ISL21070CIH310Z-TK [INTERSIL]

25μA Micropower Voltage References; 25μA微功耗电压基准
ISL21070CIH310Z-TK
型号: ISL21070CIH310Z-TK
厂家: Intersil    Intersil
描述:

25μA Micropower Voltage References
25μA微功耗电压基准

光电二极管
文件: 总12页 (文件大小:480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
25µA Micropower Voltage References  
ISL21070  
Features  
• Reference Output Voltage . . . . . . . 1.024V, 2.048V,  
2.500V, 3.300V  
The ISL21070 voltage references are analog voltage  
references featuring low supply voltage operation at  
ultra-low 25µA max operating current.  
• Initial Accuracy: 1.024V . . . . . . . . . . . . . . .±0.5%  
• Initial Accuracy: 2.048V . . . . . . . . . . . . . .±0.25%  
• initial Accuracy: 2.5V, 3.3V . . . . . . . . . . . . .±0.2%  
• Input Voltage Range  
Additionally, the ISL21070 family features guaranteed  
initial accuracy as low as ±0.2% and 30ppm/°C  
temperature coefficient.  
These references are ideal for general purpose  
applications for performance at lower cost. The ISL21070  
is provided in an industry standard 3 Ld SOT-23 pinout.  
- ISL21070-10 (Coming Soon) . . . . . . 2.7V to 5.5V  
- ISL21070-20 (Coming Soon) . . . . . . 2.7V to 5.5V  
- ISL21070-25. . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
- ISL21070-33 (Coming Soon) . . . . . . 3.5V to 5.5V  
• Output Voltage Noise . . . . 30µVP-P (0.1Hz to 10Hz)  
• Supply Current. . . . . . . . . . . . . . . . . . 25µA (Max)  
Tempco . . . . . . . . . . . . . . . . . . . . . . . . 30ppm/°C  
• Output Current Capability . . . . . . . . . . . . . ±10mA  
• Operating Temperature Range . . . . -40°C to +85°C  
• Package . . . . . . . . . . . . . . . . . . . . . . 3 Ld SOT-23  
• Pb-Free (RoHS compliant)  
The ISL21070 offers output voltages that can be used as  
precision voltage sources for control loops, standby  
voltages for low power states for DSP, FPGA, Datapath  
Controllers, Microcontrollers and other core voltages:  
1.024V, 2.048V, 2.5V, and 3.3V.  
Applications*(see page 11)  
• Battery Management/Monitoring  
• Low Power Standby Voltages  
• Portable Instrumentation  
Related Literature*(see page 11)  
• Consumer/Medical Electronics  
• Wearable Electronics  
AN1533, “X-Ray Effects on Intersil FGA References”  
AN1494, “Reflow and PC Board Assembly Effects on  
Intersil FGA References”  
• Lower Cost Industrial and Instrumentation  
• Power Regulation Circuits  
• Control Loops and Compensation Networks  
• LED/Diode Supply  
2.5020  
2.5015  
TYP  
2.5010  
2.5005  
2.5000  
2.4995  
LOW  
HIGH  
2.4990  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
FIGURE 1. VOUT vs TEMPERATURE NORMALIZED to +25°C  
March 19, 2010  
FN7599.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2010. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL21070  
Typical Application Circuit  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
+
V
SENSE  
OUT  
V
OUT  
ISL21070  
GND  
LOAD  
Pin Configuration  
Pin Descriptions  
ISL21070  
(3 LD SOT-23)  
TOP VIEW  
1
VIN  
3
GND  
VOUT  
2
PIN NUMBER  
PIN NAME  
VIN  
DESCRIPTION  
1
2
3
Input Voltage Connection. Range: 2.7 to 5.5V  
Voltage Reference Output.  
VOUT  
GND  
Ground Connection  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
VOUT OPTION  
(V)  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
GRADE  
ISL21070CIH310Z-TK  
ISL21070CIH320Z-TK  
ISL21070CIH325Z-TK  
ISL21070CIH333Z-TK  
NOTES:  
BCGA  
BCHA  
BCJA  
BCKA  
1.024  
2.048  
2.5  
±0.5%, 30ppm/°C  
±0.25%, 30ppm/°C  
±0.2%, 30ppm/°C  
±0.2%, 30ppm/°C  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
P3.064  
P3.064  
P3.064  
P3.064  
3.3  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL21070. For more information on MSL please  
