ISL59442IBZ [INTERSIL]

1GHz, 4 x 1 Multiplexing Amplifier; 1GHz的4× 1复用放大器
ISL59442IBZ
型号: ISL59442IBZ
厂家: Intersil    Intersil
描述:

1GHz, 4 x 1 Multiplexing Amplifier
1GHz的4× 1复用放大器

放大器
文件: 总11页 (文件大小:560K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL59442  
®
Data Sheet  
September 21, 2005  
FN7452.2  
1GHz, 4 x 1 Multiplexing Amplifier  
Features  
• 1GHz (-3dB) Bandwidth (V  
The ISL59442 is a single-output 4:1 MUX-amp. The  
MUX-amp has a fixed gain of 1 and a 1GHz bandwidth. The  
device contains logic inputs for channel selection (S0, S1),  
and a three-state output control (HIZ) for individual  
selection of MUX amps that share a common video output  
line. All logic inputs have pull-downs to ground and may be  
left floating.  
= 200mV  
)
P-P  
OUT  
• 235MHz (-3dB) Bandwidth (V  
= 1V )  
P-P  
OUT  
= 5V) . . . . . . . . . . . .1452V/µs  
OUT  
• Slew Rate (R = 525Ω, V  
L
• High Speed Three-state Output (HIZ)  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
TABLE 1. TRUTH TABLE  
Applications  
• HDTV/DTV Analog Inputs  
HIZ  
0
S1  
0
S0  
0
OUT  
IN0  
IN1  
IN2  
IN3  
HIZ  
• Video Projectors  
0
0
1
• Computer Monitors  
• Set-top Boxes  
0
1
0
0
1
1
1
X
X
• Security Video  
• Broadcast Video Equipment  
Pinout  
ISL59442  
(14 LD SO)  
TOP VIEW  
Functional Diagram  
EN0  
S0  
IN0  
NIC  
IN1  
1
2
3
4
5
6
7
14 V+  
13 S0  
12 S1  
11 HIZ  
10 OUT  
IN0  
EN1  
OUT  
S1  
IN1  
IN2  
DECODE  
EN2  
EN3  
GND  
IN2  
IN3  
A=1  
NIC  
IN3  
9
8
NIC  
V-  
HIZ  
Ordering Information  
TAPE &  
PART NUMBER PART MARKING PACKAGE REEL  
PKG.  
DWG. #  
ISL59442IB  
59442IB  
59442IB  
14 Ld SO  
14 Ld SO  
14 Ld SO  
-
7”  
13”  
-
MDP0027  
MDP0027  
MDP0027  
MDP0027  
ISL59442IB-T7  
ISL59442IB-T13 59442IB  
ISL59442IBZ  
(Note)  
59442IBZ  
14 Ld SO  
(Pb-free)  
ISL59442IBZ-T7 59442IBZ  
(Note)  
14 Ld SO  
(Pb-free)  
7”  
MDP0027  
MDP0027  
ISL59442IBZ-T13 59442IBZ  
(Note)  
14 Ld SO  
(Pb-free)  
13”  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb  
and Pb-free soldering operations. Intersil Pb-free products are MSL classified at  
Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements  
of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2005. All Rights Reserved.  
1
All other trademarks mentioned are the property of their respective owners.  
ISL59442  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage (V+ to V-). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . V- -0.5V, V+ +0.5V  
Supply Turn-on Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 1V/µs  
Digital & Analog Input Current (Note 1) . . . . . . . . . . . . . . . . . . 50mA  
Output Current (Continuous) . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA  
ESD Rating  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . . .-40°C to 85°C  
Operating Junction Temperature . . . . . . . . . . . . . . .-40°C to +125°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
θ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
JA  
Human Body Model (Per MIL-STD-883 Method 3015.7). . . . . .3kV  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. If an input signal is applied before the supplies are powered up, the input current must be limited to these maximum values.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V+ = +5V, V- = -5V, GND = 0V, T = 25°C, Input Video = 1V  
& R = 500to GND, V  
