ISL21009_0709 [INTERSIL]

High Voltage Input Precision, Low Noise FGA⑩ Voltage References; 高电压输入精密,低噪声FGA⑩电压基准
ISL21009_0709
型号: ISL21009_0709
厂家: Intersil    Intersil
描述:

High Voltage Input Precision, Low Noise FGA⑩ Voltage References
高电压输入精密,低噪声FGA⑩电压基准

文件: 总19页 (文件大小:640K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL21009  
®
Data Sheet  
September 12, 2007  
FN6327.6  
High Voltage Input Precision, Low Noise  
FGA™ Voltage References  
Features  
• Output Voltages . . . . . . . .1.250V, 2.500V, 4.096V, 5.000V  
• Initial Accuracy. . . . . . . . . . . . . .±0.5mV, ±1.0mV, ±2.0mV  
• Input Voltage Range. . . . . . . . . . . . . . . . . . . 3.5V to 16.5V  
• Output Voltage Noise . . . . . . . . .4.5µVP-P (0.1Hz to 10Hz)  
• Supply Current . . . . . . . . . . . . . . . . . . . . . . . .180µA (Max)  
Temperature Coefficient. . . 3ppm/°C, 5ppm/°C, 10ppm/°C  
• Output Current Capability. . . . . . . . . . . . . . . Up to ±7.0mA  
• Operating Temperature Range. . . . . . . . .-40°C to +125°C  
• Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Ld SOIC  
• Pb-free available (RoHS compliant)  
The ISL21009 FGA™ voltage references are extremely low  
power, high precision, and low noise voltage references  
fabricated on Intersil’s proprietary Floating Gate Analog  
technology. The ISL21009 features very low noise (4.5µVP-P  
for 0.1Hz to 10Hz), low operating current (180µA, Max), and  
3ppm/°C of temperature drift. In addition, the ISL21009  
family features guaranteed initial accuracy as low as  
±0.5mV.  
This combination of high initial accuracy, low power and low  
output noise performance of the ISL21009 enables versatile  
high performance control and data acquisition applications  
with low power consumption.  
Available Options  
Applications  
• High Resolution A/Ds and D/As  
• Digital Meters  
VOUT  
OPTION  
(V)  
INITIAL  
ACCURACY  
(mV)  
TEMPCO.  
(ppm/°C)  
PART NUMBER  
ISL21009BFB812Z  
ISL21009CFB812Z  
ISL21009DFB812Z  
ISL21009BFB825Z  
ISL21009CFB825Z  
ISL21009DFB825Z  
ISL21009BFB841Z  
ISL21009CFB841Z  
ISL21009DFB841Z  
ISL21009BFB850Z  
ISL21009CFB850Z  
ISL21009DFB850Z  
• Bar Code Scanners  
1.250  
1.250  
1.250  
2.500  
2.500  
2.500  
4.096  
4.096  
4.096  
5.000  
5.000  
5.000  
±0.5  
±1.0  
±2.0  
±0.5  
±1.0  
±2.0  
±0.5  
±1.0  
±2.0  
±0.5  
±1.0  
±2.0  
3
5
• Basestations  
• Battery Management/Monitoring  
• Industrial/Instrumentation Equipment  
10  
3
5
Pinout  
10  
3
ISL21009  
(8 LD SOIC)  
TOP VIEW  
5
GND or NC  
VIN  
1
2
3
4
8
7
6
5
DNC  
10  
3
DNC  
DNC  
VOUT  
5
GND  
TRIM or NC  
10  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
FGA is a trademark of Intersil Corporation. Copyright Intersil Americas Inc. 2007. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
1
ISL21009  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
GND or NC  
VIN  
DESCRIPTION  
Can be either Ground or No Connect  
1
2
Power Supply Input Connection  
4
GND  
Ground Connection  
5
6
TRIM  
Allows user trim typically ±2.5%. Leave Unconnected when unused.  
Voltage Reference Output Connection  
VOUT  
3, 7, 8  
DNC  
Do Not Connect; Internal Connection – Must Be Left Floating  
Ordering Information  
PART NUMBER  
PART  
VOUT OPTION  
TEMP.  
RANGE (°C)  
PACKAGE  
(Pb-Free)  
(Notes 1, 2)  
ISL21009BFB812Z  
ISL21009CFB812Z  
ISL21009DFB812Z  
ISL21009BFB825Z  
ISL21009CFB825Z  
ISL21009DFB825Z  
ISL21009BFB841Z  
ISL21009CFB841Z  
ISL21009DFB841Z  
ISL21009BFB850Z  
ISL21009CFB850Z  
ISL21009DFB850Z  
NOTES:  
MARKING  
21009BF Z12  
21009CF Z12  
21009DF Z12  
21009BF Z25  
21009CF Z25  
21009DF Z25  
21009BF Z41  
21009CF Z41  
21009DF Z41  
21009BF Z50  
21009CF Z50  