see techbrief TB363.  
FN7599.0  
March 19, 2010  
2
ISL21070  
Absolute Voltage Ratings  
Thermal Information  
Max Voltage  
Thermal Resistance (Typical)  
θJA (°C/W)  
V
V
IN to GND . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V  
OUT (pin) to GND (10s). . . . . . . . . . . -0.5V to VOUT + 1V  
3 Ld SOT-23 (Note 5) . . . . . . . . . . . . . . . . .  
371  
Continuous Power Dissipation (TA = +85°C). . . . . . . . 99mW  
Storage Temperature Range. . . . . . . . . . . -65°C to +150°C  
Pb-Free Reflow Profile (Note 6). . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
ESD Ratings  
Human Body Model (Tested per JESD22-A114) . . . . 6000V  
Machine Model (Tested per JESD22-A115) . . . . . . . . 500V  
Charged Device Model (Tested per JESD22-C101) . . . . 2kV  
Latch Up (Tested Per JESD-78) . . . . . . . . . . . . . . . . 100mA  
Recommended Operating Conditions  
Temperature Range (Industrial) . . . . . . . . . -40°C to +85°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 5.5V  
Environmental Operating Conditions  
X-Ray Exposure (Note 4). . . . . . . . . . . . . . . . . . . .10mRem  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
4. Measured with no filtering, distance of 10” from source, intensity set to 55kV and 70mA current, 30s duration. Other exposure  
levels should be analyzed for Output Voltage drift effects. See “Applications Information” on page 8.  
5. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief  
TB379 for details.  
6. Post-reflow drift for the ISL21070 devices will range from 100µV to 1.0mV based on experimental results with devices on FR4  
double sided boards. The design engineer must take this into account when considering the reference voltage after assembly.  
Electrical Specifications (ISL21070-xx, VOUT = 1.024V to 2.048V) VIN = 3.0V, TA = -40°C to +85°C,  
I
OUT = 0, unless otherwise specified. Boldface limits apply over the operating  
temperature range, -40°C to +85°C.  
MIN  
MAX  
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 10) TYP (Note 10 UNITS  
VOUT  
Output Voltage  
1.024  
2.048  
V
V
%
VOA  
VOUT Accuracy @ TA = +25°C  
ISL21070 C-grade: 1.024  
ISL21070 C-grade: 2.048  
ISL21070 C-grade  
-0.5  
+0.5  
+0.25  
30  
-0.25  
%
TC VOUT  
Output Voltage Temperature  
Coefficient (Note 7)  
ppm/°C  
VIN  
IIN  
Input Voltage Range  
Supply Current  
2.7  
5.5  
25  
V
µA  
16  
50  
ΔVOUT/ΔVIN Line Regulation  
ΔVOUT/ΔIOUT Load Regulation  
2.7V < VIN < 5.5V  
Sourcing: 0mA IOUT 10mA  
Sinking: -10mA IOUT 0mA  
TA = +25°C, VOUT tied to GND  
VOUT = ±0.1%  
250  
100  
100  
µV/V  
µV/mA  
µV/mA  
mA  
6
10  
ISC  
tR  
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
50  
150  
-20  
30  
µs  
f = 10kHz  
dB  
eN  
VN  
Output Voltage Noise  
Broadband Voltage Noise  
0.1Hz f 10Hz  
µVP-P  
µVRMS  
ppm  
ppm  
10Hz f 10kHz  
10  
ΔVOUT/ΔTA Thermal Hysteresis (Note 8)  
ΔTA = +125°C  
100  
50  
ΔVOUT/Δt  
Long Term Stability (Note 9)  
TA = +25°C  
FN7599.0  
March 19, 2010  
3
ISL21070  
Electrical Specifications (ISL21070-25, VOUT = 2.5V) VIN = 3.0V, TA = -40°C to +85°C, IOUT = 0, unless  
otherwise specified. Boldface limits apply over the operating temperature range,  
-40°C to +85°C.  
MIN  
MAX  
SYMBOL  
VOUT  
PARAMETER  
Output Voltage  
CONDITIONS  
(Note 10) TYP (Note 10  
UNIT  
V
2.5  
VOA  
VOUT Accuracy @ TA = +25°C  
ISL21070 C-grade  
-0.2  
+0.2  
%
TC VOUT  
Output Voltage Temperature  
Coefficient (Note 7)  
ISL21070 C-grade  
30  
ppm/°C  
VIN  
IIN  
Input Voltage Range  
Supply Current  
2.7  
5.5  
25  
V
VEN = VIN  
11  
15  
6
µA  
ΔVOUT/ΔVIN  
ΔVOUT/ΔIOUT  
Line Regulation  
Load Regulation  
2.7V < VIN < 5.5V  
Sourcing: 0mA IOUT 7mA  
250  
100  
µV/V  
µV/mA  
µV/mA  
Sourcing: 0mA IOUT 10mA  
133  
(TA = +70°C)  
Sinking: -10mA IOUT 0mA  
TA = +25°C, VOUT tied to GND  
VOUT = ±0.1%  
10  
30  
100  
µV/mA  
mA  
ISC  
tR  
Short Circuit Current  
Turn-on Settling Time  
Ripple Rejection  
150  
-20  
30  
µs  
f = 10kHz  
dB  
eN  
Output Voltage Noise  
Broadband Voltage Noise  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
0.1Hz f 10Hz  
10Hz f 10kHz  
ΔTA = +125°C  
µVP-P  
µVRMS  
ppm  
ppm  
VN  
10  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
20  
TA = +25°C  
50  
FN7599.0  
March 19, 2010  
4
ISL21070  
Electrical Specifications (ISL21070-33, VOUT = 3.3V) VIN = 5V, TA = -40°C to +85°C, IOUT = 0, unless  
otherwise specified.Boldface limits apply over the operating temperature range,  
-40°C to +85°C.  
MIN  
MAX  
SYMBOL  
VOUT  
PARAMETER  
Output Voltage  
CONDITIONS  
(Note 10) TYP (Note 10) UNIT  
3.3  
V
VOA  
VOUT Accuracy @ TA = +25°C  
ISL21070 C-grade  
-0.2  
+0.2  
%
TC VOUT  
Output Voltage Temperature  
Coefficient (Note 7)  
ISL21070 C-grade  
50  
ppm/°  
C
VIN  
IIN  
Input Voltage Range  
Supply Current  
3.5  
5.5  
25  
V
VEN = VIN  
µA  
ΔVOUT/ΔVIN  
ΔVOUT/ΔIOUT  
Line Regulation  
Load Regulation  
3.5V < VIN < 5.5V  
Sourcing: 0mA IOUT 10mA  
Sinking: -10mA IOUT 0mA  
TA = +25°C, VOUT tied to GND  
VOUT = ±0.1%  
50  
20  
100  
70  
µV/mA  
µV/mA  
mA  
20  
70  
ISC  
tR  
Short Circuit Current  
30  
Turn-on Settling Time  
Ripple Rejection  
150  
-20  
30  
µs  
f = 10kHz  
dB  
eN  
Output Voltage Noise  
Broadband Voltage Noise  
Thermal Hysteresis (Note 8)  
Long Term Stability (Note 9)  
0.1Hz f 10Hz  
µVP-P  
µVRMS  
ppm  
ppm  
VN  
10Hz f 10kHz  
ΔTA = +125°C  
10  
ΔVOUT/ΔTA  
ΔVOUT/Δt  
100  
50  
TA = +25°C  
NOTES:  
7. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in VOUT  
is divided by the temperature range; in this case, -40°C to +85°C = +125°C.  
8. Thermal Hysteresis is the change of VOUT measured @ TA = +25°C after temperature cycling over a specified range, ΔTA. VOUT  
is read initially at TA = +25°C for the device under test. The device is temperature cycled and a second VOUT measurement  
is taken at +25°C. The difference between the initial VOUT reading and the second VOUT reading is then expressed in ppm.  
For Δ TA = +125°C, the device under test is cycled from +25°C to +85°C to -40°C to +25°C.  
9. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately  
10ppm/1khrs  
10. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established  
by characterization and are not production tested.  
FN7599.0  
March 19, 2010  
5
ISL21070  
Typical Performance Characteristics Curves VOUT = 2.5V, VIN = 3V, IOUT = 0mA, TA = +25°C  
unless otherwise specified.  
20  
18  
16  
14  
12  
10  
8
14  
13  
12  
11  
10  
9
HIGH  
TYP  
+25°C  
-85°C  
6
4
LOW  
4.3  
-40°C  
3.5  
2
0
8
2.7  
3.1  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
V
4.7  
5.1  
5.5  
(V)  
IN  
IN  
FIGURE 2. IIN vs VIN, 3 UNITS  
FIGURE 3. IIN vs VIN OVER-TEMPERATURE  
2.50030  
2.50025  
2.50020  
2.50015  
2.50010  
2.50005  
2.50000  
2.49995  
2.49990  
200  
+25°C  
150  
100  
50  
TYP  
-85°C  
0
-40°C  
-50  
-100  
-150  
LOW  
3.5  
HIGH  
2.7  
3.1  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
IN  
IN  
FIGURE 5. LINE REGULATION OVER-TEMPERATURE  
FIGURE 4. LINE REGULATION, 3 UNITS  
2.5020  
25  
20  
ΔV = +0.3V  
IN  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
15  
10  
5
TYP  
0
-5  
-10  
-15  
-20  
-25  
ΔV = -0.3V  
IN  
LOW  
HIGH  
0
50 100 150 200 250 300 350 400 450 500  
TIME (µs)  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
FIGURE 7. LINE TRANSIENT RESPONSE, WITH 1nF  
CAPACITIVE LOAD  
FIGURE 6. VOUT vs TEMPERATURE NORMALIZED to  
+25°C  
FN7599.0  
March 19, 2010  
6
ISL21070  
Typical Performance Characteristics Curves VOUT = 2.5V, VIN = 3V, IOUT = 0mA, TA = +25°C  
unless otherwise specified. (Continued)  
100  
80  
25  
20  
15  
10  
5
+25°C  
60  
ΔV = +0.3V  
IN  
40  
20  
0
0
-40°C  
-20  
-40  
-60  
-80  
-100  
-5  
-10  
-15  
-20  
-25  
ΔV = -0.3V  
IN  
-85°C  
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
8
9
10  
0
50 100 150 200 250 300 350 400 450 500  
TIME (µs)  
SINKING LOAD (mA)  
SOURCING  
FIGURE 9. LOAD REGULATION OVER-TEMPERATURE  
FIGURE 8. LINE TRANSIENT RESPONSE, WITH NO  
CAPACITIVE LOAD  
200  
160  
120  
500  
400  
300  
I = +50mA  
LOAD  
I
= +10mA  
LOAD  
80  
40  
200  
100  
0
0
-40  
-80  
-120  
-160  
-200  
-100  
-200  
-300  
-400  
-500  
I
= -50mA  
LOAD  
I
= -10mA  
LOAD  
0
20 40 60 80 100 120 140 160 180 200  
TIME (µs)  
0
20 40 60 80 100 120 140 160 180 200  
TIME (µs)  
FIGURE 10. LOAD TRANSIENT RESPONSE  
FIGURE 11. LOAD TRANSIENT RESPONSE  
2.510  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
TYP  
10mA LOAD  
VDD  
NO LOAD  
LOW  
HIGH  
2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0  
(V)  
0
50  
100  
150  
200  
250  
300  
TIME (µs)  
V
IN  
FIGURE 13. TURN-ON TIME  
FIGURE 12. DROPOUT  
FN7599.0  
March 19, 2010  
7
ISL21070  
Typical Performance Characteristics Curves VOUT = 2.5V, VIN = 3V, IOUT = 0mA, TA = +25°C  
unless otherwise specified. (Continued)  
120  
100  
80  
60  
40  
20  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
NO LOAD  
1nF LOAD  
NO LOAD  
1nF LOAD  
10nF LOAD  
10nF LOAD  
100nF LOAD  
100nF LOAD  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. PSRR vs FREQUENCY  
FIGURE 14. ZOUT vs f vs CL  
X-rayed, care should be taken to shield the FGA  
reference device.  
Applications Information  
FGA Technology  
The ISL21070 series of voltage references use the  
Board Mounting Considerations  
For applications requiring the highest accuracy, board  
mounting location should be reviewed. Placing the device  
in areas subject to slight twisting can cause degradation  
of the accuracy of the reference voltage due to die  
stresses. It is normally best to place the device near the  
edge of a board, or the shortest side, as the axis of  
bending is most limited at that location. Obviously,  
mounting the device on flexprint or extremely thin PC  
material will likewise cause loss of reference accuracy.  
floating gate technology to create references with very  
low drift and supply current. Essentially, the charge  
stored on a floating gate cell is set precisely in  
manufacturing. The reference voltage output itself is a  
buffered version of the floating gate voltage. The  
resulting reference device has excellent characteristics  
which are unique in the industry: very low temperature  
drift, high initial accuracy, and almost zero supply  
current. Also, the reference voltage itself is not limited by  
voltage bandgaps or zener settings, so a wide range of  
reference voltages can be programmed (standard  
voltage settings are provided, but customer-specific  
voltages are available).  
Board Assembly Considerations  
FGA references provide high accuracy and low  
temperature drift but some PC board assembly  
precautions are necessary. Normal Output voltage shifts  
of 100µV to 1mV can be expected with Pb-free reflow  
profiles or wave solder on multi-layer FR4 PC boards.  
Precautions should be taken to avoid excessive heat or  
extended exposure to high reflow or wave solder  
temperatures, this may reduce device initial accuracy.  
The process used for these reference devices is a floating  
gate CMOS process, and the amplifier circuitry uses  
CMOS transistors for amplifier and output transistor  
circuitry. While providing excellent accuracy, there are  
limitations in output noise level and load regulation due  
to the MOS device characteristics. These limitations are  
addressed with circuit techniques discussed in other  
sections.  
Post-assembly x-ray inspection may also lead to  
permanent changes in device output voltage and should  
be minimized or avoided. If x-ray inspection is required,  
it is advisable to monitor the reference output voltage to  
verify excessive shift has not occurred. If large amounts  
of shift are observed, it is best to add an X-ray shield  
consisting of thin zinc (300µm) sheeting to allow clear  
imaging, yet block x-ray energy that affects the FGA  
reference.  
Handling and Board Mounting  
FGA references provide excellent initial accuracy and low  
temperature drift at the expense of very little power  
drain. There are some precautions to take to insure this  
accuracy is not compromised. Excessive heat during  
solder reflow can cause excessive initial accuracy drift, so  
the recommended +260°C max temperature profile  
should not be exceeded. Expect up to 1mV drift from the  
solder reflow process.  
Special Applications Considerations  
In addition to post-assembly examination, there are also  
other X-ray sources that may affect the FGA reference  
long term accuracy. Airport screening machines contain  
X-rays and will have a cumulative effect on the voltage  
reference output accuracy. Carry-on luggage screening  
uses low level X-rays and is not a major source of output  
voltage shift, however, if a product is expected to pass  
FGA references are susceptible to excessive  
X-radiation like that used in PC board manufacturing.  
Initial accuracy can change 10mV or more under  
extreme radiation. If an assembled board needs to be  
FN7599.0  
March 19, 2010  
8
ISL21070  
through that type of screening over 100 times, it may  
ISL21070 Used as a Low Cost Precision  
Current Source  
Using an N-JET and the ISL21070, a precision, low cost,  
high impedance current source can be created. The  
precision of the current source is largely dependent on  
the tempco and accuracy of the reference. The current  
setting resistor contributes less than 20% of the error.  
need to consider shielding with copper or aluminum.  
Checked luggage X-rays are higher intensity and can  
cause output voltage shift in much fewer passes, thus  
devices expected to go through those machines should  
definitely consider shielding. Note that just two layers of  
1/2 ounce copper planes will reduce the received dose by  
over 90%. The leadframe for the device which is on the  
bottom also provides similar shielding.  
V
OUT  
+8V TO 28V  
I
SET =  
R
SET  
If a device is expected to pass through luggage X-ray  
machines numerous times, it is advised to mount a  
2-layer (minimum) PC board on the top, and along with a  
ground plane underneath will effectively shield it from 50  
to 100 passes through the machine. Since these  
I = I  
IR  
SET  
L
SET +  
V
IN  
V
OUT  
machines vary in X-ray dose delivered, it is difficult to  
produce an accurate maximum pass recommendation.  
R
SET  
0.01µF  
1kΩ  
0.1%  
10ppm/°C  
ISL21070-2.5  
Z
> 100MΩ  
OUT  
V
= 2.5V  
Noise Performance and Reduction  
OUT  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is  
typically 30µVP-P. The noise measurement is made with  
a bandpass filter made of a 1 pole high-pass filter with a  
corner frequency at 0.1Hz and a 2-pole low-pass filter  
with a corner frequency at 12.6Hz to create a filter with a  
9.9Hz bandwidth. Wideband noise is reduced by adding  
capacitor to the output, but the value should be limited  
to 1nF or less to insure stability.  
GND  
I
~ 11µA  
SY  
I
SET  
IL AT 0.1% ACCURACY  
~2.5011mA  
FIGURE 16. ISL21070 USED AS A LOW COST  
PRECISION CURRENT SOURCE  
Temperature Drift  
The limits stated for output accuracy over-temperature  
are governed by the method of measurement. For the  
-40°C to 85°C temperature range, measurements are  
made at +25°C and the two extremes. This  
measurement method combined with the fact that FGA  
references have a fairly linear temperature drift  
characteristic insures that the limits stated will not be  
exceeded over the temperature range.  
Typical Application Circuits  
V
= 3.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
0.001µF  
OUT  
ISL21070  
GND  
FIGURE 17. PRECISION 2.5V 50mA REFERENCE  
FN7599.0  
March 19, 2010  
9
ISL21070  
Typical Application Circuits(Continued)  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL21070  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
SDA  
SCL  
+
2-WIRE BUS  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 18. 2.5V FULL SCALE LOW-DRIFT 10-BIT ADJUSTABLE VOLTAGE SOURCE  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
+
V
SENSE  
OUT  
V
OUT  
ISL21070  
GND  
LOAD  
FIGURE 19. KELVIN SENSED LOAD  
FN7599.0  
March 19, 2010  
10  
ISL21070  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
3/19/10  
FN7599.0  
Initial release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The  
Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones,  
handheld products, and notebooks. Intersil's product families address power management and analog signal  
processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device  
information page on intersil.com: ISL21070  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7599.0  
March 19, 2010  
11  
ISL21070  
Package Outline Drawing  
P3.064  
3 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE (SOT23-3)  
Rev 2, 9/09  
4
2.92±0.12  
DETAIL "A"  
C
L
2.37±0.27  
1.30±0.10  
4
C
L
0.950  
0.435±0.065  
0.20 M C  
0 - 8 deg.  
TOP VIEW  
10° TYP  
(2 plcs)  
0.25  
0.91±0.03  
GAUGE PLANE  
1.00±0.12  
SEATING PLANE  
C
SEATING PLANE  
0.10 C  
0.31±0.10  
5
0.013(MIN)  
0.100(MAX)  
SIDE VIEW  
DETAIL "A"  
(0.60)  
NOTES:  
(2.15)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3. Reference JEDEC TO-236.  
(1.25)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
5. Footlength is measured at reference to gauge plane.  
(0.95 typ.)  
TYPICAL RECOMMENDED LAND PATTERN  
FN7599.0  
March 19, 2010  
12  

相关型号:

ISL21070CIH320Z-TK

25μA Micropower Voltage References
INTERSIL

ISL21070CIH325Z-TK

25μA Micropower Voltage References Low Power Standby Voltages
INTERSIL

ISL21070CIH333Z-TK

25μA Micropower Voltage References
INTERSIL

ISL21070DIH306Z-TK

25μA Micropower Voltage References Low Power Standby Voltages
INTERSIL

ISL21070_11

25μA Micropower Voltage References Low Power Standby Voltages
INTERSIL

ISL21080

300nA NanoPower Voltage References
INTERSIL

ISL21080CIH312Z-TK

300nA NanoPower Voltage References
INTERSIL

ISL21080CIH315Z-TK

300nA NanoPower Voltage References
INTERSIL

ISL21080CIH320Z-TK

300nA NanoPower Voltage References
INTERSIL

ISL21080CIH325Z-TK

300nA NanoPower Voltage References
INTERSIL

ISL21080CIH330Z-TK

300nA NanoPower Voltage References
INTERSIL

ISL21080CIH333Z-TK

300nA NanoPower Voltage References
INTERSIL