ISL26132AVZ-T [INTERSIL]

Low-Noise 24-bit Delta Sigma ADC; 低噪声24位Σ-Δ ADC
ISL26132AVZ-T
型号: ISL26132AVZ-T
厂家: Intersil    Intersil
描述:

Low-Noise 24-bit Delta Sigma ADC
低噪声24位Σ-Δ ADC

文件: 总23页 (文件大小:971K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low-Noise 24-bit Delta Sigma ADC  
ISL26132, ISL26134  
Features  
The ISL26132 and ISL26134 are complete analog front ends  
for high resolution measurement applications. These 24-bit  
Delta-Sigma Analog-to-Digital Converters include a very  
low-noise amplifier and are available as either two or four  
differential multiplexer inputs. The devices offer the same  
pinout as the ADS1232 and ADS1234 devices and are  
functionally compatible with these devices. The ISL26132 and  
ISL26134 offer improved noise performance at 10Sps and  
80Sps conversion rates.  
• Up to 21.6 Noise-free bits.  
• Low Noise Amplifier with Gains of 1x/2x/64x/128x  
• RMS noise: 10.2nV @ 10Sps (PGA = 128x)  
• Linearity Error: 0.0002% FS  
• Simultaneous rejection of 50Hz and 60Hz (@ 10Sps)  
• Two (ISL26132) or four (ISL26134) channel differential  
input multiplexer  
• On-chip temperature sensor (ISL26132)  
• Automatic clock source detection  
The on-chip low-noise programmable-gain amplifier provides  
gains of 1x/2x/64x/128x. The 128x gain setting provides an  
input range of ±9.766mVFS when using a 2.5V reference. The  
high input impedance allows direct connection of sensors such  
as load cell bridges to ensure the specified measurement  
accuracy without additional circuitry. The inputs accept signals  
100mV outside the supply rails when the device is set for unity  
gain.  
• Simple interface to read conversions  
• +5V Analog, +5 to +2.7V Digital Supplies  
• Pb-Free (RoHS Compliant)  
• TSSOP packages: ISL26132, 24 pin; ISL26134, 28 pin  
Applications  
• Weigh Scales  
The Delta-Sigma ADC features a third order modulator  
providing up to 21.6-bit noise-free performance.  
The device can be operated from an external clock source,  
crystal (4.9152MHz typical), or the on-chip oscillator.  
• Temperature Monitors and Controls  
• Industrial Process Control  
• Pressure Sensors  
The two channel ISL26132 is available in a 24 Ld TSSOP  
package and the four channel ISL26134 is available in a 28 Ld  
TSSOP package. Both are specified for operation over the  
automotive temperature range (-40°C to +105°C).  
CAP  
AVDD  
DVDD  
XTALIN/CLOCK  
INTERNAL  
CLOCK  
EXTERNAL  
OSCILLATOR  
XTALOUT  
AIN1+  
AIN1-  
SDO/RDY  
SCLK  
AIN2+  
AIN2-  
PGA  
1x/2x/64x/  
128x  
INPUT  
MULTIPLEXER  
ADC  
AIN3+  
AIN3-  
ISL26134  
Only  
AIN4+  
AIN4-  
PWDN  
SPEED  
A0 A1/TEMP AGND  
GAIN0 GAIN1  
DGND  
DGND  
CAP  
DGND  
VREF+  
VREF-  
NOTE for A1/TEMP pin: Functions as A1 on ISL26134; Functions as TEMP on ISL26132  
FIGURE 1. BLOCK DIAGRAM  
September 9, 2011  
FN6954.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL26132, ISL26134  
Ordering Information  
PART NUMBER  
(Notes 2, 3)  
TEMPERATURE RANGE  
PACKAGE  
(Pb-free)  
PKG. DWG  
NUMBER  
PART MARKING  
26132 AVZ  
(°C)  
ISL26132AVZ  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
24 Ld TSSOP  
M24.173  
ISL26132AVZ-T (Note 1)  
ISL26132AVZ-T7A (Note 1)  
ISL26134AVZ  
26132 AVZ  
26132 AVZ  
26134 AVZ  
26134 AVZ  
26134 AVZ  
Evaluation Board  
24 Ld TSSOP (Tape & Reel) M24.173  
24 Ld TSSOP (Tape & Reel) M24.173  
28 Ld TSSOP  
M28.173  
ISL26134AVZ-T (Note 1)  
ISL26134AVZ-T7A (Note 1)  
ISL26134AV28EV1Z  
NOTES:  
28 Ld TSSOP (Tape & Reel) M28.173  
28 Ld TSSOP (Tape & Reel) M28.173  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26132, ISL26134. For more information on MSL please see techbrief  
TB363.  
TABLE 1. KEY DIFFERENCES OF PARTS  
PART NUMBER  
ISL26132  
NUMBER OF CHANNELS  
ON-CHIP TEMPERATURE SENSOR  
NUMBER OF PINS  
2
4
YES  
NO  
24  
28  
ISL26134  
Pin Configurations  
ISL26132  
(24 LD TSSOP)  
TOP VIEW  
ISL26134  
(28 LD TSSOP)  
TOP VIEW  
DVDD  
DGND  
1
2
3
4
5
6
7
8
9
24  
SDO/RDY  
23 SCLK  
22  
DVDD  
1
2
3
4
5
6
7
8
9
28 SDO/RDY  
27 SCLK  
DGND  
XTALIN/CLOCK  
XTALOUT  
DGND  
XTALIN/CLOCK  
XTALOUT  
DGND  
PDWN  
26 PDWN  
21 SPEED  
20 GAIN1  
19 GAIN0  
18 AVDD  
17 AGND  
16 VREF+  
15 VREF-  
14 AIN2+  
13 AIN2-  
SPEED  
25  
24 GAIN1  
23 GAIN0  
22 AVDD  
21 AGND  
DGND  
DGND  
TEMP  
A1  
A0  
A0  
CAP  
CAP  
20  
VREF+  
CAP 10  
AIN1+ 11  
AIN1- 12  
CAP 10  
AIN1+ 11  
AIN1- 12  
AIN3+ 13  
AIN3- 14  
19 VREF-  
18 AIN2+  
17 AIN2-  
16 AIN4+  
15 AIN4-  
FN6954.1  
September 9, 2011  
2
ISL26132, ISL26134  
Pin Descriptions  
PIN NUMBER  
ANALOG/DIGITAL  
NAME  
DVDD  
ISL26132 ISL26134  
INPUT/OUTPUT  
DESCRIPTION  
Digital Power Supply (2.7V to 5.25V)  
Digital Ground  
1
2, 5, 6  
3
1
2, 5, 6  
3
Digital  
DGND  
Digital  
XTALIN/CLOCK  
Digital/Digital Input  
External Clock Input: typically 4.9152MHz. Tie low to activate  
internal oscillator. Can also use external crystal across  
XTALIN/CLOCK and XTALOUT pins.  
XTALOUT  
TEMP  
4
7
4
-
Digital  
External Crystal connection  
Digital Input  
Digital Input  
On-chip Temperature Diode Enable  
A1  
A0  
-
8
7
8
TABLE 2. INPUT MULTIPLEXER SELECT  
ISL26134  
ISL26132  
A1  
0
A0  
0
CHANNEL  
AIN1  
0
1
AIN2  
1
0
AIN3  
1
1
AIN4  
CAP  
AIN1+  
AIN1-  
AIN3+  
AIN3-  
AIN4-  
AIN4+  
AIN2-  
AIN2+  
VREF-  
VREF+  
AGND  
AVDD  
9, 10  
11  
12  
-
9, 10  
11  
12  
13  
14  
15  
16  
17  
Analog  
PGA Filter Capacitor  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog  
