ISL28276IAZ [INTERSIL]

Dual Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op-Amps; 双精密微功耗单电源轨至轨输入和输出精密运算放大器
ISL28276IAZ
型号: ISL28276IAZ
厂家: Intersil    Intersil
描述:

Dual Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op-Amps
双精密微功耗单电源轨至轨输入和输出精密运算放大器

运算放大器
文件: 总12页 (文件大小:531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL28276  
®
Data Sheet  
June 23, 2006  
FN6301.0  
Dual Precision Micropower Single Supply  
Rail-to-Rail Input and Output Precision  
Op-Amps  
Features  
• 120µA supply current for both channels  
• 100µV max offset voltage  
The ISL28276 is a dual channel micropower precision  
operational amplifier optimized for single supply operation at  
5V and can operate down to 2.4V. For equivalent  
• 500pA input bias current  
• 400kHz gain-bandwidth product  
• 115dB PSRR and CMRR  
performance in a single channel op-amp reference EL8176.  
The ISL28276 features an Input Range Enhancement Circuit  
(IREC) which enables the ISL28276 to maintain CMRR  
performance for input voltages greater than the positive  
supply. The input signal is capable of swinging 0.5V above a  
5.0V supply (0.25V for a 2.4V supply) and to within 10mV  
from ground. The output operation is rail to rail.  
• Single supply operation down to 2.4V  
• Input is capable of swinging above V+ and within 10mV of  
Ground  
• Rail-to-rail output  
• Output sources 31mA load current  
• Pb-free plus anneal available (RoHS compliant)  
The ISL28276 draws minimal supply current while meeting  
excellent DC-accuracy, AC-performance, noise and output  
drive specifications. Offset current, voltage and current  
noise, slew rate, and gain-bandwidth product are all two to  
ten times better than other micropower op-amps with  
equivalent supply current ratings.  
Applications  
• Battery- or solar-powered systems  
• 4mA to 25mA current loops  
• Handheld consumer products  
• Medical devices  
The ISL28276 can be operated from one lithium cell or two  
Ni-Cd batteries. The input range includes both positive and  
negative rail.  
• Thermocouple amplifiers  
• Photodiode pre-amps  
• pH probe amplifiers  
Ordering Information  
PART  
TAPE&  
REEL  
PKG.  
DWG. #  
PART NUMBER MARKING  
PACKAGE  
Pinouts  
ISL28276  
(16 LD QSOP)  
TOP VIEW  
ISL28276IAZ  
(See Note)  
28276IAZ  
-
16 Ld QSOP MDP0040  
(Pb-free)  
ISL28276IAZ-T7 28276IAZ  
(See Note)  
7”  
16 Ld QSOP MDP0040  
(Pb-free)  
NC  
NC  
1
2
3
4
5
6
7
8
16 NC  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
15 V+  
OUT_A  
IN-_A  
IN+_A  
EN_A  
V-  
14 OUT_B  
13 IN-_B  
12 IN+_B  
11 EN_B  
10 NC  
NC  
9 NC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2006. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
ISL28276  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.5V, 1V/µs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite  
Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V - 0.5V to V + 0.5V  
-
+
ESD tolerance, Human Body Model . . . . . . . . . . . . . . . . . . . . . .3kV  
ESD tolerance, Machine Model . . . . . . . . . . . . . . . . . . . . . . . . .300V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Opreating Junction  
Electrical Specifications  
V
= 5V, 0V, V  
= 0.1V, V = 1.4V, T = 25°C unless otherwise specified.  
O A  
+
CM  
Boldface limits apply over the operating temperature range, -40°C to +125°C  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
Input Offset Voltage  
