ISL23315UFRUZ-TK [INTERSIL]

Single, Low Voltage Digitally Controlled Potentiometer (XDCP?); 单路低电压数字控制电位器( XDCP ? )
ISL23315UFRUZ-TK
型号: ISL23315UFRUZ-TK
厂家: Intersil    Intersil
描述:

Single, Low Voltage Digitally Controlled Potentiometer (XDCP?)
单路低电压数字控制电位器( XDCP ? )

转换器 电位器 电阻器
文件: 总19页 (文件大小:829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single, Low Voltage Digitally Controlled Potentiometer  
(XDCP™)  
ISL23315  
Features  
2
• 256 resistor taps  
The ISL23315 is a volatile, low voltage, low noise, low power, I C  
Bus , 256 Taps, single digitally controlled potentiometer (DCP),  
2
• I C serial interface  
which integrates DCP core, wiper switches and control logic on  
a monolithic CMOS integrated circuit.  
- No additional level translator for low bus supply  
- Two address pins allow up to four devices per bus  
The digitally controlled potentiometer is implemented with a  
combination of resistor elements and CMOS switches. The  
position of the wipers are controlled by the user through the  
• Wiper resistance: 70Ω typical @ V = 3.3V  
CC  
• Shutdown Mode - forces the DCP into an end-to-end open  
2
I C bus interface. The potentiometer has an associated  
circuit and R is shorted to R internally  
W
L
volatile Wiper Register (WR) that can be directly written to and  
read by the user. The contents of the WR controls the position  
of the wiper. When powered on, the ISL23315’s wiper will  
always commence at mid-scale (128 tap position).  
• Power-on preset to mid-scale (128 tap position)  
• Standby current <2.5µA max  
• Shutdown current <2µA max  
• Power supply  
The low voltage, low power consumption, and small package  
of the ISL23315 make it an ideal choice for use in battery  
operated equipment. In addition, the ISL23315 has a V  
- V = 1.7V to 5.5V analog power supply  
CC  
LOGIC  
pin allowing down to 1.2V bus operation, independent from the  
value. This allows for low logic levels to be connected  
2
- V  
LOGIC  
= 1.2V to 5.5V I C bus/logic power supply  
V
CC  
• DCP terminal voltage from 0V to V  
CC  
directly to the ISL23315 without passing through a voltage  
level shifter.  
• 10kΩ, 50kΩ or 100kΩ total resistance  
• Extended industrial temperature range: -40°C to +125°C  
• 10 Ld MSOP or 10 Ld µTQFN packages  
• Pb-free (RoHS compliant)  
The DCP can be used as a three-terminal potentiometer or as a  
two-terminal variable resistor in a wide variety of applications  
including control, parameter adjustments, and signal processing.  
Applications  
• Power supply margining  
• RF power amplifier bias compensation  
• LCD bias compensation  
• Laser diode bias compensation  
10000  
8000  
6000  
4000  
2000  
0
VREF  
-
VREF_M  
ISL23315  
+
ISL28114  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
FIGURE 2. V  
ADJUSTMENT  
REF  
FIGURE 1. FORWARD AND BACKWARD RESISTANCE vs TAP  
POSITION, 10k DCP  
December 15, 2010  
FN7778.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2010. All Rights Reserved  
Intersil (and design) and XDCP are trademarks owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners  
1
ISL23315  
Block Diagram  
V
V
CC  
LOGIC  
R
SCL  
SDA  
A1  
H
POWER-UP  
INTERFACE,  
CONTROL  
AND  
STATUS  
LOGIC  
I/O  
BLOCK  
LEVEL  
SHIFTER  
WR  
VOLATILE  
REGISTER  
AND  
A0  
WIPER  
CONTROL  
CIRCUITRY  
R
L
R
W
GND  
Pin Configurations  
Pin Descriptions  
MSOP  
µTQFN  
SYMBOL  
DESCRIPTION  
ISL23315  
(10 LD MSOP)  
TOP VIEW  
2
1
10  
V
I C bus /logic supply. Range 1.2V to  
5.5V  
LOGIC  
10  
9
GND  
V
1
2
3
4
5
2
3
1
2
SCL  
SDA  
Logic Pin - Serial bus clock input  
LOGIC  
SCL  
V
CC  
Logic Pin - Serial bus data  
input/open drain output  
8
RH  
RW  
RL  
SDA  
A0  
7
4
5
3
4
A0  
A1  
Logic Pin - Hardwire slave address  
2
A1  
6
pin for I C serial bus.  
Range: V  
or GND  
LOGIC  
ISL23315  
Logic Pin - Hardwire slave address  
2
(10 LD µTQFN)  
TOP VIEW  
pin for I C serial bus.  
Range: V  
or GND  
LOGIC  
6
7
8
9
5
6
7
8
RL  
RW  
RH  
DCP “low” terminal  
DCP wiper terminal  
DCP “high” terminal  
GND  
SCL  
1
2
3
4
9
8
7
6
V
Analog power supply.  