21009DF Z50  
(V)  
GRADE  
PKG. DWG. #  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
M8.15  
1.250  
1.250  
1.250  
2.500  
2.500  
2.500  
4.096  
4.096  
4.096  
5.000  
5.000  
5.000  
±0.5mV, 3ppm/°C  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
±0.5mV, 3ppm/°C  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
±0.5mV, 3ppm/°C  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
±0.5mV, 3ppm/°C  
±1.0mV, 5ppm/°C  
±2.0mV, 10ppm/°C  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
8 Ld SOIC  
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte  
tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC  
J STD-020.  
2. Add “-TK” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
FN6327.6  
September 12, 2007  
2
ISL21009  
1
8
GND  
VIN  
NC  
+5V  
2
3
4
7
6
5
NC  
VOUT  
C1  
10µF  
NC  
NC  
GND  
ISL21009-25  
SPI BUS  
X79000  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SCK  
A0  
CS  
CLR  
VCC  
VH  
3
A1  
4
A2  
5
SI  
VL  
C1  
0.001µF  
6
SO  
VREF  
VSS  
VOUT  
VBUF  
VFB  
7
RDY  
UP  
8
LOW NOISE DAC OUTPUT  
9
DOWN  
OE  
10  
FIGURE 1. TYPICAL APPLICATION PRECISION 12-BIT SUB-RANGING DAC  
FN6327.6  
September 12, 2007  
3
ISL21009  
Absolute Voltage Ratings  
Recommended Operating Conditions  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Max Voltage VIN to GND . . . . . . . . . . . . . . . . . . . . . . .-0.5V to +18V  
Max Voltage VOUT to GND (10s) . . . . . . . . . . . . . -0.5V to VOUT +1V  
Voltage on “DNC” pins . . . . No connections permitted to these pins.  
ESD Ratings  
Temperature Range (Industrial) . . . . . . . . . . . . . . . -40°C to +125°C  
Thermal Information  
Continuous Power Dissipation (Note 3) . . . . . . . . . . . . . TA = +70°C  
8 Ld SOIC derate 5.88mW/°C above +70°C. . . . . . . . . . . . . 471mW  
Pb-free reflow profile. . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6kV  
Charged Device Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2kV  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at  
the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
NOTE:  
3. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
Common Electrical Specifications (ISL21009-12, -25, -41, -50) TA = -40°C to +125°C, IOUT = 0, unless otherwise specified.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
-0.5  
-1.0  
-2.0  
TYP  
MAX  
+0.5  
+1.0  
+2.0  
3
UNIT  
mV  
VOA  
VOUT Accuracy @ TA = +25°C  
ISL21009B  
ISL21009C  
ISL21009D  
ISL21009B  
ISL21009C  
ISL21009D  
mV  
mV  
TC VOUT  
Output Voltage Temperature  
Coefficient (Note 4)  
ppm/°C  
ppm/°C  
ppm/°C  
µA  
5
10  
IIN  
Supply Current  
95  
±2.5  
10  
180  
ΔVOUT / VOUT Trim Range  
ISC Short Circuit Current  
tR  
±2.0  
%
TA = +25°C, VOUT tied to GND  
VOUT = ±0.1%  
mA  
Turn-on Settling Time  
Ripple Rejection  
100  
60  
µs  
f = 10kHz  
dB  
eN  
VN  
Output Voltage Noise  
Broadband Voltage Noise  
0.1Hz f 10Hz  
10Hz f 1kHz  
4.5  
2.2  
µVP-P  
µVRMS  
Electrical Specifications (ISL21009-12, VOUT = 1.250V) VIN = 5.0V, TA = -40°C to +125°C, IOUT = 0, unless otherwise specified.  
PARAMETER  
VOUT  
DESCRIPTION  
Output Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
1.250  
VIN  
Input Voltage Range  
Line Regulation  
3.5  
16.5  
150  
50  
V
ΔVOUT/ΔVIN  
3.5V < VIN < 5.5V  
50  
10  
10  
20  
50  
50  
µV/V  
µV/V  
µV/mA  
µV/mA  
ppm  
ppm  
5.5V < VIN < 16.5V  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT 0mA  
ΔTA = +165°C  
ΔVOUT/ΔIOUT  
Load Regulation  
50  
100  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
Thermal Hysteresis (Note 5)  
Long Term Stability (Note 6)  
TA = +25°C  
FN6327.6  
September 12, 2007  
4
ISL21009  