-100  
20  
100  
µV  
OS  
-150  
150  
V  
Long Term Input Offset Voltage Stability  
Input Offset Drift vs Temperature  
Input Offset Current  
1.2  
0.3  
µV/Mo  
µV/°C  
nA  
OS  
------------------  
Time  
V  
OS  
---------------  
T  
I
0.25  
0.5  
1.3  
2.0  
OS  
B
I
Input Bias Current  
-2  
2
nA  
-2.5  
2.5  
e
Input Noise Voltage Peak-to-Peak  
Input Noise Voltage Density  
Input Noise Current Density  
Input Voltage Range  
f = 0.1Hz to 10Hz  
1
µV  
PP  
N
f
f
= 1kHz  
= 1kHz  
25  
0.1  
nV/Hz  
pA/Hz  
V
O
O
i
N
CMIR  
Guaranteed by CMRR test  
= 0V to 5V  
0
5
CMRR  
Common-Mode Rejection Ratio  
V
90  
80  
115  
115  
550  
dB  
CM  
PSRR  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
V
= 2.4V to 5V  
90  
80  
dB  
+
O
O
A
V
V
= 0.5V to 4.5V, R = 100kΩ  
350  
350  
V/mV  
VOL  
L
= 0.5V to 4.5V, R = 1kΩ  
25  
3
V/mV  
mV  
L
V
Maximum Output Voltage Swing  
Output low, R = 100kΩ  
6
OUT  
L
30  
Output low, R = 1kΩ  
130  
4.996  
4.880  
0.17  
0.13  
400  
175  
225  
mV  
V
L
Output high, R = 100kΩ  
4.990  
4.97  
L
Output high, R = 1kΩ  
4.800  
4.750  
V
L
SR+  
SR-  
Positive Slew Rate  
0.13  
0.10  
0.20  
0.25  
V/µs  
V/µs  
kHz  
Negative Slew Rate  
Gain Bandwidth Product  
0.10  
0.09  
0.17  
0.19  
GBW  
FN6301.0  
June 23, 2006  
2
ISL28276  
Electrical Specifications  
V
= 5V, 0V, V  
= 0.1V, V = 1.4V, T = 25°C unless otherwise specified.  
+
CM  
O
A
Boldface limits apply over the operating temperature range, -40°C to +125°C (Continued)  
PARAMETER  
DESCRIPTION  
CONDITIONS  
All channels enabled.  
MIN  
TYP  
MAX  
UNIT  
I
I
I
I
Supply Current, Enabled  
120  
156  
µA  
S,ON  
175  
Supply Current, Disabled  
All channels disabled.  
4
7
9
µA  
mA  
mA  
S,OFF  
+
Short Circuit Sourcing Capability  
Short Circuit Sinking Capability  
R
R
= 10Ω  
= 10Ω  
29  
23  
31  
26  
SC  
SC  
L
L
-
24  
19  
V
V
V
Minimum Supply Voltage  
Enable Pin High Level  
Enable Pin Low Level  
Enable Pin Input Current  
2.4  
0.8  
V
V
S
2
INH  
INL  
V
I
V
V
= 5V  
= 0V  
0.7  
0
1.3  
1.5  
µA  
ENH  
EN  
EN  
I
Enable Pin Input Current  
-0.1  
+0.1  
µA  
ENL  
Typical Performance Curves  
8
45  
40  
35  
30  
25  
20  
15  
10  
5
4
V
= ±1.0V  
S
V
= ±1.25V  
S
0
-4  
-8  
V
= ±2.5V  
S
A
R
C
= 100  
= 10k  
= 2.7pF  
V
L
L
F
F
G
V
= ±2.5V  
S
A
= 1  
V = ±1.25V  
S
V
R
C
R
R
= 10kΩ  
= 2.7pF  
= 100Ω  
= OPEN  
L
L
F
G
R /R = 99.02  
R
R
V
= ±1.0V  
G
S
= 221kΩ  
= 2.23kΩ  
0
100  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 1. FREQUENCY RESPONSE vs SUPPLY VOLTAGE  
200  
FIGURE 2. FREQUENCY RESPONSE vs SUPPLY VOLTAGE  
0
V
= V /2  
CM  
= -1  
DD  
A
150  
100  
50  
V
-20  
V
, µV  
OS  
-40  
-60  
V
= 5V  
DD  
0
V
= 2.5V  
-50  
DD  
-100  
-150  
-200  
-80  
-100  
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
COMMON-MODE INPUT VOLTAGE (V)  
FIGURE 3. INPUT OFFSET VOLTAGE vs OUTPUT VOLTAGE  
FIGURE 4. INPUT OFFSET VOLTAGE vs COMMON-MODE  
INPUT VOLTAGE  
FN6301.0  
June 23, 2006  
3
ISL28276  
Typical Performance Curves (Continued)  
200  
150  
100  
50  
120  
80  
80  
100  
80  
60  
40  
20  
0
40  
PHASE  
40  
0
0
0
-40  
-80  
-120  
GAIN  
10k  
-50  
-100  
-150  
-40  
-80  
-20  
10  
100  
1k  
100k  
1M  
1
10  
100  
1k  
10k 100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 6. A  
vs FREQUENCY @ 1kLOAD  
FIGURE 5. A  
vs FREQUENCY @ 100kLOAD  
VOL  
VOL  
90  
80  
70  
60  
50  
40  
30  