Positive Analog Input Channel 1  
Negative Analog Input Channel 1  
Positive Analog Input Channel 3  
Negative Analog Input Channel 3  
Negative Analog Input Channel 4  
Positive Analog Input Channel 4  
Negative Analog Input Channel 2  
Positive Analog Input Channel 2  
Negative Reference Input  
-
-
-
13  
14  
15  
16  
17  
18  
18  
19  
20  
21  
22  
Positive Reference Input  
Analog Ground  
Analog  
Analog Power Supply 4.75V to 5.25V  
GAIN0  
GAIN1  
19  
20  
23  
24  
Digital Input  
TABLE 3. GAIN SELECT  
GAIN1  
GAIN0  
GAIN  
1
0
0
1
1
0
1
0
1
2
64  
128  
FN6954.1  
September 9, 2011  
3
ISL26132, ISL26134  
Pin Descriptions(Continued)  
PIN NUMBER  
ANALOG/DIGITAL  
NAME  
ISL26132  
21  
ISL26134  
INPUT/OUTPUT  
DESCRIPTION  
SPEED  
25  
Digital Input  
TABLE 4. DATA RATE SELECT  
SPEED  
DATA RATE  
10Sps  
0
1
80Sps  
PDWN  
SCLK  
22  
23  
26  
27  
Digital Input  
Digital Input  
Power-Down: Holding this pin low powers down the entire  
converter and resets the ADC.  
Serial Clock: Clock out data on the rising edge. Also used to  
initiate Offset Calibration and Sleep modes. See “Serial Clock  
Input (SCLK)” on page 14 for more details.  
SDO/RDY  
24  
28  
Digital Output  
Dual-Purpose Output:  
Data Ready: Indicate valid data by going low.  
Data Output: Outputs data, MSB first, on the first rising edge  
of SCLK.  
Circuit Description  
The ISL26132 (2-channel) and ISL26134 (4-channel) devices are  
very low noise 24-bit delta-sigma ADCs that include a  
programmable gain amplifier and an input multiplexer. The  
ISL26132 offers an on-chip temperature measurement  
capability.  
The ISL26132, ISL26134 provide pin compatibility and output  
data compatibility with the ADS1232/ADS1234, and offer the  
same conversion rates of 10Sps and 80Sps.  
All the features of the ISL26132, ISL26134 are pin-controllable,  
while offset calibration, standby mode, and output conversion  
data are accessible through a simple 2-wire interface.  
The clock can be selected to come from an internal oscillator, an  
external clock signal, or crystal (4.9152MHz typical).  
FN6954.1  
September 9, 2011  
4
ISL26132, ISL26134  
Absolute Maximum Ratings  
Thermal Information  
A
to D  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +0.3V  
Thermal Resistance (Typical)  
24 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .  
28 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .  
θ
JA (°C/W)  
65  
θ
JC (°C/W)  
GND  
GND  
Analog In to A  
Digital In to D  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to A  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to D  
+0.3V  
+0.3V  
18  
18  
GND  
GND  
VDD  
VDD  
63  
Input Current  
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80mW  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Momentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA  
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
ESD Rating  
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . . .7.5kV  
Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . . 450V  
Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . . . 2kV  
Latch-up (Per JEDEC JESD-78B; Class 2, Level A)  
Operating Conditions  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA @ Room and Hot (+105°C)  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C  
A
D
to A  
to D  
GND  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.75V to 5.25V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.25V  
VDD  
GND  
VDD  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
5. For θ , the “case temp” location is taken at the package top center.  
JC  
Electrical Specifications  
V
+ = 5V, V  
- = 0V, A  
VDD  
= 5V, D  
VDD  
= 5V, A  
GND  
= D  
= 0V, MCLK = 4.9152MHz, and  
GND  
REF  
REF  
= -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C  
T
A
MIN  
(Note 6)  
MAX  
(Note 6)  
SYMBOL  
ANALOG INPUTS  
PARAMETER  
TEST LEVEL or NOTES  
TYP  
UNITS  
V
Differential Input Voltage Range  
±0.5V  
/
REF  
Gain  
Common Mode Input Voltage  
Range  
Gain = 1, 2  
A
- 0.1  
A
+ 0.1  
V
GND  
VDD  
Gain = 64, 128  
Gain = 1  
A
+1.5  
A
- 1.5  
V
GND  
VDD  
±20  
±40  
±1  
nA  
nA  
nA  
Differential Input Current  
Gain = 2  
Gain = 64, 128  
SYSTEM PERFORMANCE  
Resolution  
No Missing Codes  
24  
Bits  
SPS  
SPS  
SPS  
SPS  
Internal Osc. SPEED = High  
Internal Osc. SPEED = Low  
External Osc. SPEED = High  
External Osc. SPEED = Low  
80  
10  
Data Rate  
fCLK/61440  
fCLK/49152  
0
Digital Filter Settling Time  
Integral Nonlinearity  
Full Setting  
4
Conversions  
INL  
Differential Input Gain = 1, 2  
Differential Input Gain = 64, 128  
±0.0002  
±0.0004  
±0.001  
% of FSR (Note 7)  
% of FSR  
(Note 7)  
Input Offset Error  
Input Offset Drift  
Gain Error (Note 8)  
Gain Drift  
Gain = 1  
±0.4  
±1.5  
0.3  
ppm of FS  
ppm of FS  
µV/°C  
nV/°C  
%
Gain = 128  
Gain = 1  
Gain = 128  
Gain = 1  
10  
±0.007  
±0.02  
0.5  
±0.02  
Gain = 128  
Gain = 1  
%
ppm/°C  
ppm/°C  
Gain = 128  
7
FN6954.1  
September 9, 2011  
5
ISL26132, ISL26134  
Electrical Specifications  
V
+ = 5V, V  
- = 0V, A  
VDD  
= 5V, D  
VDD  
= 5V, A  
GND  
= D  
= 0V, MCLK = 4.9152MHz, and  
GND  
REF  
REF  
= -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C (Continued)  
T
A
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST LEVEL or NOTES  
At DC, Gain = 1, ΔV = 1V  