Electrical Specifications (ISL21009-25, VOUT = 2.50V) VIN = 5.0V, TA = -40°C to +125°C, IOUT = 0, unless otherwise specified.  
PARAMETER  
VOUT  
DESCRIPTION  
Output Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
2.500  
VIN  
Input Voltage Range  
Line Regulation  
3.5  
16.5  
150  
50  
V
ΔVOUT/ΔVIN  
3.5V < VIN < 5.5V  
50  
10  
10  
20  
50  
50  
µV/V  
µV/V  
µV/mA  
µV/mA  
ppm  
ppm  
5.5V < VIN < 16.5V  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT 0mA  
ΔTA = +165°C  
ΔVOUT/ΔIOUT  
Load Regulation  
50  
100  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
Thermal Hysteresis (Note 5)  
Long Term Stability (Note 6)  
TA = +25°C  
Electrical Specifications (ISL21009-41, VOUT = 4.096V)  
VIN = 5.0V, TA = -40°C to +125°C, IOUT = 0 unless otherwise  
specified.  
PARAMETER  
VOUT  
DESCRIPTION  
Output Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
4.096  
VIN  
Input Voltage Range  
Line Regulation  
4.5  
16.5  
200  
100  
150  
V
ΔVOUT/ΔVIN  
ΔVOUT/ΔIOUT  
4.5V < VIN < 16.5V  
50  
20  
20  
50  
50  
µV/V  
µV/mA  
µV/mA  
ppm  
ppm  
Load Regulation  
Sourcing: 0mA IOUT 5mA  
Sinking: -5mA IOUT 0mA  
ΔTA = +165°C  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
Thermal Hysteresis (Note 5)  
Long Term Stability (Note 6)  
TA = +25°C  
Electrical Specifications (ISL21009-50, VOUT = 5.0V) VIN = 10.0V, TA = -40°C to +125°C, IOUT = 0 unless otherwise specified.  
PARAMETER  
VOUT  
DESCRIPTION  
Output Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
5.000  
VIN  
Input Voltage Range  
Line Regulation  
5.5  
16.5  
90  
V
ΔVOUT/ΔVIN  
ΔVOUT/ΔIOUT  
5.5V < VIN < 16.5V  
20  
10  
20  
50  
50  
µV/V  
µV/mA  
µV/mA  
ppm  
ppm  
Load Regulation  
Sourcing: 0mA IOUT 7mA  
Sinking: -7mA IOUT 0mA  
ΔTA = +165°C  
100  
150  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
NOTES:  
Thermal Hysteresis (Note 5)  
Long Term Stability (Note 6)  
TA = +25°C  
4. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in VOUT is divided by the  
temperature range; in this case, -40°C to +125°C = +165°C.  
5. Thermal Hysteresis is the change of VOUT measured @ TA = +25°C after temperature cycling over a specified range, ΔTA. VOUT is read initially  
at TA = +25°C for the device under test. The device is temperature cycled and a second VOUT measurement is taken at +25°C. The difference  
between the initial VOUT reading and the second VOUT reading is then expressed in ppm. For Δ TA = +165°C, the device under test is cycled  
from +25°C to +125°C to -40°C to +25°C.  
6. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately 10ppm/sqrt(1kHrs).  
FN6327.6  
September 12, 2007  
5
ISL21009  
Typical Performance Curves (ISL21009-12) (REXT = 100kΩ)  
110  
105  
100  
95  
100  
95  
90  
85  
80  
+25°C  
UNIT 3  
-40°C  
UNIT 2  
+125°C  
90  
UNIT 1  
85  
80  
5
7
9
11  
13  
15  
17  
5
7
9
11  
(V)  
13  
15  
17  
V
V
(V)  
IN  
IN  
FIGURE 2. IIN vs VIN, 3 UNITS  
FIGURE 3. IIN vs VIN, 3 TEMPERATURES  
60  
40  
60  
40  
UNIT 1  
+25°C  
20  
UNIT 2  
20  
-40°C  
0
-20  
-40  
-60  
-80  
-100  
0
+125°C  
UNIT 3  
-20  
-40  
-60  
3.5  
5.5  
7.5  
9.5  
11.5  
13.5  
15.5  
3.50  
5.50  
7.50  
9.50  
(V)  
11.5  
13.5  
15.5  
V
(V)  
V
IN  
IN  
FIGURE 4. LINE REGULATION, 3 UNITS  
FIGURE 5. LINE REGULATION OVER-TEMPERATURE  
0.08  
1.25020  
0.06  
0.04  
1.25015  
UNIT 1  
UNIT 2  
1.25010  
1.25005  
1.25000  
1.24995  
1.24990  
1.24985  
1.24980  
+25°C  
0.02  
-40°C  
+125°C  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.12  
UNIT 3  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40  
-15  
10  
35  
60  
85  
110  
SINKING  
OUTPUT CURRENT (mA)  
SOURCING  