= 0.8V, Unless  
HIZ  
A
P-P  
L
Otherwise Specified  
PARAMETER  
GENERAL  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
Supply Current (V  
= 0V)  
No load, V  
No load, V  
= 0.8V  
= 2.0V  
14.5  
12  
18  
15.5  
±3.44  
±120  
9
20  
mA  
mA  
V
S
OUT  
HIZ  
HIZ  
17.5  
V
Positive and Negative Output Swing  
Output Current  
V
= ±3.5V, R = 500Ω  
±3.2  
±80  
-2  
OUT  
IN  
L
I
R
= 10to GND  
±180  
20  
mA  
mV  
µA  
MΩ  
OUT  
L
V
Output Offset Voltage  
Input Bias Current  
OS  
Ib  
V
= 0V  
-5  
-2.5  
1.4  
-1  
IN  
R
Output Resistance  
HIZ = logic high, (DC)  
HIZ = logic low, (DC)  
out  
0.2  
R
Input Resistance  
V
V
V
= ±3.5V  
10  
MΩ  
V/V  
µA  
IN  
CL  
IN  
A
or A  
Voltage Gain  
= ±1.5V, R = 500Ω  
0.999  
-35  
1.001  
6
1.003  
35  
V
IN  
L
I
Output Current in Three-state  
= 0V  
OUT  
TRI  
LOGIC  
V
V
Input High Voltage (Logic Inputs)  
Input Low Voltage (Logic Inputs)  
Input High Current (Logic Inputs)  
Input Low Current (Logic Inputs)  
2
V
V
H
L
0.8  
I
I
50  
90  
2
150  
µA  
µA  
IH  
IL  
AC GENERAL  
-3dB BW  
-3dB Bandwidth  
0.1dB Bandwidth  
V
V
V
V
= 200mV , C = 1.6pF  
P-P  
1.0  
235  
100  
35  
GHz  
MHz  
MHz  
MHz  
%
OUT  
OUT  
OUT  
OUT  
L
= 2V , C = 23.6pF, R = 25Ω  
P-P  
L
S
0.1dB BW  
= 200mV , C = 1.6pF  
P-P  
L
= 2V , C = 23.6pF, R = 25Ω  
P-P  
L
S
dG  
Differential Gain Error  
Differential Phase Error  
Slew Rate  
NTC-7, R = 150  
0.01  
0.02  
1452  
L
dP  
NTC-7, R = 150  
°
L
+SR  
25% to 75%, V  
R = 525, C = 23.6pF  
= 5V,  
V/µs  
OUT  
L
L
-SR  
Slew Rate  
25% to 75%, V  
= 5V,  
1124  
V/µs  
OUT  
R = 525, C = 23.6pF  
L
L
FN7452.2  
2
September 21, 2005  
ISL59442  
Electrical Specifications V+ = +5V, V- = -5V, GND = 0V, T = 25°C, Input Video = 1V  
& R = 500to GND, V  
= 0.8V, Unless  
HIZ  
A
P-P  
L
Otherwise Specified (Continued)  
PARAMETER  
PSRR  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply Rejection Ratio  
DC, PSRR V+ and V- combined  
V± = ±4.5V to ±5.5V  
-50  
-57  
dB  
ISO  
Channel Isolation  
f = 10MHz, Ch-Ch X-Talk and Off Isolation,  
C = 1.6pF  
75  
dB  
L
SWITCHING CHARACTERISTICS  
V
Channel-to-Channel Switching Glitch  
HIZ Switching Glitch  
V
V
= 0V, C = 23.6pF, R = 25Ω  
2
mV  
GLITCH  
IN  
IN  
L
S
P-P  
P-P  
= 0V, C = 23.6pF, R = 25Ω  
135  
30  
mV  
L
S
t
t
Channel Switching Time Low to High 1.2V logic threshold to 10% movement of  
analog output  
ns  
SW-L-H  
SW-H-L  
Channel Switching Time High to Low 1.2V logic threshold to 10% movement of  
analog output  
28  
ns  
TRANSIENT RESPONSE  
tr, tf Rise & Fall Time, 10% to 90%  
V
V
V
V
V
V
V
V
V
= 200mV , C = 1.6pF  
P-P  
0.69  
1.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
%
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
L
= 2V , C = 23.6pF, R = 25Ω  
P-P  
L
S
t
t
0.1% Settling Time  
= 2V , C = 23.6pF, R = 25Ω  
P-P  
6.6  
S
L
S
Propagation Delay - Low to High,  
10% to 10%  
= 200mV , C = 1.6pF  
P-P  
0.46  
0.92  
0.52  
0.97  
8.3  
PLH  
L
= 2V , C = 23.6pF, R = 25Ω  
P-P  
L
S
t
Propagation Delay- High to Low,  
10% to 10%  
= 200mV , C = 1.6pF  
P-P  
PHL  
L
= 2V , C = 23.6pF, R = 25Ω  
P-P  
L
S
O
Overshoot  
= 200mV , C = 1.6pF  
P-P  
S
L
= 2V , C = 23.6pF, R = 25Ω  
P-P  
13.3  
%
L
S
Typical Performance Curves V = ±5V, R = 500to GND, T = 25°C, unless otherwise specified.  
S
L
A
5
4
3
2
1
0
5
4
3
2
1
0
V