(Note 6)  
TYP  
100  
100  
130  
100  
105  
(Note 6)  
UNITS  
dB  
CMRR  
PSRR  
Common Mode Rejection  
85  
At DC, Gain = 128, ΔV = 0.1V  
External 4.9152MHz Clock  
At DC, Gain = 1, ΔV = 1V  
dB  
50Hz/60Hz Rejection (Note 9)  
Power Supply Rejection  
dB  
82  
dB  
At DC, Gain = 128, ΔV = 0.1V  
100  
dB  
Input Referred Noise  
Noise Free Bits  
See “Typical Characteristics” beginning  
on page 8  
See “Typical Characteristics” beginning  
on page 8  
VOLTAGE REFERENCE INPUT  
VREF  
VREF-  
VREF+  
IREF  
Voltage Reference Input  
VREF = VREF+ - VREF-  
1.5  
AVDD  
±350  
AVDD + 0.1  
VREF+ - 1.5  
AVDD + 0.1  
V
V
Negative Reference Input  
Positive Reference Input  
AGND - 0.1  
VREF- + 1.5  
V
Voltage Reference Input Current  
nA  
POWER SUPPLY REQUIREMENTS  
A
Analog Supply Voltage  
Digital Supply Voltage  
Analog Supply Current  
4.75  
2.7  
5.0  
3.3  
7
5.25  
5.25  
8.5  
12  
V
VDD  
D
V
VDD  
A
Normal Mode, AVDD = 5, Gain = 1, 2  
Normal Mode, AVDD = 5, Gain = 64, 128  
Standby Mode  
mA  
mA  
µA  
IDD  
IDD  
9
0.2  
0.2  
750  
750  
1.5  
1
3
Power-Down  
2.5  
950  
950  
26  
µA  
D
Digital Supply Current  
Power Dissipation, Total  
Normal Mode, AVDD = 5, Gain = 1, 2  
Normal Mode, AVDD = 5, Gain = 64, 128  
Standby Mode  
µA  
µA  
µA  
Power-Down  
26  
µA  
P
Normal Mode, AVDD = 5, Gain = 1, 2  
Normal Mode, AVDD = 5, Gain = 64, 128  
Standby Mode  
49.6  
68  
mW  
mW  
mW  
mW  
D
0.14  
0.14  
Power-Down  
DIGITAL INPUTS  
V
0.7 D  
V
V
IH  
VDD  
V
0.2 D  
0.2 D  
IL  
VDD  
V
I
I
= -1mA  
= 1mA  
D - 0.4  
VDD  
V
OH  
OH  
OL  
V
V
OL  
VDD  
Input Leakage Current  
±10  
µA  
MHz  
MHz  
External Clock Input Frequency  
Serial Clock Input Frequency  
0.3  
4.9152  
1
NOTE:  
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
7. FSR = Full Scale Range = VREF/Gain  
8. Gain accuracy is calibrated at the factory (AVDD = +5V).  
9. Specified for word rate equal to 10Sps.  
FN6954.1  
September 9, 2011  
6
ISL26132, ISL26134  
Noise Performance  
The ISL26132 and ISL26134 provide excellent noise  
performance. The noise performance on each of the gain  
settings of the PGA at the selected word rates is shown in  
Tables 5 and 6.  
Resolution in bits decreases by 1-bit if the ADC is operated as a  
single-ended input device. Noise measurements are  
input-referred, taken with bipolar inputs under the specified  
operating conditions, with f  
= 4.9152MHz.  
CLK  
TABLE 5. A  
= 5V, V  
= 5V, DATA RATE = 10Sps  
REF  
VDD  
RMS NOISE  
(nV)  
PEAK-TO-PEAK NOISE  
(nV) (Note 10)  
NOISE-FREE BITS  
(Note 11)  
GAIN  
1
243  
148  
1604  
977  
71  
21.6  
21.3  
20.1  
19.1  
2
64  
128  
10.8  
10.2  
67  
TABLE 6. A  
= 5V, V  
= 5V, DATA RATE = 80Sps  
REF  
VDD  
RMS NOISE PEAK-TO-PEAK NOISE NOISE-FREE BITS  
GAIN  
(nV)  
565  
285  
28.3  
27  
(nV) (Note 10)  
(Note 11)  
1
2
3730  
20.4  
1880  
20.3  
64  
128  
187  
18.7  
178  
17.7  
NOTES:  
10. The peak-to-peak noise number is 6.6 times the rms value. This  
encompasses 99.99% of the noise excursions that may occur. This  
value best represents the worst case noise that could occur in the  
output conversion words from the converter.  
11. Noise-Free Bits is defined as: Noise-Free Bits = ln(FSR/peak-to-peak  
noise)/ln(2) where FSR is the full scale range of the converter,  
VREF/Gain.  
FN6954.1  
September 9, 2011  
7
ISL26132, ISL26134  
Typical Characteristics  
300  
10  
GAIN = 1, N = 1024  
GAIN = 1  
RATE = 10Sps  
RATE = 10Sps  
250  
200  
150  
100  
50  
STD DEV = 1.635 LSB  
VREF = 2.5V  
5
0
-5  
-10  
0
0
0
0
200  
400  
600  
800  
1000  
1000  
1000  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
OUTPUT CODE (LSB)  
TIME (SAMPLES)  
FIGURE 2. NOISE AT GAIN = 1, 10Sps  
FIGURE 3. NOISE HISTOGRAM AT GAIN = 1, 10Sps  
10  
5
250  
GAIN = 2, N = 1024  
RATE = 10Sps  
GAIN = 2  
RATE = 10Sps  
STD DEV = 1.989 LSB  
VREF = 2.5V  
200  
150  
100  
50  
0
-5  
-10  
0
-8  
-6  
-4  
-2  
0
2
4
6
8
200  
400  
600  
800  
TIME (SAMPLES)  
OUTPUT CODE (LSB)  
FIGURE 4. NOISE AT GAIN = 2, 10Sps  
FIGURE 5. NOISE HISTOGRAM AT GAIN = 2, 10Sps  
20  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
GAIN = 64, N = 1024  
RATE = 10Sps  
GAIN = 64  
RATE = 10Sps  
STD DEV = 4.627 LSB  
VREF = 2.5V  
0
-5  
-10  
-15  
200  
400  
600  
800  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
OUTPUT CODE (LSB)  
TIME (SAMPLES)  
FIGURE 6. NOISE AT GAIN = 64, 10Sps  
FIGURE 7. NOISE HISTOGRAM AT GAIN = 64, 10Sps  
FN6954.1  
September 9, 2011  
8
ISL26132, ISL26134  
Typical Characteristics(Continued)  
50  
60  
50  
40  
30  
20  
10  
0
GAIN = 128, N = 1024  
RATE = 10Sps  
GAIN = 128  
RATE = 10Sps  
STD DEV = 8.757 LSB  
VREF = 2.5V  
30  
10  
-10  
-30  
-50  
-30 -25 -20 -15 -10 -5  
0
5
10 15 20 25 30  
0
200  
400  
600  
800  
1000  
1000  
1000  
TIME (SAMPLES)  
OUTPUT CODE (LSB)  
FIGURE 8. NOISE AT GAIN = 128, 10Sps  
FIGURE 9. NOISE HISTOGRAM AT GAIN = 128, 10Sps  
25  
20  
15  
10  
5
120  
GAIN = 1, N = 1024  
RATE = 80Sps  
GAIN = 1  
RATE = 80Sps  
100  
80  
60  
40  
20  
0
STD DEV = 3.791 LSB  
VREF = 2.5V  
0
-5  
-10  
-15  
-20  
-25  
-15  
-10  
-5  
0
5
10  
15  
0
200  
400  
600  
800  
OUTPUT CODE (LSB)  
TIME (SAMPLES)  
FIGURE 11. NOISE HISTOGRAM AT GAIN = 1, 80Sps  
FIGURE 10. NOISE AT GAIN = 1, 80Sps  
120  
25  
15  
5
GAIN = 2, N = 1024  
RATE = 80Sps  
GAIN = 2  
RATE = 80Sps  
100  
80  
60  
40  
20  
0