TEMPERATURE (°C)  
FIGURE 6. LOAD REGULATION  
FIGURE 7. VOUT vs TEMPERATURE, 3 UNITS  
FN6327.6  
September 12, 2007  
6
ISL21009  
Typical Performance Curves (ISL21009-12) (REXT = 100kΩ) (Continued)  
X = 10µs/DIV  
Y = 200mV/DIV  
0
500kHz PEAK  
(DC) = 10V  
NO LOAD  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
IN  
10nF  
100nF  
1nF  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 8. PSRR AT DIFFERENT CAPACITIVE LOADS  
FIGURE 9. LINE TRANSIENT RESPONSE, NO CAPACITIVE  
LOAD  
X = 5µs/DIV  
V
IN  
Y = 20mV/DIV  
V
REF  
X = 100µs/DIV  
Y = 1V/DIV  
FIGURE 10. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
FIGURE 11. TURN-ON TIME  
GAIN IS x1000,  
NOISE IS 4.5µV  
200  
180  
160  
P-P  
1nF LOAD  
NO LOAD  
140  
120  
100  
80  
60  
10nF LOAD  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 12. ZOUT vs FREQUENCY  
FIGURE 13. VOUT NOISE, 0.1Hz TO 10Hz  
FN6327.6  
September 12, 2007  
7
ISL21009  
Typical Performance Curves (ISL21009-12) (REXT = 100kΩ) (Continued)  
X = 5µs/DIV  
X = 10µs/DIV  
Y = 50mV/DIV  
Y = 500mV/DIV  
+7mA  
+50µA  
-50µA  
-7mA  
FIGURE 14. LOAD TRANSIENT RESPONSE  
FIGURE 15. LOAD TRANSIENT RESPONSE  
Typical Performance Curves (ISL21009-25) (REXT = 100kΩ)  
140  
120  
100  
80  
120  
110  
100  
90  
UNIT 1  
UNIT 2  
+125°C  
+25°C  
UNIT 3  
60  
-40°C  
40  
20  
0
3.5  
80  
5.5  
7.5  
9.5  
V
11.5  
13.5  
15.5  
3.5  
5.5  
7.5  
9.5  
V
11.5  
13.5  
15.5  
(V)  
(V)  
IN  
IN  
FIGURE 16. IIN vs VIN, 3 UNITS  
FIGURE 17. IIN vs VIN, 3 TEMPERATURES  
2.50010  
2.50005  
2.50000  
2.49995  
2.49990  
2.49985  
2.49980  
60  
40  
UNIT 2  
+25°C  
20  
UNIT 3  
-40°C  
0
UNIT 1  
-20  
-40  
-60  
-80  
-100  
+125°C  
3.50  
5.50  
7.50  
9.50  
(V)  
11.5  
13.5  
15.5  
3.50  
5.50  
7.50  
9.50  
11.5  
13.5  
15.5  
V
(V)  
V
IN  
IN  
FIGURE 18. LINE REGULATION  
FIGURE 19. LINE REGULATION OVER-TEMPERATURE  
FN6327.6  
September 12, 2007  
8
ISL21009  
Typical Performance Curves (ISL21009-25) (REXT = 100kΩ) (Continued)  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
2.4994  
2.4993  
UNIT 3  
UNIT 2  
+125°C  
-40°C  
UNIT 1  
+25°C  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
SINKING  
OUTPUT CURRENT (mA)  
SOURCING  
TEMPERATURE (°C)  
FIGURE 20. LOAD REGULATION  
FIGURE 21. VOUT vs TEMPERATURE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
500kHz PEAK  
(DC) = 10V  
NO LOAD  
V
IN  
10nF  
1nF  
100nF  
100k  
1
10  
100  
1k  
10k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 22. PSRR AT DIFFERENT CAPACITIVE LOADS  
FIGURE 23. LINE TRANSIENT RESPONSE, NO CAPACITIVE  
LOAD  
5.2  
4.8  
4.4  
V
IN  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
HIGH I  
IN  
MEDIUM I  
IN  
LOW I  
IN  
0
0.05  
0.10 0.15  
0.20 0.25  
TIME (ms)  
0.30 0.35  
0.40  
FIGURE 24. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
FIGURE 25. TURN-ON TIME  
CAPACITANCE  
FN6327.6  
September 12, 2007  
9
ISL21009  
Typical Performance Curves (ISL21009-25) (REXT = 100kΩ) (Continued)  
GAIN IS x1000, NOISE  
IS 4.5µV  
P-P  
160  
140  
120  
100  
80  
10nF  
1nF  
NO LOAD  
100nF  
60  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 26. ZOUT vs FREQUENCY  
FIGURE 27. VOUT NOISE, 0.1Hz TO 10Hz  
NO OUTPUT CAPACITANCE  
NO OUTPUT CAPACITANCE  
7mA  
+50µA  
-50µA  
-7mA  
FIGURE 28. LOAD TRANSIENT RESPONSE  
FIGURE 29. LOAD TRANSIENT RESPONSE  
Typical Performance Curves (ISL21009-41) (REXT = 100kΩ)  
110  
105  
100  
95  
100  
95  
+25°C  
UNIT 3  
-40°C  
90  
85  
80  
UNIT 2  
+125°C  
90  
UNIT 1  
85  
80  
5
7
9
11  
(V)  
13  
15  
17  
5
7
9
11  
(V)  
13  
15  
17  
V
V
IN  
IN  
FIGURE 30. IIN vs VIN, 3 UNITS  