120  
110  
100  
90  
V
= 5VDC  
S
V
= 1Vp-p  
SOURCE  
PSRR +  
R
= 100k  
L
A
= +1  
V
80  
70  
60  
PSRR -  
= 5VDC  
50  
40  
30  
V
V
S
= 1Vp-p  
SOURCE  
20  
10  
R
= 100k  
= +1  
L
A
V
0
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 8. CMRR vs FREQUENCY  
FIGURE 7. PSRR vs FREQUENCY  
2.56  
V
V
IN  
IN  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
V
= 5VDC  
= 0.1Vp-p  
S
V
OUT  
= 500Ω  
V
OUT  
R
L
A
= -2  
V
V
= 5VDC  
S
V
= 0.1Vp-p  
OUT  
= 500W  
V
OUT  
R
L
A
= +1  
V
0
100  
200  
300  
400  
500  
0
2
4
6
8
10 12 14 16 18 20  
FIGURE 9. SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 10. LARGE SIGNAL TRANSIENT RESPONSE  
FN6301.0  
June 23, 2006  
4
ISL28276  
Typical Performance Curves (Continued)  
1k  
100  
10  
10.00  
1.00  
0.10  
0.01  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 12. VOLTAGE NOISE vs FREQUENCY  
FIGURE 11. CURRENT NOISE vs FREQUENCY  
6
5
4
3
2
1
0
V+ = 5V  
V
IN  
100K  
VS +  
100K  
-
DUT  
+
1K  
VS -  
Function  
Generator  
33140A  
V
OUT  
1µV  
P-P  
0
50  
100  
150  
200  
TIME (1s/DIV)  
TIME (mS)  
FIGURE 13. 0.1Hz TO 10Hz INPUT VOLTAGE NOISE  
FIGURE 14. INPUT VOLTAGE SWING ABOVE THE V+ SUPPLY  
10k  
1k  
155  
135  
115  
95  
I +  
B
100  
10  
1
I
I -  
B
OS  
75  
55  
35  
0
1
2
3
4
5
2
2.5  
3
3.5  
4
4.5  
5
5.5  
COMMON-MODE INPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 15. INPUT BIAS + OFFSET CURRENTS vs  
COMMON-MODE INPUT VOLTAGE  
FIGURE 16. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FN6301.0  
June 23, 2006  
5
ISL28276  
Typical Performance Curves (Continued)  
120  
150  
140  
130  
120  
110  
100  
90  
n = 6  
n = 7  
110  
100  
90  
80  
70  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 17. SUPPLY CURRENT vs TEMPERATURE V = ±1.2V  
FIGURE 18. SUPPLY CURRENT vs TEMPERATURE V = ±2.5V  
S
S
ENABLED. R = INF  
L
ENABLED. R = INF  
L
1400  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
n = 7  
n = 7  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 19. I BIAS(+) vs TEMPERATURE V = ±2.5V  
S
FIGURE 20. I BIAS(+) vs TEMPERATURE V = ±1.2V  
S
1700  
1400  
n = 7  
n = 7  
1500  
1300  
1100  
900  
1200  
1000  
800  
600  
400  
200  
0
700  
500  
300  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 21. I BIAS(-) vs TEMPERATURE V = ±2.5V  
S
FIGURE 22. I BIAS(-) vs TEMPERATURE V = ±1.2V  
S
FN6301.0  
June 23, 2006  
6
ISL28276  
Typical Performance Curves (Continued)  
1200  
1300  
1100  
900  
n = 7  
n = 7  
1000  
800  
600  
400  
200  
0
700  
500  
300  
100  
-100  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 24. INPUT OFFSET CURRENT vs TEMPERATURE  
= ±1.2V  
FIGURE 23. INPUT OFFSET CURRENT vs TEMPERATURE  
= ±2.5V  
V
V
S
S
200  
150  
100  
50  
200  
150  
100  
50  
n = 5  
n = 6  
0
0
-50  
-50  
-100  
-150  
-100  
-150  
-200  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 26. INPUT OFFSET VOLTAGE vs TEMPERATURE  
= ±1.2V  
FIGURE25. INPUTOFFSETVOLTAGEvsTEMPERATURE  
= ±2.5V  
V
V
S
S
114  
112  
110  
108  
106  
104  
102  
130  
120  
110  
100  
90  
n = 6  
n = 7  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 27. CMRR vs TEMPERATURE V  
= +2.5V TO -2.5V  
FIGURE 28. PSRR vs TEMPERATURE V = ±1.2V TO ±2.5V  
S
CM  
FN6301.0  
June 23, 2006  
7
ISL28276  
Typical Performance Curves (Continued)  
2.40  
n = 5  
-2.32  
-2.33  
-2.34  
-2.35  
-2.36  
-2.37  
-2.38  
-2.39  
-2.4  
