ISL1550 [INTERSIL]

Single Port, VDSL2 Differential Line Driver;
ISL1550
型号: ISL1550
厂家: Intersil    Intersil
描述:

Single Port, VDSL2 Differential Line Driver

文件: 总13页 (文件大小:709K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Port, VDSL2 Differential Line Driver  
ISL1550  
The ISL1550 is a dual operational amplifier intended to be  
used as a differential line driver. ISL1550’s high bandwidth  
and low distortion performance enables the support of VDSL2  
8b, 17a and 30a modem applications.  
Features  
• 20dBm output power capability  
• Drives up to ±750mA from a +12V supply  
• 18V  
P-P  
differential output drive into 20Ω  
• -89dBc typical driver output distortion at full output at  
200kHz, 12V differential  
This device features a high current drive capability of ±750mA  
required to drive large voltage peaks into heavy loads. In  
Central Office (CO) applications, the driver achieves a typical  
Missing Band Power Ratio (MBPR) of -66dBc in VDSL2 8b  
upstream (US) 1 band and MBPR’s of -61dBc and -60dBc in  
VDSL2 17a US1 and US2 respectively.  
P-P  
• -61dBc US1, -60dBc US2 avg. MBPR 17a  
• Supply range: ±4.0V to ±6.6V, +8.0V to +13.2V  
• Thermal shutdown  
• K.20, GR-1089 Surge Robustness Validated  
The ISL1550 has two bias current control pins (C0, C1) to allow  
for four power settings (disable, low, medium, high). The VDSL  
modem DSP configures the line driver’s power setting based  
on the desired mode of operation. The line driver operates on a  
nominal single +12V or a dual ±6V supplies with bias current  
in active mode between 15mA to 32mA, depending on its  
power setting. The ISL1550’s gain setting is configurable at  
the application level by setting the Rf and Rg resistor values.  
The surge current handling of ISL1550 has been enhanced to  
allow ITU-T K.20 and GR1089 compliance with minimal  
external surge protection circuitry.  
Applications  
• VDSL2 Profiles: 8MHz, 17MHz, and 30MHz  
Related Literature  
AN1325 “Choosing and Using Bypass Capacitors”  
TABLE 1. ALTERNATE SOLUTIONS  
NOMINAL ±V  
(V)  
BANDWIDTH  
(MHz)  
CC  
PART #  
ISL1557  
ISL1539A  
APPLICATIONS  
VDSL2  
±6,+12  
200  
240  
The ISL1550 is available in the thermally-enhanced, Pb-free  
RoHS compliant 16 Ld QFN package and is specified for  
operation over the full -40°C to +85°C temperature range.  
±12,+24  
VDSL2  
+6V  
-40  
-50  
SUPPLY  
DECOUPLING  
NOT SHOWN  
100n  
+
-60  
500  
½
-70  
ISL1550  
2.2  
-80  
-
Rf  
750  
1:2.5  
-90  
Rg  
1.5k  
1k  
1k  
AFE  
-100  
-110  
-120  
-130  
-140  
100  
NOMINAL  
LINE  
2.2n  
Rf  
750  
-
½
ISL1550  
500  
100n  
2.2  
+
8.40M 8.90M 9.40M 9.90M 10.4M 10.9M 11.4M 11.9M  
FREQUENCY (Hz)  
-6V  
FIGURE 1. TYPICAL APPLICATION CIRCUIT  
FIGURE 2. US2 MBPR 17a VDSL2 PERFORMANCE  
March 16, 2012  
FN6795.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL1550  
Connection Diagram  
+6V  
INA  
+
+
25  
10VP-P  
25  
OUTA  
1.5k  
½ ISL1550  
-
INA-  
750  
5VP-P  
into 50  
2VP-P  
INB-  
-
1.5k  
½ ISL1550  
OUTB  
+
BIAS  
C0  
INB  
+
CURRENT  
CONTROL  
C1  
GND  
Av = (1.5k / (750/2)) + 1 = 5V/V  
-6V  
FIGURE 3. TYPICAL DIFFERENTIAL AMPLIFIER I/O  
Pin Configuration  
ISL1550  
(16 LD QFN)  
TOP VIEW  
16 15 14 13  