FIGURE 31. IIN vs VIN, 3 TEMPERATURES  
FN6327.6  
September 12, 2007  
10  
ISL21009  
Typical Performance Curves (ISL21009-41) (REXT = 100kΩ) (Continued)  
4.0963  
4.0962  
4.0962  
4.0961  
4.0961  
4.0960  
4.0960  
4.0959  
4.0959  
4.0958  
300  
250  
200  
150  
100  
50  
UNIT 2  
UNIT 1  
+125°C  
+25°C  
-40°C  
UNIT 3  
0
-50  
-100  
-150  
-200  
4.50  
6.50  
8.50  
10.5  
(V)  
12.5  
14.5  
16.5  
4.50  
6.50  
8.50  
10.5  
(V)  
12.5  
14.5  
16.5  
V
IN  
V
IN  
FIGURE 32. LINE REGULATION, 3 UNITS  
FIGURE 33. LINE REGULATION OVER-TEMPERATURE  
0.10  
0.05  
4.0970  
4.0965  
0.00  
4.0960  
+25°C  
UNIT 2  
-40°C  
-0.05  
-0.10  
-0.15  
-0.20  
+125°C  
4.0955  
UNIT 3  
4.0950  
UNIT 1  
4.0945  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
FIGURE 34. LOAD REGULATION  
FIGURE 35. VOUT vs TEMPERATURE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
V
(DC) = 5V  
IN  
IN  
NO LOAD  
100nF LOAD  
(AC) RIPPLE = 50mV  
P-P  
10nF LOAD  
1nF LOAD  
10k 100k  
FREQUENCY (Hz)  
X = 10µs/DIV  
1
10  
100  
1k  
1M  
10M  
Y = 200mV/DIV  
FIGURE 37. LINE TRANSIENT RESPONSE, NO CAPACITIVE  
LOAD  
FIGURE 36. PSRR AT DIFFERENT CAPACITIVE LOADS  
FN6327.6  
September 12, 2007  
11  
ISL21009  
Typical Performance Curves (ISL21009-41) (REXT = 100kΩ) (Continued)  
V
IN  
V
REF  
X = 50µs/DIV  
Y = 2V/DIV  
X = 10µs/DIV  
Y = 200mV/DIV  
FIGURE 39. TURN-ON TIME  
FIGURE 38. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
GAIN IS x10,000  
NOISE IS 4.5µV  
P-P  
200  
180  
160  
1nF LOAD  
NO LOAD  
140  
120  
100  
80  
60  
10nF LOAD  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
1s/DIV  
FIGURE 40. ZOUT vs FREQUENCY  
FIGURE 41. VOUT NOISE, 0.1Hz TO 10Hz  
7mA  
+50µA  
-50µA  
-7mA  
NO OUTPUT CAPACITANCE  
X = 5µs/DIV  
NO OUTPUT CAPACITANCE  
X = 5µs/DIV  
Y = 500mA/DIV  
Y = 50mV/DIV  
FIGURE 42. LOAD TRANSIENT RESPONSE  
FIGURE 43. LOAD TRANSIENT RESPONSE  
FN6327.6  
September 12, 2007  
12  
ISL21009  
Typical Performance Curves (ISL21009-50) (REXT = 100kΩ)  
140  
120  
100  
80  
110  
100  
90  
+25°C  
112µA  
104µA  
95µA  
+125°C  
60  
40  
-40°C  
20  
0
80  
5.50 6.50 7.50 8.50 9.50 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
5.50 6.50 7.50 8.50 9.50 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
V (V)  
IN  
V
(V)  
IN  
FIGURE 44. IIN vs VIN, 3 UNITS  
FIGURE 45. IIN vs VIN, 3 TEMPERATURES  
5.0001  
5.0000  
4.9999  
4.9998  
4.9997  
4.9996  
4.9995  
4.9994  
100  
0
+125°C  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-40°C  
+25°C  
104µA  
95µA  
112µA  
5.50 6.50 7.50 8.50 9.50 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
5.50 6.50 7.50 8.50 9.50 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 46. LINE REGULATION  
FIGURE 47. LINE REGULATION OVER-TEMPERATURE  
0.10  
0.05  
0.00  
-40°C  
+25°C  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
+125°C  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
SINKING  
OUTPUT CURRENT (mA)  
SOURCING  
FIGURE 48. LOAD REGULATION  
FN6327.6  
September 12, 2007  
13  
ISL21009  
Typical Performance Curves (ISL21009-50) (REXT = 100kΩ) (Continued)  
5.001  
5.001  
5.000  
5.000  
4.999  
4.999  
4.998  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
NO LOAD  
V
V
(DC) = 10V  
NORMALIZED TO +25°C  
IN  
IN  
(AC) RIPPLE = 50mV  
P-P  
UNIT 1  
UNIT 2  
10nF  
100nF  
100k  
1nF  
UNIT 3  
1
10  
100  
1k  
10k  
1M  
10M  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FIGURE 49. VOUT vs TEMPERATURE  
FIGURE 50. PSRR AT DIFFERENT CAPACITIVE LOADS  
V
= 10V  
IN  
V
= 10V  
DV = 1V  
IN  
IN  
DV = 1V  
IN  
FIGURE 51. LINE TRANSIENT RESPONSE, NO CAPACITIVE  
LOAD  