Range 1.7V to 5.5V  
CC  
V
SDA  
A0  
CC  
RH  
10  
9
GND  
Ground pin  
A1  
RW  
FN7778.0  
December 15, 2010  
2
ISL23315  
Ordering Information  
RESISTANCE  
PART NUMBER  
OPTION  
(kΩ)  
TEMP RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
(Note 5)  
PART MARKING  
ISL23315TFUZ (Notes 1, 3)  
ISL23315UFUZ (Notes 1, 3)  
ISL23315WFUZ (Notes 1, 3)  
3315T  
3315U  
3315W  
100  
50  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
10 Ld MSOP  
M10.118  
10 Ld MSOP  
M10.118  
10  
10 Ld MSOP  
M10.118  
ISL23315TFRUZ-T7A (Notes 2, 4) HB  
ISL23315TFRUZ-TK (Notes 2, 4) HB  
ISL23315UFRUZ-T7A (Notes 2, 4) HA  
ISL23315UFRUZ-TK (Notes 2, 4) HA  
ISL23315WFRUZ-T7A (Notes 2, 4) GZ  
ISL23315WFRUZ-TK (Notes 2, 4) GZ  
NOTES:  
100  
100  
50  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
10 Ld 2.1x1.6 µTQFN  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
L10.2.1x1.6A  
50  
10  
10  
1. Add “-T*” suffix for Tape and Reel option. Please refer to TB347 for details on reel specifications.  
2. Please refer to TB347 for details on reel specifications.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin  
plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
4. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate-e4  
termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020  
5. For Moisture Sensitivity Level (MSL), please see device information page for ISL23315. For more information on MSL please see techbrief TB363.  
FN7778.0  
December 15, 2010  
3
ISL23315  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage Range  
Thermal Resistance (Typical)  
10 Ld MSOP Package (Notes 6, 7). . . . . . .  
10 Ld µTQFN Package (Notes 6, 7) . . . . . .  
θ
JA (°C/W)  
170  
θ
JC (°C/W)  
V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
70  
90  
CC  
LOGIC  
145  
Voltage on Any DCP Terminal Pin. . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
Voltage on Any Digital Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.0V  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Wiper current I (10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6mA  
W
ESD Rating  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . .6.5kV  
CDM Model (Tested per JESD22-A114E) . . . . . . . . . . . . . . . . . . . . . . . 1kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 200V  
Latch Up  
Recommended Operating Conditions  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
(Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . 100mA @ +125°C  
V
V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7V to 5.5V  
CC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2V to 5.5V  
LOGIC  
DCP Terminal Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 to V  
CC  
Max Wiper Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±3mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
6. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
7. For θ , the “case temp” location is the center top of the package.  
JC  
Analog Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise  
LOGIC  
CC  
stated. Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
to R resistance  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
kΩ  
R
R
W option  
U option  
T option  
10  
50  
TOTAL  
H
L
kΩ  
100  
±2  
kΩ  
R
to R resistance tolerance  
-20  
+20  
%
H
L
End-to-End Temperature Coefficient  
W option  
U option  
T option  
175  
85  
ppm/°C  
ppm/°C  
ppm/°C  
V
70  
V
, V  
RH RL  
DCP terminal voltage  
Wiper resistance  
V
or V to GND  
RL  
0
V
RH  
CC  
R
R
- floating, V = 0V, force I current  
RL  
70  
200  
Ω
W
H
W
to the wiper,  
= (V - V )/R  
TOTAL,  
I
W
CC RL  
V
= 2.7V to 5.5V  
CC  
V
= 1.7V  
580  
22/22/32  
< 0.1  
120  
Ω
pF  
CC  
C /C /C  
W
Terminal capacitance  
Leakage on DCP pins  
Resistor noise density  
See “DCP Macro Model” on page 8  
Voltage at pin from GND to V  
H
L
I
-0.4  
0.4  
µA  
LkgDCP  
Noise  
CC  
Wiper at middle point, W option  
Wiper at middle point, U option  
Wiper at middle point, T option  
nV Hz  
nV Hz  
nV Hz  
dB  
190  
220  
Feed Thru Digital feed-through from bus to wiper Wiper at middle point  
-65  
PSRR  
Power Supply Reject Ratio  
Wiper output change if V change  
CC  
-75  
dB  
±10%; wiper at middle point  
FN7778.0  
December 15, 2010  
4
ISL23315  
Analog Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise  
LOGIC  
CC  
stated. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
VOLTAGE DIVIDER MODE (0V @ RL; V @ RH; measured at RW, unloaded)  
CC  
Integral non-linearity, guaranteed  
(Note 13) monotonic  
INL  
W option  
U, T option  
W option  
U, T option  
W option  
U, T option  