NC  
INA-  
INA+  
GND  
1
2
3
4
12 NC  
11 INB-  
10 INB+  
V
*
S-  
9
C1  
5
6
7
8
*THERMAL PAD CONNECTS TO MOST NEGATIVE SUPPLY  
FN6795.0  
March 16, 2012  
2
ISL1550  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
NC  
FUNCTION  
1
2
No Connect  
INA-  
INA+  
GND  
NC  
Amplifier A Inverting Input  
Amplifier A Non-Inverting Input  
Ground  
3
4
5
No Connect  
6
NC  
No Connect  
7
VS-  
Negative Supply Voltage  
Digital Control Pin  
Digital Control Pin  
Amplifier B Non-Inverting Input  
Amplifier B Inverting Input  
No Connect  
8
C0  
9
C1  
10  
11  
12  
13  
14  
15  
16  
INB+  
INB-  
NC  
OUTB  
VS+  
NC  
Amplifier B Output  
Positive Supply Voltage  
No Connect  
OUTA  
Amplifier A Output  
Ordering Information  
PART  
NUMBER  
(Notes 2, 3)  
PART  
MARKING  
TEMP RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
ISL1550IRZ  
155 0IRZ  
155 0IRZ  
-40 to +85  
-40 to +85  
-40 to +85  
16 Ld QFN  
16 Ld QFN  
16 Ld QFN  
L16.4x4H  
ISL1550IRZ-T7 (Note 1)  
ISL1550IRZ-T13 (Note 1)  
ISL1550IRZ-EVALZ  
NOTES:  
L16.4x4H  
L16.4x4H  
155 0IRZ  
Evaluation Board  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL1550. For more information on MSL please see tech brief TB363.  
FN6795.0  
March 16, 2012  
3
ISL1550  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
V + Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +13.2V  
Thermal Resistance (Typical)  
16 Ld QFN Package (Notes 4, 5) . . . . . . . .  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-40°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
JA (°C/W)  
53  
θ
JC (°C/W)  
16.5  
S
Driver V + Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GND to +V  
IN  
S
S
C , C Voltage to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +V  
0
1
Current into any Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8mA  
Continuous Output Current for Long Term Reliability. . . . . . . . . . . . . . . . .50mA  
ESD Rating  
Human Body Model (Tested per JESD22-A114F). . . . . . . . . . . . . . . . . . 4kV  
Machine Model (Tested per JESD22-A115C) . . . . . . . . . . . . . . . . . . 300V  
Charge Device Model (Tested per JESD22-C101E). . . . . . . . . . . . . .1.5kV  
Operating Conditions  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +150°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications V = ±6V, see Figure 1, T = +25°C, unless otherwise specified.  
S
A
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
See Figure 1  
f = 200kHz, V = 12V  
105  
-89  
MHz  
dBc  
dBc  
dBc  
V/µs  
THD  
Total Harmonic Distortion, Differential  
, R = 20Ω  
P-P output  
O
L
f = 4MHz, V = 12V  
, R = 100Ω  
-67  
O
P-P output  
L
f = 10MHz, V = 12V  
, R = 100Ω  
P-P output  
-61  
O
L
SR  
Slew Rate (20% to 80%)  
V
from -6V to +6V (differential)  
1500  
2400  
OUT  
DC PERFORMANCE  
V
Input Offset Voltage Common Mode  
Input Offset Voltage Differential Mode  
-45  
+45  
+7.5  
mV  
mV  
OS_CM  
OS_DM  
V
-7.5  
INPUT CHARACTERISTICS  
I +  
Non-Inverting Input Bias Current  
-7.0  
-45  
-3.0  
±7  
+7.0  
+45  
µA  
µA  
B
I -  
Inverting Input Bias Current Differential  
Mode  
B DM  
e
Differential Output Noise  
See Figure 1 [at transformer input]  
45  
nV Hz  
O
OUTPUT CHARACTERISTICS  