FIGURE 52. LINE TRANSIENT RESPONSE, 0.001µF LOAD  
CAPACITANCE  
12  
10  
120  
1nF  
100  
V
IN  
8
6
4
2
0
80  
60  
450nA  
NO LOAD  
40  
20  
10nF  
270nA  
50  
340nA  
0
0
100  
150  
TIME (µs)  
200  
250  
300  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 53. TURN-ON TIME  
FIGURE 54. ZOUT vs FREQUENCY  
FN6327.6  
September 12, 2007  
14  
ISL21009  
Typical Performance Curves (ISL21009-50) (REXT = 100kΩ) (Continued)  
GAIN IS x1000  
NOISE IS 4.5µV  
P-P  
50µA  
-50µA  
FIGURE 56. LOAD TRANSIENT RESPONSE  
FIGURE 55. VOUT NOISE, 0.1Hz TO 10Hz  
7mA  
-7mA  
FIGURE 57. LOAD TRANSIENT RESPONSE  
The process used for these reference devices is a floating  
Applications Information  
gate CMOS process and the amplifier circuitry uses CMOS  
transistors for amplifier and output transistor circuitry. While  
providing excellent accuracy, there are limitations in output  
noise level and load regulation due to the MOS device  
characteristics. These limitations are addressed with circuit  
techniques discussed in other sections.  
FGA Technology  
The ISL21009 voltage reference uses floating gate  
technology to create references with very low drift and supply  
current. Essentially the charge stored on a floating gate cell is  
set precisely in manufacturing. The reference voltage output  
itself is a buffered version of the floating gate voltage. The  
resulting reference device has excellent characteristics, which  
are unique in the industry: very low temperature drift, high  
initial accuracy, and almost zero supply current. Also, the  
reference voltage itself is not limited by voltage bandgaps or  
zener settings, so a wide range of reference voltages can be  
programmed (standard voltage settings are provided, but  
customer-specific voltages are available).  
Micropower Operation  
The ISL21009 consumes extremely low supply current due  
to the proprietary FGA technology. Low noise performance is  
achieved using optimized biasing techniques. Supply current  
is typically 95µA and noise is 4.5µVP-P benefitting precision,  
low noise portable applications such as handheld meters  
and instruments.  
FN6327.6  
September 12, 2007  
15  
ISL21009  
Data Converters in particular can utilize the ISL21009 as an  
Turn-On Time  
external voltage reference. Low power DAC and ADC  
circuits will realize maximum resolution with lowest noise.  
The ISL21009 devices have low supply current and thus the  
time to bias up internal circuitry to final values will be longer  
than with higher power references. Normal turn-on time is  
typically 100µs. This is shown in Figure 25. Circuit design  
must take this into account when looking at power-up delays  
or sequencing.  
Board Mounting Considerations  
For applications requiring the highest accuracy, board  
mounting location should be reviewed. The device uses a  
plastic SOIC package, which will subject the die to mild  
stresses when the PC board is heated and cooled, slightly  
changing the shape. Placing the device in areas subject to  
slight twisting can cause degradation of the accuracy of the  
reference voltage due to these die stresses. It is normally  
best to place the device near the edge of a board, or the  
shortest side, as the axis of bending is most limited at that  
location. Mounting the device in a cutout also minimizes flex.  
Obviously mounting the device on flexprint or extremely thin  
PC material will likewise cause loss of reference accuracy.  
Temperature Coefficient  
The limits stated for temperature coefficient (tempco) are  
governed by the method of measurement. The overwhelming  
standard for specifying the temperature drift of a reference is to  