W option  
U, T option  
-1.0  
-0.5  
-1  
±0.5  
±0.15  
±0.4  
±0.1  
-2  
+1.0  
+0.5  
+1  
LSB  
(Note 9)  
LSB  
(Note 9)  
DNL  
Differential non-linearity, guaranteed  
LSB  
(Note 9)  
(Note 12) monotonic  
-0.4  
-3.5  
-2  
+0.4  
0
LSB  
(Note 9)  
FSerror  
Full-scale error  
LSB  
(Note 9)  
(Note 11)  
-0.5  
2
0
LSB  
(Note 9)  
ZSerror  
Zero-scale error  
0
3.5  
2
LSB  
(Note 9)  
(Note 10)  
0
0.4  
LSB  
(Note 9)  
TC  
Ratiometric temperature coefficient  
W option, Wiper Register set to 80 hex  
U option, Wiper Register set to 80 hex  
T option, Wiper Register set to 80 hex  
From code 0 to FF hex  
8
4
ppm/°C  
ppm/°C  
ppm/°C  
ns  
V
(Notes 14)  
2.3  
Large Signal Wiper Settling Time  
-3dB cutoff frequency  
300  
1200  
250  
120  
f
Wiper at middle point W option  
Wiper at middle point U option  
Wiper at middle point T option  
kHz  
cutoff  
kHz  
kHz  
RHEOSTAT MODE (Measurements between RW and RL pins with RH not connected, or between RW and RH with RL not connected)  
R
Integral non-linearity, Guaranteed  
W option; V = 2.7V to 5.5V  
CC  
-2.0  
-1.0  
-1  
±1  
10.5  
±0.3  
2.1  
+2.0  
+1.0  
+1  
MI  
(Note 15)  
INL  
(Note 18) monotonic  
W option; V = 1.7V  
CC  
MI  
(Note 15)  
U, T option; V = 2.7V to 5.5V  
CC  
MI  
(Note 15)  
U, T option; V = 1.7V  
CC  
MI  
(Note 15)  
R
Differential non-linearity, Guaranteed  
W option; V = 2.7V to 5.5V  
CC  
±0.4  
±0.6  
±0.15  
±0.35  
MI  
(Note 15)  
DNL  
(Note 17) monotonic  
W option; V = 1.7V  
CC  
MI  
(Note 15)  
U, T option; V = 2.7V to 5.5V  
CC  
-0.5  
+0.5  
MI  
(Note 15)  
U, T option; V = 1.7V  
CC  
MI  
(Note 15)  
FN7778.0  
December 15, 2010  
5
ISL23315  
Analog Specifications  
V
= 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise  
LOGIC  
CC  
stated. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
W option; V = 2.7V to 5.5V  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
R
Offset, wiper at 0 position  
0
0
3
5.5  
2
MI  
(Note 15)  
offset  
CC  
(Note 16)  
W option; V = 1.7V  
CC  
6.3  
0.5  
1.1  
220  
100  
75  
MI  
(Note 15)  
U, T option; V = 2.7V to 5.5V  
CC  
MI  
(Note 15)  
U, T option; V = 1.7V  
CC  
MI  
(Note 15)  
TCR  
(Note 19)  
Resistance temperature coefficient  
W option; Wiper register set between  
32 hex and FF hex  
ppm/°C  
ppm/°C  
ppm/°C  
U option; Wiper register set between 32  
hex and FF hex  
T option; Wiper register set between 32  
hex and FF hex  
Operating Specifications V = 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise  
LOGIC  
CC  
stated. Boldface limits apply over the operating temperature range, -40°C to +125°C.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
µA  
I
V
supply current (write/read)  
V
= 5.5V, V = 5.5V,  
CC  
200  
LOGIC  
LOGIC  
LOGIC  
2
f
= 400 kHz (for I C active read and  
SCL  
write)  
V
= 1.2V, V = 1.7V,  
CC  
= 400 kHz (for I C active read and  
5
µA  
LOGIC  
2
f
SCL  
write)  
I
V
V
supply current (write/read)  
V
V
V
= 5.5V, V = 5.5V  
CC  
18  
10  
1
µA  
µA  
µA  
CC  
CC  
LOGIC  
LOGIC  
LOGIC  
= 1.2V, V = 1.7V  
CC  
I
standby current  
= V = 5.5V,  
CC  
LOGIC SB  
LOGIC  
2
I C interface in standby  
V
= 1.2V, V = 1.7V,  
0.5  
1.5  
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µs  
LOGIC  
CC  
2
I C interface in standby  
I
I
V
V
V
standby current  
V = V = 5.5V,  
LOGIC CC  
CC SB  
CC  
2
I C interface in standby  
V
= 1.2V, V = 1.7V,  
LOGIC  
CC  
2
I C interface in standby  
shutdown current  
V
= V = 5.5V,  
1.3  
0.4  
0.7  
0.5  
0.4  
LOGIC  
LOGIC  
LOGIC CC  
2
I C interface in standby  
SHDN  
V
= 1.2V, V = 1.7V,  
LOGIC  
CC  
2
I C interface in standby  
I
shutdown current  
V = V = 5.5V,  
LOGIC CC  
CC SHDN  
CC  
2
I C interface in standby  
V
= 1.2V, V = 1.7V,  
LOGIC  
CC  
2
I C interface in standby  
I
Leakage current, at pins A0, A1, SDA,  
SCL  
Voltage at pin from GND to V  
-0.4  
<0.1  
1.5  
LkgDig  
LOGIC  
t
Wiper response time  
SCL rising edge of the acknowledge bit  
after data byte to wiper new position  
DCP  
FN7778.0  
December 15, 2010  
6
ISL23315  
Operating Specifications V = 2.7V to 5.5V, V  
= 1.2V to 5.5V over recommended operating conditions unless otherwise  
LOGIC  
CC  
stated. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
µs  
tShdnRec DCP recall time from shutdown mode  
SCL rising edge of the acknowledge bit  
after ACR data byte to wiper recalled  
position and RH connection  
1.5  
V
V
V
V ramp rate  
Ramp monotonic at any level  
0.01  
50  
V/ms  
CC, LOGIC  
CC , LOGIC  
Ramp  
(Note 21)  
Serial Interface Specification for SCL, SDA, A0, A1 Unless Otherwise Noted.  