STD DEV = 3.831 LSB  
VREF = 2.5V  
-5  
-15  
-25  
0
200  
400  
600  
800  
-15  
-10  
-5  
0
5
10  
15  
OUTPUT CODE (LSB)  
TIME (SAMPLES)  
FIGURE 12. NOISE AT GAIN = 2, 80Sps  
FIGURE 13. NOISE HISTOGRAM AT GAIN = 2, 80Sps  
FN6954.1  
September 9, 2011  
9
ISL26132, ISL26134  
Typical Characteristics(Continued)  
100  
50  
40  
30  
20  
10  
0
GAIN = 64, N = 1024  
RATE = 80Sps  
GAIN = 64  
RATE = 80Sps  
STD DEV = 12.15 LSB  
VREF = 2.5V  
50  
0
-50  
-100  
0
200  
400  
600  
800  
1000  
-40 -35 -30 -25 -20 -15 -10 -5  
0
5 10 15 20 25 30 35 40  
TIME (SAMPLES)  
OUTPUT CODE (LSB)  
FIGURE 14. NOISE AT GAIN = 64, 80Sps  
FIGURE 15. NOISE HISTOGRAM AT GAIN = 64, 80Sps  
160  
120  
80  
30  
GAIN = 128, N = 1024  
RATE = 80Sps  
GAIN = 128  
RATE = 80Sps  
25  
20  
15  
10  
5
STD DEV = 23.215 LSB  
VREF = 2.5V  
40  
0
-40  
-80  
-120  
-160  
-200  
0
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
0
200  
400  
600  
800  
1000  
OUTPUT CODE (LSB)  
TIME (SAMPLES)  
FIGURE 16. NOISE AT GAIN = 128, 80Sps  
FIGURE 17. NOISE HISTOGRAM AT GAIN = 128, 80Sps  
10000  
10  
8
NORMAL MODE, PGA = 64.128  
NORMAL MODE, PGA = 1, 2  
1000  
100  
10  
NORMAL MODE, ALL PGA GAINS  
6
4
POWERDOWN MODE  
2
0
-40  
1
-40  
-10  
20  
50  
80  
110  
-10  
20  
50  
80  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 19. DIGITAL CURRENT vs TEMPERATURE  
FIGURE 18. ANALOG CURRENT vs TEMPERATURE  
FN6954.1  
September 9, 2011  
10  
ISL26132, ISL26134  
Typical Characteristics(Continued)  
10000  
1000  
100  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
WORD RATE = 10Sps  
GAIN = 1, 80Sps  
64k FFT  
25 AVERAGES  
9.6  
-40  
10  
0.01  
0.1  
1
10  
-10  
20  
50  
80  
110  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FIGURE 20. TYPICAL WORD RATE vs TEMPERATURE USING  
INTERNAL OSCILLATOR  
FIGURE 21. NOISE DENSITY vs FREQUENCY AT GAIN = 1, 80Sps  
100  
GAIN = 128, 80Sps  
64k FFT  
25 AVERAGES  
10  
1
0.01  
0.1  
1
10  
FREQUENCY (Hz)  
FIGURE 22. NOISE DENSITY vs FREQUENCY AT GAIN = 128, 80Sps  
FN6954.1  
September 9, 2011  
11  
ISL26132, ISL26134  
The input span of the ADC is ±0.5 VREF/GAIN. For a 5V VREF and  
a gain of 1x, the input span will be 5V fully differential as  
Functional Description  
P-P  
shown in Figure 23. Note that input voltages that exceed the  
supply rails by more than 100mV will turn on the ESD protection  
diodes and degrade measurement accuracy.  
Analog Inputs  
The analog signal inputs to the ISL26132 connect to a 2-Channel  
differential multiplexer and the ISL26134 connect to a 4-Channel  
differential multiplexer (Mux). The multiplexer connects a pair of  
inputs to the positive and negative inputs (AINx+, AINx-), selected  
by the Channel Select Pins A0 and A1 (ISL26134 only). Input  
channel selection is shown in Table 7. On the ISL26132, the  
TEMP pin is used to select the Temperature Sensor function.  
If the differential input exceeds well above the +VE or the -VE FS  
(by ~1.5x times) the output code will clip to the corresponding FS  
value. Under such conditions, the output data rate will become  
1/4th of the original value as the Digital State Machine will  
RESET the Delta-Sigma Modulator and the Decimation Filter.  
TABLE 7. INPUT CHANNEL SELECTION  
Temperature Sensor (ISL26132 only)  
CHANNEL SELECT PINS  
ANALOG INPUT PINS SELECTED  
When the TEMP pin of the ISL26132 is set High, the input  
multiplexer is connected to a pair of diodes, which are scaled in  
both size and current. The voltage difference measured between  
them corresponds to the temperature of the die according to  
Equation 1:  
A1  
0
A0  
0
AIN+  
AIN1+  
AIN2+  
AIN3+  
AIN4+  
AIN-  
AIN1-  
AIN2-  
AIN3-  
AIN4-  
0
1
(EQ. 1)  
V= 102.2mV + (379μV TC)) Gain  
1
0
1
1
Note: Valid only for GAIN = 1x or 2x  
Where T is the temperature of the die, and Gain = the PGA Gain  
Setting.  
Whenever the MUX channel is changed (i.e. if any one of the  
following inputs - A0/A1, Gain1/0, SPEED is changed), the  
digital logic will automatically restart the digital filter and will  
cause SDO/RDY to go low only when the output is fully settled.  
But if the input itself is suddenly changed, then the user needs to  
ignore first four RDY pulses (going low) to get an accurate  
measurement of the input signal.  
At a temperature of +25°C, the measured voltage will be  
approximately 111.7mV. Note that this measurement indicates  
only the temperature of the die itself. Applying the result to  
correct for the temperature drift of a device external to the  
package requires that thermal coupling between the sensor and  
the die be taken into account.  
1.25V  
Low-Noise Programmable Gain Amplifier  
(PGA)  
3.75  
The chopper-stabilized programmable gain amplifier features a  
variety of gain settings to achieve maximum dynamic range and  
measurement accuracy from popular sensor types with excellent  
low noise performance, input offset error, and low drift, and with  
minimal external parts count. The GAIN0 and GAIN1 pins allow the  
user to select gain settings of 1x, 2x, 64x, or 128x. A block diagram  
is shown in Figure 24. The differential input stage provides a gain of  
64, which is bypassed when the lower gain settings are selected.  
The lower gain settings (1 and 2) will accept inputs with common  
mode voltages up to 100mV outside the rails, allowing the device to  
accept ground-referred signals. At gain settings of 64 or 128 the  