V
Loaded Output Swing (single-ended)  
V
V
= ±6V, R  
= ±6V, R  
= 100Ω  
= 20Ω  
±4.7  
±5.0  
±4.5  
V
V
OUT  
S
L DIFF  
S
L DIFF  
SUPPLY  
+V  
Supply Voltage  
Single supply (-V = GND)  
8.0  
27  
12  
32  
13.2  
37  
V
S
S
I + (Full Bias)  
Positive Supply Current  
Positive Supply Current  
Positive Supply Current  
Positive Supply Current  
All outputs at 0V, C = C = 0V  
mA  
mA  
mA  
mA  
µA  
µA  
V
S
0
1
I + (Medium Bias)  
All outputs at 0V, C = 5V, C = 0V  
19  
23  
26  
S
0
1
I + (Low Bias)  
All outputs at 0V, C = 0V, C = 5V  
12  
15  
18  
S
0
1
I + (Power down)  
All outputs at 0V, C = C = 5V  
1.3  
100  
-1.5  
2.0  
1.6  
165  
-1.0  
2.5  
224  
+1.5  
S
0
1
I
, C or C  
C , C Input Current, High  
C , C = 6V  
0 1  
INH  
0
1
0
1
I
, C or C  
C , C Input Current, Low  
C , C = 0V  
0 1  
INL  
0
1
0
1
V
V
, C or C  
C , C Input Voltage, High  
0 1  
INH  
0
1
, C or C  
C , C Input Voltage, Low  
0.8  
V
INL  
0
1
0
1
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN6795.0  
March 16, 2012  
4
ISL1550  
Typical Performance Curves  
V
= ±6V, See Figure 1, T = +25°C, C0 = C1 = 0V (Full power), Unless otherwise  
A
CC  
noted.  
6
3
6
3
0
25  
Ω
0
-3  
50Ω  
33pF  
18pF  
-3  
-6  
-6  
22pF  
16Ω  
-9  
-9  
-12  
-12  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. SMALL SIGNAL FREQUENCY RESPONSE vs R  
FIGURE 5. SMALL SIGNAL FREQUENCY RESPONSE vs C  
LOAD  
LOAD  
6
3
6
3
1V  
0
P-P  
0
5V  
P-P  
-3  
-3  
-6  
V
= 12V TO 8V  
CC  
-6  
-9  
2V  
P-P  
-9  
-12  
-12  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 6. SMALL SIGNAL BANDWIDTH vs SUPPLY VOLTAGE  
FIGURE 7. LARGE SIGNAL FREQUENCY RESPONSE  
-30  
-40  
-45  
5V  
100Ω R  
OP-P-DIFF  
LOAD  
-40  
-50  
100Ω R  
LOAD  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
THD  
-60  
THD  
-70  
-80  
3rd HD  
2nd HD  
2nd HD  
-90  
3rd HD  
10  
-100  
100M  
1
1M  
10M  
FREQUENCY (Hz)  
V
(V)  
OP-P-LOAD  
FIGURE 8. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 9. 4MHz HARMONIC DISTORTION vs OUTPUT VOLTAGE  
FN6795.0  
March 16, 2012  
5
ISL1550  
Typical Performance Curves  
V
= ±6V, See Figure 1, T = +25°C, C0 = C1 = 0V (Full power), Unless otherwise  
A
CC  
noted. (Continued)  
-40  
-40  
100Ω R  
100Ω R  
LOAD  
LOAD  
-45  
-45  
-50  
-50  
-55  
THD  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
THD  
-60  
-65  
-70  
2nd HD  
-75  
-80  
-85  
-90  
3rd HD  
2nd HD  
3rd HD  
(V)  
1
10  
1
10  
V
V
(V)  
OP-P-LOAD  
OP-P-LOAD  
FIGURE 11. 20MHz HARMONIC DISTORTION vs OUTPUT VOLTAGE  
FIGURE 10. 10MHz HARMONIC DISTORTION vs OUTPUT VOLTAGE  
-20  
-20  
PAR = 5.32/V  
PAR = 6.3/V  
-30  
-30  
18dBm LINE POWER, R = 25Ω,  
AVG. MBPR = -66dBc  
14.5dBm LINE POWER, R = 25Ω,  
AVG. MBPR = -60dBc  
L
L
-40  
-40  
-50  
-60  
-50  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-140  
-140  
3.78M 3.98M 4.18M 4.38M 4.58M 4.78M 4.98M 5.18M  
8.48M 8.98M 9.48M 9.98M 10.5M 11M  
FREQUENCY (Hz)  
11.5M  
FREQUENCY (Hz)  
FIGURE 12. MBPR 8b US1  
FIGURE 13. MBPR 17a US2  
100  
LOW POWER  
MEDIUM POWER  
FULL POWER  
Fig. 1 at transformer inputs  
10  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 14. DIFFERENTIAL OUTPUT NOISE  
FN6795.0  
