ISL59913IRZ [INTERSIL]

Triple Differential Receiver/Equalizer; 三重差分接收器/均衡器
ISL59913IRZ
型号: ISL59913IRZ
厂家: Intersil    Intersil
描述:

Triple Differential Receiver/Equalizer
三重差分接收器/均衡器

接口集成电路
文件: 总12页 (文件大小:482K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL59910, ISL59913  
®
Data Sheet  
December 15, 2006  
FN6406.0  
Triple Differential Receiver/Equalizer  
Features  
The ISL59910 and ISL59913 are triple channel differential  
receivers and equalizers. They each contain three high speed  
differential receivers with five programmable poles. The  
outputs of these pole blocks are then summed into an output  
buffer. The equalization length is set with the voltage on a  
single pin. The ISL59910 and ISL59913 output can also be  
put into a high impedance state, enabling multiple devices to  
be connected in parallel and used in multiplexing application.  
• 150MHz -3dB bandwidth  
• CAT-5 compensation  
- 100MHz @ 600 ft  
- 135MHz @ 300 ft  
• 108mA supply current  
• Differential input range 3.2V  
• Common mode input range -4V to +3.5V  
• ±5V supply  
The gain can be adjusted up or down on each channel by 6dB  
using its V  
control signal. In addition, a further 6dB of gain  
GAIN  
can be switched in to provide a matched drive into a cable.  
• Output to within 1.5V of supplies  
• Available in 28 Ld QFN package  
The ISL59910 and ISL59913 have a bandwidth of 150MHz  
and consume just 108mA on ±5V supply. A single input  
voltage is used to set the compensation levels for the  
required length of cable.  
• Pb-free plus anneal available (RoHS compliant)  
Applications  
The ISL59910 is a special version of the ISL59913 that  
decodes syncs encoded onto the common modes of three  
pairs of CAT-5 cable by the EL4543. (Refer to the EL4543  
datasheet for details.)  
• Twisted-pair receiving/equalizer  
• KVM (Keyboard/Video/Mouse)  
• VGA over twisted-pair  
• Security video  
The ISL59910 and ISL59913 are available in a 28 Ld QFN  
package and are specified for operation over the full -40°C to  
+85°C temperature range.  
Pinouts  
ISL59910  
(28 LD QFN)  
TOP VIEW  
ISL59913  
(28 LD QFN)  
TOP VIEW  
VSMO_B  
VOUT_B  
VSPO_B  
VSPO_G  
VOUT_G  
VSMO_G  
VSMO_R  
VOUT_R  
1
2
3
4
5
6
7
8
22 VSP  
VSMO_B  
VOUT_B  
VSPO_B  
VSPO_G  
VOUT_G  
VSMO_G  
VSMO_R  
VOUT_R  
1
2
3
4
5
6
7
8
22 VSP  
21 VINM_B  
20 VINP_B  
19 VINM_G  
18 VINP_G  
17 VINM_R  
16 VINP_R  
15 VSM  
21 VINM_B  
20 VINP_B  
19 VINM_G  
18 VINP_G  
17 VINM_R  
16 VINP_R  
15 VSM  
THERMAL  
PAD  
THERMAL  
PAD  
EXPOSED DIEPLATE SHOULD BE CONNECTED TO -5V  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2006. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL59910, ISL59913  
Ordering Information  
PART  
NUMBER  
PART  
MARKING  
PKG.  
DWG. #  
TAPE & REEL  
PACKAGE  
28 Ld QFN  
ISL59910IRZ  
(Note)  
59910 CRZ  
-
MDP0046  
(Pb-free)  
ISL59910IRZ-T7  
(Note)  
59910 CRZ  
59913 CRZ  
59913 CRZ  
7”  
-
28 Ld QFN  
(Pb-free)  
MDP0046  
MDP0046  
MDP0046  
ISL59913IRZ  
(Note)  
28 Ld QFN  
(Pb-free)  
ISL59913IRZ-T7  
(Note)  
7”  
28 Ld QFN  
(Pb-free)  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN6406.0  
December 15, 2006  
2
ISL59910, ISL59913  
Absolute Maximum Ratings (T = +25°C)  
Operating Conditions  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . . .12V  
Maximum Continuous Output Current per Channel. . . . . . . . . 30mA  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Die Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +150°C  
S
S
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . V - -0.5V to V + +0.5V  
S
S
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V
+ = V + = +5V, V - = V - = -5V, T = +25°C, exposed die plate = -5V, unless otherwise specified.  