common mode voltage at the inputs is limited to 1.5V inside the  
supply rails while maintaining specified measurement accuracy.  
2.50  
AIN+  
1.25  
INPUT VOLTAGE RANGE = ±0.5VREF/GAIN  
VREF = 5V, GAIN = 1X  
3.75  
2.50  
1.25  
AIN-  
2.50V  
FIGURE 23. DIFFERENTIAL INPUT FOR VREF = 5V, GAIN = 1X  
FN6954.1  
September 9, 2011  
12  
ISL26132, ISL26134  
CAP  
AINx+  
+
-
R
INT  
A1  
R
F1  
ADC  
R
1
R
F2  
-
R
INT  
A2  
+
AINx-  
CAP  
FIGURE 24. SIMPLIFIED PROGRAMMABLE GAIN AMPLIFIER BLOCK DIAGRAM  
If the ADC is to be operated from a crystal, it should be located  
Filtering PGA Output Noise  
close to the package pins of the ADC. Note that external loading  
capacitors for the crystal are not required as there are loading  
capacitors built into the silicon, although the capacitor values are  
optimized for operation with a 4.9152MHz crystal.  
The programmable gain amplifier, as shown in Figure 24,  
includes a passive RC filter on its output. The resistors are  
located inside the chip on the outputs of the differential amplifier  
stages. The capacitor (nominally a 100nF C0G ceramic or a PPS  
film (Polyphenylene sulfide)) for the filter is connected to the two  
CAP pins of the chip. The outputs of the differential amplifier  
stages of the PGA are filtered before their signals are presented  
to the delta-sigma modulator. This filter reduces the amount of  
noise by limiting the signal bandwidth and filters the chopping  
artifacts of the chopped PGA stage.  
The XTALOUT pin is not intended to drive external circuits.  
CRYSTAL  
XTALIN/  
OSCILLATOR  
CLOCK  
CLOCK DETECT  
EN  
Voltage Reference Inputs (VREF+, VREF-)  
The voltage reference for the ADC is derived from the difference  
in the voltages presented to the VREF+ and VREF- pins;  
INTERNAL  
OSCILLATOR  
XTALOUT  
VREF = (VREF+ - VREF-). The ADCs are specified with a voltage  
reference value of 5V, but a voltage reference as low as 1.5V can  
be used. For proper operation, the voltage on the VREF+ pin  
should not be greater than AVDD + 0.1V and the voltage on the  
VREF- pin should not be more negative than AGND - 0.1V.  
MUX  
TO ADC  
FIGURE 25. CLOCK BLOCK DIAGRAM  
Digital Filter Characteristics  
Clock Sources  
The digital filter inside the ADC is a fourth-order Siinc filter.  
Figures 26 and 27 illustrate the filter response for the ADC when  
it is operated from a 4.9152MHz crystal. The internal oscillator is  
factory trimmed so the frequency response for the filter will be  
much the same when using the internal oscillator. The figures  
illustrate that when the converter is operated at 10Sps the digital  
filter provides excellent rejection of 50Hz and 60Hz line  
interference.  
The ISL26132, ISL26134 can operate from an internal oscillator,  
an external clock source, or from a crystal connected between  
the XTALIN/CLOCK and XTALOUT pins. See the block diagram of  
the clock system in Figure 25. When the ADC is powered up, the  
CLOCK DETECT block determines if an external clock source is  
present. If a clock greater than 300kHz is present on the  
XTALIN/CLOCK pin, the circuitry will disable the internal oscillator  
on the chip and use the external clock as the clock to drive the  
chip circuitry. If the ADC is to be operated from the internal  
oscillator, the XTALIN/CLOCK pin should be grounded.  
FN6954.1  
September 9, 2011  
13  
ISL26132, ISL26134  
Serial Clock Input (SCLK)  
The serial clock input is provided with hysteresis to minimize  
false triggering. Nevertheless, care should be taken to ensure  
reliable clocking.  
0
-50  
DATA RATE = 10Sps
Filter Settling Time and ADC Latency  
Whenever the analog signal into the ISL26132, ISL26134  
converters is changed, the effects of the digital filter must be  
taken into account. The filter takes four data ready periods for  
the output code to fully reflect a new value at the analog input. If  
the multiplexer control input is changed, the modulator and the  
digital filter are reset, and the device uses four data ready  
periods to fully settle to yield a digital code that accurately  
represents the analog input. Therefore, from the time the control  
inputs for the multiplexer are changed until the SDO/RDY goes  
low, four data ready periods will elapse. The settling time delay  
after a multiplexer channel change is listed in Table 8 for the  
converter operating in continuous conversion mode.  
-100  
-150  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (Hz)  
FIGURE 26. 10Sps: FREQUENCY RESPONSE OUT TO 100Hz  
-50  
-60  
DATA RATE = 10Sps  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
65  
60  
45  
50  
55  
FREQUENCY (Hz)  
FIGURE 27. 10Sps: 50/60Hz NOISE REJECTION, 45Hz TO 65Hz  
TABLE 8. SETTLING TIME  
DESCRIPTION  
PARAMETER  
(f  
= 4.9152MHz)  
MIN  
40  
MAX  
50  
UNITS  
µs  
CLK  
t
A0, A1, SPEED, Gain1, Gain0 change  
set-up time  
S
t1  
Settling time  
SPEED = 1  
SPEED = 0  
54  
55  
ms  
ms  
404  
405  
A0, A1, SPEED, Gain1, Gain0  
t
1
SDO/RDY  
t
S
FIGURE 28. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE  
FN6954.1  
September 9, 2011  
14  
ISL26132, ISL26134  
SDO/RDY  
FIGURE 29. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE  
Conversion Data Rate  
Reading Conversion Data from the Serial  
Data Output/Ready SDO/RDY Pin  
The SPEED pin is used to select between the 10Sps and 80Sps  
conversion rates. The 10Sps rate (SPEED = Low) is preferred in  
applications requiring 50/60Hz noise rejection. Note that the  
sample rate is directly related to the oscillator frequency, as  
491,520 clocks are required to perform a conversion at the  
10Sps rate, and 61,440 clocks at the 80Sps rate.  
When the ADC is powered, it will automatically begin doing  
conversions. The SDO/RDY signal will go low to indicate the  
completion of a conversion. After the SDO/RDY signal goes low,  
the MSB data bit of the conversion word will be output from the  
SDO/RDY pin after SCLK is transitioned from a low to a high.  
Each subsequent new data bit is also output on the rising edge of  
SCLK (see Figure 30). The receiving device should use the falling  
edge of SCLK to latch the data bits. After the 24th SCLK, the  
SDO/RDY output will remain in the state of the LSB data bit until  
a new conversion is completed. At this time, the SDO/RDY will go  
high if low and then go low to indicate that a new conversion  
word is available. If not all data bits are read from the SDO/RDY  
pin prior to the completion of a new conversion, they will be  
Output Data Format  
The 24-bit converter output word is delivered in two’s  
complement format. Input exceeding full scale results in a  
clipped output which will not return to in-range values until after  
the input signal has returned to the specified allowable voltage  
range and the digital filter has settled as discussed previously.  
TABLE 9. OUTPUT CODES CORRESPONDING TO INPUT  
overwritten. SCLK should be low during time t , as shown in  
6
Figure 30, when SDO/RDY is high.  
INPUT SIGNAL  
OUTPUT CODE (HEX)  
7FFFFF  
+ 0.5V  
/GAIN  
23  
If the user wants the SDO/RDY signal to go high after reading the  
24 bits of the conversion data word, a 25th SCLK can be issued.  
The 25th SCLK will force the SDO/RDY signal to go high and  
remain high until it falls to signal that a new conversion word is  
available. Figure 31 illustrates the behavior of the SDO/RDY  
signal when a 25th SCLK is used.  
REF  
(+0.5V  
0
/GAIN)/(2 - 1)  
000001  
REF  
000000  
23  
(-0.5V  
/GAIN)/(2 - 1)  
FFFFFF  
REF  
- 0.5V  
/GAIN  
800000  
REF  
DATA  
DATA READY  
NEW DATA READY  
MSB  
LSB  
0
SDO/RDY  
23  
22  
21  
t5  
t
4
t
t
6
3
t
2
SCLK  
24  
1
t
3
t
7
FIGURE 30. OUTPUT DATA WAVEFORMS USING 24 SCLKS TO READ CONVERSION DATA  
FN6954.1  
September 9, 2011  
15  
ISL26132, ISL26134  
TABLE 10. INTERFACE TIMING CHARACTERISTICS  
PARAMETER  
DESCRIPTION  
MIN  
0
TYP  
MAX  
50  
UNITS  
ns  
t
t
t
t
t
t
SDO/RDY Low to first SLK  
SCLK pulsewidth, Low or High  
SCLK High to Data Valid  
Data Hold after SCLK High  
Register Update Time  
2
3
4
5
6
7
100  
ns  
ns  
0
ns  
39  
µs  
Conversion Period  
SPEED = 1  
SPEED = 0  
12.5  
100  
ms  
ms  
DATA  
21  
DATA READY  
NEW DATA READY  
SDO/RDY  
SCLK  
23  
22  
0
25TH SCLK FORCES  
SDO/RDY HIGH  
24  
25  
1
FIGURE 31. OUTPUT DATA WAVEFORMS FOR SDO/RDY POLLING  
DATA READY AFTER CALIBRATION  
SDO/RDY  
SCLK  
23  
23  
22  
21  
0
CALIBRATION BEGINS  
1
24  
25  
26  
t
8
FIGURE 32. OFFSET CALIBRATION WAVEFORMS  
STANDBY MODE  
DATA READY  
23  
23  
22  
21  
0
SDO/RDY  
SCLK  
START  
CONVERSION  
1
24  
t
9
t
t
11  
10  
FIGURE 33. STANDBY MODE WAVEFORMS  
stored and used to digitally remove the offset error from future  
conversion words. The SDO/RDY output will fall to indicate the  
completion of the offset calibration operation.  
Offset Calibration Control  
The offset internal to the ADC can be removed by performing an  
offset calibration operation. Offset calibration can be initiated  
immediately after reading a conversion word with 24 SCLKs by  
issuing two additional SCLKs. The offset calibration operation will  
begin immediately after the 26th SCLK occurs. Figure 32  
illustrates the timing details for the offset calibration operation.  
TABLE 11. SDO/RDY DELAY AFTER CALIBRATION  
PARAMETER  
MIN  
108  
808  
MAX  
109  
809  
UNITS  
ms  
t
SPEED = 1  
SPEED = 0  
8
ms  
During offset calibration, the analog inputs are shorted internally  
and a regular conversion is performed. This conversion generates  
a conversion word that represents the offset error. This value is  
FN6954.1  
September 9, 2011  
16  
ISL26132, ISL26134  
Standby Mode Operation  
Performing Offset Calibration After Standby  
Mode  
The ADC can be put into standby mode to save power. Standby  
mode reduces the power to all circuits in the device except the  
crystal oscillator amplifier. To enter the standby mode, take the  
SCLK signal high and hold it high after SDO/RDY falls. The  
converter will remain in standby mode as long as SCLK is held  
high. To return to normal operation, take SCLK back low and wait  
for the SDO/RDY to fall to indicate that a new conversion has  
completed. Figure 33 and Table 12 illustrate the details of  
standby mode.  
To perform an offset calibration automatically upon returning  
from standby, deliver 2 or more additional SCLKs following a  
data read cycle, and then set and hold SCLK high. The device will  
remain in Standby as long as SCLK remains high. A calibration  
cycle will begin once SCLK is brought low again to resume  
normal operation. Additional time will be required to perform the  
calibration after returning from Standby. Figure 34 and Table 13  
illustrate the details of performing offset calibration after  
standby mode.  
Supply currents are equal in Standby and Power-down modes  
unless a Crystal is used. If the Crystal is used, the Crystal  
amplifier is turned ON, even in the standby mode.  
TABLE 12. STANDBY MODE TIMING  
MIN  
PARAMETER  
DESCRIPTION  
MAX  
12.44  
99.94  
UNITS  
ms  
t
SCLK High after  
SDO/RDY Low  
SPEED = 1  
SPEED = 0  
SPEED = 1  
SPEED = 0  
SPEED = 1  
SPEED = 0  
0
9
0
t
Standby Mode Delay  
12.5  
100  
50  
10  
11  
t
SDO/RDY falling edge  
after SCLK Low  
60  
400  
410  
TABLE 13. OFFSET CALIBRATION TIMING AFTER STANDY  
PARAMETER  
DESCRIPTION  
MIN  
108  
808  
MAX  
113  
813  
UNITS  
ms  
t
SDO/RDY Low after  
SCLK Low  
SPEED = 1  
SPEED = 0  
12  
ms  
STANDBY MODE  
DATA READY AFTER CALIBRATION  
23  
SDO/RDY  
SCLK  
23  
22  
21  
0
BEGIN  
CALIBRATION  
1
24  
25  
t
t
12  
10  
FIGURE 34. OFFSET CALIBRATION WAVEFORMS AFTER STANDBY  
FN6954.1  
September 9, 2011  
17  
ISL26132, ISL26134  
Operation of PDWN  
AVDD  
DVDD  
PDWN must transition from low to high after both power supplies  
have settled to specified levels in order to initiate a correct  
power-up reset (Figure 35). This can be implemented by an  
external controller or a simple RC delay circuit, as shown in  
Figure 36.  
PDWN  
10µs  
In order to reduce power consumption, the user can assert the  
Power-down mode by bringing PDWN Low as shown in Figure 37.  
All circuitry is shut down in this mode, including the Crystal  
Oscillator. After PDWN is brought High to resume operation, the  
reset delay varies depending on the clock source used. While an  
external clock source will resume operation immediately, a  
circuit utilizing a crystal will incur about a 20 millisecond delay  
due to the inherent start-up time of this type of oscillator.  
FIGURE 35. POWER-DOWN TIMING RELATIVE TO SUPPLIES  
D
VDD  
1kΩ  
CONNECT TO  
PDWN PIN  
2.2nF  
FIGURE 36. PDWNDELAY CIRCUIT  
START  
CONVERSION READY  
DATA  
CLK  
SOURCE  
WAKEUP  
POWER-DOWN  
MODE  
t
14  
PDWN  
SDO/RDY  
SCLK  
t
t
11  
13  
FIGURE 37. POWER-DOWN MODE WAVEFORMS  
TABLE 14. POWER-DOWN RECOVERY TIMING  
PARAMETER  
DESCRIPTION  
TYP  
7.95  
0.16  
5.6  
UNITS  
µs  
t
Clock Recovery after PDWN Internal Oscillator  
13  
High  
External Clock Source  
µs  
4.9152MHz Crystal  
Oscillator  
ms  
t
PDWN Pulse Duration  
26  
µs (min)  
14  
FN6954.1  
September 9, 2011  
18  
ISL26132, ISL26134  
scale output from the load cell will be 10mV. On a gain of 128x  
Applications Information  
Power-up Sequence – Initialization and  
Configuration  
The sequence to properly power-up and initialize the device are  
as follows. For details on individual functions, refer to their  
descriptions.  
and sample rate of 10Sps, the converter noise is 67nV . The  
P-P  
= 149,250 noise free  
converter will achieve 10mV/67nV  
P-P  
counts across its 10mV input signal. This equates to 14,925  
counts per mV of input signal. If five output words are averaged  
together this can be improved by 5 to yield 5*14925  
counts = 33,370 counts per mV of input signal with an effective  
update rate of 2 readings per second.  
1. A ramp to specified levels  
, D  
VDD VDD  
THERMOCOUPLE MEASUREMENT  
2. Apply External Clock  
Figure 39 illustrates the ISL26132 in a thermocouple  
application. As shown, the 4.096V reference combined with the  
PGA gain set to 128x sets the input span of the converter to  
±16mV. This supports the K type thermocouple measurement for  
temperatures from -270°C at -6.485mV to +380°C at about  
16mV.  
3. Pull PDWN High to initiate Reset  
4. Device begins conversion  
5. SDO/RDY goes low at end of first conversion  
OPTIONAL ACTIONS  
• Perform Offset Calibration  
If a higher temperature is preferred, the PGA can be set to 64x to  
provide a converter span of ±32mV. The will allow the converter  
to support temperature measurement with the K type  
thermocouple up to about +765°C.  
• Place device in Standby  
• Return device from Standby  
• Read on-chip Temperature (applicable to ISL26132 only)  
In the circuit shown, the thermocouple is referenced to a voltage  
dictated by the resistor divider from the +5V supply to ground.  
These set the common mode voltage at about 2.5V. The 5M  
resistors provide a means for detection of an open thermocouple.  
If the thermocouple fails open or is not connected, the bias  
through the 5M resistors will cause the input to the PGA to go to  
full scale.  
Application Examples  
WEIGH SCALE SYSTEM  
Figure 38 illustrates the ISL26132 connected to a load cell. The  
A/D converter is configured for a gain of 128x and a sample rate  
of 10Sps. If a load cell with 2mV/V sensitivity is used, the full  
5V  
3V  
0.1µF  
18  
1
DVDD  
GAIN1  
VDD  
AVDD  
20  
16  
9
VREF+  
CAP  
19  
24  
23  
22  
GAIN0  
SDO/RDY  
SCLK  
GAIN = 128  
0.1µF  
10  
MICRO  
CONTROLLER  
CAP  
-
+
ISL26132  
PDWN  
4
XTALOUT  
11  
12  
14  
AIN+1  
AIN-1  
AIN+2  
AIN-2  
3
XTALIN/CLOCK  
SPEED  
21  
8
13  
15  
A0  
7
VREF-  
AGND  
TEMP  
DGND  
GND  
2, 5, 6  
17  
FIGURE 38. WEIGH SCALE APPLICATION  
FN6954.1  
September 9, 2011  
19  
ISL26132, ISL26134  
+5V  
+3V  
0.1µF  
0.1µF  
18  
1
DVDD  
AVDD  
20  
ISL21009  
4.096V  
16  
GAIN1  
GAIN0  
VREF+  
5M  
19  
24  
23  
22  
10nF  
SDO/RDY  
SCLK  
MICRO  
CONTROLLER  
10k  
10k  
PDWN  
11  
AIN+1  
4
XTALOUT  
TYPE K  
12  
14  
13  
AIN-1  
AIN+2  
AIN-2  
3
4.9152  
MHz  
1µF  
XTALIN/CLOCK  
SPEED  
21  
8
A0  
5M  
15  
7
VREF-  
AGND  
TEMP  