= 200mV  
P-P  
V
= 200mV  
P-P  
OUT  
= 1.6pF  
OUT  
C
L
C
= 9.7pF  
L
R
= 1kΩ  
L
C
= 7.2pF  
L
R
= 500Ω  
L
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
C
= 5.5pF  
L
C
= 1.6pF  
L
R
= 150Ω  
L
R
= 75Ω  
L
C
INCLUDES 1.6pF  
L
BOARD CAPACITANCE  
0.001  
0.01  
0.1  
1 1.5  
0.001  
0.01  
0.1  
1 1.5  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
FIGURE 1. SMALL SIGNAL GAIN vs FREQUENCY vs C  
FIGURE 2. SMALL SIGNAL GAIN vs FREQUENCY vs R  
L
L
FN7452.2  
3
September 21, 2005  
ISL59442  
Typical Performance Curves V = ±5V, R = 500to GND, T = 25°C, unless otherwise specified. (Continued)  
S
L
A
5
4
3
2
1
0
5
4
3
2
1
0
V
R
= 2V  
P-P  
V
= 2V  
P-P  
= 23.6pF  
OUT  
= 25Ω  
OUT  
S
C
L
R
= 25Ω  
S
C
= 11.6pF  
L
R
= 1kΩ  
L
C
= 16.6pF  
L
R
= 75Ω  
L
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
C
= 23.6pF  
R
L
= 500Ω  
= 150Ω  
L
R
L
C
INCLUDES 1.6pF  
L
BOARD CAPACITANCE  
C
= 28.6pF  
0.1  
L
0.001  
0.01  
1 1.5  
0.001  
0.01  
0.1  
1 1.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 3. LARGE SIGNAL GAIN vs FREQUENCY vs C  
FIGURE 4. LARGE SIGNAL GAIN vs FREQUENCY vs R  
L
L
0.5  
0.2  
0.1  
C
= 9.7pF  
L
V
= 200mV  
P-P  
OUT  
0.4  
0.3  
0.2  
0.1  
0
0.0  
C
= 7.2pF  
L
-0.1  
-0.2  
-0.3  
C
= 5.5pF  
L
R
= 1kΩ  
L
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
R
= 500Ω  
L
C
= 1.6pF  
L
R
= 150Ω  
L
V
= 200mV  
P-P  
C
INCLUDES 1.6pF  
OUT  
= 1.6pF  
L
C
BOARD CAPACITANCE  
L
R
= 75Ω  
L
0.001  
0.01  
0.1  
1 1.5  
0.001  
0.01  
0.1  
1 1.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 5. SMALL SIGNAL 0.1dB GAIN vs FREQUENCY vs C  
FIGURE 6. SMALL SIGNAL 0.1dB GAIN vs FREQUENCY vs R  
L
L
0.5  
0.4  
0.5  
V
= 2V  
P-P  
= 23.6pF  
OUT  
R
R
= 1kΩ  
0.4  
0.3  
0.2  
0.1  
0
L
C
= 11.6pF  
L
C
= 500Ω  
L
L
0.3  
0.2  
0.1  
0
R
= 25Ω  
S
C
= 16.6pF  
L
R
= 150Ω  
L
R
= 75Ω  
L
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
C
= 23.6pF  
L
V
R
= 2V  
P-P  
OUT  
= 25Ω  
S
C
= 28.6pF  
0.1  
L
C
INCLUDES 1.6pF  
L
BOARD CAPACITANCE  
0.001 0.01  
1 1.5  
0.001  
0.01  
0.1  
1 1.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 7. LARGE SIGNAL 0.1dB GAIN vs FREQUENCY vs C  
FIGURE 8. LARGE SIGNAL 0.1dB GAIN vs FREQUENCY vs R  
L
L
FN7452.2  
4
September 21, 2005  
ISL59442  
Typical Performance Curves V = ±5V, R = 500to GND, T = 25°C, unless otherwise specified. (Continued)  
S
L
A
-10  
-20  
20  
10  
0
V
= 1V  
P-P  
= 23.6pF  
IN  
V
= 200mV  
= 23.6pF  
= 25Ω  
IN  
P-P  
C
L
C
L
-30  
-40  
R
= 25Ω  
S
R
S
-10  
-20  
-30  
-40  
-50  
-60  
CROSSTALK  
-70  
-50  
-80  
PSRR (V+)  
PSRR (V-)  
-60  
-70  
-80  
-90  
OFF ISOLATION  
-100  
-110  
0.3  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
3
6 10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 10. CROSSTALK AND OFF ISOLATION  
FIGURE 9. PSRR CHANNELS  
100  
V
= 100mV  
P-P  
OUT  
60  
50  
40  
30  
20  
R
= 500Ω  
F
10  
1
10  
0
0.1  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
1
10  
100  
0.1  
FREQUENCY (kHz)  
FIGURE 12. INPUT NOISE vs FREQUENCY  
FIGURE 11. R  
vs FREQUENCY  
OUT  
S0, S1  
S0, S1  
0
0
0
0
V
OUT  
V
OUT  
20ns/DIV  
20ns/DIV  
FIGURE 14. CHANNEL TO CHANNEL TRANSIENT RESPONSE  
= 1V, R = 25, C = 23.6pF  
FIGURE 13. CHANNEL TO CHANNEL SWITCHING GLITCH  
= 0V, R = 25, C = 23.6pF  
V
V
IN  
S
L
IN  
S
L
FN7452.2  
5
September 21, 2005  
ISL59442  
Typical Performance Curves V = ±5V, R = 500to GND, T = 25°C, unless otherwise specified. (Continued)  
S
L
A
HIZ  
HIZ  
0
0
0
V
V
OUT  
OUT  
0
20ns/DIV  
20ns/DIV  
FIGURE 16. HIZ TRANSIENT RESPONSE V = 1V, R = 25,  
IN  
FIGURE 15. HIZ SWITCHING GLITCH V = 0V, R = 25,  
IN  
S
S
C
= 23.6pF  
C
= 23.6pF  
L
L
160  
2.4  
2
C
R
= 1.6pF  
= 500Ω  
L
120  
80  
L
1.6  
1.2  
0.8  
0.4  
0
40  
0
-40  
-80  
C
= 23.6pF  
= 25Ω  
L
-0.4  
-0.8  
R
R
-120  
-160  
S
L
= 500Ω  
TIME (4ns/DIV)  
TIME (4ns/DIV)  
FIGURE 17. SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 18. LARGE SIGNAL TRANSIENT RESPONSE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
CONDUCTIVITY TEST BOARD  
1
1.136W  
1.2  
0.9  
0.8  
1
0.8  
0.6  
0.4  
0.2  
0
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
833mW  
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FN7452.2  
September 21, 2005  
6
ISL59442  
Pin Descriptions  
EQUIVALENT  
CIRCUIT  
PIN NUMBER  
PIN NAME  
IN0  
DESCRIPTION  
1
Circuit 1  
Input for channel 0  
2, 6, 9  
NIC  
Not Internally Connected; it is recommended this pin be tied to ground to  
minimize crosstalk.  
3
4
IN1  
GND  
IN2  
IN3  
V-  
Circuit 1  
Circuit 4  
Circuit 1  
Circuit 1  
Circuit 4  
Circuit 3  
Circuit 2  
Input for channel 1  
Ground pin  
5
Input for channel 2  
Input for channel 3  
Negative power supply  
Output  
7
8
10  
11  
OUT  
HIZ  
Output disable (active high); there are internal pull-down resistors, so the  
device will be active with no connection; "HI" puts the output in high  
impedance state.  
12  
13  
14  
S1  
S0  
V+  
Circuit 2  
Circuit 2  
Circuit 4  
Channel selection pin MSB (binary logic code)  
Channel selection pin LSB (binary logic code)  
Positive power supply  
V+  
V-  
V+  
21K  
33K  
+
-
IN  
LOGIC PIN  
1.2V  
GND.  
V-  
CIRCUIT 1.  
CIRCUIT 2.  
V+  
V+  
OUT  
CAPACITIVELY  
GND  
COUPLED  
ESD CLAMP  
V-  
V-  
CIRCUIT 3.  
CIRCUIT 4.  
FN7452.2  
7
September 21, 2005  
ISL59442  
AC Test Circuits  
ISL59442  
ISL59442  
TEST EQUIPMENT  
V
R
IN  
S
V
IN  
C
2pF  
R
50Ω  
L
L
475Ω  
50Ω  
50Ω  
or  
50Ω  
or  
C
L
or  
500Ω  
or  
2pF  
75Ω  
75Ω  
75Ω  
75Ω  
FIGURE 21B. TEST CIRCUIT FOR MEASURING WITH A 50OR 75Ω  
FIGURE 21A. TEST CIRCUIT WITH OPTIMAL OUTPUT LOAD  
INPUT TERMINATED EQUIPMENT  
ISL59442  
TEST EQUIPMENT  
R
S
V
IN  
50or 75Ω  
50Ω  
or  
C
50Ω  
or  
L
2pF  
75Ω  
75Ω  
FIGURE 21C. BACKLOADED TEST CIRCUIT FOR VIDEO CABLE APPLICATION. BANDWIDTH AND LINEARITY FOR RL LESS THAN 500WILL BE  
DEGRADED  
NOTE: Figure 21A illustrates the optimum output load for testing AC performance. Figure 21B illustrates the optimum output load when connecting  
to input terminated equipment. Figure 21C illustrates back loaded test circuit for video cable.  
Application Circuits  
*C = C + C  
OUT  
L
T
-
V
OUT  
V
IN  
+
C
C
OUT  
0pF  
T
R
= 500Ω  
L
50Ω  
1.6pF  
*C : TOTAL LOAD CAPACITANCE  
L
C : TRACE CAPACITANCE  
T
OUT  
C
: OUTPUT CAPACITANCE  
FIGURE 22A. SMALL SIGNAL 200mV  
APPLICATION CIRCUIT  
P-P  
R
S
-
25Ω  
V
OUT  
V
IN  
+
C
OUT  
22pF  
R
= 500Ω  
C
1.6pF  
L
T
50Ω  
C
= C + C  
T
L
OUT  
FIGURE 22B. LARGE SIGNAL 1V  
APPLICATION CIRCUIT  
P-P  
FN7452.2  
8
September 21, 2005  
ISL59442  
Power-Up Considerations  
Application Information  
The ESD protection circuits use internal diodes from all pins the  
V+ and V- supplies. In addition, a dV/dT- triggered clamp is  
connected between the V+ and V- pins, as shown in the  
Equivalent Circuits 1 through 4 section of the Pin Description  
table. The dV/dT triggered clamp imposes a maximum supply  
turn-on slew rate of 1V/µs. Damaging currents can flow for  
power supply rates-of-rise in excess of 1V/µs, such as during  
hot plugging. Under these conditions, additional methods  
should be employed to ensure the rate of rise is not exceeded.  
General  
The ISL59442 is a 4:1 mux that is ideal as a matrix element in  
high performance switchers and routers. The ISL59442 is  
optimized to drive a 2pF in parallel with a 500load. The  
capacitance can be split between the PCB capacitance an and  
external load capacitance. Their low input capacitance and high  
input resistance provide excellent 50or 75terminations.  
Capacitance at the Output  
The output amplifier is optimized for capacitance to ground  
Consideration must be given to the order in which power is  
applied to the V+ and V- pins, as well as analog and logic  
input pins. Schottky diodes (Motorola MBR0550T or  
equivalent) connected from V+ to ground and V- to ground  
(Figure 23) will shunt damaging currents away from the  
internal V+ and V- ESD diodes in the event that the V+  
supply is applied to the device before the V- supply.  
(C ) directly on the output pin. Increased capacitance  
L
causes higher peaking with an increase in bandwidth. The  
optimum range for most applications is ~1.0pF to ~6pF. The  
optimum value can be achieved through a combination of  
PC board trace capacitance (C ) and an external capacitor  
T
(C  
OUT)  
. A good method to maintain control over the output  
pin capacitance is to minimize the trace length (C ) to the  
T
If positive voltages are applied to the logic or analog video  
input pins before V+ is applied, current will flow through the  
internal ESD diodes to the V+ pin. The presence of large  
decoupling capacitors and the loading effect of other circuits  
connected to V+, can result in damaging currents through  
the ESD diodes and other active circuits within the device.  
Therefore, adequate current limiting on the digital and  
analog inputs is needed to prevent damage during the time  
the voltages on these inputs are more positive than V+.  
next component, and include a discrete surface mount  
capacitor (C  
) directly at the output pin.  
OUT  
For large signal applications where overshoot is important  
the circuit in Figure 22B should be used. The series resistor  
(R ) and capacitor (C ) form a low pass network that limits  
S
L
system bandwidth and reduces overshoot. The component  
values shown result in a typical pulse response shown in  
Figure 18.  
Ground Connections  
HIZ State  
For the best isolation and crosstalk rejection, the GND pin  
and NIC pins must connect to the GND plane. The NIC pins  
are placed on both sides of the input pins. These pins are  
not internally connected to the die. It is recommended this  
pin be tied to ground to minimize crosstalk.  
An internal pull-down resistor connected to the HIZ pin ensures  
the device will be active with no connection to the HIZ pin. The  
HIZ state is established within approximately 30ns by placing a  
logic high (>2V) on the HIZ pin. If the HIZ state is selected, the  
output is a high impedance 1.4M. Use this state to control the  
logic when more than one mux shares a common output.  
Control Signals  
In the HIZ state the output is three-stated, and maintains its  
high Z even in the presence of high slew rates. The supply  
current during this state is basically the same as the active  
state.  
S0, S1, HIZ - These pins are, TTL/CMOS compatible control  
inputs. The S0, S1 pins select which one of the inputs  
connect to the output. The HIZ pin is used to three-state the  
output amplifiers. For control signal rise and fall times less  
than 10nsec the use of termination resistors close to the part  
will minimize transients coupled to the output.  
Limiting the Output Current  
No output short circuit current limit exists on these parts. All  
applications need to limit the output current to less than 50mA.  
Adequate thermal heat sinking of the parts is also required.  
V+ SUPPLY  
SCHOTTKY  
V+  
EXTERNAL  
CIRCUITS  
V+  
PROTECTION  
LOGIC  
LOGIC  
CONTROL  
S0  
POWER  
GND  
V- V+  
GND  
V+  
V-  
SIGNAL  
V+  
V-  
OUT  
IN0  
DE-COUPLING  
CAPS  
IN1  
V-  
V-  
V- SUPPLY  
FIGURE 23. SCHOTTKY PROTECTION CIRCUIT  
FN7452.2  
September 21, 2005  
9
ISL59442  
PC Board Layout  
The frequency response of this circuit depends greatly on  
the care taken in designing the PC board. The following are  
recommendations to achieve optimum high frequency  
performance from your PC board.  
• The use of low inductance components such as chip  
resistors and chip capacitors is strongly recommended.  
• Minimize signal trace lengths. Trace inductance and  
capacitance can easily limit circuit performance. Avoid  
sharp corners, use rounded corners when possible. Vias  
in the signal lines add inductance at high frequency and  
should be avoided. PCB traces greater than 1" begin to  
exhibit transmission line characteristics with signal rise/fall  
times of 1ns or less. High frequency performance may be  
degraded for traces greater than one inch, unless strip  
lines are used.  
• Match channel-channel analog I/O trace lengths and  
layout symmetry. This will minimize propagation delay  
mismatches.  
• Maximize use of AC de-coupled PCB layers. All signal I/O  
lines should be routed over continuous ground planes (i.e.  
no split planes or PCB gaps under these lines). Avoid vias  
in the signal I/O lines.  
• Use proper value and location of termination resistors.  
Termination resistors should be as close to the device as  
possible.  
• When testing use good quality connectors and cables,  
matching cable types and keeping cable lengths to a  
minimum.  
• Minimum of 2 power supply de-coupling capacitors are  
recommended (1000pF, 0.01µF) as close to the devices  
as possible. Avoid vias between the cap and the device  
because vias add unwanted inductance. Larger caps can  
be farther away. When vias are required in a layout, they  
should be routed as far away from the device as possible.  
• The NIC pins are placed on both sides of the input pins.  
These pins are not internally connected to the die. It is  
recommended these pins be tied to ground to minimize  
crosstalk.  
FN7452.2  
10  
September 21, 2005  
ISL59442  
SO Package Outline Drawing  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
<http://www.intersil.com/design/packages/index.asp>  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7452.2  
11  
September 21, 2005  

相关型号:

ISL59442IBZ-T13

1GHz, 4 x 1 Multiplexing Amplifier
INTERSIL

ISL59442IBZ-T7

1GHz, 4 x 1 Multiplexing Amplifier
INTERSIL

ISL59442_07

1GHz, 4 x 1 Multiplexing Amplifier
INTERSIL

ISL59444

1GHz, 4 x 1 Multiplexing Amplifier with Synchronous Controls
INTERSIL

ISL59444IB

1GHz, 4 x 1 Multiplexing Amplifier with Synchronous Controls
INTERSIL

ISL59444IB-T13

1GHz, 4 x 1 Multiplexing Amplifier with Synchronous Controls
INTERSIL

ISL59444IB-T7

1GHz, 4 x 1 Multiplexing Amplifier with Synchronous Controls
INTERSIL

ISL59444IBZ

1GHz, 4 x 1 Multiplexing Amplifier with Synchronous Controls
INTERSIL

ISL59444IBZ-T13

1GHz, 4 x 1 Multiplexing Amplifier with Synchronous Controls
INTERSIL

ISL59444IBZ-T7

1GHz, 4 x 1 Multiplexing Amplifier with Synchronous Controls
INTERSIL

ISL59445

1GHz Triple Multiplexing Amplifiers
INTERSIL

ISL59445IR

1GHz Triple Multiplexing Amplifiers
INTERSIL