n = 5  
2.39  
2.38  
2.37  
2.36  
2.35  
2.34  
-40 -20  
0
20  
40  
60  
80  
100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 29. POSITIVE V  
vs TEMPERATURE R = 1k  
FIGURE 30. NEGATIVE V  
vs TEMPERATURE R = 1k  
OUT  
L
OUT  
L
V
= ±2.5V  
V = ±2.5V  
S
S
-2.4956  
-2.4958  
-2.496  
2.4992  
2.499  
n = 7  
n = 7  
2.4988  
2.4986  
2.4984  
2.4982  
2.498  
-2.4962  
-2.4964  
-2.4966  
-2.4968  
-2.497  
2.4978  
2.4976  
2.4974  
-2.4972  
-40 -20  
0
20  
40  
60  
80  
100 120  
-40 -20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. POSITIVE V  
vs TEMPERATURE R = 100k  
FIGURE 32. NEGATIVE V  
vs TEMPERATURE R = 100k  
OUT L  
OUT  
L
V
= ±2.5V  
V
= ±2.5V  
S
S
0.9  
0.8  
0.7  
0.6  
0.5  
14  
12  
10  
8
n = 7  
n = 5  
6
4
2
0
-2  
-4  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 33. I (EN) vs TEMPERATURE V = ±2.5V  
IL  
FIGURE 34. I (EN) vs TEMPERATURE V = ±2.5V  
IH  
S
S
FN6301.0  
June 23, 2006  
8
ISL28276  
Typical Performance Curves (Continued)  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
0.18  
n = 7  
n = 5  
0.16  
0.14  
0.12  
0.1  
0.08  
-40 -20  
0
20  
40  
60  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 35. + SLEW RATE vs TEMPERATURE V = ±2.5V  
FIGURE 36. - SLEW RATE vs TEMPERATURE V = ±2.5V  
S
S
INPUT = ±0.75V A = 2  
V
INPUT = ±0.75V A = 2  
V
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1
1.2  
1
893mW  
0.8  
0.6  
0.4  
0.2  
0
633mW  
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 37. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 38. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN6301.0  
June 23, 2006  
9
ISL28276  
Pin Descriptions  
ISL28276  
(16 LD QSOP) PIN NAME  
EQUIVALENT  
CIRCUIT  
DESCRIPTION  
1
2
3
4
5
6
NC  
NC  
No internal connection  
No internal connection  
Amplifier A output  
OUT_A  
IN-_A  
IN+_A  
EN_A  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 2  
Amplifier A inverting input  
Amplifier A non-inverting input  
Amplifier A enable pin internal pull-down; Logic “1” selects the disabled state; Logic “0” selects  
the enabled state.  
7
8
V-  
NC  
Circuit 4  
Negative power supply  
No internal connection  
No internal connection  
No internal connection  
9
NC  
10  
11  
NC  
EN_B  
Circuit 2  
Amplifier B enable pin with internal pull-down; Logic “1” selects the disabled state; Logic “0”  
selects the enabled state.  
12  
13  
14  
15  
16  
IN+_B  
IN-_B  
OUT_B  
V+  
Circuit 1  
Circuit 1  
Circuit 3  
Circuit 4  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
Positive power supply  
No internal connection  
NC  
V+  
V+  
V+  
V+  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
LOGIC  
PIN  
OUT  
V-  
IN-  
IN+  
V-  
V-  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
CIRCUIT 4  
amplifier. Many rail-to-rail input stages use two differential  
input pairs, a long-tail PNP (or PFET) and an NPN (or  
NFET). Severe penalties have to be paid for this circuit  
topology. As the input signal moves from one supply rail to  
another, the operational amplifier switches from one input  
pair to the other causing drastic changes in input offset  
voltage and an undesired change in magnitude and polarity  
of input offset current.  
Applications Information  
Introduction  
The ISL28276 is an enhanced rail-to-rail input micropower  
precision operational amplifiers with an enable feature. The  
part is designed to operate from single supply (2.4V to 5.0V)  
or dual supply (±1.2V to ±2.5V). The device is capable of  
swinging 0.5V above a 5.0V supply (0.25V for a 2.4V supply)  
and to within 10mV from ground. The ISL28276 maintains  
CMRR performance for input voltages greater than the  
positive supply. The output operation can swing within about  
3mV of the supply rails with a 100kload (reference  
Figures 29 through 32).  
The ISL28276 achieves input rail-to-rail without sacrificing  
important precision specifications and degrading distortion  
performance. The devices’ input offset voltage exhibits a  
smooth behavior throughout the entire common-mode input  
range. The input bias current versus the common-mode  
voltage range gives us an undistorted behavior from typically  
10mV above the negative rail and 10% higher than the V+  
rail (0.5V higher than V+ when V+ equals 5v).  
Rail-to-Rail Input  
The input common-mode voltage range of the ISL28276  
goes from negative supply to positive supply without  
introducing additional offset errors or degrading performance  
associated with a conventional rail-to-rail input operational  
FN6301.0  
June 23, 2006  
10  
ISL28276  
currents, components can be mounted to the PC board  
Input Protection  
using Teflon standoff insulators.  
All input terminals have internal ESD protection diodes to  
both positive and negative supply rails, limiting the input  
voltage to within one diode beyond the supply rails. The  
ISL28276 has additional back-to-back diodes across the  
input terminals. If overdriving the inputs is necessary, the  
external input current must never exceed 5mA. External  
series resistors may be used as an external protection to  
limit excessive external voltage and current from damaging  
the inputs.  
V+  
HIGH IMPEDANCE INPUT  
1/2 ISL28276  
IN  
FIGURE 39. GUARD RING EXAMPLE FOR UNITY GAIN  
AMPLIFIER  
Input Bias Current Compensation  
The input bias currents of the ISL28276 are decimated down  
to a typical of 500pA while maintaining an excellent  
bandwidth for a micro-power operational amplifier. Inside the  
ISL28276 is an input bias canceling circuit. The input stage  
transistors are still biased with an adequate current for  
speed but the canceling circuit sinks most of the base  
current, leaving a small fraction as input bias current.  
Example Application  
Thermocouples are the most popular temperature-sensing  
device because of their low cost, interchangeability, and  
ability to measure a wide range of temperatures. The  
ISL28276 (Figure 40) is used to convert the differential  
thermocouple voltage into single-ended signal with 10X gain.  
The ISL28276's rail-to-rail input characteristic allows the  
thermocouple to be biased at ground and the converter to  
run from a single 5V supply.  
Rail-to-Rail Output  
A pair of complementary MOSFET devices are used to  
achieve the rail-to-rail output swing. The NMOS sinks  
current to swing the output in the negative direction. The  
PMOS sources current to swing the output in the positive  
direction. The ISL28276 with a 100kload will swing to  
within 3mV of the supply rails.  
R
4
100kΩ  
R
R
10kΩ  
10kΩ  
3
2
V+  
+
ISL28276  
410µV/°C  
Enable/Disable Feature  
+
-
K TYPE  
THERMOCOUPLE  
V-  
5V  
The ISL28276 offers an EN pin that disables the device  
when pulled up to at least 2.2V. In the disabled state (output  
in a high impedance state), the part consumes typically 4µA.  