measure the reference voltage at two temperatures, take the  
total variation, (VHIGH – VLOW), and divide by the temperature  
extremes of measurement (THIGH – TLOW). The result is  
divided by the nominal reference voltage (at T = +25°C) and  
multiplied by 106 to yield ppm/°C. This is the “Box” method for  
specifying temperature coefficient.  
Noise Performance and Reduction  
Output Voltage Adjustment  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is  
typically 4.5µVP-P. The noise measurement is made with a  
bandpass filter made of a 1-pole high-pass filter with a corner  
frequency at 0.1Hz and a 2-pole low-pass filter with a corner  
frequency at 12.6Hz to create a filter with a 9.9Hz bandwidth.  
Noise in the 10kHz to 1MHz bandwidth is approximately  
40µVP-P with no capacitance on the output. This noise  
measurement is made with a 2 decade bandpass filter made  
of a 1-pole high-pass filter with a corner frequency at 1/10 of  
the center frequency and 1-pole low-pass filter with a corner  
frequency at 10x the center frequency. Load capacitance up  
to 1000pF can be added but will result in only marginal  
improvements in output noise and transient response. The  
output stage of the ISL21009 is not designed to drive heavily  
capactive loads, so for load capacitances above 0.001µF, the  
noise reduction network shown in Figure 58 is recommended.  
This network reduces noise significantly over the full  
bandwidth. Noise is reduced to less than 20µVP-P from 1Hz to  
1MHz using this network with a 0.01µF capacitor and a 2kΩ  
resistor in series with a 10µF capacitor. Also, transient  
response is improved with higher value output capacitor. The  
0.01µF value can be increased for better load transient  
response with little sacrifice in output stability.  
The output voltage can be adjusted up or down by 2.5% by  
placing a potentiometer from VOUT to GND and connecting the  
wiper to the TRIM pin. The TRIM input is high impedance so no  
series resistance is needed. The resistor in the potentiometer  
should be a low tempco (<50ppm/°C) and the resulting voltage  
divider should have very low tempco <5ppm/°C. A digital  
potentiometer such as the ISL95810 provides a low tempco  
resistance and excellent resistor and tempco matching for trim  
applications.  
.
V
= 5.0V  
IN  
V
10µF  
IN  
V
O
0.1µF  
ISL21009-25  
GND  
2kΩ  
0.01µF  
10µF  
FIGURE 58. HANDLING HIGH LOAD CAPACITANCE  
FN6327.6  
September 12, 2007  
16  
ISL21009  
Typical Application Circuits  
V
= +5.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
OUT  
ISL21009  
= 2.50V  
V
OUT  
0.001µF  
GND  
FIGURE 59. PRECISION 2.5V, 50mA REFERENCE  
+3.5V TO 16.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL21009-25  
= 2.50V  
V
OUT  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
(UNBUFFERED)  
+
SDA  
SCL  
2-WIRE BUS  
EL8178  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 60. 2.5V FULL SCALE LOW-DRIFT, LOW NOISE, 10-BIT ADJUSTABLE VOLTAGE SOURCE  
FN6327.6  
September 12, 2007  
17  
ISL21009  
Typical Application Circuits (Continued)  
+3.5V TO 16.5V  
0.1µF  
10µF  
V
IN  
EL8178  
+
V
SENSE  
OUT  
V
OUT  
ISL21009-25  
GND  
LOAD  
FIGURE 61. KELVIN SENSED LOAD  
10µF  
+3.5V TO 16.5V  
0.1µF  
V
2.5V ±2.5%  
IN  
V
OUT  
ISL21009-25  
TRIM  
GND  
R
V
H
CC  
SDA  
SCL  
2
I C BUS  
ISL95810  
R
L
V
SS  
FIGURE 62. OUTPUT ADJUSTMENT USING THE TRIM PIN  
FN6327.6  
September 12, 2007  
18  
ISL21009  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
a
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 6/05  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6327.6  
September 12, 2007  
19  