MIN  
(Note 20)  
TYP  
(Note 8)  
MAX  
(Note 20)  
SYMBOL  
PARAMETER  
Input LOW Voltage  
TEST CONDITIONS  
UNITS  
V
-0.3  
0.3 x V  
V
V
V
IL  
LOGIC  
+ 0.3  
V
Input HIGH Voltage  
0.7 x V  
LOGIC  
V
LOGIC  
IH  
Hysteresis  
SDA and SCL Input Buffer  
Hysteresis  
V
V
> 2V  
<2V  
0.05 x V  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
0.1 x V  
0
V
SDA Output Buffer LOW Voltage  
I
= 3mA, V  
> 2V  
LOGIC  
0.4  
V
V
OL  
OL  
OL  
I
= 1.5mA,  
0.2 x V  
LOGIC  
V
<2V  
LOGIC  
C
SDA, SCL Pin Capacitance  
SCL Frequency  
10  
pF  
kHz  
ns  
pin  
f
400  
SCL  
t
Pulse Width Suppression Time at  
SDA and SCL Inputs  
Any pulse narrower than the  
max spec is suppressed  
50  
sp  
t
SCL Falling Edge to SDA Output  
Data Valid  
SCL falling edge crossing 30%  
900  
ns  
ns  
AA  
of V  
, until SDA exits the  
LOGIC  
30% to 70% of V  
window  
LOGIC  
LOGIC  
t
Time the Bus Must be Free Before SDA crossing 70% of V  
1300  
BUF  
the Start of a New Transmission  
during a STOP condition, to  
SDA crossing 70% of V  
LOGIC  
during the following START  
condition  
t
Clock LOW Time  
Measured at the 30% of  
1300  
600  
ns  
ns  
ns  
LOW  
V
crossing  
LOGIC  
Measured at the 70% of  
crossing  
t
Clock HIGH Time  
HIGH  
V
LOGIC  
t
START Condition Set-up Time  
SCL rising edge to SDA falling  
edge; both crossing 70% of  
600  
SU:STA  
V
LOGIC  
From SDA falling edge  
crossing 30% of V  
t
START Condition Hold Time  
Input Data Set-up Time  
Input Data Hold Time  
600  
100  
0
ns  
ns  
ns  
HD:STA  
to SCL  
LOGIC  
falling edge crossing 70% of  
V
LOGIC  
From SDA exiting the 30% to  
70% of V window, to SCL  
t
SU:DAT  
HD:DAT  
LOGIC  
rising edge crossing 30% of  
V
LOGIC  
From SCL falling edge crossing  
70% of V to SDA entering  
t
CC  
the 30% to 70% of V window  
CC  
FN7778.0  
December 15, 2010  
7
ISL23315  
Serial Interface Specification for SCL, SDA, A0, A1 Unless Otherwise Noted. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 20)  
(Note 8)  
(Note 20)  
UNITS  
ns  
t
STOP Condition Set-up Time  
From SCL rising edge crossing  
600  
1300  
0
SU:STO  
70% of V  
, to SDA rising  
LOGIC  
edge crossing 30% of V  
LOGIC  
t
STOP Condition Hold Time for Read From SDA rising edge to SCL  
ns  
ns  
HD:STO  
or Write  
falling edge; both crossing  
70% of V (Note 11)  
CC  
t
Output Data Hold Time  
From SCL falling edge crossing  
DH  
30% of V  
, until SDA  
LOGIC  
enters the 30% to 70% of  
window.  
V
LOGIC  
I
I
= 3mA, V  
= 0.5mA, V  
> 2V.  
< 2V  
OL  
OL  
LOGIC  
LOGIC  
t
SDA and SCL Rise Time  
SDA and SCL Fall Time  
From 30% to 70% of V  
From 70% to 30% of V  
20 + 0.1 x Cb  
20 + 0.1 x Cb  
10  
250  
250  
400  
ns  
ns  
pF  
R
LOGIC  
LOGIC  
t
F
Cb  
Capacitive Loading of SDA or SCL Total on-chip and off-chip  
(Note 11)  
t
A1, A0 setup time  
A1, A0 hold time  
Before START condition  
After STOP condition  
600  
600  
ns  
ns  
SU:A  
t
HD:A  
NOTES:  
8. Typical values are for T = +25°C and 3.3V supply voltages.  
A
9. LSB = [V(RW)  
255  
– V(RW) ]/255. V(RW)  
and V(RW) are V(RW) for the DCP register set to FF hex and 00 hex respectively. LSB is the incremental  
255 0  
0
voltage when changing from one tap to an adjacent tap.  
10. ZS error = V(RW) /LSB.  
0
11. FS error = [V(RW)  
255  
– V ]/LSB.  
CC  
12. DNL = [V(RW) – V(RW) ]/LSB-1, for i = 1 to 255. i is the DCP register setting.  
i-1  
i
13. INL = [V(RW) – i • LSB – V(RW) ]/LSB for i = 1 to 255  
i
0
14.  
Max(V(RW) ) Min(V(RW) )  
for i = 16 to 255 decimal, T = -40°C to +125°C. Max( ) is the maximum value of the wiper  
voltage and Min( ) is the minimum value of the wiper voltage over the temperature range.  
6
10  
i
i
----------------------------------------------------------------------------- ---------------------  
TC  
=
×
V
V(RW (+25°C))  
+165°C  
– RW |/255. MI is a minimum increment. RW  
i
15. MI = |RW  
and RW are the measured resistances for the DCP register set to FF hex and 00  
0
255  
hex respectively.  
0
255  
16. Roffset = RW /MI, when measuring between RW and RL.  
0
Roffset = RW  
/MI, when measuring between RW and RH.  
