ISL28413 [INTERSIL]

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifier; 单,双,四核通用微功耗, RRIO运算放大器
ISL28413
型号: ISL28413
厂家: Intersil    Intersil
描述:

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifier
单,双,四核通用微功耗, RRIO运算放大器

运算放大器
文件: 总21页 (文件大小:1159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single, Dual, Quad General Purpose Micropower,  
RRIO Operational Amplifier  
ISL28113, ISL28213, ISL28413 Features  
• Low Current Consumption . . . . . . . . . . . . .130µA  
• Wide Supply Range. . . . . . . . . . . . . 1.8V to 5.5V  
• Gain Bandwidth Product . . . . . . . . . . . . . . 2MHz  
• Input Bias Current . . . . . . . . . . . . . . 20pA, Max.  
• Operating Temperature Range . ..-40°C to +125°C  
• Packages  
- ISL28113 (Single) . . . . . . . . . SC70-5, SOT23-5  
- ISL28213 (Dual) . . . . . . . . . . . . . MSOP8, SO8  
- ISL28413 (Quad). . . . . . . . . SOIC14, TSSOP14  
The ISL28113, ISL28213, and ISL28413 are single,  
dual, and quad channel general purpose micropower,  
rail-to-rail input and output operational amplifiers with  
supply voltage range of 1.8V to 5.5V. Key features are  
a low supply current of 130µA maximum per channel  
at room temperature, a low bias current and a wide  
input voltage range, which enables the ISL28x13  
devices to be excellent general purpose op-amps for a  
wide range of applications.  
The ISL28113 is available in the SC70-5 and SOT23-5  
packages, the ISL28213 is in the MSOP8, SO8 packages,  
and the ISL28413 is in the TSSOP14, SOIC14 packages.  
All devices operate over the extended temperature range  
of -40°C to +125°C.  
Applications*(see page 15)  
• Power Supply Control/Regulation  
• Process Control  
• Signal Gain/Buffers  
• Active Filters  
• Current Shunt Sensing  
Trans-impedance Amps  
Typical Application  
RF  
100kΩ  
LOAD  
RIN-  
+5V  
IN-  
-
VOUT  
V+  
ISL28x13  
RSENSE  
10kΩ  
V-  
RIN+  
IN+  
+
10kΩ  
GAIN = 10  
RREF+  
100kΩ  
VREF  
SINGLE-SUPPLY, LOW-SIDE CURRENT SENSE AMPLIFIER  
December 22, 2009  
FN6728.3  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2009. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL28113, ISL28213, ISL28413  
Ordering Information  
PART NUMBER  
(Note 2)  
PART  
MARKING  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
ISL28113FEZ-T7 (Note 1)  
BJA  
5 Ld SC-70  
P5.049  
P5.049  
ISL28113FEZ-T7A (Note 1)  
ISL28113FHZ-T7 (Note 1)  
ISL28113FHZ-T7A (Note 1)  
ISL28213FUZ  
BJA  
5 Ld SC-70  
5 Ld SOT-23  
5 Ld SOT-23  
8 Ld MSOP  
8 Ld MSOP  
8 Ld SOIC  
BCYA  
BCYA  
8213Z  
8213Z  
MDP0038  
MDP0038  
M8.118A  
M8.118A  
M8.15E  
ISL28213FUZ-T7 (Note 1)  
ISL28213FBZ  
28213 FBZ  
28213 FBZ  
28213 FBZ  
28413 FVZ  
28413 FVZ  
28413 FVZ  
28413 FBZ  
28413 FBZ  
28413 FBZ  
ISL28213FBZ-T7 (Note 1)  
ISL28213FBZ-T13 (Note 1)  
ISL28413FVZ  
8 Ld SOIC  
M8.15E  
8 Ld SOIC  
M8.15E  
14 Ld TSSOP  
14 Ld TSSOP  
14 Ld TSSOP  
14 Ld SOIC  
14 Ld SOIC  
14 Ld SOIC  
MDP0044  
MDP0044  
MDP0044  
MDP0027  
MDP0027  
MDP0027  
ISL28413FVZ-T7 (Note 1)  
ISL28413FVZ-T13 (Note 1)  
ISL28413FBZ  
ISL28413FBZ-T7 (Note 1)  
ISL28413FBZ-T13 (Note 1)  
NOTES:  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28113, ISL28213, ISL28413. For more  
information on MSL please see techbrief TB363.  
Pin Configurations  
ISL28113  
(5 LD SC-70)  
TOP VIEW  
ISL28113  
(5 LD SOT-23)  
TOP VIEW  
ISL28213  
(8 LD MSOP, 8 LD SOIC)  
TOP VIEW  
V +  
S
V +  
S
1
2
8
7
V +  
IN+  
1
2
3
5
4
OUT  
1
2
3
5
OUT_A  
IN-_A  
IN+_A  
S
OUT_B  
IN-_B  
IN+_B  
V -  
S
V -  
S
OUT  
IN-  
IN-  
IN+  
4
3
4
6
5
V -  
S
FN6728.3  
December 22, 2009  
2
ISL28113, ISL28213, ISL28413  
Pin Configurations(Continued)  
ISL28413  
(14 LD TSSOP, 14 LD SOIC)  
TOP VIEW  
OUT_A  
IN-_A  
IN+_A  
1
2
3
4
5
6
7
14 OUT_D  
13 IN-_D  
12 IN+_D  
V +  
11 V -  
S
S
IN+_B  
IN-_B  
OUT_B  
10 IN+_C  
9
8
IN-_C  
OUT_C  
Pin Descriptions  
PIN NUMBER  
TSSOP14,  
PIN NAME SC70-5 SOT23-5 MSOP8, SO8 14 LD SOIC  
DESCRIPTION  
Output  
V+  
OUT  
V-  
OUT  
4
1
OUT_A  
OUT_B  
OUT_C  
OUT_D  
1
7
1
7
8
14  
CIRCUIT 1  
V -  
S
2
2
4
11  
Negative supply voltage  
V
CAPACITIVELY  
TRIGGERED  
ESD CLAMP  
V-  
CIRCUIT 2  
IN+  
1
3
3
4
Positive Input  
Negative Input  
V+  
IN+  
V-  
IN+_A  
IN+_B  
IN+_C  
IN+_D  
3
5
3
5
10  
12  
IN-  
IN-  
IN-_A  
IN-_B  
IN-_C  
IN-_D  
2
6
2
6
9
13  
CIRCUIT 3  
See Circuit 2  
V +  
5
5
8
4
Positive supply voltage  
S
FN6728.3  
December 22, 2009  
3
ISL28113, ISL28213, ISL28413  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.5V  
Supply Turn-on Voltage Slew Rate . . . . . . . . . . . . . . . 1V/µs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . 20mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . 0.5V  
Input Voltage. . . . . . . . . . . . . . . . . .V- - 0.5V to V+ + 0.5V  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . 4000V  
Machine Model  
ISL28113, ISL28213 . . . . . . . . . . . . . . . . . . . . . . 350V  
ISL28413. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400V  
Charged Device Model . . . . . . . . . . . . . . . . . . . . . 2000V  
Thermal Resistance (Typical)  
θ
JA (°C/W)  
θ
JC (°C/W)  
5 Ld SC-70 (Notes 4, 5). . . . . . . .  
5 Ld SOT-23 (Notes 4, 5) . . . . . . .  
8 Ld MSOP (Notes 4, 5) . . . . . . . .  
8 Ld SO Package (Notes 4, 5). . . .  
14 Ld TSSOP Package (Notes 4, 5)  
14 Ld SOIC Package (Notes 4, 5) .  
Ambient Operating Temperature Range. . . . -40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . -65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . +125°C  
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
250  
225  
180  
126  
120  
90  
N/A  
N/A  
100  
90  
40  
50  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief  
JA  
TB379 for details.  
5. For θ , the “case temp” location is the top of the package.  
JC  
Electrical Specifications V + = 5V, V - = 0V, R = Open, V  
= V /2, T = +25°C, unless otherwise specified.  
S A  
Boldface limits apply over the operating temperature range, -40°C to +125°C,  
unless otherwise specified.  
S
S
L
CM  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 6)  
TYP  
0.5  
2
(Note 6)  
UNIT  
DC SPECIFICATIONS  
V
Input Offset Voltage  
-5  
5
6
mV  
mV  
OS  
-6  
TCV  
Input Offset Voltage  
Temperature Coefficient  
-40°C to +125°C  
10  
µV/°C  
OS  
I
I
Input Offset Current  
Input Bias Current  
1
3
30  
20  
pA  
pA  
pA  
pA  
pA  
V
OS  
B
ISL28113  
-20  
-100  
-20  
100  
20  
ISL28213, ISL28413  
3
-50  
50  
Common Mode Input  
Voltage Range  
- 0.1V  
+5.1V  
12  
Z
C
Input Impedance  
Input Capacitance  
10  
Ω
pF  
dB  
dB  
dB  
dB  
V
IN  
1
72  
IN  
CMRR  
Common Mode Rejection Ratio VCM = -0.1V to 5.1V  
70  
PSRR  
Power Supply Rejection Ratio Vs =1.8V to 5.5V  
71  
70  
V
V
V
Output Voltage Swing, High  
Output Voltage Swing, Low  
Supply Voltage  
R = 10kΩ  
4.985  
4.993  
OH  
OL  
+
L
4.98  
V
R
= 10kΩ  
13  
15  
20  
5.5  
mV  
mV  
V
L
1.8  
FN6728.3  
December 22, 2009  
4
ISL28113, ISL28213, ISL28413  
Electrical Specifications V + = 5V, V - = 0V, R = Open, V  
= V /2, T = +25°C, unless otherwise specified.  
S A  
Boldface limits apply over the operating temperature range, -40°C to +125°C,  
unless otherwise specified.  
S
S
L
CM  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
µA  
I
Supply Current per Amplifier R = OPEN  
90  
130  
S
L
170  
µA  
I
I
Output Source Short Circuit  
Current  
R = 10Ω to V-  
-22  
16  
mA  
SC+  
SC-  
L
Output Sink Short Circuit  
Current  
R = 10Ω to V+  
mA  
L
AC SPECIFICATIONS  
GBWP  
Gain Bandwidth Product  
V
= ±2.5V  
2
MHz  
S
A = 100, R = 100kΩ,  
V
F
L
R
V
= 1kΩ, R = 10kΩ to  
G
CM  
e
e
V
Peak-to-Peak Input Noise  
Voltage  
V
= ±2.5V  
14  
55  
5
µV  
P-P  
N
P-P  
S
f = 0.1Hz to 10Hz  
Input Noise Voltage Density  
Input Noise Current Density  
Differential Input Capacitance  
V
= ±2.5V  
nV/(Hz)  
fA/(Hz)  
N
S
f = 1kHz  
V = ±2.5V  
S
i
N
f = 1kHz  
C
V
= ±2.5V  
1.0  
1.3  
pF  
pF  
in  
S
f = 1MHz  
Common Mode Input  
Capacitance  
TRANSIENT RESPONSE  
SR Slew Rate 20% to 80% V  
V
= 0.5V to 4.5V  
1
V/µs  
ns  
OUT  
Rise Time, t 10% to 90%  
OUT  
= ±2.5V  
S
t , t , Small Signal  
V
100  
115  
r
f
r
A = +1, V  
= 0.05V  
,
P-P  
V
OUT  
Fall Time, t 10% to 90%  
f
ns  
R = 0Ω, R = 10kΩ,  
F
L
L
C = 15pF  
t
Settling Time to 0.1%, 4V  
Step  
V = ±2.5V  
S
7.5  
µs  
s
P-P  
A = +1, R = 0Ω,  
V
F
R = 10kΩ, C = 1.2pF  
L
L
NOTE:  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established  
by characterization and are not production tested.  
FN6728.3  
December 22, 2009  
5
ISL28113, ISL28213, ISL28413  
Typical Performance Curves V = ±2.5V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified.  
50  
40  
10,000  
V
A
= ±2.5V  
= 1  
+
V
30  
20  
1000  
10  
0
-10  
-20  
-30  
-40  
-50  
100  
10  
SIMULATION  
-20  
-40  
0
20  
40  
60  
80  
100 120 140  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
FIGURE 2. INPUT NOISE VOLTAGE SPECTRAL  
DENSITY  
FIGURE 1. INPUT BIAS CURRENT vs TEMPERATURE  
120  
100  
80  
20  
120  
100  
80  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-20  
GAIN  
GAIN  
60  
60  
-40  
40  
40  
20  
0
-60  
20  
-80  
0
-100  
-120  
-140  
-160  
-180  
V
R
C
= ±0.9V  
= 100k  
= 10pF  
V
R
C
= ±2.5V  
= 100k  
= 10pF  
+
L
-20  
-40  
-60  
-80  
+
L
-20  
-40  
-60  
-80  
PHASE  
PHASE  
L
L
SIMULATION  
SIMULATION  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. OPEN-LOOP GAIN, PHASE vs FREQUENCY,  
R = 100kΩ, C = 100F, V = ±2.5V  
FIGURE 3. OPEN-LOOP GAIN, PHASE vs FREQUENCY,  
R = 100kΩ, C = 10pF, V = ±0.9V  
L
L
S
L
L
S
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
PSRR- V = ±2.5V  
S
PSRR- V = ±0.9V  
S
PSRR+ V = ±0.9V  
S
PSRR+ V = ±2.5V  
S
R
C
= INF  
= 4pF  
= +1  
L
L
A
V
SIMULATION  
V
= 100mV  
CM  
P-P  
100  
1k  
10k  
100k  
1M  
10M  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. CMRR vs FREQUENCY, V = ±2.5  
S
FIGURE 6. PSRR vs FREQUENCY, V = ±0.9V, ±2.5V  
S
FN6728.3  
December 22, 2009  
6
ISL28113, ISL28213, ISL28413  
Typical Performance Curves V = ±2.5V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
70  
60  
50  
40  
30  
20  
10  
0
1
0
R
= 100, R = 100k  
f
g
A
= 1000  
V
-1  
-2  
-3  
-4  
-5  
R
= 1k, R = 100k  
f
g
A
= 100  
= 10  
V
= ±2.5V  
= 4pF  
= 10k  
V
+
L
L
C
V
V
= 10mV  
= 50mV  
OUT  
P-P  
R
OUT  
OUT  
P-P  
V
= 50mV  
OUT  
P-P  
A
V
V
= 100mV  
P-P  
V
= ±2.5V  
= 4pF  
= +1  
V
= 200mV  
= 500mV  
S
OUT  
P-P  
R
A
= 10k, R = 100k  
f
-6  
g
C
V
L
OUT  
P-P  
-7  
= 1  
A
V
V
V
= 1V  
P-P  
OUT  
-8  
R
= 10k  
L
R
= OPEN, R = 0  
f
g
-10  
-9  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 7. FREQUENCY RESPONSE vs CLOSED LOOP  
GAIN  
FIGURE 8. FREQUENCY RESPONSE vs V  
OUT  
6
5
1
0
4
3
C
= 1004pF  
-1  
L
R
= 49.9k  
L
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
C
= 474pF  
L
R
= 10k  
L
2
C
= 224pF  
L
1
R
= 4.99k  
L
0
V
C
= ±2.5V  
= 4pF  
= +1  
R
= 1k  
+
C
= 104pF  
-1  
-2  
-3  
-4  
V
= ±2.5V  
= 10k  
= +1  
L
L
S
L
R
A
V
L
C
= 26pF  
= 4pF  
L
R
= 499  
L
A
V
V
OUT  
C
= 50mV  
V
= 50mV  
L
P-P  
OUT  
P-P  
R
= 100  
L
10k  
1k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FIGURE 10. GAIN vs FREQUENCY vs C  
FIGURE 9. GAIN vs FREQUENCY vs R  
L
L
1
0
140  
120  
100  
80  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
= ±2.5V  
S
60  
R -DRIVER = INF  
V
= ±2.5V  
L
S
R -RECEIVER = 10k  
L
C
= 4pF  
= 10k  
= +1  
L
L
V
= ±1.75V  
= ±1.25V  
= ±0.9V  
40  
S
C
A
= 4pF  
= +1  
R
A
V
L
V
V
S
V
V
20  
= 50mV  
V
= 1V  
S
OUT  
P-P  
SOURCE  
P-P  
0
10  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 12. CROSSTALK, V = ±2.5V  
FIGURE 11. GAIN vs FREQUENCY vs SUPPLY  
VOLTAGE  
S
FN6728.3  
December 22, 2009  
7
ISL28113, ISL28213, ISL28413  
Typical Performance Curves V = ±2.5V, V = 0V, R = Open, unless otherwise  
S
CM  
L
specified. (Continued)  
30  
3
V
= ±2.5V  
S
20  
2
1
10  
V
= ±2.5V  
V
= ±0.9V  
S
S
R
C
= 10k  
= 15pF  
= +1  
L
L
0
0
R
C
= 10k  
= 15pF  
= +1  
L
L
A
OUT  
V
-10  
-20  
-30  
-1  
-2  
-3  
V
= 50mV  
P-P  
A
OUT  
V
V
= RAIL  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (ns)  
TIME (ms)  
FIGURE 14. LARGE SIGNAL TRANSIENT RESPONSE vs  
R V = ±0.9V, ±2.5V  
FIGURE 13. SMALL SIGNAL TRANSIENT RESPONSE,  
V = ±2.5V  
L
S
S
0.5  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
INPUT  
OUTPUT @ V = ±2.5V  
S
0
R
C
= INF  
= 15pF  
=10  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
L
L
OUTPUT @ V =±0.9V  
S
A
V
R
C
= INF  
= 15pF  
=10  
L
L
R = 9.09k, R = 1k  
f
g
A
V
OUTPUT @ V =±0.9V  
S
R = 9.09k, R = 1k  
f
g
OUTPUT @ V = ±2.5V  
S
INPUT  
-0.1  
-0.5  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (ms)  
TIME (ms)  
FIGURE 15. NEGATIVE OUTPUT OVERLOAD  
FIGURE 16. POSITIVE OUTPUT OVERLOAD  
RESPONSE TIME, V = ±0.9V, ±2.5V  
RESPONSE TIME, V = ±0.9V, ±2.5V  
S
S
90  
V
L
= ±2.5V  
S
R
A
= 10k  
= 1  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 50mV  
OUT  
P-P  
10  
100  
1k  
10k  
CAPACITANCE (pF)  
FIGURE 17. % OVERSHOOT vs LOAD CAPACITANCE, V = ±2.5V  
S
FN6728.3  
December 22, 2009  
8
ISL28113, ISL28213, ISL28413  
Power Dissipation  
It is possible to exceed the +125°C maximum junction  
temperatures under certain load, power supply  
Applications Information  
Functional Description  
The ISL28113, ISL28213 and ISL28413 are single, dual  
and quad, CMOS rail-to-rail input, output (RRIO)  
conditions and ambient temperature conditions. It is  
therefore important to calculate the maximum junction  
micropower operational amplifiers. They are designed to  
operate from single supply (1.8V to 5.5V) or dual supply  
(±0.9V to ±2.75V). The parts have an input common  
mode range that extends 100mV above and below the  
power supply voltage rails. The output stage can swing to  
within 15mV of the supply rails with a 10kΩ load.  
temperature (T ) for all applications to determine if  
JMAX  
power supply voltages, load conditions, or package type  
need to be modified to remain in the safe operating area.  
These parameters are related using Equation 1:  
(EQ. 1)  
T
= T  
+ θ xPD  
MAX JA MAXTOTAL  
JMAX  
Input ESD Diode Protection  
where:  
• P  
All input terminals have internal ESD protection diodes  
to both positive and negative supply rails, limiting the  
input voltage to within one diode beyond the supply  
rails. They also contain back-to-back diodes across the  
input terminals (see “Pin Descriptions - Circuit 1” on  
page 3). For applications where the input differential  
voltage is expected to exceed 0.5V, an external series  
resistor must be used to ensure the input currents  
never exceed 20mA (see Figure 18).  
is the sum of the maximum power  
DMAXTOTAL  
dissipation of each amplifier in the package (PD  
)
MAX  
• PD  
for each amplifier can be calculated using  
MAX  
Equation 2:  
V
OUTMAX  
----------------------------  
PD  
= V × I  
+ (V - V  
) ×  
MAX  
S
qMAX  
S
OUTMAX  
(EQ. 2)  
R
L
where:  
• T  
MAX  
= Maximum ambient temperature  
-
θ = Thermal resistance of the package  
JA  
V
R
OUT  
IN  
V
R
IN  
+
• PD  
= Maximum power dissipation of 1 amplifier  
L
MAX  
• V = Total supply voltage  
S
• I  
qMAX  
= Maximum quiescent supply current of 1  
amplifier  
FIGURE 18. INPUT CURRENT LIMITING  
Although the amplifier is fully protected, high input slew  
rates that exceed the amplifier slew rate (±1V/µs) may  
cause output distortion.  
• V  
= Maximum output voltage swing of the  
OUTMAX  
application  
• R = Load resistance  
L
Output Phase Reversal  
ISL28113, ISL28213 and ISL28413 SPICE  
Model  
Output phase reversal is a change of polarity in the  
amplifier transfer function when the input voltage  
exceeds the supply voltage. The ISL28113, ISL28213  
and ISL28413 are immune to output phase reversal,  
even when the input voltage is 1V beyond the supplies.  
Figure 20 shows the SPICE model schematic and  
Figure 21 shows the net list for the SPICE model. The  
model is a simplified version of the actual device and  
simulates important AC and DC parameters. AC  
parameters incorporated into the model are: 1/f and  
flatband noise, Slew Rate, CMRR, Gain and Phase. The  
DC parameters are IOS, total supply current and output  
voltage swing. The model uses typical parameters given  
in the “Electrical Specifications” Table beginning on  
page 4. The AVOL is adjusted for 85dB with the  
dominate pole at 100Hz. The CMRR is set 72dB,  
f = 35kHz). The input stage models the actual device to  
present an accurate AC representation. The model is  
configured for ambient temperature of +25°C.  
Unused Channels  
If the application requires less than all amplifiers one  
channel, the user must configure the unused channel(s)  
to prevent it from oscillating. The unused channel(s) will  
oscillate if the input and output pins are floating. This will  
result in higher than expected supply currents and  
possible noise injection into the channel being used. The  
proper way to prevent this oscillation is to short the  
output to the inverting input and ground the positive  
input (as shown in Figure 19).  
Figures 22 through 31 show the characterization vs  
simulation results for the Noise Voltage, Closed Loop  
Gain vs Frequency, Large Signal 5V Step Response,  
CMRR and Open Loop Gain Phase.  
-
+
FIGURE 19. PREVENTING OSCILLATIONS IN  
UNUSED CHANNELS  
FN6728.3  
December 22, 2009  
9
ISL28113, ISL28213, ISL28413  
LICENSE STATEMENT  
The information in this SPICE model is protected under  
the United States copyright laws. Intersil Corporation  
hereby grants users of this macro-model hereto referred  
to as “Licensee, a nonexclusive, nontransferable licence  
to use this model as long as the Licensee abides by the  
terms of this agreement. Before using this macro-model,  
the Licensee should read this license. If the Licensee  
does not accept these terms, permission to use the  
model is not granted.  
The Licensee may not sell, loan, rent, or license the  
macro-model, in whole, in part, or in modified form, to  
anyone outside the Licensee’s company. The Licensee  
may modify the macro-model to suit his/her specific  
applications, and the Licensee may make copies of this  
macro-model for use within their company only.  
This macro-model is provided “AS IS, WHERE IS, AND  
WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED  
OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY AND  
FITNESS FOR A PARTICULAR PURPOSE.”  
In no event will Intersil be liable for special, collateral,  
incidental, or consequential damages in connection with  
or arising out of the use of this macro-model. Intersil  
reserves the right to make changes to the product and  
the macro-model without prior notice.  
FN6728.3  
December 22, 2009  
10  
ISL28113, ISL28213, ISL28413  
En  
Vin+  
R21  
800E3  
Voltage Noise Stage  
28  
V++  
V9  
DN  
D13  
29  
+
I2  
V1  
G1A  
5E-3  
R10  
1E9  
1E-6V  
0.00035V  
2
-
+
-
RA1  
1
En  
R1  
R2  
10  
9
8
DX  
D1  
Vc  
M16  
M17  
1.0004 1.0004  
3
R9  
100  
14  
R22  
5E11  
4
5
+
-
+
R5  
10  
R6  
10  
Vmid  
1
-
15  
4
DX  
D2  
CinDiff  
1.02pF  
R3  
10  
R4  
10  
6
11  
12  
EOS  
R23  
5E11  
RA2  
In+  
5
R7  
1
R8  
1
G2A  
M14  
M15  
Vc  
Vmid  
1
-
+
7
13  
Vin-  
IOS  
+
Cin1  
Cin2  
I1  
5E-3  
1E-6V  
25E-12  
1.26pF 1.26pF  
V2  
-
V--  
V--  
VCM  
V++  
ST  
1
Gain Stage  
Input Stage  
V++  
318.329E3  
R13  
D3  
D5  
DX  
G5  
G1  
G3  
L1  
DX  
17  
19  
4
4.5474  
+
+
+
-
+
-
+
-
R11  
1
V3  
V5  
21  
C2  
R15  
1E6  
0.61V  
-
-
5.0nF  
0.604V  
Vmid  
5
16  
Vc  
Vg  
Vg  
Vc  
R16  
1E6  
Vmid  
R12  
1
C3  
Vmid  
G4  
G6  
G2  
E4  
0.604V  
22  
5.0nF  
+
+
-
+
-
+
-
+
V4  
V6  
+
-
+
L2  
-
0.61V  
-
-
R14  
18  
20  
4.5474  
D6  
D4  
DX  
318.329E3  
V--  
V--  
DX  
VCM  
VCM  
ST  
nd  
Mid Supply Ref  
Common Mode Gain Stage  
1
Gain Stage (Cont)  
2
Gain Stage  
V++  
G7  
C4  
D9  
DX  
D10  
DX  
G11  
V+  
10pF  
V+  
+
-
+
-
+
E2  
R19  
50  
-
-
+
26  
27  
V7  
R17  
5305.32  
DX  
DX  
D7  
D8  
24  
25  
ISY  
V
OUT  
Vg  
VOUT  
0.08V  
90uA  
23  
V8  
Vmid  
V-  
0.08V  
R20  
50  
R18  
G12  
5305.32  
-
+
+
-
+
-
-
+
D11  
DY  
-
+
D12  
DY  
-
E3  
V-  
+
C3  
10pF  
V--  
G9  
G10  
G8  
Pole Stage  
Supply Isolation Stage  
Output Stage  
FIGURE 20. SPICE SCHEMATIC  
FN6728.3  
December 22, 2009  
11  
ISL28113, ISL28213, ISL28413  
* source ISL28113_SPICEmodel  
*2nd Gain Stage  
* Revision C, LaFontaine October 9th 2009  
* Model for Noise, supply currents, CMRR 72dB f=35kHz ,AVOL 85dB  
f=100Hz  
* SR = 1.0V/us, GBWP 2MHz, 2nd pole 3MHz Output voltage clamp  
and short ckt I limit  
G_G3  
G_G4  
V_V5  
V_V6  
D_D5  
D_D6  
R_R13  
R_R14  
C_C2  
C_C3  
*
V++ VG 16 VMID 24.893e-3  
V-- VG 16 VMID 24.893e-3  
19 VG .604  
VG 20 .604  
19 V++ DX  
*Copyright 2009 by Intersil Corporation  
V-- 20 DX  
*Refer to data sheet “LICENSE STATEMENT” Use of  
*this model indicates your acceptance with the  
*terms and provisions in the License Statement.  
VG V++ 318.329e3 TC=0,0  
V-- VG 318.329e3 TC=0,0  
VG V++ 5E-09 TC=0,0  
V-- VG 5E-09 TC=0,0  
* Connections:  
+input  
*
*
*
*
|
|
|
|
|
-input  
|
|
|
|
+Vsupply  
*Mid supply Ref  
|
|
|
-Vsupply  
|
|
E_E4  
E_E2  
E_E3  
I_ISY  
*
VMID V-- V++ V-- 0.5  
V++ 0 V+ 0 1  
V-- 0 V- 0 1  
output  
|
VOUT  
*
.subckt ISL28113subckt  
* source ISL28113_DS rev1  
*
Vin+ Vin- V+  
V-  
V+ V- DC 90e-6  
*Common Mode Gain Stage with Zero  
*Voltage Noise  
G_G5  
G_G6  
E_EOS  
R_R15  
R_R16  
R_R22  
R_R23  
L_L1  
L_L2  
*
*Pole Satge  
G_G7  
G_G8  
V++ VC VCM VMID 2.5118E-10  
V-- VC VCM VMID 2.5118E-10  
1 EN VC VMID 1  
VC 21 1e6 TC=0,0  
22 VC 1e6 TC=0,0  
EN VCM 5e11 TC=0,0  
VCM VIN- 5e11 TC=0,0  
21 V++ 4.5474  
E_En  
D_D13  
V_V9  
VIN+ EN 28 0 1  
29 28 DN  
29 0 .00035  
R_R21  
*
28 0 800E3 TC=0,0  
*Input Stage  
M_M14  
M_M15  
M_M16  
M_M17  
3 1 5 5 NCHANNELMOSFET  
4 VIN- 6 6 NCHANNELMOSFET  
11 VIN- 9 9 PMOSISIL  
22 V-- 4.5474  
12 1 10 10 PMOSISIL  
I_I1  
7 V-- DC 5e-3  
V++ 23 VG VMID 188.49e-6  
V-- 23 VG VMID 188.49e-6  
23 V++ 5305.32 TC=0,0  
V-- 23 5305.32 TC=0,0  
23 V++ 10e-12 TC=0,0  
V-- 23 10e-12 TC=0,0  
I_I2  
V++ 8 DC 5e-3  
I_IOS  
G_G1A  
G_G2A  
V_V1  
V_V2  
R_R1  
R_R2  
R_R3  
R_R4  
R_R5  
R_R6  
R_R7  
R_R8  
R_RA1  
R_RA2  
C_CinDif  
C_Cin1  
C_Cin2  
*
VIN- 1 DC 25e-12  
V++ 14 4 3 1404  
V-- 14 11 12 1404  
V++ 2 1e-6  
R_R17  
R_R18  
C_C4  
C_C5  
*
13 V-- 1e-6  
3 2 1.0004 TC=0,0  
4 2 1.0004 TC=0,0  
5 7 10 TC=0,0  
7 6 10 TC=0,0  
9 8 10 TC=0,0  
8 10 10 TC=0,0  
13 11 1 TC=0,0  
13 12 1 TC=0,0  
14 V++ 1 TC=0,0  
V-- 14 1 TC=0,0  
VIN- EN 1.02E-12 TC=0,0  
V-- EN 1.26e-12 TC=0,0  
V-- VIN- 1.26e-12 TC=0,0  
*Output Stage with Correction Current Sources  
G_G9  
G_G10  
G_G11  
G_G12  
V_V7  
V_V8  
D_D7  
D_D8  
D_D9  
D_D10  
D_D11  
D_D12  
R_R19  
R_R20  
26 V-- VOUT 23 0.02  
27 V-- 23 VOUT 0.02  
VOUT V++ V++ 23 0.02  
V-- VOUT 23 V-- 0.02  
24 VOUT .08  
VOUT 25 .08  
23 24 DX  
25 23 DX  
V++ 26 DX  
V++ 27 DX  
V-- 26 DY  
V-- 27 DY  
VOUT V++ 50 TC=0,0  
V-- VOUT 50 TC=0,0  
*1st Gain Stage  
G_G1  
G_G2  
V_V3  
V_V4  
D_D1  
D_D2  
D_D3  
D_D4  
R_R9  
R_R10  
R_R11  
R_R12  
*
V++ 16 15 VMID 334.753e-3  
V-- 16 15 VMID 334.753e-3  
17 16 .61  
16 18 .61  
15 VMID DX  
VMID 15 DX  
17 V++ DX  
V-- 18 DX  
15 14 100 TC=0,0  
15 VMID 1e9 TC=0,0  
16 V++ 1 TC=0,0  
V-- 16 1 TC=0,0  
.model pmosisil pmos (kp=16e-3 vto=-0.6)  
.model NCHANNELMOSFET nmos (kp=3e-3 vto=0.6)  
.model DN D(KF=6.69e-9 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28113subckt  
FIGURE 21. SPICE NET LIST  
FN6728.3  
December 22, 2009  
12  
ISL28113, ISL28213, ISL28413  
Characterization vs Simulation Results  
(A) AC sims.dat (active)  
10  
10,000  
V
A
= ±2.5V  
= 1  
+
V
1000  
1.0  
100  
10  
100  
1.0  
10  
100  
1.0k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 23. SIMULATED INPUT NOISE VOLTAGE  
FIGURE 22. CHARACTERIZED INPUT NOISE VOLTAGE  
(A) AC sims.dat (active)  
70  
70  
R
= 100, R = 100k  
f
g
A
= 1000  
V
60  
40  
20  
60  
50  
40  
30  
20  
10  
0
R
= 1k, R = 100k  
f
g
A
= 100  
= 10  
V
= ±2.5V  
= 4pF  
= 10k  
V
+
L
L
C
R
V
= 50mV  
OUT  
P-P  
A
V
R
= 10k, R = 100k  
f
g
A
= 1  
V
0
R
= OPEN, R = 0  
f
g
-10  
-10  
10  
100  
1.0k  
10k  
100k  
1.0M  
10M 100M  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
10M  
100M  
10  
100  
FREQUENCY (Hz)  
FIGURE 24. CHARACTERIZED CLOSED LOOP GAIN vs  
FREQUENCY  
FIGURE 25. SIMULATED CLOSED LOOP GAIN vs  
FREQUENCY  
(A) AC sims.dat (active)  
3
3
V
OUT  
V
= ±2.5V  
= ±0.9V  
2
1
2
1
S
V
= ±2.5V  
S
V
V
IN  
S
-0  
-1  
-2  
-3  
0
R = 10k  
L
C
A
V
= 15pF  
= +1  
OUT  
L
V
R
= 10k  
-1  
-2  
-3  
L
L
C
= 15pF  
= +10  
= RAIL  
A
V
V
= RAIL  
OUT  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
30  
TIME (µs)  
TIME (ms)  
FIGURE 27. SIMULATED LARGE SIGNAL TRANSIENT  
RESPONSE vs R , V = ±0.9V, ±2.5V  
FIGURE 26. CHARACTERIZED LARGE SIGNAL  
TRANSIENT RESPONSE vs R ,  
L
S
L
V = ±0.9V, ±2.5V  
S
FN6728.3  
December 22, 2009  
13  
ISL28113, ISL28213, ISL28413  
Characterization vs Simulation Results(Continued)  
(A) AC sims.dat (active)  
200  
160  
120  
80  
120  
100  
80  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
GAIN  
60  
40  
20  
0
V
R
= ±2.5V  
= 100k  
= 10pF  
+
L
-20  
-40  
-60  
-80  
PHASE  
40  
C
L
SIMULATION  
0
0.01 0.1  
1.0  
10  
100 1.0k 10k 100k 1.0M 10M 100M  
FREQUENCY (Hz)  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FIGURE 28. SIMULATED (DESIGN) OPEN-LOOP GAIN,  
PHASE vs FREQUENCY  
FIGURE 29. SIMULATED (SPICE) OPEN-LOOP GAIN,  
PHASE vs FREQUENCY  
(A) AC sims.dat (active)  
80  
80  
70  
60  
50  
40  
30  
20  
60  
40  
20  
0
10  
SIMULATION  
0
0.01 0.1  
1.0  
10 100 1.0k 10k 100k 1.0M 10M 100M  
FREQUENCY (Hz)  
0.01 0.1  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FIGURE 31. SIMULATED (SPICE) CMRR  
FIGURE 30. SIMULATED (DESIGN) CMRR  
FN6728.3  
December 22, 2009  
14  
ISL28113, ISL28213, ISL28413  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
Web to make sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
12/16/09  
FN6728.3  
Removed “Coming Soon” from MSOP package options in the “Ordering  
Information” on page 2.  
Updated the Theta JA for the MSOP package option from 170°C/W to 180°C/W  
on page 4.  
11/17/09  
11/12/09  
10/26/09  
FN6728.2  
FN6728.1  
FN6728.0  
Removed “Coming Soon” from SC70 and SOT-23 package options in the  
“Ordering Information” on page 2.  
Changed theta Ja to 250 from 300. Added license statement (page 10) and  
reference in spice model (page 12).  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The  
Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones,  
handheld products, and notebooks. Intersil's product families address power management and analog signal  
processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device  
information page on intersil.com: ISL28113, ISL28213, ISL28413  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
FN6728.3  
December 22, 2009  
15  
ISL28113, ISL28213, ISL28413  
Small Outline Transistor Plastic Packages (SC70-5)  
D
P5.049  
VIEW C  
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
e1  
INCHES  
MIN  
MILLIMETERS  
SYMBOL  
MAX  
0.043  
0.004  
0.039  
0.012  
0.010  
0.009  
0.009  
0.085  
0.094  
0.053  
MIN  
0.80  
0.00  
0.80  
0.15  
0.15  
0.08  
0.08  
1.85  
1.80  
1.15  
MAX  
1.10  
0.10  
1.00  
0.30  
0.25  
0.22  
0.20  
2.15  
2.40  
1.35  
NOTES  
5
1
4
A
A1  
A2  
b
0.031  
0.000  
0.031  
0.006  
0.006  
0.003  
0.003  
0.073  
0.071  
0.045  
-
-
-
-
E
C
L
C
E1  
L
2
3
b
b1  
c
e
6
6
3
-
C
L
c1  
D
0.20 (0.008) M  
C
C
C
L
E
E1  
e
3
-
SEATING  
PLANE  
0.0256 Ref  
0.0512 Ref  
0.010 0.018  
0.65 Ref  
1.30 Ref  
0.26 0.46  
A2  
A1  
A
e1  
L
-
-C-  
4
-
L1  
L2  
0.017 Ref.  
0.420 Ref.  
0.15 BSC  
0.10 (0.004)  
C
0.006 BSC  
o
o
o
o
0
8
0
8
-
α
N
b
WITH  
5
5
5
PLATING  
b1  
R
0.004  
0.004  
-
0.10  
0.15  
-
R1  
0.010  
0.25  
c
c1  
Rev. 3 7/07  
NOTES:  
BASE METAL  
1. Dimensioning and tolerances per ASME Y14.5M-1994.  
2. Package conforms to EIAJ SC70 and JEDEC MO-203AA.  
4X θ1  
3. Dimensions D and E1 are exclusive of mold flash, protrusions,  
or gate burrs.  
R1  
4. Footlength L measured at reference to gauge plane.  
5. “N” is the number of terminal positions.  
R
6. These Dimensions apply to the flat section of the lead between  
0.08mm and 0.15mm from the lead tip.  
GAUGE PLANE  
SEATING  
PLANE  
7. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are for reference only.  
L
C
α
L2  
L1  
4X θ1  
VIEW C  
0.4mm  
0.75mm  
2.1mm  
0.65mm  
TYPICAL RECOMMENDED LAND PATTERN  
FN6728.3  
December 22, 2009  
16  
ISL28113, ISL28213, ISL28413  
SOT-23 Package Family  
MDP0038  
e1  
D
SOT-23 PACKAGE FAMILY  
A
MILLIMETERS  
SOT23-5  
6
4
N
SYMBOL  
SOT23-6  
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
6
TOLERANCE  
MAX  
A
A1  
A2  
b
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
5
±0.05  
E1  
E
±0.15  
2
3
±0.05  
0.15  
2X  
C
D
c
±0.06  
1
2
3
0.20  
2X  
C
D
Basic  
5
e
E
Basic  
E1  
e
Basic  
0.20  
C
A-B  
D
M
B
b
NX  
Basic  
e1  
L
Basic  
±0.10  
L1  
N
Reference  
Reference  
Rev. F 2/07  
0.15  
2X  
C
A-B  
1
3
D
NOTES:  
C
1. Plastic or metal protrusions of 0.25mm maximum per side are not  
included.  
A2  
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.25mm maximum per side are not  
included.  
A1  
0.10  
NX  
C
3. This dimension is measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(SOT23-6 only).  
6. SOT23-5 version has no center lead (shown as a dashed line).  
(L1)  
H
A
GAUGE  
PLANE  
0.25  
c
+3°  
-0°  
L
0°  
FN6728.3  
December 22, 2009  
17  
ISL28113, ISL28213, ISL28413  
Package Outline Drawing  
M8.118A  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP)  
Rev 0, 9/09  
A
3.0±0.1  
8
0.25 CAB  
4.9±0.15  
DETAIL "X"  
0.18 ± 0.05  
3.0±0.1  
1.10 Max  
PIN# 1 ID  
B
SIDE VIEW 2  
1
2
0.65 BSC  
TOP VIEW  
0.95 BSC  
0.86±0.09  
GAUGE  
PLANE  
H
C
0.25  
SEATING PLANE  
0.10 ± 0.05  
0.33 +0.07/ -0.08  
0.08 C AB  
3°±3°  
0.10 C  
0.55 ± 0.15  
DETAIL "X"  
SIDE VIEW 1  
5.80  
NOTES:  
1. Dimensions are in millimeters.  
4.40  
3.00  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSE Y14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
0.65  
0.40  
4. Plastic interlead protrusions of 0.25mm max per side are not  
included.  
1.40  
5. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
6. This replaces existing drawing # MDP0043 MSOP 8L.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6728.3  
December 22, 2009  
18  
ISL28113, ISL28213, ISL28413  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6728.3  
December 22, 2009  
19  
ISL28113, ISL28213, ISL28413  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN6728.3  
December 22, 2009  
20  
ISL28113, ISL28213, ISL28413  
Thin Shrink Small Outline Package Family (TSSOP)  
MDP0044  
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY  
0.25 M C A B  
D
A
(N/2)+1  
MILLIMETERS  
N
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE  
A
A1  
A2  
b
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
6.50  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
7.80  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
9.70  
6.40  
4.40  
0.65  
0.60  
1.00  
Max  
±0.05  
PIN #1 I.D.  
E
E1  
±0.05  
+0.05/-0.06  
+0.05/-0.06  
±0.10  
0.20 C B A  
2X  
1
(N/2)  
c
N/2 LEAD TIPS  
B
D
TOP VIEW  
E
Basic  
E1  
e
±0.10  
Basic  
0.05  
H
e
L
±0.15  
C
L1  
Reference  
Rev. F 2/07  
SEATING  
PLANE  
NOTES:  
0.10 M C A B  
b
1. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
0.10 C  
N LEADS  
SIDE VIEW  
2. Dimension “E1” does not include interlead flash or protrusions.  
Interlead flash and protrusions shall not exceed 0.25mm per  
side.  
SEE DETAIL “X”  
3. Dimensions “D” and “E1” are measured at dAtum Plane H.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
END VIEW  
L1  
A2  
A
GAUGE  
PLANE  
0.25  
L
A1  
0° - 8°  
DETAIL X  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6728.3  
December 22, 2009  
21  

相关型号:

ISL28413FBZ

Single, Dual, Quad General Purpose Micropower,RRIO Operational Amplifier
INTERSIL

ISL28413FBZ

Quad General Purpose Micropower, RRIO Operational Amplifier; SOIC14, TSSOP14; Temp Range: -40° to 125°C
RENESAS

ISL28413FBZ-T13

Single, Dual, Quad General Purpose Micropower,RRIO Operational Amplifier
INTERSIL

ISL28413FBZ-T13

Quad General Purpose Micropower, RRIO Operational Amplifier; SOIC14, TSSOP14; Temp Range: -40° to 125°C
RENESAS

ISL28413FBZ-T7

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifier
INTERSIL

ISL28413FBZ-T7

Quad General Purpose Micropower, RRIO Operational Amplifier; SOIC14, TSSOP14; Temp Range: -40° to 125°C
RENESAS

ISL28413FVZ

Single, Dual, Quad General Purpose Micropower,RRIO Operational Amplifier
INTERSIL

ISL28413FVZ

Quad General Purpose Micropower, RRIO Operational Amplifier; SOIC14, TSSOP14; Temp Range: -40° to 125°C
RENESAS

ISL28413FVZ-T13

Single, Dual, Quad General Purpose Micropower,RRIO Operational Amplifier
INTERSIL

ISL28413FVZ-T13

Quad General Purpose Micropower, RRIO Operational Amplifier; SOIC14, TSSOP14; Temp Range: -40° to 125°C
RENESAS

ISL28413FVZ-T7

Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifier
INTERSIL

ISL28413FVZ-T7

Quad General Purpose Micropower, RRIO Operational Amplifier; SOIC14, TSSOP14; Temp Range: -40° to 125°C
RENESAS