相关型号:

ISL21009_09

High Voltage Input Precision, Low Noise FGA™ Voltage References
INTERSIL

ISL2100A

100V, 2A Peak, High Frequency Half-Bridge Drivers
INTERSIL

ISL2100AABZ

100V, 2A Peak, High Frequency Half-Bridge Drivers
INTERSIL

ISL2100AAR3Z

100V, 2A Peak, High Frequency Half-Bridge Drivers
INTERSIL

ISL2100AAR3Z

2 A HALF BRDG BASED MOSFET DRIVER, PDSO9, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEED3, DFN-9
ROCHESTER

ISL2100AAR3Z-T

100V, 2A Peak, High Frequency Half-Bridge Drivers
INTERSIL

ISL2100AAR3Z-T

2 A HALF BRDG BASED MOSFET DRIVER, PDSO9, 3 X 3 MM, ROHS COMPLIANT, PLASTIC, MO-229WEED3, DFN-9
ROCHESTER

ISL21010

Micropower Voltage Reference
INTERSIL

ISL21010

Micropower Voltage Reference
RENESAS

ISL2101010EV1Z

Micropower Voltage Reference
RENESAS

ISL2101012EV1Z

Micropower Voltage Reference
RENESAS

ISL2101015EV1Z

Micropower Voltage Reference
RENESAS