255  
17. RDNL = (RW – RW )/MI -1, for i = 16 to 255.  
i-1  
i
18. RINL = [RW – (MI • i) – RW ]/MI, for i = 16 to 255.  
i
0
6
19.  
for i = 16 to 255, T = -40°C to +125°C. Max( ) is the maximum value of the resistance and Min( ) is the  
minimum value of the resistance over the temperature range.  
[Max(Ri) Min(Ri)]  
10  
+165°C  
------------------------------------------------------ ---------------------  
TC  
=
×
R
Ri(+25°C)  
20. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
21. It is preferable to ramp up both the V and the V supplies at the same time. If this is not possible it is recommended to ramp-up the V  
LOGIC  
CC  
LOGIC  
first followed by the V  
.
CC  
DCP Macro Model  
R
TOTAL  
RH  
RL  
C
L
C
H
C
W
22pF  
22pF  
32pF  
RW  
FN7778.0  
December 15, 2010  
8
ISL23315  
Timing Diagrams  
SDA vs SCL Timing  
t
sp  
t
t
t
t
R
F
HIGH  
LOW  
SCL  
t
SU:DAT  
t
t
t
SU:STO  
SU:STA  
HD:DAT  
t
HD:STA  
SDA  
(INPUT TIMING)  
t
t
t
BUF  
AA  
DH  
SDA  
(OUTPUT TIMING)  
A0 and A1 Pin Timing  
STOP  
START  
SCL  
CLK 1  
SDA  
t
t
HD:A  
SU:A  
A0, A1  
Typical Performance Curves  
0.4  
0.30  
0.2  
0
0.15  
0
-0.2  
-0.4  
-0.15  
-0.30  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 4. 50k DNL vs TAP POSITION, V = 5V  
CC  
FIGURE 3. 10k DNL vs TAP POSITION, V = 5V  
CC  
FN7778.0  
December 15, 2010  
9
ISL23315  
Typical Performance Curves (Continued)  
0.30  
0.15  
0
0.4  
0.2  
0
-0.15  
-0.30  
-0.2  
-0.4  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 6. 50k INL vs TAP POSITION, V = 5V  
CC  
FIGURE 5. 10k INL vs TAP POSITION, V = 5V  
CC  
0.4  
0.2  
0
0.30  
0.15  
0
-0.2  
-0.4  
-0.15  
-0.30  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 7. 10k RDNL vs TAP POSITION, V = 5V  
CC  
FIGURE 8. 50k RDNL vs TAP POSITION, V = 5V  
CC  
0.6  
0.4  
0.2  
0
0.30  
0.15  
0
-0.2  
-0.4  
-0.6  
-0.15  
-0.30  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 10. 50k RINL vs TAP POSITION, V = 5V  
CC  
FIGURE 9. 10k RINL vs TAP POSITION, V = 5V  
CC  
FN7778.0  
December 15, 2010  
10  
ISL23315  
Typical Performance Curves (Continued)  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
+125°C  
+125°C  
+25°C  
+25°C  
-40°C  
-40°C  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 12. 50k WIPER RESISTANCE vs TAP POSITION, V = 5V  
CC  
FIGURE 11. 10k WIPER RESISTANCE vs TAP POSITION, V = 5V  
CC  
300  
250  
200  
150  
100  
50  
70  
60  
50  
40  
30  
20  
10  
0
0
15  
65  
115  
165  
215  
15  
65  
115  
165  
215  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 13. 10k TCv vs TAP POSITION  
FIGURE 14. 50k TCv vs TAP POSITION  
600  
500  
400  
300  
200  
100  
0
200  
150  
100  
50  
0
15  
15  
65  
115  
165  
215  
65  
115  
165  
215  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 16. 50k TCr vs TAP POSITION  
FIGURE 15. 10k TCr vs TAP POSITION  
FN7778.0  
December 15, 2010  
11  
ISL23315  
Typical Performance Curves (Continued)  
35  
30  
25  
20  
15  
10  
5
120  
90  
60  
30  
0
0
15  
65  
115  
165  
215  
15  
65  
115  
165  
215  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 17. 100k TCv vs TAP POSITION  
FIGURE 18. 100k TCr vs TAP POSITION  
SCL CLOCK  
RW PIN  
10mV/DIV  
1µs/DIV  
20mV/DIV  
5µs/DIV  
FIGURE 19. WIPER DIGITAL FEED-THROUGH  
FIGURE 20. WIPER TRANSITION GLITCH  
1V/DIV  
1µs/DIV  
1V/DIV  
0.1s/DIV  
WIPER  
SCL 9TH CLOCK OF THE  
DATA BYTE (ACK)  
FIGURE 21. WIPER LARGE SIGNAL SETTLING TIME  
FIGURE 22. POWER-ON START-UP IN VOLTAGE DIVIDER MODE  
FN7778.0  
December 15, 2010  
12  
ISL23315  
Typical Performance Curves (Continued)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CH1: 0.5V/DIV, 0.2µs/DIV RH PIN  
CH2: 0.2V/DIV, 0.2µs/DIV RW PIN  
V
= 5.5V, V  
= 5.5V  
LOGIC  
CC  
V
= 1.7V, V  
= 1.2V  
LOGIC  
CC  
R
= 10k  
TOTAL  
-40  
-15  
10  
35  
60  
85  
110  
-3dB FREQUENCY = 1.4MHz AT MIDDLE TAP  
TEMPERATURE (°C)  
FIGURE 24. STANDBY CURRENT vs TEMPERATURE  
FIGURE 23. 10k -3dB CUT OFF FREQUENCY  
V
LOGIC  
Functional Pin Descriptions  
Potentiometers Pins  
RH AND RL  
This is an input pin, that supply internal level translator for serial  
bus operation from 1.2V to 5.5V.  