By disabling the part, multiple ISL28276 parts can be  
connected together as a MUX. The outputs are tied together  
in parallel and a channel can be selected by the EN pin. The  
EN pin also has an internal pull down. If left open, the EN pin  
will pull to the negative rail and the device will be enabled by  
default.  
R
1
100kΩ  
FIGURE 40. THERMOCOUPLE AMPLIFIER  
Proper Layout Maximizes Performance  
To achieve the maximum performance of the high input  
impedance and low offset voltage of the ISL28276, care  
should be taken in the circuit board layout. The PC board  
surface must remain clean and free of moisture to avoid  
leakage currents between adjacent traces. Surface coating  
of the circuit board will reduce surface moisture and provide  
a humidity barrier, reducing parasitic resistance on the  
board. When input leakage current is a concern, the use of  
guard rings around the amplifier inputs will further reduce  
leakage currents. Figure 39 shows a guard ring example for  
a unity gain amplifier that uses the low impedance amplifier  
output at the same voltage as the high impedance input to  
eliminate surface leakage. The guard ring does not need to  
be a specific width, but it should form a continuous loop  
around both inputs. For further reduction of leakage  
FN6301.0  
June 23, 2006  
11  
ISL28276  
Quarter Size Outline Plastic Packages Family (QSOP)  
A
MDP0040  
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY  
D
(N/2)+1  
N
SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.056  
0.010  
0.008  
0.193  
0.236  
0.154  
0.025  
0.025  
0.041  
16  
0.068  
0.006  
0.056  
0.010  
0.008  
0.341  
0.236  
0.154  
0.025  
0.025  
0.041  
24  
0.068  
0.006  
0.056  
0.010  
0.008  
0.390  
0.236  
0.154  
0.025  
0.025  
0.041  
28  
Max.  
±0.002  
±0.004  
±0.002  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
PIN #1  
I.D. MARK  
E
E1  
-
-
c
-
1
(N/2)  
D
1, 3  
B
E
-
0.010 C A B  
E1  
e
2, 3  
e
-
H
L
±0.009  
Basic  
-
C
SEATING  
L1  
N
-
PLANE  
Reference  
-
0.007 C A B  
b
0.004 C  
Rev. E 3/01  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.010” maximum per side are not  
included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
0.010  
A2  
GAUGE  
PLANE  
L
A1  
4°±4°  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6301.0  
June 23, 2006  
12  

相关型号:

ISL28276IAZ-T

Dual Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op-Amps
INTERSIL

ISL28276IAZ-T7

Dual and Quad Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op Amps
INTERSIL

ISL28276_07

Dual and Quad Precision Micropower Single Supply Rail-to-Rail Input and Output Precision Op Amps
INTERSIL

ISL28278

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL

ISL28278FAZ

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL

ISL28278FAZ-T7

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL

ISL28278_07

Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Op-Amp
INTERSIL

ISL28286

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL

ISL28286FUZ

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL

ISL28286FUZ

DUAL OP-AMP, 650uV OFFSET-MAX, 0.4MHz BAND WIDTH, PDSO10, ROHS COMPLIANT, MSOP-10
RENESAS

ISL28286FUZ-T7

Dual Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op-Amp
INTERSIL

ISL28286_07

Dual and Quad Micropower Single Supply Dual and Quad Micropower Single Supply Precision Op Amp
INTERSIL