SA  
A
SA  
A
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
SR  
Bandwidth  
Slew Rate  
(See Figure 1)  
= -1V to +1V, V = 0.39, V = 0,  
150  
1.5  
MHz  
V
kV/µs  
IN  
= 75 + 75Ω  
G
C
R
L
THD  
Total Harmonic Distortion  
10MHz 2V  
out, V = 1V, X2 gain, V = 0  
-50  
dBc  
P-P  
G
C
DC PERFORMANCE  
V(V Offset Voltage  
Channel-to-Channel Offset Matching X2 = high, no equalization  
INPUT CHARACTERISTICS  
CMIR Common-Mode Input Range  
)
X2 = high, no equalization  
-110  
-140  
-15  
0
+110  
+140  
mV  
mV  
OUT OS  
ΔV  
OS  
-4/+3.5  
-110  
V
O
Output Noise  
V
= 0V, V = 0V, X2 = HIGH, R = 150Ω,  
LOAD  
dBm  
NOISE  
G
C
Input 50Ω to GND, 10MHz  
Measured at 10kHz  
Measured at 10MHz  
10k || 10pF load  
CMRR  
CMRR  
CMBW  
Common-Mode Rejection Ratio  
Common-Mode Rejection Ratio  
CM Amplifier Bandwidth  
CM Slew Rate  
-80  
-55  
50  
dB  
dB  
MHz  
V/µs  
fF  
CM  
Measured @ +1V to -1V  
100  
600  
SLEW  
INDIFF  
INDIFF  
INCM  
C
R
C
R
Differential Input Capacitance  
Differential Input Resistance  
CM Input Capacitance  
Capacitance V  
to V  
INP  
INP  
INM  
Resistance V  
to V  
1
1
MΩ  
pF  
INP  
INM  
Capacitance V  
= V  
to GND  
1.2  
INM  
CM Input Resistance  
Resistance V  
= V  
to GND  
= 0V  
MΩ  
µA  
INCM  
INP  
INP  
INP  
INM  
INM  
INM  
+I  
Positive Input Current  
DC bias @ V  
DC bias @ V  
= V  
= V  
1
1
IN  
-I  
Negative Input Current  
Differential Input Range  
= 0V  
µA  
IN  
V
V
- V when slope gain falls to 0.9  
INM  
2.5  
50  
V
INDIFF  
INP  
OUTPUT CHARACTERISTICS  
V(V  
)
Output Voltage Swing  
Output Drive Current  
R
R
= 150Ω  
±3.5  
60  
V
OUT  
L
I(V  
)
= 10Ω, V  
= 1V, V = 0V, X2 = high,  
INM  
mA  
OUT  
L
INP  
V
= 0.39  
G
R(V  
)
CM Output Resistance of  
at 100kHz  
30  
Ω
CM  
VCM_R/G/B (ISL59913 only)  
Gain  
Gain  
V
V
V
= 0, V = 0.39, X2 = 5, R = 150Ω  
0.85  
1.0  
3
1.1  
8
C
C
C
G
L
ΔGain @ DC  
Channel-to-Channel Gain Matching  
Channel-to-Channel Gain Matching  
= 0, V = 0.39, X2 = 5, R = 150Ω  
%
%
G
L
ΔGain @  
= 0.6, V = 0.39, X2 = 5, R = 150Ω,  
3
11  
G
L
15MHz  
Frequency = 15MHz  
V(SYNC)  
High Level output on V/H  
(ISL59910 only)  
V(V  
)
V(V  
)
SP  
HI  
OUT  
SP  
- 0.1V  
FN6406.0  
December 15, 2006  
3
ISL59910, ISL59913  
Electrical Specifications  
V
+ = V + = +5V, V - = V - = -5V, T = +25°C, exposed die plate = -5V, unless otherwise specified.  