March 16, 2012  
6
ISL1550  
Typical Performance Curves  
V
= ±6V, See Figure 1, T = +25°C, C0 = 3.3V, C1 = 0V (Medium power), Unless  
A
CC  
otherwise noted.  
6
3
6
3
25  
Ω
0
0
-3  
18pF  
50Ω  
33pF  
-3  
-6  
-9  
22pF  
-6  
16Ω  
-9  
-12  
-12  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
FREQUENCY (Hz)  
1G  
FREQUENCY (Hz)  
FIGURE 15. SMALL SIGNAL FREQUENCY RESPONSE vs R  
FIGURE 16. SMALL SIGNAL FREQUENCY RESPONSE vs C  
LOAD  
LOAD  
6
3
-30  
5V  
OP-P-DIFF  
100Ω R  
-40  
-50  
LOAD  
1V  
P-P  
0
-3  
THD  
5V  
P-P  
-60  
-70  
-6  
3rd HD  
-80  
2nd HD  
2V  
P-P  
-9  
-90  
-12  
-100  
1M  
10M  
FREQUENCY (Hz)  
100M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FIGURE 18. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 17. LARGE SIGNAL FREQUENCY RESPONSE  
-40  
-40  
100Ω R  
100Ω R  
LOAD  
LOAD  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
THD  
THD  
2nd HD  
2nd HD  
3rd HD  
3rd HD  
10  
1
1
10  
V
(V)  
V
(V)  
OP-P-LOAD  
OP-P-LOAD  
FIGURE 19. 4MHz HARMONIC DISTORTION vs OUTPUT VOLTAGE  
FIGURE 20. 10MHz HARMONIC DISTORTION vs OUTPUT VOLTAGE  
FN6795.0  
March 16, 2012  
7
ISL1550  
Typical Performance Curves  
V
= ±6V, See Figure 1, T = +25°C, C0 = 0V, C1 = 3.3V (Low power), unless  
A
CC  
otherwise noted.  
6
6
3
3
25  
Ω
0
-3  
0
50Ω  
33pF  
-3  
-6  
18pF  
-6  
16Ω  
22pF  
-9  
-9  
-12  
-12  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 21. SMALL SIGNAL FREQUENCY vs R  
FIGURE 22. SMALL SIGNAL FREQUENCY RESPONSE vs C  
LOAD  
LOAD  
6
-30  
5V  
OP-P-DIFF  
100Ω R  
-40  
-50  
LOAD  
3
0
1V  
P-P  
THD  
-60  
5V  
-3  
P-P  
-70  
3rd HD  
-6  
2nd HD  
-80  
2V  
P-P  
-9  
-90  
-100  
-12  
1M  
10M  
100M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 24. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 23. LARGE SIGNAL FREQUENCY RESPONSE  
-40  
-40  
-45  
100Ω R  
100Ω R  
LOAD  
LOAD  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
THD  
THD  
3rd HD  
2nd HD  
2nd HD  
3rd HD  
(V)  
1
10  
1
10  
V
V
(V)  
OP-P-LOAD  
OP-P-LOAD  
FIGURE 25. 4MHz HARMONIC DISTORTION vs OUTPUT VOLTAGE  
FIGURE 26. 10MHz HARMONIC DISTORTION vs OUTPUT VOLTAGE  
FN6795.0  
March 16, 2012  
8
ISL1550  
Typical Performance Curves VCC = ±6V, See Figure 3, Gain = 5V/V (Differential), Rf = 1.5kΩ, R  
= 100Ω,  
LOAD  
T
= +25°C, C0 and C1 Varied, unless otherwise noted.  
A
-30  
13.5  
12.5  
11.5  
10.5  
9.5  
V
= ±6V  
V
= ±6V  
S
S
-40  
-50  
AV = 5  
RF = 750Ω  
RF = 750Ω  
R
R
= 374Ω  
G
L
R
V
= 100Ω  
LOAD  
= 1V  
-60  
= 100Ω DIFF  
DIFF  
P-P  
IN  
-70  
FULL POWER  
8.5  
-80  
7.5  
MEDIUM POWER  
-90  
6.5  
-100  
-110  
-120  
LOW POWER  
5.5  
4.5  
3.5  
100k  
100k  
1M  
10M  
100M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 27. OFF-ISOLATION  
FIGURE 28. DIFFERENTIAL OUTPUT IMPEDANCE  
T = 0s  
T = 1.60000µs  
C0, C1 PIN  
2V/DIV  
C0, C1 PIN  
2V/DIV  
Output Sine Wave  
OUTPUT PIN  
5V/DIV  
OUTPUT PIN  
5V/DIV  
300ns  
FIGURE 29. POWER ON  
FIGURE 30. POWER OFF  
40  
35  
30  
25  
20  
15  
10  
5
T = 242.800ns  
FULL POWER(mA)  
OUTPUT A  
OUTPUT B  
MEDIUM POWER  
LOW POWER  
2V/DIV  
Figure 1  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
FIGURE 31. OVERDRIVE RECOVERY  
FIGURE 32. QUIESCENT CURRENT vs TEMPERATURE  
FN6795.0  
March 16, 2012  
9
ISL1550  
Typical Performance Curves VCC = ±6V, See Figure 3, Gain = 5V/V (Differential), Rf = 1.5kΩ, R  
= 100Ω,  
LOAD  
T
= +25°C, C0 and C1 Varied, unless otherwise noted. (Continued)  
A
-80  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
12V  
P-P-D  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
-96  
-98  
-100  
20Ω R  
LOAD  
2nd HD  
2nd HD  
3rd HD  
Figure 1  
Figure 1  
-40 -30 -20 -10  
3rd HD  
10 20 30 40 50 60 70 80  
TEMPERATURE(°C)  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE(°C)  
FIGURE 33. 200kHz DISTORTION vs TEMPERATURE  
FIGURE 34. 4MHz DISTORTION vs TEMPERATURE  
FN6795.0  
March 16, 2012  
10  
ISL1550  
for each supply pin. During power-up, it is necessary to limit the  
Applications Information  
Product Description  
The ISL1550 is a dual operational amplifier designed for line driving  
in DMT VDSL2 8MHz, 12MHz, 17MHz and 30MHz bandplans  
solutions. It is a current mode feedback amplifier with low distortion  
drawing moderately low supply current. Due to the current feedback  
architecture, the ISL1550 closed-loop 3dB bandwidth is dependent  
on the value of the feedback resistor. First, the desired bandwidth is  
slew rate of the rising power supply to less than 1V/µs. If the  
power supply rising time is undetermined, a series 10Ω resistor  
on the power supply line before the decoupling caps can be used  
to ensure the proper power supply rise time.  
For good AC performance, parasitic capacitances should be kept  
to a minimum, especially at the inverting input. This implies  
keeping the ground plane away from this pin. Carbon or metal  
film resistors are acceptable, while use of wire-wound resistors  
should be avoided because of their parasitic inductance.  
Similarly, capacitors should be low inductance for best  
performance.  
selected by choosing the feedback resistor, R , and then the gain is  
F
set by picking the gain resistor, R (Figure 3).  
G
VDSL CO Applications  
The ISL1550 is designed as a VDSL line driver for CO. At an  
output current of ±450mA, the typical supply voltage headroom  
is 1.5V on each side of the differential output.  
Capacitance at the Inverting Input  
Due to the topology of the current feedback amplifier, stray  
capacitance at the inverting input will affect the AC and transient  
performance of the ISL1550 when operating in the non-inverting  
configuration.  
The average line power requirement for the VDSL CO application  
is 20dBm (100mW) into a 100Ω line. The average line voltage is  
3.16V  
. The VDSL DMT peak-to-average ratio (crest factor) of  
RMS  
Feedback Resistor Values  
The ISL1550 has been designed and specified with R = 1.5kΩ  
5.3 implies peak voltage of 16.8V into the line. Using a  
P
F
differential drive configuration and transformer coupling with  
standard back termination, a transformer ratio of 1:2.5 is  
selected. The active termination technique provides better power  
efficiency by reducing the backmatch resistor by a factor of  
K = 5. Positive feedback resistors, RP, can be sized to make the  
effective backmatch impedance larger. The circuit configuration  
is shown in Figure 35.  
for A = +5 (Figure 3). As is the case with all current feedback  
V
amplifiers, wider bandwidth at the expense of slight peaking, can  
be obtained by reducing the value of the feedback resistor.  
Inversely, larger values of the feedback resistor will cause rolloff  
to occur at a lower frequency.  
Quiescent Current vs Temperature  
12.5/k  
+
The ISL1550 was designed to slightly increase quiescent current  
with temperature to maintain good distortion performance at  
high temperatures. Refer to “Typical Performance Curves”  
beginning on page 5.  
-
750Ω  
TX1  
RP  
100  
AFE  
1:2.5  
1.5kΩ  
Supply Voltage Range  
The ISL1550 has been designed to operate with supply voltages  
from ±4.0V to ±6.6V nominal. Optimum bandwidth, slew rate,  
and video characteristics are obtained at higher supply voltages.  
RPΩ  
750Ω  
-
R
= R (K/(K-1))  
F
P
+
12.5/k  
FIGURE 35. CIRCUIT CONFIGURATION  
Single Supply Operation  
If a single supply is desired, values from +8.0V to +13.2V  
nominal can be used as long as the input common mode range  
is not exceeded. When using a single supply, be sure to either,  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit board  
layout is necessary for optimum performance. Ground plane  
construction is highly recommended. Lead lengths should be as  
short as possible (below 0.25”). The power supply pins must be  
well bypassed to reduce the risk of oscillation. A 4.7µF tantalum  
capacitor in parallel with a 0.1µF ceramic capacitor is adequate  
1. DC bias the inputs at an appropriate common mode voltage  
and AC-couple the signal, or  
2. Ensure the driving signal is within the common mode range of  
the ISL1550.  
FN6795.0  
March 16, 2012  
11  
ISL1550  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN6795.0  
CHANGE  
March 16, 2012  
Initial release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL1550  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6795.0  
March 16, 2012  
12  
ISL1550  
Package Outline Drawing  
L16.4x4H  
16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 1/12  
2.40  
4X 1.95  
0.65  
4.00  
12X  
A
6
B
13  
16  
PIN #1  
INDEX AREA  
6
PIN 1  
INDEX AREA  
1
12  
2.40  
9
4
(4X)  
0.15  
8
5
0.10 M C A B  
0.30 ±0.05  
16x 0.550±0.05  
TOP VIEW  
4
BOTTOM VIEW  
SEE DETAIL "X"  
0.90±0.10  
0.10 C  
C
BASE PLANE  
SEATING PLANE  
( 3 . 6 TYP )  
(
SIDE VIEW  
(12x0.65)  
2.40)  
(16x0.30)  
(16x0.75)  
5
C
0 . 20 REF  
+0.03/-0.02  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN6795.0  
March 16, 2012  
13  

相关型号:

ISL1550IRZ

Single Port, VDSL2 Differential Line Driver
INTERSIL

ISL1550IRZ-EVALZ

Single Port, VDSL2 Differential Line Driver
INTERSIL

ISL1550IRZ-T13

Single Port, VDSL2 Differential Line Driver
INTERSIL

ISL1550IRZ-T7

Single Port, VDSL2 Differential Line Driver
INTERSIL

ISL1556

xDSL Differential Line Driver
INTERSIL

ISL1556IRZ

xDSL Differential Line Driver
INTERSIL

ISL1556IRZ-T13

xDSL Differential Line Driver
INTERSIL

ISL1556IRZ-T7

xDSL Differential Line Driver
INTERSIL

ISL1556IUEZ

xDSL Differential Line Driver
INTERSIL

ISL1556IUEZ-T13

xDSL Differential Line Driver
INTERSIL

ISL1556IUEZ-T7

xDSL Differential Line Driver
INTERSIL

ISL1557

xDSL Differential Line Driver
INTERSIL