DGND  
2, 5, 6  
17  
FIGURE 39. THERMOCOUPLE MEASUREMENT APPLICATION  
PCB Board Layout and System  
Configuration  
The ISL26132,ISL26134 ADC is a very low noise converter. To  
achieve the full performance available from the device will  
require attention to the printed circuit layout of the circuit board.  
Care should be taken to have a full ground plane without  
impairments (traces running through it) directly under the chip  
on the back side of the circuit board. The analog input signals  
should be laid down adjacent (AIN+ and AIN- for each channel) to  
achieve good differential signal practice and routed away from  
any traces carrying active digital signals. The connections from  
the CAP pins to the off-chip filter capacitor should be short, and  
without any digital signals nearby. The crystal, if used should be  
connected with relatively short leads. No active digital signals  
should be routed near or under the crystal case or near the  
traces, which connect it to the ADC. The AGND and DGND pins of  
the ADC should be connected to a common solid ground plane.  
All digital signals to the chip should be powered from the same  
supply, as that used for DVDD (do not allow digital signals to be  
active high unless the DVDD supply to the chip is alive). Route all  
active digital signals in a way to keep distance from any analog  
pin on the device (AIN, VREF, CAP, AVDD). Power on the AVDD  
supply should be active before the VREF voltage is present.  
PCB layout patterns for the chips (ISL26132 and ISL26134) are  
found on the respective package outline drawings on pages 22,  
and 23.  
FN6954.1  
September 9, 2011  
20  
ISL26132, ISL26134  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest Rev.  
DATE  
REVISION  
FN6954.1  
CHANGE  
09/08/11  
Power Supply Requirements on page 6 - AIDD - Analog Supply Current - Normal Mode, AVDD = 5, Gain = 1,2  
changed TYP and MAX from “6, 7.3” to “7, 8.5”  
Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 changed from “43.3” to “49.6” mW (Max)  
08/22/11  
FN6954.0  
Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL26132, ISL26134  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6954.1  
September 9, 2011  
21  
ISL26132, ISL26134  
Package Outline Drawing  
M24.173  
24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)  
Rev 1, 5/10  
A
1
3
7.80 ±0.10  
SEE DETAIL "X"  
13  
24  
6.40  
PIN #1  
I.D. MARK  
4.40 ±0.10  
2
3
0.20 C B A  
1
12  
+0.05  
-0.06  
0.15  
B
0.65  
TOP VIEW  
END VIEW  
1.00 REF  
H
-
0.05  
C
+0.15  
-0.10  
0.90  
1.20 MAX  
GAUGE  
PLANE  
SEATING PLANE  
0.10 C  
0.25  
+0.05  
-0.06  
C B A  
0.25  
0.10  
5
0°-8°  
0.60± 0.15  
0.05 MIN  
0.15 MAX  
M
SIDE VIEW  
DETAIL "X"  
(1.45)  
NOTES:  
1. Dimension does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.  
2. Dimension does not include interlead flash or protrusion. Interlead  
flash or protrusion shall not exceed 0.25 per side.  
3. Dimensions are measured at datum plane H.  
(5.65)  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Dimension does not include dambar protrusion. Allowable protrusion  
shall be 0.08mm total in excess of dimension at maximum material  
condition. Minimum space between protrusion and adjacent lead  
is 0.07mm.  
(0.65 TYP)  
(0.35 TYP)  
6. Dimension in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
7. Conforms to JEDEC MO-153.  
FN6954.1  
September 9, 2011  
22  
ISL26132, ISL26134  
Package Outline Drawing  
M28.173  
28 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)  
Rev 1, 5/10  
A
1
3
9.70± 0.10  
SEE DETAIL "X"  
15  
28  
6.40  
PIN #1  
I.D. MARK  
4.40 ± 0.10  
2
3
0.20 C B A  
1
14  
+0.05  
-0.06  
0.15  
B
0.65  
TOP VIEW  
END VIEW  
1.00 REF  
H
-
0.05  
+0.15  
-0.10  
0.90  
C
GAUGE  
PLANE  
1.20 MAX  
0.25  
SEATING PLANE  
0.10 C  
+0.05  
-0.06  
0.25  
0.10  
0°-8°  
0.60 ±0.15  
5
0.05 MIN  
0.15 MAX  
C B A  
M
SIDE VIEW  
DETAIL "X"  
(1.45)  
NOTES:  
1. Dimension does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.  
2. Dimension does not include interlead flash or protrusion. Interlead  
flash or protrusion shall not exceed 0.25 per side.  
3. Dimensions are measured at datum plane H.  
(5.65)  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Dimension does not include dambar protrusion. Allowable protrusion  
shall be 0.08mm total in excess of dimension at maximum material  
condition. Minimum space between protrusion and adjacent lead  
is 0.07mm.  
(0.35 TYP)  
(0.65 TYP)  
6. Dimension in ( ) are for reference only.  
TYPICAL RECOMMENDED LAND PATTERN  
7. Conforms to JEDEC MO-153.  
FN6954.1  
September 9, 2011  
23  

相关型号:

ISL26132AVZ-T7A

Low-Noise 24-bit Delta Sigma ADC
INTERSIL

ISL26134

Low-Noise 24-bit Delta Sigma ADC
INTERSIL

ISL26134AV28EV1Z

Low-Noise 24-bit Delta Sigma ADC
INTERSIL

ISL26134AVZ

Low-Noise 24-bit Delta Sigma ADC
INTERSIL

ISL26134AVZ-T

Low-Noise 24-bit Delta Sigma ADC
INTERSIL

ISL26134AVZ-T7A

Low-Noise 24-bit Delta Sigma ADC
INTERSIL

ISL26310

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26310FBZ

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26311

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26311FBZ

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26312

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL

ISL26312FVZ

12-bit, 125kSPS Low-power ADCs with Single-ended and Differential Inputs and Multiple Input Channels
INTERSIL