SA  
A
SA  
A
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V(SYNC)  
Low Level output on V/H  
(ISL59910 only)  
V(SYNC  
REF)  
V(SYNC  
REF)  
LO  
OUT  
+ 0.1V  
SUPPLY  
I
I
Supply Current per Channel  
Supply Current per Channel  
Power Supply Rejection Ratio  
V
= 5, V  
= 0, V  
= 0  
= 0  
32  
36  
65  
39  
mA  
mA  
dB  
SON  
ENBL  
ENBL  
INM  
INM  
V
0.2  
0.4  
SOFF  
PSRR  
DC to 100kHz, ±5V supply  
LOGIC CONTROL PINS (ENABLE, X2)  
V
V
Logic High Level  
V
V
V
V
- V  
- V  
ref for guaranteed high level  
ref for guaranteed low level  
1.4  
V
V
HI  
IN  
IN  
IN  
IN  
LOGIC  
LOGIC  
Logic Low Level  
0.8  
50  
15  
LOW  
I
I
Logic High Input Current  
Logic Low Input Current  
= 5V, V  
= 0V, V  
= 0V  
= 0V  
µA  
µA  
LOGICH  
LOGICL  
LOGIC  
LOGIC  
Pin Descriptions  
ISL59910  
PIN FUNCTION  
-5V to blue output buffer  
ISL59913  
PIN FUNCTION  
PIN  
NUMBER  
PIN NAME  
VSMO_B  
VOUT_B  
VSPO_B  
VSPO_G  
VOUT_G  
VSMO_G  
VSMO_R  
VOUT_R  
VSPO_R  
VCTRL  
PIN NAME  
VSMO_B  
VOUT_B  
VSPO_B  
VSPO_G  
VOUT_G  
VSMO_G  
VSMO_R  
VOUT_R  
VSPO_R  
VCTRL  
1
2
-5V to blue output buffer  
Blue output voltage referenced to 0V pin  
+5V to blue output buffer  
Blue output voltage referenced to 0V pin  
+5V to blue output buffer  
3
4
+5V to green output buffer  
+5V to green output buffer  
5
Green output voltage referenced to 0V pin  
-5V to green output buffer  
Green output voltage referenced to 0V pin  
-5V to green output buffer  
6
7
-5V to red output buffer  
-5V to red output buffer  
8
Red output voltage referenced to 0V pin  
+5V to red output buffer  
Red output voltage referenced to 0V pin  
+5V to red output buffer  
9
10  
11  
Equalization control voltage (0V to 0.95V)  
Equalization control voltage (0V to 0.95V)  
VREF  
Reference voltage for logic signals, V  
CTRL  
and  
VREF  
Reference voltage for logic signals, V  
and  
CTRL  
V
pins  
V
pins  
GAIN  
GAIN  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
VGAIN_R  
VGAIN_G  
VGAIN_B  
VSM  
Red channel gain voltage (0V to 1V)  
VGAIN_R  
VGAIN_G  
VGAIN_B  
VSM  
Red channel gain voltage (0V to 1V)  
Green channel gain voltage (0V to 1V)  
Blue channel gain voltage (0V to 1V)  
-5V to core of chip  
Green channel gain voltage (0V to 1V)  
Blue channel gain voltage (0V to 1V)  
-5V to core of chip  
VINP_R  
VINM_R  
VINP_G  
VINM_G  
VINP_B  
VINM_B  
VSP  
Red positive differential input  
Red negative differential input  
Green positive differential input  
Green negative differential input  
Blue positive differential input  
Blue negative differential input  
+5V to core of chip  
VINP_R  
VINM_R  
VINP_G  
VINM_G  
VINP_B  
VINM_B  
VSP  
Red positive differential input  
Red negative differential input  
Green positive differential input  
Green negative differential input  
Blue positive differential input  
Blue negative differential input  
+5V to core of chip  
HOUT  
Decoded Horizontal sync referenced to  
SYNCREF  
VCM_R  
Red common-mode voltage at inputs  
24  
25  
VOUT  
Decoded Vertical sync referenced to SYNCREF  
VCM_G  
VCM_B  
Green common-mode voltage at inputs  
Blue common-mode voltage at inputs  
SYNCREF  
Reference level for H  
and V  
logic outputs  
OUT  
OUT  
FN6406.0  
December 15, 2006  
4
ISL59910, ISL59913  
Pin Descriptions (Continued)  
ISL59910  
ISL59913  
PIN FUNCTION  
PIN  
NUMBER  
PIN NAME  
X2  
PIN FUNCTION  
PIN NAME  
26  
27  
28  
Logic signal for x1/x2 output gain setting  
Chip enable logic signal  
X2  
ENABLE  
0V  
Logic signal for x1/x2 output gain setting  
Chip enable logic signal  
ENABLE  
0V  
0V reference for output voltage  
Must be connected to -5V  
0V reference for output voltage  
Thermal Pad  
Typical Performance Curves  
5
X =HIGH  
X =LOW  
2
GAIN  
2
V
V
R
=0.35V  
=0V  
=150Ω  
V
V
=0V  
=0V  
GAIN  
CTRL  
3
1
CTRL  
LOAD  
R
=150  
LOAD  
-1  
-3  
-5  
1M  
10M  
100M 200M  
FREQUENCY (Hz)  
FIGURE 1. FREQUENCY RESPONSE OF ALL CHANNELS  
FIGURE 2. GAIN vs FREQUENCY ALL CHANNELS  
X =LOW  
2
X =LOW  
2
V
V
V
CTRL=0.25V  
GAIN=0.25V  
V =±5V  
CTRL=1V  
V =±5V  
S
S
R =150Ω  
R =150Ω  
L
L
Source=-20dBm  
V
V
=0V  
=0.1V STEPS  
GAIN  
CTRL  
Source=-20dBm  
V
CTRL=0V  
V
GAIN=0.25V  
V
V
CTRL=0V  
GAIN=0V  
V
CTRL=0V  
FIGURE 4. GAIN vs FREQUENCY FOR VARIOUS V  
AND  
FIGURE 3. GAIN vs FREQUENCY FOR VARIOUS V  
CTRL  
CTRL  
V
GAIN  
FN6406.0  
December 15, 2006  
5
ISL59910, ISL59913  
Typical Performance Curves (Continued)  
X =LOW  
2
X =LOW  
V
2
CTRL=1V  
CABLE=3FT  
V =±5V  
S
V
V
=0.5V  
=0.5V  
=150Ω  
GAIN  
CTRL  
R =150Ω  
L
V
=1V  
GAIN  
SOURCE=-20dBm  
R
LOAD  
V
CTRL=0V  
CABLE=3FT  
V
CTRL=0V  
CABLE=600FT  
FIGURE 5. GAIN vs FREQUENCY FOR VARIOUS V  
CABLE LENGTHS  
AND  
FIGURE 6. CHANNEL MISMATCH  
CTRL  
V
R
=0V  
CTRL  
V =±5V, R =150Ω  
S
L
=150Ω  
X
LOAD  
2=HIGH  
INPUT 50Ω TO GROUND  
INPUT=50Ω TO GND  
V
GAIN=1V  
X
2=LOW  
X
X
2=HiGH  
2=LOW  
V
V
CTRL=0V  
CTRL=0V  
FIGURE 7. OFFSET vs V  
FIGURE 8. DC GAIN vs V  
CTRL  
GAIN  
X =HIGH  
2
X =HIGH  
2
V
V
V =±5V  
CTRL=0V  
GAIN=0V  
S
V =±5V  
S
R =150Ω  
L
R =150Ω  
L
INPUT=50Ω TO GROUND  
V
V
CTRL=0V  
GAIN=1V  
TOTAL  
HARMONIC  
3rd  
HARMONIC  
V
V
CTRL=1V  
GAIN=1V  
V
V
V
V
CTRL=0V  
GAIN=1V  
CTRL=1V  
GAIN=0V  
2nd  
HAMONIC  
FIGURE 10. OUTPUT NOISE  
FIGURE 9. HARMONIC DISTORTION vs FREQUENCY  
FN6406.0  
December 15, 2006  
6
ISL59910, ISL59913  
Typical Performance Curves (Continued)  
-10  
-20  
4
2
V
=0.35V  
V
=0.35V  
GAIN  
GAIN  
(ALL CHANNELS)  
V =0V  
CTRL  
(ALL CHANNELS)  
V
=0V  
CTRL  
X =HIGH  
R
=150Ω  
2
LOAD  
X =HIGH  
2
-40  
0
-60  
-2  
-4  
-6  
-80  
-100  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 11. COMMON-MODE REJECTION  
FIGURE 12. CM AMPLIFIER BANDWIDTH  
0
-20  
-40  
V
V
V
=5V  
=0V  
V
V
V
=-5V  
EE  
CC  
CTRL  
=0V  
=0V  
CTRL  
=0V  
GAIN  
GAIN  
-20  
-40  
(ALL CHANNELS)  
INPUTS ON GND  
(ALL CHANNELS)  
INPUTS ON GND  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
10  
100  
1k  
10k 100k  
1M  
10M 100M  
10  
100  
1k  
10k 100k  
1M  
10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 13. (+)PSRR vs FREQUENCY  
FIGURE 14. (-)PSRR vs FREQUENCY  
BLUE  
GREEN  
X =LOW  
2
V =±5V  
S
R =150Ω  
L
V
V
=1V  
CTRL  
=1V  
RED  
GAIN  
FIGURE 15. BLUE CROSSTALK (CABLE LENGTH = 3ft.)  
FIGURE 16. BLUE CROSSTALK (CABLE LENGTH = 600ft.)  
FN6406.0  
December 15, 2006  
7
ISL59910, ISL59913  
Typical Performance Curves (Continued)  
GREEN  
RED  
X =LOW  
2
V =±5V  
S
R =150Ω  
L
V
V
=1V  
=1V  
CTRL  
GAIN  
BLUE  
FIGURE 17. GREEN CROSSTALK (CABLE LENGTH = 3ft.)  
FIGURE 18. GREEN CROSSTALK (CABLE LENGTH = 600ft.)  
RED  
GREEN  
X =LOW  
2
V =±5V  
S
R =150Ω  
L
V
V
=1V  
CTRL  
=1V  
BLUE  
GAIN  
FIGURE 19. RED CROSSTALK (CABLE LENGTH = 3ft.)  
FIGURE 20. RED CROSSTALK (CABLE LENGTH =600ft.)  
V
CTRL=0V  
CABLE=3FT  
V
CTRL=0.2V  
CABLE=600FT  
X =HIGH  
2
V =±5V  
S
R =150Ω  
L
V
=0V  
GAIN  
INPUT=10MHz  
FIGURE 21. RISE TIME AND FALL TIME  
FIGURE 22. PULSE RESPONSE FOR VARIOUS CABLE  
LENGTHS  
FN6406.0  
December 15, 2006  
8
ISL59910, ISL59913  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD - QFN EXPOSED  
DIEPAD SOLDERED TO PCB PER JESD51-5  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.2  
1
4.5  
4
893mW  
3.378W  
3.5  
3
0.8  
0.6  
0.4  
0.2  
0
2.5  
2
1.5  
1
0.5  
0
0
25  
50  
75 85 100  
125  
150  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 24. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 23. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
The control reference and logic reference effectively remove  
the necessity for the 0V rail and operation from ±5V (or 0V  
and 10V) only is possible. However we still need a further  
reference to define the 0V level of the single ended output  
signal. The reference for the output signal is provided by the  
0V pin. The output stage cannot pull fully up or down to either  
supply so it is important that the reference is positioned to  
allow full output swing. The 0V reference should be tied to a  
'quiet ground' as any noise on this pin is transferred directly to  
the output. The 0V pin is a high impedance pin and draws DC  
bias currents of a few µA and similar levels of AC current.  
Applications Information  
Logic Control  
The ISL59913 has two logical input pins, Chip Enable  
(ENABLE) and Switch Gain (X2). The logic circuits all have a  
nominal threshold of 1.1V above the potential of the logic  
reference pin (VREF). In most applications it is expected that  
this chip will run from a +5V, 0V, -5V supply system with logic  
being run between 0V and +5V. In this case the logic  
reference voltage should be tied to the 0V supply. If the logic  
is referenced to the -5V rail, then the logic reference should  
be connected to -5V. The logic reference pin sources about  
60µA and this will rise to about 200µA if all inputs are true  
(positive).  
Equalizing  
When transmitting a signal across a twisted pair cable, it is  
found that the high frequency (above 1MHz) information is  
attenuated more significantly than the information at low  
frequencies. The attenuation is predominantly due to resistive  
skin effect losses and has a loss curve which depends on the  
resistivity of the conductor, surface condition of the wire and the  
wire diameter. For the range of high performance twisted pair  
cables based on 24awg copper wire (CAT-5 etc). These  
parameters vary only a little between cable types and in general  
cables exhibit the same frequency dependence of loss. (The  
lower loss cables can be compared with somewhat longer  
lengths of their more lossy brothers.) This enables a single  
equalizing law equation to be built into the ISL59913.  
The logic inputs all source up to 10µA when they are held at  
the logic reference level. When taken positive, the inputs  
sink a current dependent on the high level, up to 50µA for a  
high level 5V above the reference level.  
The logic inputs, if not used, should be tied to the  
appropriate voltage in order to define their state.  
Control Reference and Signal Reference  
Analog control voltages are required to set the equalizer and  
contrast levels. These signals are voltages in the range  
0V to 1V, which are referenced to the control reference pin. It  
is expected that the control reference pin will be tied to 0V  
and the control voltage will vary from 0V to 1V. It is; however,  
acceptable to connect the control reference to any potential  
between -5V and 0V to which the control voltages are  
referenced.  
With a control voltage applied between pins VCTRL and  
VREF, the frequency dependence of the equalization is  
shown in Figure 8. The equalization matches the cable loss  
up to about 100MHz. Above this, system gain is rolled off  
rapidly to reduce noise bandwidth. The roll-off occurs more  
rapidly for higher control voltages, thus the system (cable +  
equalizer) bandwidth reduces as the cable length increases.  
This is desirable, as noise becomes an increasing issue as  
the equalization increases.  
The control voltage pins themselves are high impedance.  
The control reference pin will source between 0µA and  
200µA depending on the control voltages being applied.  
FN6406.0  
December 15, 2006  
9
ISL59910, ISL59913  
an internal logic decoding block to provide Horizontal and  
Vertical sync output signals (H and V ).  
Contrast  
OUT OUT  
By varying the voltage between pins VGAIN and VREF, the  
gain of the signal path can be changed in the ratio 4:1. The  
gain change varies almost linearly with control voltage. For  
normal operation it is anticipated the X2 mode will be selected  
and the output load will be back matched. A unity gain to the  
output load will then be achieved with a gain control voltage of  
about 0.35V. This allows the gain to be trimmed up or down by  
6dB to compensate for any gain/loss errors that affect the  
contrast of the video signal. Figure 26 shows an example plot  
of the gain to the load with gain control voltage.  
BLUE CM  
OUT (CH A)  
GREEN CM  
OUT (CH B)  
RED CM  
OUT (CH C)  
V
SYNC  
H
SYNC  
2
1.8  
1.6  
1.4  
1.2  
1
TIME (0.5ms/DIV)  
FIGURE 26. H AND V SYNCS ENCODED  
TABLE 1. H AND V SYNC DECODING  
RED CM  
Mid  
GREEN CM BLUE CM  
H
V
SYNC  
SYNC  
High  
Low  
High  
Low  
Low  
Mid  
Low  
Low  
0.8  
0.6  
0.4  
High  
Low  
Low  
High  
Low  
High  
Mid  
High  
High  
0
0.2  
0.4  
0.6  
0.8  
1
Mid  
High  
V
GAIN  
NOTE: Level ‘Mid’ is halfway between ‘High’ and ‘Low’  
FIGURE 25. VARIATION OF GAIN WITH GAIN CONTROL  
VOLTAGE  
Power Dissipation  
Common Mode Sync Decoding  
The ISL59910 and ISL59913 are designed to operate with  
±5V supply voltages. The supply currents are tested in  
production and guaranteed to be less than 39mA per  
channel. Operating at ±5V power supply, the total power  
dissipation is:  
The ISL59910 features common mode decoding to allow  
horizontal and vertical synchronization information, which has  
been encoded on the three differential inputs by the EL4543,  
to be decoded. The entire RGB video signal can therefore be  
transmitted, along with the associated synchronization  
information, by using just three twisted pairs.  
V
OUTMAX  
----------------------------  
PD  
= 3 × 2 × V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
R
L
Decoding is based on the EL4543 encoding scheme, as  
described in Figure 26 and Table 1. The scheme is a three-level  
system, which has been designed such that the sum of the  
common mode voltages results in a fixed average DC level with  
no AC content. This eliminates the effect of EMI radiation into  
the common mode signals along the twisted pairs of the cable  
(EQ. 1)  
where:  
• PD  
= Maximum power dissipation  
MAX  
• V = Supply voltage = 5V  
S
The common mode voltages are initially extracted by the  
ISL59910 from the three input pairs. These are then passed to  
• I  
= Maximum quiescent supply current per  
MAX  
channel = 39mA  
• V  
= Maximum output voltage swing of the  
OUTMAX  
application = 2V  
R = Load resistance = 150Ω Ω  
L
(EQ. 2)  
PD  
= 1.29W  
MAX  
θ
required for long term reliable operation can be  
JA  
calculated. This is done using Equation 3:  
FN6406.0  
December 15, 2006  
10  
ISL59910, ISL59913  
Where  
(Tj Ta)  
-----------------------  
= 50.4CW  
(EQ. 3)  
θ
=
JA  
PD  
Tj is the maximum junction temperature (+150°C)  
Ta is the maximum ambient temperature (+85°C)  
For a QFN 28 package in a properly layout PCB heatsinking  
copper area, +37°C/W θ thermal resistance can be  
JA  
achieved. To disperse the heat, the bottom heatspreader  
must be soldered to the PCB. Heat flows through the  
heatspreader to the circuit board copper then spreads and  
converts to air. Thus the PCB copper plane becomes the  
heatsink. This has proven to be a very effective technique. A  
separate application note details the 28 Ld QFN. PCB  
design considerations are available.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6406.0  
December 15, 2006  
11  
ISL59910, ISL59913  
QFN (Quad Flat No-Lead) Package Family  
MDP0046  
QFN (QUAD FLAT NO-LEAD) PACKAGE FAMILY  
(COMPLIANT TO JEDEC MO-220)  
A
SYMBOL QFN44 QFN38  
QFN32  
TOLERANCE  
±0.10  
NOTES  
D
B
A
A1  
b
0.90  
0.02  
0.25  
0.20  
7.00  
5.10  
7.00  
5.10  
0.50  
0.55  
44  
0.90 0.90  
0.90  
0.02  
0.22  
0.20  
5.00  
-
-
0.02 0.02  
0.25 0.23  
0.20 0.20  
5.00 8.00  
+0.03/-0.02  
±0.02  
-
1
2
3
PIN #1  
I.D. MARK  
c
Reference  
Basic  
-
D
-
E
D2  
E
3.80 5.80 3.60/2.48  
7.00 8.00 6.00  
5.80 5.80 4.60/3.40  
Reference  
Basic  
8
-
E2  
e
Reference  
Basic  
8
-
2X  
0.075 C  
0.50 0.80  
0.40 0.53  
0.50  
0.50  
32  
L
±0.05  
-
2X  
0.075 C  
N
38  
7
32  
8
Reference  
Reference  
Reference  
4
6
5
TOP VIEW  
ND  
NE  
11  
7
11  
12  
8
9
0.10 M C A B  
b
TOLER-  
ANCE NOTES  
L
SYMBOL QFN28 QFN24  
QFN20  
QFN16  
0.90  
PIN #1 I.D.  
3
A
0.90  
0.02  
0.90 0.90  
0.02 0.02  
0.90  
0.02  
±0.10  
-
-
1
2
3
A1  
0.02  
+0.03/  
-0.02  
b
c
0.25  
0.20  
4.00  
2.65  
5.00  
3.65  
0.50  
0.40  
28  
0.25 0.30  
0.20 0.20  
4.00 5.00  
2.80 3.70  
5.00 5.00  
3.80 3.70  
0.50 0.65  
0.40 0.40  
0.25  
0.20  
4.00  
2.70  
4.00  
2.70  
0.50  
0.40  
20  
0.33  
±0.02  
-
-
(E2)  
0.20 Reference  
4.00 Basic  
2.40 Reference  
4.00 Basic  
2.40 Reference  
D
-
5
NE  
D2  
E
-
-
E2  
e
-
7
(D2)  
BOTTOM VIEW  
0.65  
0.60  
16  
Basic  
-
L
±0.05  
-
N
24  
5
20  
5
Reference  
Reference  
Reference  
4
6
5
0.10 C  
ND  
NE  
6
5
4
e
C
8
7
5
5
4
SEATING  
PLANE  
Rev 10 12/04  
NOTES:  
1. Dimensioning and tolerancing per ASME Y14.5M-1994.  
2. Tiebar view shown is a non-functional feature.  
0.08 C  
SEE DETAIL "X"  
N LEADS  
& EXPOSED PAD  
3. Bottom-side pin #1 I.D. is a diepad chamfer as shown.  
4. N is the total number of terminals on the device.  
SIDE VIEW  
5. NE is the number of terminals on the “E” side of the package  
(or Y-direction).  
(c)  
2
6. ND is the number of terminals on the “D” side of the package  
(or X-direction). ND = (N/2)-NE.  
A
C
7. Inward end of terminal may be square or circular in shape with radius  
(b/2) as shown.  
(L)  
A1  
N LEADS  
8. If two values are listed, multiple exposed pad options are available.  
Refer to device-specific datasheet.  
DETAIL X  
FN6406.0  
December 15, 2006  
12  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY