
REFERENCE  
COUNTER  
3
10  
÷
RANGE  
CONTROL  
LOGIC  
RANGE SELECT  
LOGIC  
RANGE  
INPUT  
100Hz  
5
4
10 OR 10  
÷
÷
5
STORE AND  
RESET LOGIC  
RESET  
INPUT  
CONTROL  
LOGIC  
6
CONTROL  
INPUT  
MAIN  
3
EN  
CL  
10 COUNTER  
÷
DP  
LOGIC  
OVERFLOW  
EXT  
DP  
INPUT  
(NOTE 2)  
4
4
4
4
4
4
4
4
INPUT  
CONTROL  
LOGIC  
INPUT A  
DATA LATCHES AND  
OUTPUT MUX  
STORE  
INPUT B  
(NOTE 1)  
DECODER  
LOGIC  
SEGMENT  
DRIVER  
4
7
8
SEGMENT  
OUTPUTS  
(8)  
Q
D
MEASUREMENT  
IN PROGRESS  
OUTPUT  
INPUT  
CONTROL  
LOGIC  
CL  
MAIN  
FF  
(NOTE 2)  
FUNCTION  
INPUT  
FN  
(NOTE 1)  
CONTROL  
LOGIC  
6
HOLD  
INPUT  
NOTES:  
1. Function input and input B available on ICM7216A/B only.  
2. Ext DP input and MEASUREMENT IN PROGRESS output available on ICM7216D only.  
9-12  
ICM7216A, ICM7216B, ICM7216D  
Absolute Maximum Ratings  
Thermal Information  
o
o
Maximum Supply Voltage (V  
- V ). . . . . . . . . . . . . . . . . . . .6.5V  
SS  
Thermal Resistance (Typical, Note 2)  
CERDIP Package . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
θ
( C/W)  
θ
( C/W)  
DD  
JA  
JC  
Maximum Digit Output Current. . . . . . . . . . . . . . . . . . . . . . . .400mA  
Maximum Segment Output Current . . . . . . . . . . . . . . . . . . . . .60mA  
Voltage On Any Input or  
50  
55  
10  
N/A  
o
Output Terminal (Note 1) . . . . . . . . . . . .(V  
+0.3V) to (V -0.3V)  
SS  
CERDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 C  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300 C  
DD  
o
o
o
Operating Conditions  
o
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -25 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. The ICM7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if  
input or outputs are forced to voltages exceeding V  
DD  
to V by more than 0.3V.  
SS  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications  
V
= 5.0V, V = 0V, T = 25 C, Unless Otherwise Specified  
DD  
SS  
A
PARAMETER  
ICM7216A/B  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Operating Supply Current, I  
Display Off, Unused Inputs to V  
-
2
-
5
6.0  
-
mA  
V
DD  
SS  
INPUT A, INPUT B Frequency at f  
MAX  
Supply Voltage Range (V  
-V ), V  
4.75  
10  
DD SS  
SUPPLY  
Maximum Frequency INPUT A, Pin 28, f  
Figure 9, Function = Frequency, Ratio,  
Unit Counter  
-
MHz  
A(MAX)  
Function = Period, Time Interval  
2.5  
2.5  
250  
-
-
-
-
-
-
MHz  
MHz  
ns  
Maximum Frequency INPUT B, Pin 2, f  
Figure 10  
Figure 1  
B(MAX)  
Minimum Separation INPUT A to INPUT B Time  
Interval Function  
Maximum Oscillator Frequency and External Oscillator  
Frequency, f  
10  
-
-
MHz  
OSC  
Minimum External Oscillator Frequency, f  
-
-
100  
kHz  
µS  
OSC  
o
Oscillator Transconductance, g  
V
= 4.75V, T = 85 C  
A
2000  
-
-
-
-
M
DD  
Multiplex Frequency, f  
f
f
= 10MHz  
= 10MHz  
-
-
500  
200  
Hz  
MUX  
Time Between Measurements  
Input Voltages: Pins 2, 13, 25, 27, 28  
Input Low Voltage, V  
OSC  
OSC  
ms  
-
3.5  
100  
-
-
-
1.0  
V
V
INL  
Input High Voltage, V  
-
-
lNH  
Input Resistance to V  
Pins 13, 24, R  
V = V  
IN DD  
-1.0V  
400  
-
kΩ  
DD  
IN  
Input Leakage Pins 27, 28, 2, I  
20  
-
µA  
ILK  
Input Range of Change, dV /dt  
lN  
Supplies Well Bypassed  
-
15  
mV/µs  
ICM7216A  
Digit Driver: Pins 15, 16, 17, 19, 20, 21, 22, 23  
High Output Current, I  
V
= V  
-2.0V  
-140  
-
-180  
0.3  
-
-
mA  
mA  
OH  
OUT DD  
Low Output Current, I  
V
= V +1.0V  
SS  
OL  
OUT  
Segment Driver: Pins 4, 5, 6, 7, 9,10, 11, 12  
Low Output Current, I  
V
= V +1.5V  
20  
-
35  
-
-
mA  
OL  
High Output Current, I  
OUT SS  
V
= V  
-2.5V  
-100  
µA  
OH  
Multiplex Inputs: Pins 1, 3, 14  
Input Low Voltage, V  
OUT DD  
-
-
-
0.8  
V
V
INL  
Input High Voltage, V  
2.0  
50  
-
-
INH  
Input Resistance to V , R  
V
= V +1.0V  
IN SS  
100  
kΩ  
SS IN  
9-13  
ICM7216A, ICM7216B, ICM7216D  
o
Electrical Specifications  
V
= 5.0V, V = 0V, T = 25 C, Unless Otherwise Specified (Continued)  
DD  
SS  
A
PARAMETER  
ICM7216B  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digit Driver: Pins 4, 5, 6, 7, 9, 10, 11, 12  
Low Output Current, I  
V
= V +1.3V  
50  
-
75  
-
-
mA  
OL  
High Output Current, I  
OUT SS  
V
= V  
-2.5V  
-100  
µA  
OH  
Segment Driver: Pins 15, 16, 17, 19, 20, 21, 22, 23  
High Output Current, I  
OUT  
DD  
V
= V  
= V  
-2.0V  
-2.5V  
-10  
-
-
-
-
mA  
OH  
SLK  
Multiplex Inputs: Pins 1, 3, 14  
Input Low Voltage, V  
OUT  
DD  
Leakage Current, I  
V
10  
µA  
OUT  
DD  
-
-
-
V
-2.0  
DD  
V
V
INL  
Input High Voltage, V  
V
-0.8  
DD  
-
lNH  
Input Resistance to V , R  
V
= V -2.5V  
DD  
100  
360  
-
kΩ  
DD IN  
lN  
ICM7216D  
Operating Supply Current, I  
Display Off, Unused Inputs to V  
-
2
-
5
6.0  
-
mA  
V
DD  
-V ), V  
SS  
Supply Voltage Range (V  
DD SS  
INPUT A Frequency at f  
Figure 9  
4.75  
10  
SUPPLY  
MAX  
Maximum Frequency INPUT A, Pin 28, f  
-
MHz  
MHz  
A(MAX)  
Maximum Oscillator Frequency and External Oscillator  
Frequency, f  
10  
-
-
OSC  
Minimum External Oscillator Frequency, f  
-
-
100  
kHz  
µS  
OSC  
o
Oscillator Transconductance, g  
V
= 4.75V, T = 85 C  
2000  
-
-
-
-
M
DD  
A
Multiplex Frequency, f  
f
= 10MHz  
= 10MHz  
-
-
500  
200  
Hz  
MUX  
OSC  
OSC  
Time Between Measurements  
Input Voltages: Pins 12, 27, 28  
f
ms  
Input Low Voltage, V  
-
3.5  
100  
-
-
1.0  
V
V
INL  
Input High Voltage, V  
-
400  
-
-
-
INH  
Input Resistance to V  
Pins 12, 24, R  
V = V  
IN DD  
-1.0V  
kΩ  
DD,  
IN  
Input Leakage, Pins 27, 28, I  
20  
-
µA  
ILK  
Output Current, Pin 2, I  
Output Current, Pin 2, I  
V
= +0.4V  
0.36  
265  
-
-
mA  
µA  
OL  
OL  
V
= V  
-0.8V  
-
-
OH  
OH DD  
Input Rate of Change, dV /dt  
lN  
Supplies Well Bypassed  
15  
-
mV/µs  
Digit Driver: Pins 3, 4, 5, 6, 8, 9, 10, 11  
Low Output Current, I  
OL  
V
= +1.3V  
50  
-
75  
-
-
mA  
OUT  
High Output Current, I  
V
= V  
-2.5V  
100  
µA  
OH  
Segment Driver: Pins 15, 16, 17, 19, 20, 21, 22, 23  
High Output Current, I  
OUT  
DD  
V
= V  
= V  
-2.0V  
-2.5V  
10  
-
15  
-
mA  
OH  
SLK  
Multiplex Inputs: Pins 1, 13, 14  
Input Low Voltage, V  
OUT  
DD  
Leakage Current, I  
V
10  
µA  
OUT  
DD  
-
-
-
V
-2.0  
DD  
V
V
lNL  
Input High Voltage, V  
V
-0.8  
-
-
INH  
DD  
Input Resistance to V , R  
V
= V  
IN DD  
-1.0V  
100  
360  
kΩ  
DD lN  
9-14  
ICM7216A, ICM7216B, ICM7216D  
Timing Diagram  
40ms  
INTERNAL  
STORE  
30ms TO 40ms  
60ms  
40ms  
UPDATE  
190ms TO 200ms  
FUNCTION:  
TIME INTERVAL  
INTERNAL  
RESET  
UPDATE  
PRIMING  
MEASUREMENT INTERVAL  
MEASUREMENT  
IN PROGRESS  
(INTERNAL ON  
7216A/B)  
INPUT A  
INPUT B  
PRIMING EDGES  
250ns MIN  
MEASURED  
INTERVAL  
(FIRST)  
MEASURED  
INTERVAL  
(LAST)  
NOTE:  
1. If range is set to 1 event, first and last measured interval will coincide.  
FIGURE 1. WAVEFORMS FOR TIME INTERVAL MEASUREMENT (OTHERS ARE SIMILAR, BUT WITHOUT PRIMING PHASE)  
Typical Performance Curves  
20  
15  
10  
5
300  
200  
100  
0
4.5 V  
DD  
6.0V  
f
(MAX) FREQUENCY UNIT COUNTER,  
FREQUENCY RATIO MODES  
A
f
(MAX) f (MAX) PERIOD,  
B
A
TIME INTERVAL MODES  
o
25 C  
o
85 C  
o
-20 C  
o
T
= 25 C  
A
0
0
1
2
3
3
4
5
6
V
-V (V)  
DD SS  
V
-V (V)  
DD OUT  
FIGURE 2. f (MAX), f (MAX) AS A FUNCTION OF SUPPLY  
FIGURE 3. ICM7216A TYPICAL I  
DIG  
vs V -V  
DD OUT  
A
B
9-15  
ICM7216A, ICM7216B, ICM7216D  
Typical Performance Curves (Continued)  
30  
80  
60  
40  
20  
0
o
4.5 V  
6V  
o
T
= 25 C  
DD  
A
-20 C  
V
V
= 5.5V  
= 4.5V  
DD  
DD  
o
25 C  
V
= 5V  
DD  
20  
10  
o
85 C  
0
0
1
2
3
0
1
2
3
V
-V (V)  
V
(V)  
DD OUT  
OUT  
FIGURE 4. ICM7216B AND ICM7216D TYPICAL I  
vs V -V  
DD OUT  
FIGURE 5. ICM7216A TYPICAL I  
vs V  
OUT  
SEG  
SEG  
200  
80  
60  
40  
20  
0
o
-20 C  
V
= 5V  
V
= 5V  
DD  
DD  
o
-20 C  
o
25 C  
o
25 C  
150  
100  
50  
o
o
85 C  
85 C  
0
0
1
2
3
0
1
2
3
V
(V)  
V
(V)  
OUT  
OUT  
FIGURE 6. ICM7216B AND ICM7216D TYPICAL I  
vs V  
FIGURE 7. ICM7216A TYPICAL I  
vs V  
OUT  
DIGIT  
OUT  
SEG  
200  
o
T
= 25 C  
A
V
= 5.5V  
DD  
50  
100  
50  
V
= 5V  
DD  
V
= 4.5V  
DD  
0
0
1
2
3
V
(V)  
OUT  
FIGURE 8. ICM7216B AND ICM7216D TYPICAL I  
vs V  
OUT  
DIGIT  
9-16  
ICM7216A, ICM7216B, ICM7216D  
COUNTED  
TRANSITIONS  
Description  
INPUTS A and B  
INPUTS A and B are digital inputs with a typical switching  
threshold of 2V at V = 5V. For optimum performance the  
50ns MIN  
4.5V  
0.5V  
DD  
INPUT A  
peak-to-peak input signal should be at least 50% of the  
supply voltage and centered about the switching voltage.  
When these inputs are being driven from TTL logic, it is  
desirable to use a pullup resistor. The circuit counts high to  
low transitions at both inputs. (INPUT B is available only on  
lCM7216A and lCM7216B).  
t = t = 10ns  
50ns MIN  
r
f
FIGURE 9. WAVEFORM FOR GUARANTEED MINIMUM f (MAX)  
A
FUNCTION = FREQUENCY, FREQUENCY RATIO,  
UNIT COUNTER  
9.  
Note that the amplitude of the input should not exceed the  
device supply (above the V  
and below the V ) by more  
DD  
SS  
than 0.3V, otherwise the device may be damaged.  
MEASURED  
INTERVAL  
Multiplexed Inputs  
250ns  
MIN  
The FUNCTION, RANGE, CONTROL and EXTERNAL  
DECIMAL POINT inputs are time multiplexed to select the  
function desired. This is achieved by connecting the appro-  
priate Digit driver output to the inputs. The function, range  
and control inputs must be stable during the last half of each  
digit output, (typically 125µs). The multiplexed inputs are  
active high for the common anode lCM7216A and active low  
for the common cathode lCM7216B and lCM7216D.  
4.5V  
0.5V  
INPUT A OR  
INPUT B  
250ns  
MIN  
t
= t = 10s  
f
r
FIGURE 10. WAVEFORM FOR GUARANTEED MINIMUM f (MAX)  
B
AND f (MAX) FOR FUNCTION = PERIOD AND  
A
TIME INTERVAL  
Noise on the multiplex inputs can cause improper operation.  
This is particularly true when the unit counter mode of  
operation is selected, since changes in voltage on the digit  
drivers can be capacitively coupled through the LED diodes  
to the multiplex inputs. For maximum noise immunity, a 10kΩ  
resistor should be placed in series with the multiplexed  
inputs as shown in the application circuits.  
Function Input  
The six functions that can be selected are: Frequency,  
Period, Time Interval, Unit Counter, Frequency Ratio and  
Oscillator Frequency. This input is available on the  
lCM7216A and lCM7216B only.  
Table 1 shows the functions selected by each digit for these  
inputs.  
The implementation of different functions is done by routing  
the different signals to two counters, called “Main Counter”  
and “Reference Counter”. A simplified block diagram of the  
device for functions realization is shown in Figure 11. Table 2  
shows which signals will be routed to each counter in  
different cases. The output of the Main Counter is the  
information which goes to the display. The Reference  
Counter divides its input by 1, 10, 100 and 1000. One of  
these outputs will be selected through the range selector  
and drive the enable input of the Main Counter. This means  
that the Reference Counter, along with its associated blocks,  
directs the Main Counter to begin counting and determines  
the length of the counting period. Note that Figure 11 does  
not show the complete functional diagram (See the  
Functional Block Diagram). After the end of each counting  
period, the output of the Main Counter will be latched and  
displayed, then the counter will be reset and a new  
measurement cycle will begin. Any change in the  
FUNCTION INPUT will stop the present measurement  
without updating the display and then initiate a new  
measurement. This prevents an erroneous first reading after  
the FUNCTION INPUT is changed. In all cases, the 1-0  
transitions are counted or timed.  
TABLE 1. MULTIPLEXED INPUT FUNCTIONS  
FUNCTION  
FUNCTION INPUT (Pin Frequency  
DIGIT  
D1  
D8  
D2  
D5  
D4  
D3  
D1  
D2  
D3  
D4  
3, lCM7216A and B  
Only)  
Period  
Frequency Ratio  
Time Interval  
Unit Counter  
Oscillator Frequency  
RANGE INPUT, Pin 14 0.01s/1 Cycle  
0.1s/10 Cycles  
1s/100 Cycles  
10s/1K Cycles  
CONTROL INPUT,  
Pin 1  
Display Off  
D4 and  
Hold  
Display Test  
D8  
D2  
D1  
D3  
1MHz Select  
External Oscillator Enable  
External Decimal Point  
Enable  
External DP INPUT (Pin Decimal point is output for same digit  
13, ICM7216D Only) that is connected to this input.  
9-17  
ICM7216A, ICM7216B, ICM7216D  
INTERNAL CONTROL  
INTERNAL CONTROL  
100Hz  
INPUT  
SELECTOR  
INPUT A  
CLOCK  
INPUT B  
REFERENCE COUNTER  
÷1  
÷10 ÷100 ÷1000  
INTERNAL CONTROL  
RANGE SELECTOR  
INTERNAL CONTROL  
INTERNAL OR  
EXTERNAL  
OSCILLATOR  
ENABLE  
CLOCK  
MAIN COUNTER  
INPUT  
SELECTOR  
INPUT A  
FIGURE 11. SIMPLIFIED BLOCK DIAGRAM OF FUNCTIONS IMPLEMENTATION  
display becomes updated; note this when measuring long  
TABLE 2. 7216A/B INPUT ROUTING  
MAIN  
time intervals to give enough time for measurement comple-  
tion. The resolution in this mode is the same as for period  
measurement. See the Time Interval Measurement section  
also.  
FUNCTION  
COUNTER  
REFERENCE COUNTER  
5
4
Frequency (f )  
Input A  
100Hz (Oscillator ÷10 or 10 )  
A
Unit Counter - In this mode, the Main Counter is always  
enabled. The input A is counted by the Main Counter and  
displayed continuously.  
Period (t )  
Oscillator  
Input A  
Input A  
Input B  
A
Ratio (f /f )  
A
B
Time Interval  
(AB)  
Oscillator  
Input A  
Input B  
Oscillator Frequency - In this mode, the device makes a  
frequency measurement on its timebase. This is a self test  
mode for device functionality check. For 10MHz timebase  
the display will show 10000.0, 10000.00, 10000.000 and  
Overflow in different ranges.  
Unit Counter  
(Count A)  
Input A  
Not Applicable  
5
4
Osc. Freq.  
Oscillator  
100Hz (Oscillator ÷10 or 10 )  
(f  
)
OSC  
Range Input  
Frequency - In this mode input A is counted by the Main  
Counter for a precise period of time. This time is determined  
by the time base oscillator and the selected range. For the  
10MHz (or 1MHz) time base, the resolutions are 100Hz,  
10Hz, 1Hz and 0.1Hz. The decimal point on the display is  
set for kHz reading.  
The RANGE INPUT selects whether the measurement  
period is made for 1, 10, 100 or 1000 counts of the Refer-  
ence Counter. As it is shown in Table 1, this gives different  
counting windows for frequency measurement and various  
cycles for other modes of measurement.  
In all functional modes except Unit Counter, any change in  
the RANGE INPUT will stop the present measurement  
without updating the display and then initiate a new mea-  
surement. This prevents an erroneous first reading after the  
RANGE INPUT is changed.  
Period - In this mode, the timebase oscillator is counted by  
the Main Counter for the duration of 1, 10, 100 or 1000  
(range selected) periods of the signal at input A. A 10MHz  
timebase gives resolutions of 0.1µs to 0.0001µs for 1000  
periods averaging. Note that the maximum input frequency  
for period measurement is 2.5MHz.  
Control Input  
Frequency Ratio - In this mode, the input A is counted by  
the Main Counter for the duration of 1, 10, 100 or 1000  
(range selected) periods of the signal at input B. The fre-  
quency at input A should be higher than input B for meaning-  
ful result. The result in this case is unitless and its resolution  
can go up to 3 digits after decimal point.  
Unlike the other multiplexed inputs, to which only one of the  
digit outputs can be connected at a time, this input can be  
tied to different digit lines to select combination of controls.  
In this case, isolation diodes must be used in digit lines to  
avoid crosstalk between them (see Figure 17). The direction  
of diodes depends on the device version, common anode or  
common cathode. For maximum noise immunity at this input,  
in addition to the 10K resistor which was mentioned before,  
a 39pF to 100pF capacitor should also be placed between  
Time Interval - In this mode, the timebase oscillator is  
counted by the Main Counter for the duration of a 1-0 transi-  
tion of input A until a 1-0 transition of input B. This means  
input A starts the counting and input B stops it. If other ranges,  
except 0.01s/1 cycle are selected the sequence of input A and  
B transitions must happen 10, 100 or 1000 times until the  
this input and the V  
or V (See Figure 17).  
DD  
SS  
Display Off - To disable the display drivers, it is necessary to  
tie the D4 line to the CONTROL INPUT and have the HOLD  
9-18  
ICM7216A, ICM7216B, ICM7216D  
input at V . While in Display Off mode, the segments and low) is stopped, the main counter is reset and the chip is  
DD  
digit drivers are all off, leaving the display lines floating, so the held ready to initiate a new measurement as soon as HOLD  
display can be shared with other devices. In this mode, the goes low. The latches which hold the main counter data are  
oscillator continues to run with a typical supply current of not updated, so the last complete measurement is displayed.  
1.5mA with a 10MHz crystal, but no measurements are made In unit counter mode when HOLD input is at V , the  
DD  
and multiplexed inputs are inactive. A new measurement counter is not stopped or reset, but the display is frozen at  
cycle will be initiated when the HOLD input is switched to that instantaneous value. When HOLD goes low the count  
V
.
continues from the new value in the new counter.  
SS  
Display Test - Display will turn on with all the digits showing RESET Input  
8s and all decimal points on. The display will be blanked if  
Display Off is selected at the same time.  
The RESET input resets the main counter, stops any  
measurement in progress, and enables the main counter  
1MHz Select - The 1MHz select mode allows use of a 1MHz latches, resulting in an all zero output. A capacitor to ground  
crystal with the same digit multiplex rate and time between will prevent any hang-ups on power-up.  
measurement as with a 10MHz crystal. This is done by  
MEASUREMENT IN PROGRESS  
4
5
dividing the oscillator frequency by 10 rather than 10 . The  
decimal point is also shifted one digit to the right in period  
and time interval, since the least significant digit will be in µs  
increment rather than 0.1µs increment.  
This output is provided in lCM7216D. It stays low during  
measurements and goes high for intervals between mea-  
surements. It is provided for system interfacing and can drive  
a low power Schottky TTL or one ECL load if the ECL device  
is powered from the same supply as lCM7216D.  
External Oscillator Enable - In this mode, the signal at EXT  
OSC INPUT is used as a timebase instead of the on-board  
crystal oscillator (built around the OSC INPUT, OSC OUT-  
PUT inputs). This input can be used for an external stable  
temperature compensated crystal oscillator or for special  
measurements with any external source. The on-board crys-  
tal oscillator continues to work when the external oscillator is  
selected. This is necessary to avoid hang-up problems, and  
has no effect on the chip's functional operation. If the on-  
board oscillator frequency is less than 1MHz or only the  
external oscillator is used, THE OSC INPUT MUST BE  
CONNECTED TO THE EXT OSC INPUT providing the time-  
base has enough voltage swing for OSC INPUT (See Electri-  
cal Specifications). If the external timebase is TTL level a  
pullup resistor must be used for OSC INPUT. The other way  
is to put a 22Mresistor between OSC INPUT and OSC  
OUTPUT and capacitively couple the EXT OSC INPUT to  
OSC INPUT. This will bias the OSC INPUT at its threshold  
Decimal Point Position  
Table 3 shows the decimal point position for different modes  
of lCM7216 operation. Note that the digit 1 is the least signif-  
icant digit. Table 3 is for 10MHz timebase frequency.  
Overflow Indication  
When overflow happens in any measurement it will be indicated  
on the decimal point of the digit 8. A separate LED indicator can  
be used. Figure 12 shows how to connect this indicator.  
a
f
b
and the drive voltage will need to be only 2V  
nal timebase frequency must be greater than 100kHz or the  
chip will reset itself to enable the on-board oscillator.  
. The exter-  
g
P-P  
e
c
DP  
d
External Decimal Point Enable - In this mode, the EX DP  
INPUT is enabled (lCM7216D only). A decimal point will be  
displayed for the digit that its output line is connected to this  
input (EX DP INPUT). Digit 8 should not be used since it will  
override the overflow output. Leading zero blanking is effec-  
tive for the digits to the left of selected decimal point.  
FIGURE 12. SEGMENT IDENTIFICATION AND DISPLAY FONT  
Overflow will be indicated on the decimal point output of  
digit 8. A separate LED overflow indicator can be connected  
as follows:  
DEVICE  
ICM7216A  
ICM7216B/D  
CATHODE  
Decimal Point  
D8  
ANODE  
D8  
Hold Input  
Except in the unit counter mode, when the HOLD input is  
Decimal Point  
at V , any measurement in progress (before STORE goes  
DD  
TABLE 3. DECIMAL POINT POSITIONS  
FREQUENCY  
RATIO  
TIME  
INTERVAL  
UNIT  
COUNTER  
OSCILLATOR  
FREQUENCY  
RANGE  
0.01s/1 Cycle  
FREQUENCY  
PERIOD  
D2  
D2  
D3  
D4  
D5  
D1  
D2  
D3  
D4  
D2  
D3  
D4  
D5  
D1  
D1  
D1  
D1  
D2  
D3  
D4  
D5  
0.1s/10 Cycle  
1s/100 Cycle  
10s/1K Cycle  
D3  
D4  
D5  
9-19  
ICM7216A, ICM7216B, ICM7216D  
Time Interval Measurement  
C
R
C
C
= Crystal Static Capacitance  
= Crystal Series Resistance  
= Input Capacitance  
O
When in the time interval mode and measuring a single  
event, the lCM7216A and lCM7216B must first be “primed”  
prior to measuring the event of interest. This is done by first  
generating a negative going edge on Channel A followed by a  
negative going edge on Channel B to start the “measurement  
interval”. The inputs are then primed ready for the measure-  
ment. Positive going edges on A and B, before or after the  
priming, will be needed to restore the original condition.  
S
IN  
= Output Capacitance  
OUT  
ω = 2πf  
The required g should not exceed 50% of the g specified  
for the lCM7216 to insure reliable startup. The OSCillator  
M
M
INPUT and OUTPUT pins each contribute about 5pF to C  
IN  
Priming can be easily accomplished using the circuit in  
Figure 13.  
and C  
OUT  
. For maximum stability of frequency, C and  
IN  
should be approximately twice the specified crystal  
C
OUT  
static capacitance.  
SIGNAL A  
2
2
INPUT A  
INPUT B  
In cases where non decade prescalers are used it may be  
desirable to use a crystal which is neither 10MHz or 1MHz.  
In that case both the multiplex rate and time between mea-  
surements will be different. The multiplex rate is  
SIGNAL B  
V
V
DD  
DD  
f
f
OSC  
OSC  
f
= ------------------ for 10MHz mode and  
f
= ------------------ for  
MUX  
MUX  
PRIME  
1
N.O.  
150K  
4
3
2 × 10  
2 × 10  
1
1
1
10K  
the 1MHz mode. The time between measurements is  
6
5
1N914  
V
2 × 10  
f
2 × 10  
f
------------------  
OSC  
------------------  
OSC  
in the 10MHz mode and  
in the 1MHz mode.  
100K  
0.1µF  
10nF  
V
V
SS  
SS  
SS  
The crystal and oscillator components should be located as  
close to the chip as practical to minimize pickup from other  
signals. Coupling from the EXTERNAL OSClLLATOR INPUT  
to the OSClLLATOR OUTPUT or INPUT can cause undesir-  
able shifts in oscillator frequency.  
DEVICE  
TYPE  
1
2
CD4049B Inverting Buffer  
CD4070B Exclusive - OR  
Display Considerations  
FIGURE 13. PRIMING CIRCUIT, SIGNALS A AND B BOTH HIGH  
OR LOW  
The display is multiplexed at a 500Hz rate with a digit time of  
244µs. An interdigit blanking time of 6µs is used to prevent  
display ghosting (faint display of data from previous digit  
superimposed on the next digit). Leading zero blanking is  
provided, which blanks the left hand zeroes after decimal  
Following the priming procedure (when in single event or 1  
cycle range) the device is ready to measure one (only)  
event.  
When timing repetitive signals, it is not necessary to “prime” point or any non zero digits. Digits to the right of the decimal  
the lCM7216A and lCM7216B as the first alternating signal point are always displayed. The leading zero blanking will be  
states automatically prime the device. See Figure 1.  
disabled when the Main Counter overflows.  
During any time interval measurement cycle, the ICM7216A The lCM7216A is designed to drive common anode LED  
and lCM7216B require 200ms following B going low to displays at peak current of 25mA/segment, using displays  
update all internal logic. A new measurement cycle will not with V = 1.8V at 25mA. The average DC current will be over  
F
take place until completion of this internal update time.  
3mA under these conditions. The lCM7216B and lCM7216D  
are designed to drive common cathode displays at peak cur-  
rent of 15mA/segment using displays with V = 1.8V at  
F
Oscillator Considerations  
15mA. Resistors can be added in series with the segment  
drivers to limit the display current in very efficient displays, if  
required. The Typical Performance Curves show the digit  
and segment currents as a function of output voltage.  
The oscillator is a high gain CMOS inverter. An external  
resistor of 10Mto 22Mshould be connected between the  
OSCillator INPUT and OUTPUT to provide biasing. The  
oscillator is designed to work with a parallel resonant 10MHz  
quartz crystal with a static capacitance of 22pF and a series  
resistance of less than 35.  
To get additional brightness out of the displays, V  
may be  
DD  
increased up to 6.0V. However, care should be taken to see  
that maximum power and current ratings are not exceeded.  
For a specific crystal and load capacitance, the required g  
can be calculated as follows:  
M
The segment and digit outputs in lCM7216s are not directly  
compatible with either TTL or CMOS logic when driving  
LEDs. Therefore, level shifting with discrete transistors may  
be required to use these outputs as logic signals.  
C
2
2
O
g
= ω  
C
C
R
1 + --------  
M
IN OUT  
S
C
L
C
C
IN OUT  
--------------------------------  
where C  
=
L
C
+ C  
OUT  
IN  
9-20  
ICM7216A, ICM7216B, ICM7216D  
Accuracy  
In addition, there is a quantization error inherent in any digital  
measurement of ±1 count. Clearly this error is reduced by dis-  
playing more digits. In the frequency mode the maximum  
accuracy is obtained with high frequency inputs and in period  
mode maximum accuracy is obtained with low frequency  
inputs (as can be seen in Figure 14). In time interval mea-  
surements there can be an error of 1 count per interval. As a  
result there is the same inherent accuracy in all ranges as  
shown in Figure 15. In frequency ratio measurement can be  
more accurately obtained by averaging over more cycles of  
INPUT B as shown in Figure 16.  
In a Universal Counter crystal drift and quantization effects  
cause errors. In frequency, period and time interval  
modes, a signal derived from the oscillator is used in either  
the Reference Counter or Main Counter. Therefore, in  
these modes an error in the oscillator frequency will cause  
an identical error in the measurement. For instance, an  
o
oscillator temperature coefficient of 20  
/ C will cause a  
PPM  
o
measurement error of 20  
/ C.  
PPM  
0
1
0
FREQUENCY MEASURE  
0.01s  
0.1s  
1s  
2
2
4
6
8
MAXIMUM TIME INTERVAL  
FOR 10 INTERVALS  
3
3
10s  
4
MAXIMUM TIME  
1 CYCLE  
10 CYCLES  
10 CYCLES  
10 CYCLES  
INTERVAL FOR  
5
2
2
3
10 INTERVALS  
6
MAXIMUM TIME INTERVAL  
FOR 10 INTERVALS  
7
PERIOD MEASURE  
= 10MHz  
f
OSC  
8
2
3
4
5
6
7
8
3
5
7
1
10  
10  
10  
10  
10  
10  
10  
10  
1
10  
10  
FREQUENCY (Hz)  
10  
10  
TIME INTERVAL (µs)  
FIGURE 14. MAXIMUM ACCURACY OF FREQUENCY AND  
FIGURE 15. MAXIMUM ACCURACY OF TIME INTERVAL MEA-  
SUREMENT DUE TO LIMITATIONS OF QUANTIZA-  
TION ERRORS  
PERIOD MEASUREMENTS DUE TO LIMITATIONS  
OF QUANTIZATION ERRORS  
0
1
2
3
4
5
6
7
RANGE  
1 CYCLE  
10 CYCLES  
10 CYCLES  
10 CYCLES  
2
3
8
2
10  
3
4
5
6
7
8
1
10  
10  
10  
/f  
10  
10  
10  
10  
f
A
B
FIGURE 16. MAXIMUM ACCURACY FOR FREQUENCY RATIO MEASUREMENT DUE TO LIMITATION OF QUANTIZATION ERRORS  
9-21  
ICM7216A, ICM7216B, ICM7216D  
Test Circuit  
V
V
DD  
DD  
INPUT A  
V
DD  
FUNCTION  
DISPLAY DISPLAY  
EXT  
GENERATOR  
BLANK  
TEST  
OSC  
1MHz  
TEST  
39pF  
TYP  
10kΩ  
10kΩ  
HOLD  
39pF  
100pF  
FUNCTION  
GENERATOR  
D4  
D8  
D2  
D1  
D5  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INPUT B  
22MΩ  
1N914s  
10MHz  
CRYSTAL  
3
EXT  
OSC  
INPUT  
FUNCTION  
10K  
D1  
DP  
e
4
F
P
5
D8  
D1  
8
g
6
FR  
TI.  
D2  
D5  
D4  
a
7
D2  
D3  
D4  
D5  
TYPICAL CRYSTAL SPECS:  
F = 10MHz PARALLEL RESONANCE  
ICM7216A  
8
C
R
= 22pF  
= <35Ω  
L
S
U.C.  
O.F.  
d
b
c
f
9
D3  
10  
11  
12  
13  
14  
V
DD  
D6  
D7  
D8  
RANGE  
RESET  
D1  
D4  
.01/1  
.1/10  
1/100  
10/1K  
D2  
D3  
10kΩ  
4
6
8
a
b
c
d
e
f
8
g
LED  
OVERFLOW  
INDICATOR  
DP  
D8  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
FIGURE 17. TEST CIRCUIT (ICM7216A SHOWN, OTHERS SIMILAR)  
Typical Applications  
The lCM7216 has been designed for use in a wide range of measurements is also lengthened to 800ms and the display  
Universal and Frequency counters. In many cases, prescalers multiplex rate is decreased to 125Hz.  
will be required to reduce the input frequencies to under 10MHz.  
If the input frequency is prescaled by ten, then the oscillator  
Because INPUT A and INPUT B are digital inputs, additional  
can remain at 10MHz or 1MHz, but the decimal point must  
circuitry is often required for input buffering, amplification,  
be moved one digit to the right. Figure 20 shows a frequency  
hysteresis, and level shifting to obtain a good digital signal.  
counter with a ÷10 prescaler and an lCM7216A. Since there  
The lCM7216A or lCM7216B can be used as a minimum is no external decimal point control with the lCM7216A and  
component complete Universal Counter as shown in lCM7216B, the decimal point may be controlled externally  
Figure 18. This circuit can use input frequencies up to with additional drivers as shown in Figure 20. Alternatively, if  
10MHz at INPUT A and 2MHz at INPUT B. If the signal at separate anodes are available for the decimal points, they  
INPUT A has a very low duty cycle it may be necessary to can be wired up to the adjacent digit anodes. Note that there  
use a 74LS121 monostable multivibrator or similar circuit to can be one zero to the left of the decimal point since the  
stretch the input pulse width to be able to guarantee that it is internal leading zero blanking cannot be changed. In  
at least 50ns in duration.  
Figure 21 additional logic has been added to count the input  
directly in period mode for maximum accuracy. In Figures 20  
To measure frequencies up to 40MHz the circuit of Figure  
19 can be used. To obtain the correct measured value, it is  
necessary to divide the oscillator frequency by four as well  
as the input frequency. In doing this the time between  
and 21, INPUT A comes from Q of the prescaler rather  
C
than Q to obtain an input duty cycle of 40%.  
D
9-22  
ICM7216A, ICM7216B, ICM7216D  
V
DD  
EXT  
V
DD  
DISPLAY DISPLAY  
BLANK  
OSC  
TEST ENABLE  
INPUT A  
10kΩ  
39pF  
TYP  
100pF  
CONTROL  
SWITCHES  
HOLD  
22MΩ  
D4  
D8  
D1  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
100kΩ  
10MHz  
CRYSTAL  
IN914s  
INPUT B  
3
3
39pF  
10kΩ  
D1  
D2  
D3  
4
EXT  
OSC  
INPUT  
V
DD  
F
P
D1  
5
4
D8  
D1  
D4  
RANGE  
DP  
g
6
D2  
D3  
F.R.  
T.I.  
D2  
D5  
SEC  
0.01  
0.1  
CYCLES  
1.0  
D4  
7
ICM7216B  
10kΩ  
D1  
e
8
D2  
D3  
D4  
10.0  
U.C.  
O.F.  
D4  
D5  
D6  
D7  
D8  
a
9
1.0  
100.0  
1K  
D3  
d
10  
11  
12  
13  
14  
10.0  
FUNCTION  
V
DD  
b
c
0.1µF  
6
SEGMENT DRIVERS  
8
8
RESET  
f
8
8
a
b
c
d
e
f
COMMON CATHODE LED DISPLAY  
DIGIT  
DRIVERS  
g
DP  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D8  
LED  
OVERFLOW  
INDICATOR  
FIGURE 18. 10MHz UNIVERSAL COUNTER  
9-23  
ICM7216A, ICM7216B, ICM7216D  
INPUT A  
J
3
6
1
CL  
K
Q
2
5
P
4
C
1
1
/ 74LS112  
2
V+  
15  
Q
K 12  
13 CL  
J 11  
V
V
DD  
DD  
EXT  
10  
P
C
/ 74LS112  
2
OSC DISPLAY DISPLAY  
ENABLE  
V
14  
DD  
3kΩ  
OFF  
TEST  
Q
9
Q
7
10kΩ  
39pF  
39pF  
HOLD  
100pF  
100kΩ  
D1  
D4  
D8  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
22MΩ  
IN914s  
3
2
3
2.5MHz  
CRYSTAL  
D1  
D2  
D3  
4
EXT  
OSC  
5
DP  
INPUT  
8
6
D4  
7
g
e
a
d
ICM7216D  
D5  
D6  
D7  
D8  
8
9
0.1µF  
10  
11  
12  
13  
14  
V
DD  
b
c
RESET  
RANGE  
8
D1  
D4  
f
D2  
D3  
10kΩ  
4
a
b
c
d
e
f
a
COMMON CATHODE LED DISPLAY  
b
c
d
e
f
g
g
DP  
DP  
LED  
OVERFLOW  
INDICATOR  
D8  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
8
OVERFLOW  
INDICATOR  
FIGURE 19. 40MHz FREQUENCY COUNTER  
9-24  
ICM7216A, ICM7216B, ICM7216D  
V
V
V
DD  
DD  
DD  
INPUT B  
INPUT A  
DISPLAY  
TEST  
V
DD  
10kΩ  
10kΩ  
100pF  
CK1 CK2  
QA  
CK1 CK2  
QA  
30pF  
TYP  
3kΩ  
39pF  
QC  
QC  
HOLD  
74LS90 OR  
11C90  
11C90  
1N914  
D7  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
22MΩ  
10MHz  
CRYSTAL  
V
3kΩ  
DD  
3
DP  
4
e
g
5
D1  
8
6
a
7
D2  
D3  
D4  
D5  
ICM7216A  
8
d
b
c
f
9
V
SS  
10  
11  
12  
13  
14  
4
4
0.1µF  
V
DD  
D6  
D7  
D8  
1kΩ  
RANGE  
DP  
D1  
RESET  
D1  
D2  
10kΩ  
D2  
1kΩ  
D1  
F
P
8
D3  
D4  
D3  
10kΩ  
COMMON ANODE LED DISPLAY  
2N2222  
D4  
D8  
D2  
a
b
c
d
e
f
F.R.  
40Ω  
g
DP  
D8  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
8
LED  
OVERFLOW  
INDICATOR  
FIGURE 20. 100MHz MULTIFUNCTION COUNTER  
9-25  
ICM7216A, ICM7216B, ICM7216D  
INPUT A  
11C90  
CK1  
CK2 QA OC  
3kΩ  
74LS00  
V
DD  
V
V
V
DD  
DD  
DD  
3kΩ  
V
DD  
10kΩ  
10kΩ  
39pF  
TYP  
100pF  
100kΩ  
39pF  
10kΩ  
10kΩ  
V
DD  
2N2222  
HOLD  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
FUNCTION SWITCH  
OPEN: FREQ.  
CLOSED: PERIOD  
D3  
+
22MΩ  
V
10MHz  
CRYSTAL  
3
DP  
4
5
e
g
a
D1  
8
6
7
D2  
D3  
D4  
D5  
ICM7216A  
8
9
d
b
c
f
0.1µF  
1kΩ  
10  
11  
12  
13  
14  
4
4
2N2222  
V
DD  
V
V
SS  
SS  
D6  
D7  
D8  
RANGE  
DP  
D1  
1kΩ  
RESET  
D1  
D2  
D2  
1kΩ  
10kΩ  
8
D3  
D4  
D3  
10kΩ  
2N2222  
1
D4  
a
b
c
d
e
f
CONT  
D1  
13  
COMMON CATHODE LED DISPLAY  
2
40Ω  
CD4016  
4
g
D8  
5
CONT  
DP  
3
D8  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
8
LED  
OVERFLOW  
INDICATOR  
FIGURE 21. 100MHz FREQUENCY, 2MHz PERIOD COUNTER  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
9-26  

相关型号:

ICM7216AIJI

TIMERS COUNTERS AND DISPLAY DRIVERS
INTERSIL

ICM7216ALJL

8-Digit, Multi-Function, Frequency Counters/Timers
INTERSIL

ICM7216ALJL

8-Digit Multi-Function Frequency Counter/Timer
HARRIS

ICM7216B

8-Digit, Multi-Function, Frequency Counters/Timers
INTERSIL

ICM7216BIPI

TIMERS COUNTERS AND DISPLAY DRIVERS
INTERSIL

ICM7216BLPL

8-Digit, Multi-Function, Frequency Counters/Timers
INTERSIL

ICM7216BLPL

8-Digit Multi-Function Frequency Counter/Timer
HARRIS

ICM7216B_04

8-Digit, Multi-Function, Frequency Counters/Timers
INTERSIL

ICM7216C

TIMERS COUNTERS AND DISPLAY DRIVERS
INTERSIL

ICM7216CIJI

TIMERS COUNTERS AND DISPLAY DRIVERS
INTERSIL

ICM7216D

8-Digit, Multi-Function, Frequency Counters/Timers
INTERSIL

ICM7216DIPI

8-Digit, Multi-Function, Frequency Counters/Timers
INTERSIL