Principles of Operation  
The ISL23315 is an integrated circuit incorporating one DCP with  
The high (R ) and low (R ) terminals of the ISL23315 are  
H
L
equivalent to the fixed terminals of a mechanical potentiometer.  
R and R are referenced to the relative position of the wiper and  
2
its associated registers and an I C serial interface providing  
H
L
not the voltage potential on the terminals. With WR set to 255  
decimal, the wiper will be closest to R , and with the WR set to 0,  
direct communication between a host and the potentiometer.  
The resistor array is comprised of individual resistors connected  
in series. At either end of the array and between each resistor is  
an electronic switch that transfers the potential at that point to  
the wiper.  
H
the wiper is closest to R .  
L
RW  
RW is the wiper terminal, and it is equivalent to the movable  
terminal of a mechanical potentiometer. The position of the  
wiper within the array is determined by the WR register.  
The electronic switches on the device operate in a “make before  
break” mode when the wiper changes tap positions.  
Voltage at any DCP pins, R , R or R , should not exceed V  
CC  
level at any conditions during power-up and normal operation.  
H
L
W
Bus Interface Pins  
2
SERIAL DATA INPUT/OUTPUT (SDA)  
The V  
pin needs to be connected to the I C bus supply  
LOGIC  
2
The SDA is a bidirectional serial data input/output pin for I C  
which allows reliable communication with the wide range of  
interface. It receives device address, operation code, wiper  
address and data from an I C external master device at the  
rising edge of the serial clock SCL, and it shifts out data after  
each falling edge of the serial clock.  
microcontrollers and independent of the V level. This is  
extremely important in systems where the master supply has  
lower levels than DCP analog supply.  
CC  
2
DCP Description  
The DCP is implemented with a combination of resistor elements  
and CMOS switches. The physical ends of each DCP are  
SDA requires an external pull-up resistor, since it is an open drain  
input/output.  
SERIAL CLOCK (SCL)  
equivalent to the fixed terminals of a mechanical potentiometer  
(RH and RL pins). The RW pin of the DCP is connected to  
intermediate nodes, and is equivalent to the wiper terminal of a  
mechanical potentiometer. The position of the wiper terminal  
within the DCP is controlled by an 8-bit volatile Wiper Register  
(WR). When the WR of a DCP contains all zeroes (WR[7:0]= 00h),  
its wiper terminal (RW) is closest to its “Low” terminal (RL). When  
the WR register of a DCP contains all ones (WR[7:0]= FFh), its  
wiper terminal (RW) is closest to its “High” terminal (RH). As the  
value of the WR increases from all zeroes (0) to all ones (255  
decimal), the wiper moves monotonically from the position  
closest to RL to the position closest to RH. At the same time, the  
2
This input is the serial clock of the I C serial interface. SCL  
requires an external pull-up resistor, since a master is an open  
drain output.  
DEVICE ADDRESS (A1, A0)  
The address inputs are used to set the least significant 2 bits of  
2
the 7-bit I C interface slave address. A match in the slave  
address serial data stream must match with the Address input  
pins in order to initiate communication with the ISL23315. A  
maximum of four ISL23315 devices may occupy the I C serial  
2
bus (see Table 3).  
FN7778.0  
December 15, 2010  
13  
ISL23315  
resistance between RW and RL increases monotonically, while  
the resistance between RH and RW decreases monotonically.  
indicating START and STOP conditions (see Figure 26). On  
power-up of the ISL23315, the SDA pin is in the input mode.  
2
While the ISL23315 is being powered up, the WR is reset to 80h  
(128 decimal), which locates RW roughly at the center between  
All I C interface operations must begin with a START condition,  
which is a HIGH-to-LOW transition of SDA while SCL is HIGH. The  
ISL23315 continuously monitors the SDA and SCL lines for the  
START condition and does not respond to any command until this  
condition is met (see Figure 26). A START condition is ignored  
during the power-up of the device.  
R and R .  
L
H
2
The WR can be read or written to directly using the I C serial  
interface as described in the following sections.  
2
Memory Description  
All I C interface operations must be terminated by a STOP  
condition, which is a LOW to HIGH transition of SDA while SCL is  
HIGH (see Figure 26). A STOP condition at the end of a read  
operation or at the end of a write operation places the device in  
its standby mode.  
The ISL23315 contains two volatile 8-bit registers: Wiper Register  
(WR) and Access Control Register (ACR). Memory map of ISL23315  
is in Table 1. The Wiper Register (WR) at address 0, contains current  
wiper position. The Access Control Register (ACR) at address 10h  
contains information and control bits described in Table 2.  
An ACK (Acknowledge) is a software convention used to indicate  
a successful data transfer. The transmitting device, either master  
or slave, releases the SDA bus after transmitting eight bits.  
During the ninth clock cycle, the receiver pulls the SDA line LOW  
to acknowledge the reception of the eight bits of data  
(see Figure 27).  
TABLE 1. MEMORY MAP  
ADDRESS  
(hex)  
VOLATILE  
REGISTER NAME  
DEFAULT SETTING  
(hex)  
10  
0
ACR  
WR  
42  
80  
The ISL23315 responds with an ACK after recognition of a START  
condition followed by a valid Identification Byte, and once again  
after successful receipt of an Address Byte. The ISL23315 also  
responds with an ACK after receiving a Data Byte of a write  
operation. The master must respond with an ACK after receiving  
a Data Byte of a read operation.  
TABLE 2. ACCESS CONTROL REGISTER (ACR)  
BIT #  
7
0
6
5
0
4
0
3
0
2
0
1
1
0
0
NAME/  
VALUE  
SHDN  
A valid Identification Byte contains 10100 as the five MSBs, and  
the following two bits matching the logic values present at pins  
A1 and A0. The LSB is the Read/Write bit. Its value is “1” for a  
Read operation and “0” for a Write operation (see Table 3).  
The SHDN bit (ACR[6]) disables or enables Shutdown mode. When  
this bit is 0, i.e. DCP is forced to end-to-end open circuit and RW is  
shorted to RL as shown in Figure 25. Default value of the SHDN bit  
is 1.  
TABLE 3. IDENTIFICATION BYTE FORMAT  
RH  
LOGIC VALUES AT PINS A1 AND A0, RESPECTIVELY  
1
0
1
0
0
A1  
A0  
R/W  
RW  
(MSB)  
(LSB)  
RL  
FIGURE 25. DCP CONNECTION IN SHUTDOWN MODE  
2
I C Serial Interface  
The ISL23315 supports an I C bidirectional bus oriented  
2
protocol. The protocol defines any device that sends data onto  
the bus as a transmitter and the receiving device as the receiver.  
The device controlling the transfer is a master and the device  
being controlled is the slave. The master always initiates data  
transfers and provides the clock for both transmit and receive  
operations. Therefore, the ISL23315 operates as a slave device  
in all applications.  
2
All communication over the I C interface is conducted by sending  
the MSB of each byte of data first.  
Protocol Conventions  
Data states on the SDA line must change only during SCL LOW  
periods. SDA state changes during SCL HIGH are reserved for  
FN7778.0  
December 15, 2010  
14  
ISL23315  
SCL  
SDA  
START  
DATA  
DATA  
DATA  
STOP  
STABLE  
CHANGE STABLE  
FIGURE 26. VALID DATA CHANGES, START AND STOP CONDITIONS  
SCL FROM  
MASTER  
1
8
9
SDA OUTPUT FROM  
TRANSMITTER  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
SDA OUTPUT FROM  
RECEIVER  
START  
ACK  
FIGURE 27. ACKNOWLEDGE RESPONSE FROM RECEIVER  
WRITE  
S
T
A
R
T
SIGNALS FROM  
THE MASTER  
S
T
O
P
IDENTIFICATION  
BYTE  
ADDRESS  
BYTE  
DATA  
BYTE  
SIGNAL AT SDA  
1 0 1 0 0 A1A0 0  
0 0 0  
SIGNALS FROM  
THE SLAVE  
A
C
K
A
C
K
A
C
K
FIGURE 28. BYTE WRITE SEQUENCE  
READ  
S
T
A
R
T
S
T
A
R
T
SIGNALS  
FROM THE  
MASTER  
S
T
O
P
A
C
K
A
C
K
IDENTIFICATION  
BYTE WITH  
R/W = 0  
IDENTIFICATION  
BYTE WITH  
R/W = 1  
A
C
K
ADDRESS  
BYTE  
SIGNAL AT SDA  
0
0 A1A0 1  
1 0 1 0 0A1A0 0  
0 0 0  
1 0 1  
A
C
K
A
C
K
A
C
K
SIGNALS FROM  
THE SLAVE  
FIRST READ  
DATA BYTE  
LAST READ  
DATA BYTE  
FIGURE 29. READ SEQUENCE  
FN7778.0  
December 15, 2010  
15  
ISL23315  
Applications Information  
Write Operation  
A Write operation requires a START condition, followed by a valid  
Identification Byte, a valid Address Byte, a Data Byte, and a STOP  
condition. After each of the three bytes, the ISL23315 responds  
V
Requirements  
LOGIC  
It is recommended to keep V  
normal operation. In a case where turning V  
LOGIC  
powered all the time during  
OFF is  
necessary, it is recommended to ground the V pin of the  
LOGIC  
LOGIC  
2
with an ACK. The data is transferred from I C block to the  
corresponding register at the 9th clock of the data byte and  
device enters its standby state (see Figures 27 and 28).  
ISL23315. Grounding the V  
pin or both V and V does  
LOGIC  
LOGIC  
CC  
not affect other devices on the same bus. It is good practice to  
Read Operation  
put a 1µF cap in parallel to 0.1µF as close to the V  
possible.  
pin as  
LOGIC  
A Read operation consists of a three byte instruction followed by  
one or more Data Bytes (see Figure 29). The master initiates the  
operation issuing the following sequence: a START, the  
Identification byte with the R/W bit set to “0”, an Address Byte, a  
second START, and a second Identification byte with the R/W bit  
set to “1”. After each of the three bytes, the ISL23315 responds  
with an ACK; then the ISL23315 transmits Data Byte. The master  
terminates the read operation issuing a NACK (ACK) and a STOP  
condition following the last bit of the last Data Byte (see  
Figure 29).  
V
Requirements and Placement  
CC  
It is recommended to put a 1µF capacitor in parallel with 0.1µF  
decoupling capacitor close to the V pin.  
CC  
Wiper Transition  
When stepping up through each tap in voltage divider mode,  
some tap transition points can result in noticeable voltage  
transients, or overshoot/undershoot, resulting from the sudden  
transition from a very low impedance “make” to a much higher  
impedance “break” within a short period of time (<1µs). There  
are several code transitions such as 0Fh to 10h, 1Fh to 20h,...,  
EFh to FFh, which have higher transient glitch. Note, that all  
switching transients will settle well within the settling time as  
stated in the datasheet. A small capacitor can be added  
externally to reduce the amplitude of these voltage transients.  
However, that will also reduce the useful bandwidth of the circuit,  
thus may not be a good solution for some applications. It may be  
a good idea, in that case, to use fast amplifiers in a signal chain  
for fast recovery.  
FN7778.0  
December 15, 2010  
16  
ISL23315  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
FN7778.0  
CHANGE  
12/15/10  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address  
some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product  
families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil  
product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL23315  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7778.0  
December 15, 2010  
17  
ISL23315  
Mini Small Outline Plastic Packages (MSOP)  
N
M10.118 (JEDEC MO-187BA)  
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
INCHES  
MILLIMETERS  
E1  
E
SYMBOL  
MIN  
MAX  
MIN  
0.94  
0.05  
0.75  
0.18  
0.09  
2.95  
2.95  
MAX  
1.10  
0.15  
0.95  
0.27  
0.20  
3.05  
3.05  
NOTES  
A
A1  
A2  
b
0.037  
0.002  
0.030  
0.007  
0.004  
0.116  
0.116  
0.043  
0.006  
0.037  
0.011  
0.008  
0.120  
0.120  
-
-B-  
0.20 (0.008)  
INDEX  
AREA  
1 2  
A
B
C
-
-
TOP VIEW  
4X θ  
9
0.25  
(0.010)  
R1  
c
-
R
GAUGE  
PLANE  
D
3
E1  
e
4
SEATING  
PLANE  
L
0.020 BSC  
0.50 BSC  
-
-C-  
4X θ  
L1  
A
A2  
E
0.187  
0.016  
0.199  
0.028  
4.75  
0.40  
5.05  
0.70  
-
L
6
SEATING  
PLANE  
L1  
N
0.037 REF  
10  
0.95 REF  
10  
-
0.10 (0.004)  
-A-  
C
C
b
7
-H-  
A1  
e
R
0.003  
0.003  
-
-
0.07  
0.07  
-
-
-
D
0.20 (0.008)  
C
R1  
θ
-
o
o
o
o
a
SIDE VIEW  
5
15  
5
15  
-
C
L
o
o
o
o
0
6
0
6
-
α
E
1
-B-  
Rev. 0 12/02  
0.20 (0.008)  
C
D
END VIEW  
NOTES:  
1. These package dimensions are within allowable dimensions of  
JEDEC MO-187BA.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs and are measured at Datum Plane. Mold flash, protrusion  
and gate burrs shall not exceed 0.15mm (0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions  
- H -  
and are measured at Datum Plane.  
Interlead flash and  
protrusions shall not exceed 0.15mm (0.006 inch) per side.  
5. Formed leads shall be planar with respect to one another within  
0.10mm (.004) at seating Plane.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable  
dambar protrusion shall be 0.08mm (0.003 inch) total in excess  
of “b” dimension at maximum material condition. Minimum space  
between protrusion and adjacent lead is 0.07mm (0.0027 inch).  
- B -  
-A -  
10. Datums  
and  
to be determined at Datum plane  
.
- H -  
11. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only  
FN7778.0  
December 15, 2010  
18  
ISL23315  
Package Outline Drawing  
L10.2.1x1.6A  
10 LEAD ULTRA THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 5, 3/10  
8.  
PIN 1  
INDEX AREA  
2.10  
A
PIN #1 ID  
8.  
0.05 MIN.  
B
1
4
1
4X 0.20 MIN.  
0.10 MIN.  
10  
5
0.80  
10X 0.40  
10 X 0.20  
0.10  
6
9
2X  
6X 0.50  
4
TOP VIEW  
(10 X 0.20)  
0.10 M C A B  
M C  
BOTTOM VIEW  
SEE DETAIL "X"  
(0.05 MIN)  
(0.10 MIN.)  
MAX. 0.55  
PACKAGE  
OUTLINE  
1
0.10 C  
C
(10X 0.60)  
SEATING PLANE  
0.08 C  
(2.00)  
SIDE VIEW  
0 . 125 REF  
(0.80)  
(1.30)  
C
(6X 0.50 )  
(2.50)  
0-0.05  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
2. All Dimensions are in millimeters. Angles are in degrees.  
Dimensions in ( ) for Reference Only.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Lead width dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
5. Maximum package warpage is 0.05mm.  
6. Maximum allowable burrs is 0.076mm in all directions.  
7. Same as JEDEC MO-255UABD except:  
No lead-pull-back, MIN. Package thickness = 0.45 not 0.50mm  
Lead Length dim. = 0.45mm max. not 0.42mm.  
8. The configuration of the pin #1 identifier is optional, but must be located within  
the zone indicated. The pin #1 identifier may be either a mold or mark feature.  
FN7778.0  
December 15, 2010  
19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY