ISL60002_10 [INTERSIL]

Precision Low Power FGA? Voltage References; 精密低功耗FGA ™电压基准
ISL60002_10
型号: ISL60002_10
厂家: Intersil    Intersil
描述:

Precision Low Power FGA? Voltage References
精密低功耗FGA ™电压基准

文件: 总36页 (文件大小:2535K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low Power FGA™ Voltage References  
ISL60002  
The ISL60002 FGA™ voltage references are very high precision  
analog voltage references fabricated in Intersil's proprietary  
Floating Gate Analog technology and feature low supply  
voltage operation at ultra-low 350nA operating current.  
Features  
• Reference Voltages . . . . . 1.024V, 1.2V, 1.25V, 1.8V, 2.048V,  
2.5V, 2.6V, 3.0V and 3.3V  
• Absolute Initial Accuracy Options . . . . . . . . ±1.0mV,±2.5mV  
and ±5.0mV  
Additionally, the ISL60002 family features guaranteed initial  
accuracy as low as ±1.0mV and 20ppm/°C temperature  
coefficient. The initial accuracy and temperature stability  
performance of the ISL60002 family, plus the low supply  
voltage and 350nA power consumption, eliminates the need  
to compromise thermal stability for reduced power  
consumption making it an ideal companion to high resolution,  
low power data conversion systems.  
• Supply Voltage Range  
- ISL60002-10, -11, -12, -18, -20, -25 . . . . . . . . 2.7V to 5.5V  
- ISL60002-26 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8V to 5.5V  
- ISL60002-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2V to 5.5V  
- ISL60002-33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5V to 5.5V  
• Ultra-Low Supply Current. . . . . . . . . . . . . . . . . . . . . .350nA typ  
• Low 20ppm/°C Temperature Coefficient  
Special Note: Post-assembly x-ray inspection may lead to  
permanent changes in device output voltage and should be  
minimized or avoided. For further information, please see  
“Applications Information” on page 32 and AN1533, “X-Ray  
Effects on Intersil FGA References”.  
• I  
• I  
and I  
= 7mA  
SOURCE  
SINK  
and I  
= 20mA for ISL60002-33 only  
SOURCE  
SINK  
• ESD Protection . . . . . . . . . . . . . . 5500V (Human Body Model)  
• Standard 3 Ld SOT-23 Packaging  
Applications  
• High Resolution A/Ds and D/As  
• Operating Temperature Range  
- ISL60002-10, -11, -12, -18, -20, -25,  
-26, -30 . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
• Digital Meters  
- ISL60002-33 . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C  
• Bar Code Scanners  
• Pb-Free (RoHS Compliant)  
• Mobile Communications  
• PDA’s and Notebooks  
• Medical Systems  
Related Literature  
• See AN1494, “Reflow and PC Board Assembly Effects on  
Intersil FGA References”  
• See AN1533, “X-Ray Effects on Intersil FGA References”  
Typical Application  
V
= +3.0V  
IN  
0.1µF  
10µF  
V
IN  
V
OUT  
0.001µF*  
ISL60002-25  
V
= 2.50V  
GND  
OUT  
REF IN  
ENABLE  
SCK  
SERIAL  
BUS  
SDAT  
16 TO 24-BIT  
A/D CONVERTER  
*Also see Figure 118 in Applications Information.  
December 16, 2010  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2004-2010. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. FGA is a trademark of Intersil Corporation.  
All other trademarks mentioned are the property of their respective owners.  
FN8082.17  
ISL60002  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Environmental Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Specifications ISL60002-10, V  
Electrical Specifications ISL60002-11, V  
Electrical Specifications ISL60002-12, V  
Electrical Specifications ISL60002-18, V  
Electrical Specifications ISL60002-20, V  
Electrical Specifications ISL60002-25, V  
Electrical Specifications ISL60002-26, V  
Electrical Specifications ISL60002-30, V  
Electrical Specifications ISL60002-33, V  
= 1.024V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
= 1.200V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
= 1.250V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
= 1.800V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
= 2.048V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
= 2.500V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
= 2.600V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
= 3.000V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
= 3.300V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Common Electrical Specifications ISL60002 -10, -11, -12, -18, -20, and -25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
= 1.024V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
= 1.20V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
= 1.25V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
OUT  
OUT  
OUT  
Typical Performance Curves, V  
Typical Performance Curves, V  
= 1.8V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
= 2.048V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
OUT  
OUT  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
= 2.50V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
= 3.0V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
= 3.3V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
OUT  
OUT  
OUT  
High Current Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
FGA Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Nanopower Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Board Mounting Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Board Assembly Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Special Applications Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Noise Performance and Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Turn-On Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Temperature Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Typical Application Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
FN8082.17  
December 16, 2010  
2
ISL60002  
Pin Descriptions  
Pin Configuration  
ISL60002  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
(3 LD SOT-23)  
TOP VIEW  
1
2
3
V
IN  
Power Supply Input  
V
Voltage Reference Output  
Ground  
OUT  
1
2
V
IN  
GND  
3
GND  
V
OUT  
Ordering Information  
PART NUMBER  
PART MARKING  
V
TEMP. RANGE  
PACKAGE  
PKG.  
OUT  
(Notes 1, 2, 3)  
(Bottom)  
(V)  
GRADE  
(°C)  
Tape & Reel (Pb-free)  
DWG. #  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
P3.064  
ISL60002BIH310Z-TK  
ISL60002CIH310Z-TK  
ISL60002DIH310Z-TK  
ISL60002BIH311Z-TK  
ISL60002CIH311Z-TK  
ISL60002DIH311Z-TK  
ISL60002BIH312Z-TK  
ISL60002CIH312Z-TK  
ISL60002DIH312Z-TK  
ISL60002BIH318Z-TK  
ISL60002CIH318Z-TK  
ISL60002DIH318Z-TK  
ISL60002BIH320Z-TK  
ISL60002CIH320Z-TK  
ISL60002DIH320Z-TK  
ISL60002BIH325Z-TK  
ISL60002DIH325Z-TK  
ISL60002CIH325Z-TK  
ISL60002BIH326Z-TK  
ISL60002CIH326Z-TK  
ISL60002DIH326Z-TK  
ISL60002BIH330Z-TK  
ISL60002CIH330Z-TK  
ISL60002DIH330Z-TK  
ISL60002BAH333Z-TK  
ISL60002CAH333Z-TK  
ISL60002DAH333Z-TK  
NOTES:  
DFB  
DFC  
DFD  
APM  
AOR  
AOY  
AOM  
AOS  
APA  
DEO  
DEP  
DEQ  
DEY  
DEZ  
DFA  
AON  
APB  
AOT  
DFK  
DFL  
DFM  
DFI  
1.024  
1.024  
1.024  
1.200  
1.200  
1.200  
1.250  
1.250  
1.250  
1.800  
1.800  
1.800  
2.048  
2.048  
2.048  
2.500  
2.500  
2.500  
2.600  
2.600  
2.600  
3.000  
3.000  
3.000  
3.300  
3.300  
3.300  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +105  
-40 to +105  
-40 to +105  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
DFJ  
DFH  
AOP  
AOU  
APC  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL60002. For more information on MSL please see techbrief TB363.  
FN8082.17  
December 16, 2010  
3
ISL60002  
Absolute Maximum Ratings  
Thermal Information  
Thermal Resistance (Typical)  
3 Ld SOT-23 (Notes 5, 6) . . . . . . . . . . . . . . .  
Max Voltage V to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V  
θ
(°C/W)  
275  
θ
(°C/W)  
110  
IN  
JA  
JC  
Max Voltage V  
OUT  
to GND (10s):. . . . . . . . . . . . . . . . . . .-0.5V to +V + 1V  
OUT  
Voltage on “DNC” pins . . . . . . . . . .No connections permitted to these pins  
ESD Ratings  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5500V  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550V  
Charged Device Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV  
Continuous Power Dissipation (T = +85°C) . . . . . . . . . . . . . . . . . . .99mW  
A
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+107°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-free Reflow Profile (Note 7) . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Environmental Operating Conditions  
Recommended Operating Conditions  
X-Ray Exposure (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mRem  
Temperature Range  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
3.3V Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. Measured with no filtering, distance of 10” from source, intensity set to 55kV and 70mA current, 30s duration. Other exposure levels should be  
analyzed for Output Voltage drift effects. See “Applications Information” on page 32.  
5. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
6. For θ , the “case temp” location is taken at the package top center.  
JC  
7. Post-reflow drift for the ISL60002 devices will range from 100µV to 1.0mV based on experimental results with devices on FR4 double sided boards.  
The design engineer must take this into account when considering the reference voltage after assembly.  
8. Post-assembly x-ray inspection may also lead to permanent changes in device output voltage and should be minimized or avoided. Initial accuracy  
can change 10mV or more under extreme radiation. Most inspection equipment will not affect the FGA reference voltage, but if x-ray inspection is  
required, it is advisable to monitor the reference output voltage to verify excessive shift has not occurred.  
Electrical Specifications ISL60002-10, V  
= 1.024V (Additional specifications on page 7, “Common Electrical  
OUT  
Specifications”) Operating Conditions: V = 3.0V, I  
IN OUT  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT A  
the operating temperature range, -40°C to +85°C  
MIN  
MAX  
SYMBOL  
PARAMETER  
Output Voltage  
NOTES:V Accuracy (Notes 10, 8)  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
1.024  
OUT  
V
T = +25°C  
A
OA  
OUT  
ISL60002B10  
ISL60002C10  
ISL60002D10  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
Electrical Specifications ISL60002-11, V  
= 1.200V (Additional specifications on page 7, “Common Electrical  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT A  
OUT  
the operating temperature range, -40°C to +85°C  
MIN  
MAX  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 10)  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
1.200  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B11  
ISL60002C11  
ISL60002D11  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
FN8082.17  
December 16, 2010  
4
ISL60002  
Electrical Specifications ISL60002-12, V  
OUT  
the operating temperature range, -40°C to +85°C  
= 1.250V (Additional specifications on page 7, “Common Electrical  
OUT  
OUT  
Specifications”) Operating Conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
A
MIN  
MAX  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 10)  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
1.250  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B12  
ISL60002C12  
ISL60002D12  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
Electrical Specifications ISL60002-18, V  
= 1.800V (Additional specifications on page 7, “Common Electrical  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified.. Boldface limits apply over  
OUT A  
OUT  
the operating temperature range, -40°C to +85°C  
MIN  
MAX  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 10)  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
1.800  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B18  
ISL60002C18  
ISL60002D18  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
Electrical Specifications ISL60002-20, V  
= 2.048V (Additional specifications on page 7, “Common Electrical  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified.. Boldface limits apply over  
OUT A  
IN  
OUT  
the operating temperature range, -40°C to +85°C  
MIN  
MAX  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 10)  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
2.048  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B20  
ISL60002C20  
ISL60002D20  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
Electrical Specifications ISL60002-25, V  
= 2.500V (Additional specifications on page 7, “Common Electrical  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT A  
IN  
OUT  
the operating temperature range, -40°C to +85°C  
MIN  
MAX  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 10)  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
2.500  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B25  
ISL60002C25  
ISL60002D25  
-1.0  
-2.5  
-5.0  
2.7  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
V
Input Voltage Range  
IN  
FN8082.17  
December 16, 2010  
5
ISL60002  
Electrical Specifications ISL60002-26, V  
= 2.600V (Additional specifications on page 7, “Common Electrical  
OUT  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over  
OUT  
A
the operating temperature range, -40°C to +85°C  
MIN  
MAX  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 10)  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
2.600  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B26  
ISL60002C26  
ISL60002D26  
-1.0  
-2.5  
-5.0  
2.8  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
Input Voltage Range  
V
IN  
TC V  
Output Voltage Temperature  
Coefficient (Note 10)  
20  
ppm/°C  
OUT  
I
Supply Current  
Line Regulation  
Load Regulation  
350  
80  
900  
350  
100  
250  
nA  
µV/V  
µV/mA  
µV/mA  
ppm  
IN  
ΔV  
/ΔV  
+2.8V V +5.5V  
IN  
OUT  
IN  
ΔV  
/ΔI  
0mA I  
7mA  
25  
OUT  
OUT  
SOURCE  
-7mA I 0mA  
50  
SINK  
ΔT = +125°C  
ΔV  
/ΔT  
Thermal Hysteresis (Note 11)  
Long Term Stability (Note 12)  
Short Circuit Current (to GND)*  
Output Voltage Noise  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; First 1khrs  
= +25°C  
A
ppm  
OUT  
A
I
T
50  
mA  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
Electrical Specifications ISL60002-30, V  
= 3.000V Operating Conditions: V = 5.0V, I  
= 0mA, C = 0.001µF,  
OUT  
IN  
OUT  
OUT  
T
= -40 to +85°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +85°C  
A
MIN  
MAX  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 10)  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
3.000  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B30  
ISL60002C30  
ISL60002D30  
-1.0  
-2.5  
-5.0  
3.2  
+1.0  
+2.5  
+5.0  
5.5  
mV  
mV  
mV  
V
Input Voltage Range  
V
IN  
TC V  
Output Voltage Temperature  
Coefficient (Note 10)  
20  
ppm/°C  
OUT  
I
Supply Current  
Line Regulation  
Load Regulation  
350  
80  
900  
250  
100  
150  
nA  
µV/V  
µV/mA  
µV/mA  
ppm  
IN  
ΔV  
/ΔV  
+3.2V V +5.5V  
IN  
OUT  
IN  
ΔV  
/ΔI  
0mA I  
SOURCE  
7mA  
25  
OUT OUT  
-7mA I  
0mA  
50  
SINK  
ΔV  
/ΔT  
Thermal Hysteresis (Note 11)  
Long Term Stability (Note 12)  
Short Circuit Current (to GND)  
Output Voltage Noise  
ΔT = +125°C  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; First 1khrs  
= +25°C  
A
ppm  
OUT  
A
I
T
50  
mA  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
FN8082.17  
December 16, 2010  
6
ISL60002  
Electrical Specifications ISL60002-33, V  
= 3.300V Operating Conditions: V = 5.0V, I  
= 0mA, C  
MAX  
= 0.001µF,  
OUT  
IN  
OUT  
OUT  
T
= -40 to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C  
A
MIN  
SYMBOL  
PARAMETER  
Output Voltage  
Accuracy (Note 10)  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
V
V
3.300  
OUT  
V
V
T = +25°C  
A
OA  
OUT  
ISL60002B33  
ISL60002C33  
ISL60002D33  
-1.0  
-2.5  
-5.0  
1.0  
2.5  
5.0  
20  
mV  
mV  
mV  
TC V  
OUT  
Output Voltage Temperature  
Coefficient (Note 10)  
ppm/°C  
V
Input Voltage Range  
Supply Current  
3.5  
5.5  
700  
200  
100  
150  
V
IN  
I
350  
80  
nA  
IN  
ΔV  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
+3.5V V +5.5V  
IN  
µV/V  
µV/mA  
µV/mA  
ppm  
ppm  
mA  
OUT  
IN  
/ΔI  
0mA I  
20mA  
0mA  
25  
OUT OUT  
SOURCE  
-20mA I  
50  
SINK  
ΔV  
/ΔT  
Thermal Hysteresis (Note 11)  
Long Term Stability (Note 12)  
Short Circuit Current (to GND)  
Output Voltage Noise  
ΔT = +145°C  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; First 1khrs  
= +25°C  
A
OUT  
A
I
T
50  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
Common Electrical Specifications ISL60002 -10, -11, -12, -18, -20, and -25  
Operating Conditions: V = 3.0V, I  
IN OUT  
= 0mA, C = 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply over the operating  
OUT A  
temperature range, -40°C to +85°C  
MIN  
MAX  
SYMBOL  
TC V  
PARAMETER  
CONDITIONS  
(Note 9)  
TYP  
(Note 9)  
UNITS  
Output Voltage Temperature  
Coefficient (Note 10)  
20  
ppm/°C  
OUT  
I
Supply Current  
Line Regulation  
Load Regulation  
350  
80  
900  
250  
100  
150  
nA  
µV/V  
µV/mA  
µV/mA  
ppm  
IN  
ΔV  
/ΔV  
+2.7V V +5.5V  
OUT  
IN  
IN  
ΔV  
/ΔI  
0mA I  
7mA  
25  
OUT  
OUT  
SOURCE  
-7mA I  
0mA  
ΔT = +125°C  
50  
SINK  
ΔV  
/ΔT  
Thermal Hysteresis (Note 11)  
Long Term Stability (Note 12)  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; First 1khrs  
= +25°C  
A
ppm  
OUT  
A
I
Short Circuit Current (to GND)  
(Note 13)  
T
50  
mA  
SC  
V
Output Voltage Noise  
0.1Hz f 10Hz  
30  
µV  
P-P  
N
NOTES:  
9. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
10. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in V  
temperature range: (-40°C to +85°C = +125°C, or -40°C to +105°C = +145°C for the ISL60002-33).  
is divided by the  
OUT  
11. Thermal Hysteresis is the change in V  
OUT  
measured @ T = +25°C after temperature cycling over a specified range, ΔT , V is read initially at  
OUT  
A
A
T
= +25°C for the device under test. The device is temperature cycled and a second V  
measurement is taken at +25°C. The difference between  
A
OUT  
the initial V  
reading and the second V  
OUT  
reading is then expressed in ppm. For ΔT = +125°C, the device under is cycled from +25°C to +85°C  
OUT  
A
to -40°C to +25°C, and for ΔT = +145°C, the device under is cycled from +25°C to +105°C to -40°C to +25°C  
A
12. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately 10ppm.  
13. Short Circuit Current (to V ) for ISL60002-25 at V = 5.0V and +25°C is typically around 30mA. Shorting V  
CC IN OUT  
to V is not recommended due to  
CC  
risk of resetting the part.  
FN8082.17  
December 16, 2010  
7
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.024V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified.  
OUT A  
IN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
700  
600  
500  
400  
300  
200  
100  
0
+25°C  
+85°C  
-40°C  
UNIT 3  
UNIT 2  
UNIT 1  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 2. I vs V OVER-TEMPERATURE  
FIGURE 1. I vs V , 3 UNITS  
IN IN  
IN  
IN  
150  
125  
100  
75  
1.0244  
1.0243  
1.0242  
1.0241  
1.0240  
1.0239  
1.0238  
1.0237  
1.0236  
-40°C  
+85°C  
UNIT 3  
50  
25  
0
UNIT 2  
UNIT 1  
-25  
-50  
-75  
-100  
-125  
-150  
+25°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
V
(V)  
IN  
IN  
FIGURE 3. LINE REGULATION, 3 UNITS  
FIGURE 4. LINE REGULATION OVER-TEMPERATURE  
1.0250  
UNIT 2  
1.0248  
1.0246  
1.0244  
1.0242  
1.0240  
1.0238  
1.0236  
1.0234  
1.0232  
1.0230  
UNIT 3  
UNIT 1  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 5. V  
vs TEMPERATURE NORMALIZED to +25°C  
OUT  
FN8082.17  
December 16, 2010  
8
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.024V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified.  
OUT A  
IN  
C
= 0pF  
C
= 500pF  
L
L
ΔV = 0.3V  
ΔV = 0.3V  
ΔV = -0.3V  
ΔV = -0.3V  
1ms/DIV  
1ms/DIV  
FIGURE 7. LINE TRANSIENT RESPONSE  
FIGURE 6. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+85°C  
+25°C  
-40°C  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
SINKING  
OUTPUT CURRENT  
SOURCING  
FIGURE 8. LOAD REGULATION OVER-TEMPERATURE  
ΔI = 7mA  
L
ΔI = 50µA  
L
ΔI = -50µA  
L
ΔI = -7mA  
L
2ms/DIV  
1ms/DIV  
FIGURE 9. LOAD TRANSIENT RESPONSE  
FIGURE 10. LOAD TRANSIENT RESPONSE  
FN8082.17  
December 16, 2010  
9
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.024V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified.  
OUT A  
IN  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3.2  
V
IN  
2.8  
V
IN  
2.4  
2.0  
1.6  
UNIT 3  
V
REF  
1.2  
0.8  
UNIT 2  
UNIT 1  
0.4  
0
0
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
TIME (ms)  
TIME (ms)  
FIGURE 12. TURN-ON TIME (+25°C)  
FIGURE 11. TURN-ON TIME (+25°C)  
160  
140  
120  
100  
80  
NO LOAD  
1nF LOAD  
10nF LOAD  
60  
40  
100nF LOAD  
20  
0
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 13. Z  
vs FREQUENCY  
OUT  
FN8082.17  
December 16, 2010  
10  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.20V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
700  
600  
500  
400  
300  
200  
100  
0
UNIT 3  
+85°C  
+25°C  
-40°C  
UNIT 2  
UNIT 1  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 15. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 14. I vs V , 3 UNITS  
IN IN  
1.2006  
1.2004  
1.2002  
1.2000  
1.1998  
1.1996  
1.1994  
UNIT 2  
UNIT 3  
UNIT 1  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 16. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
1.20010  
1.20008  
1.20006  
1.20004  
1.20002  
1.20000  
1.19998  
1.19996  
1.19994  
1.19992  
1.19990  
150  
125  
100  
75  
+85°C  
+25°C  
50  
UNIT 3  
25  
0
UNIT 2  
UNIT 1  
-25  
-50  
-40°C  
-75  
-100  
-125  
-150  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
IN  
IN  
FIGURE 17. LINE REGULATION, 3 UNITS  
FIGURE 18. LINE REGULATION OVER-TEMPERATURE  
FN8082.17  
December 16, 2010  
11  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.20V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 0nF  
C = 500pF  
L
L
ΔV = 0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = -0.30V  
ΔV = -0.30V  
IN  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 19. LINE TRANSIENT RESPONSE  
FIGURE 20. LINE TRANSIENT RESPONSE WITH CAPACITIVE LOAD  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0.6  
0.5  
+85°C  
0.4  
NO LOAD  
0.3  
+25°C  
0.2  
0.1  
1nF LOAD  
-40°C  
0.0  
10nF LOAD  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
100nF LOAD  
-100  
1
10  
100  
1k  
10k  
100k  
1M  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
FREQUENCY (Hz)  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
FIGURE 21. PSRR vs CAPACITIVE LOAD  
FIGURE 22. LOAD REGULATION OVER-TEMPERATURE  
I
= -50µA  
I = 50µA  
L
L
I
= -7mA  
I = 7mA  
L
L
200µs/DIV  
500µs/DIV  
FIGURE 23. LOAD TRANSIENT RESPONSE  
FIGURE 24. LOAD TRANSIENT RESPONSE  
FN8082.17  
December 16, 2010  
12  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.20V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
160  
140  
120  
100  
80  
3.2  
NO LOAD  
1nF LOAD  
2.8  
V
IN  
2.4  
10nF LOAD  
0
1.6  
60  
1.2  
V
REF  
100nF LOAD  
40  
0.8  
20  
0.4  
0
0
0
1
10  
100  
1k  
10k  
100k  
2
4
6
8
10  
12  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 25. TURN-ON TIME (+25°C)  
FIGURE 26. Z  
vs FREQUENCY  
OUT  
10s/DIV  
FIGURE 27. V  
NOISE  
OUT  
FN8082.17  
December 16, 2010  
13  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.25V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
460  
440  
420  
400  
380  
360  
340  
320  
300  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
UNIT 3  
+85°C  
+25°C  
UNIT 2  
-40°C  
UNIT 1  
200  
2.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
IN  
V
IN  
FIGURE 29. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 28. I vs V , 3 UNITS  
IN IN  
1.2510  
1.2508  
1.2506  
1.2504  
1.2502  
1.2500  
1.2498  
1.2496  
1.2494  
1.2492  
1.249  
UNIT 2  
UNIT 3  
UNIT 1  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 30. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
1.25030  
1.25025  
1.25020  
1.25015  
1.25010  
1.25005  
1.25000  
1.24995  
1.24990  
50  
UNIT 1  
25  
0
UNIT 3  
-40°C  
+25°C  
UNIT 2  
+85°C  
-25  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 31. LINE REGULATION, 3 UNITS  
FIGURE 32. LINE REGULATION OVER-TEMPERATURE  
FN8082.17  
December 16, 2010  
14  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.25V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 0nF  
L
C
= 1nF  
L
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 34. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
FIGURE 33. LINE TRANSIENT RESPONSE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0.3  
NO LOAD  
+85°C  
+25°C  
0.2  
1nF LOAD  
0.1  
0.0  
-40°C  
10nF LOAD  
100nF LOAD  
-0.1  
-80  
1
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
10  
100  
1k  
10k  
100k  
1M  
SOURCING  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
FIGURE 35. PSRR vs CAPACITIVE LOAD  
FIGURE 36. LOAD REGULATION  
I = 50µA  
L
I
= -50µA  
L
I
= -7mA  
I = 7mA  
L
L
100µs/DIV  
500µs/DIV  
FIGURE 37. LOAD TRANSIENT RESPONSE  
FIGURE 38. LOAD TRANSIENT RESPONSE  
FN8082.17  
December 16, 2010  
15  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.25V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
3.0  
180  
160  
140  
120  
100  
80  
NO LOAD  
V
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
10nF LOAD  
1nF LOAD  
60  
V
100nF LOAD  
REF  
40  
20  
0
-1  
0
1
3
5
7
9
11  
1
10  
100  
1k  
10k  
1M  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 39. TURN-ON TIME (+25°C)  
FIGURE 40. Z  
vs FREQUENCY  
OUT  
10s/DIV  
FIGURE 41. V  
NOISE  
OUT  
FN8082.17  
December 16, 2010  
16  
ISL60002  
Typical Performance Curves, V  
= 1.8V  
OUT  
V
= 3.0V, I  
700  
600  
500  
400  
300  
200  
100  
0
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
+25°C  
+85°C  
-40°C  
UNIT 3  
UNIT 2  
UNIT 1  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
IN  
(V)  
IN  
FIGURE 42. I vs V , 3 UNITS  
IN IN  
FIGURE 43. I vs V OVER-TEMPERATURE  
IN IN  
1.80020  
1.80015  
1.80010  
1.80005  
1.80000  
1.79995  
1.79990  
1.79985  
1.7998  
150  
125  
100  
75  
-40°C  
50  
UNIT 3  
25  
0
UNIT 1  
UNIT 2  
+85°C  
-25  
-50  
-75  
-100  
-125  
-150  
+25°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
IN  
V
(V)  
IN  
FIGURE 44. LINE REGULATION (3 REPRESENTATIVE UNITS)  
FIGURE 45. LINE REGULATION OVER-TEMPERATURE  
C
= 500pF  
C = 500pF  
L
L
ΔV = 0.3V  
ΔV = 0.3V  
ΔV = -0.3V  
ΔV = -0.3V  
1ms/DIV  
1ms/DIV  
FIGURE 46. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
FIGURE 47. LINE TRANSIENT RESPONSE  
FN8082.17  
December 16, 2010  
17  
ISL60002  
Typical Performance Curves, V  
= 1.8V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
0.8  
0.6  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
+85°C  
+25°C  
NO LOAD  
0.4  
0.2  
-40°C  
0.0  
1nF LOAD  
-0.2  
-0.4  
-0.6  
-0.8  
10nF LOAD  
100nF LOAD  
-100  
1
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
10  
100  
1k  
10k  
100k  
1G  
SINKING  
OUTPUT CURRENT  
SOURCING  
FREQUENCY (Hz)  
FIGURE 49. LOAD REGULATION OVER-TEMPERATURE  
FIGURE 48. PSRR vs CAPACITIVE LOAD  
ΔI = 10mA  
L
ΔI = 50µA  
L
ΔI = -50µA  
L
ΔI = -10mA  
L
2ms/DIV  
1ms/DIV  
FIGURE 50. LOAD TRANSIENT RESPONSE  
FIGURE 51. LOAD TRANSIENT RESPONSE  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
V
V
IN  
IN  
UNIT 3  
UNIT 2  
V
REF  
UNIT 1  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
TIME (ms)  
TIME (ms)  
FIGURE 53. TURN-ON TIME (+25°C)  
FIGURE 52. TURN-ON TIME (+25°C)  
FN8082.17  
December 16, 2010  
18  
ISL60002  
Typical Performance Curves, V  
= 1.8V (Continued)  
OUT  
V
= 3.0V, I  
160  
140  
120  
100  
80  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
1nF LOAD  
NO LOAD  
100nF LOAD  
60  
10nF LOAD  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1ms/DIV  
FREQUENCY (Hz)  
FIGURE 54. Z  
vs FREQUENCY  
FIGURE 55. V  
NOISE  
OUT  
OUT  
FN8082.17  
December 16, 2010  
19  
ISL60002  
= 2.048V  
Typical Performance Curves, V  
OUT  
V
= 3.0V, I  
700  
600  
500  
400  
300  
200  
100  
0
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
+85°C  
-40°C  
+25°C  
UNIT 3  
UNIT 2  
UNIT 1  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 57. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 56. I vs V (3 REPRESENTATIVE UNITS)  
IN IN  
200  
175  
150  
125  
100  
75  
50  
25  
0
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
-40°C  
+25°C  
+85°C  
UNIT 1  
UNIT 2  
UNIT 3  
-25  
-50  
-75  
-100  
-125  
-150  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 58. LINE REGULATION (3 REPRESENTATIVE UNITS)  
FIGURE 59. LINE REGULATION OVER-TEMPERATURE  
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
2.0475  
2.0474  
UNIT 2  
UNIT 1  
UNIT 3  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 60. V  
vs TEMPERATURE NORMALIZED to +25°C  
OUT  
FN8082.17  
December 16, 2010  
20  
ISL60002  
Typical Performance Curves, V  
= 2.048V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 500pF  
C
= 0pF  
L
L
ΔV = 0.3V  
ΔV = 0.3V  
ΔV = -0.3V  
ΔV = -0.3V  
1ms/DIV  
1ms/DIV  
FIGURE 61. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
FIGURE 62. LINE TRANSIENT RESPONSE  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+85°C  
+25°C  
-40°C  
-0.2  
-0.4  
-0.6  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
SINKING  
OUTPUT CURRENT  
SOURCING  
FIGURE 63. LOAD REGULATION OVER-TEMPERATURE  
ΔI = 7mA  
L
ΔI = 50µA  
L
ΔI = -50µA  
L
ΔI = -7mA  
L
2ms/DIV  
2ms/DIV  
FIGURE 65. LOAD TRANSIENT RESPONSE  
FIGURE 64. LOAD TRANSIENT RESPONSE  
FN8082.17  
December 16, 2010  
21  
ISL60002  
Typical Performance Curves, V  
= 2.048V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
V
IN  
IN  
V
UNIT 3  
UNIT 2  
UNIT 1  
REF  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
TIME (ms)  
TIME (ms)  
FIGURE 66. TURN-ON TIME (+25°C)  
FIGURE 67. TURN-ON TIME (+25°C)  
160  
140  
120  
100  
80  
NO LOAD  
10nF LOAD  
1nF LOAD  
60  
40  
100nF LOAD  
20  
0
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 68. Z  
vs FREQUENCY  
OUT  
FN8082.17  
December 16, 2010  
22  
ISL60002  
Typical Performance Characteristic Curves, V  
= 2.50V  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
600  
460  
440  
420  
400  
380  
360  
340  
320  
300  
550  
500  
+85°C  
UNIT 3  
450  
+25°C  
-40°C  
400  
UNIT 2  
UNIT 1  
350  
300  
250  
200  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 69. I vs V , 3 UNITS  
IN IN  
FIGURE 70. I vs V OVER-TEMPERATURE  
IN IN  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
UNIT 2  
UNIT 1  
UNIT 3  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 71. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
200  
2.50016  
2.50012  
2.50008  
2.50004  
2.50000  
2.49996  
2.49992  
UNIT 2  
150  
100  
50  
-40°C  
+25°C  
UNIT 1  
+85°C  
UNIT 3  
0
-50  
-100  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 72. LINE REGULATION, 3 UNITS  
FIGURE 73. LINE REGULATION OVER-TEMPERATURE  
FN8082.17  
December 16, 2010  
23  
ISL60002  
Typical Performance Characteristic Curves, V  
= 2.50V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
A
IN  
OUT  
C
L
= 0nF  
C
= 1nF  
L
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 74. LINE TRANSIENT RESPONSE  
FIGURE 75. LINE TRANSIENT RESPONSE  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
NO LOAD  
+85°C  
+25°C  
-40°C  
1nF LOAD  
0.0  
10nF LOAD  
100nF LOAD  
100k  
-0.1  
-80  
1
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
10  
100  
1k  
10k  
1M  
SOURCING  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
FIGURE 76. PSRR vs CAPACITIVE LOAD  
FIGURE 77. LOAD REGULATION OVER-TEMPERATURE  
I
= -50µA  
I = 50µA  
L
L
I
= -7mA  
I = 7mA  
L
L
200µs/DIV  
500µs/DIV  
FIGURE 78. LOAD TRANSIENT RESPONSE  
FIGURE 79. LOAD TRANSIENT RESPONSE  
FN8082.17  
December 16, 2010  
24  
ISL60002  
Typical Performance Characteristic Curves, V  
= 2.50V (Continued)  
OUT  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
3.5  
200  
150  
100  
50  
1nF LOAD  
NO LOAD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
REF  
10nF LOAD  
100nF LOAD  
0
0
-1  
1
3
5
7
9
11  
1
10  
100  
1k  
10k  
100k  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 81. Z  
vs FREQUENCY  
OUT  
FIGURE 80. TURN-ON TIME (+25°C)  
10s/DIV  
FIGURE 82. V  
NOISE  
OUT  
FN8082.17  
December 16, 2010  
25  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.0V  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
350  
335  
320  
305  
290  
275  
260  
500  
450  
400  
350  
300  
250  
UNIT 1  
UNIT 2  
+85°C  
+25°C  
UNIT 3  
-40°C  
4.8  
200  
3.2  
3.2  
3.6  
4.0  
4.4  
(V)  
5.2  
5.6  
3.6  
4.0  
4.4  
(V)  
4.8  
5.2  
5.6  
V
V
IN  
IN  
FIGURE 84. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 83. I vs V , 3 UNITS  
IN  
IN  
3.0008  
3.0006  
3.0004  
3.0002  
3.0000  
2.9998  
2.9996  
2.9994  
2.9992  
2.9990  
UNIT 1  
UNIT 2  
UNIT 3  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 85. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
3.0001  
3.0000  
3.0000  
2.9999  
40  
+85°C  
20  
+25°C  
UNIT 3  
0
UNIT 2  
-20  
-40  
-60  
-40°C  
3.6  
UNIT 1  
-80  
3.2  
3.2  
3.6  
4.0  
4.4  
(V)  
4.8  
5.2  
5.6  
4.0  
4.4  
(V)  
4.8  
5.2  
5.6  
V
IN  
V
IN  
FIGURE 86. LINE REGULATION (3 REPRESENTATIVE UNITS)  
FIGURE 87. LINE REGULATION OVER-TEMPERATURE  
FN8082.17  
December 16, 2010  
26  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.0V (Continued)  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
A
IN  
OUT  
C
= 0nF  
C
= 1nF  
L
L
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = -0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 89. LINE TRANSIENT RESPONSE  
FIGURE 88. LINE TRANSIENT RESPONSE  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
+85°C  
NO LOAD  
+25°C  
-40°C  
1nF LOAD  
10nF LOAD  
100nF LOAD  
-100  
1
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
10  
100  
1k  
10k  
100k  
1M  
SINKING  
SOURCING  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
FIGURE 90. PSRR vs CAPACITIVE LOAD  
FIGURE 91. LOAD REGULATION OVER-TEMPERATURE  
I
= -50µA  
I = 50µA  
L
I
= -1mA  
I = 1mA  
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 93. LOAD TRANSIENT RESPONSE  
FIGURE 92. LOAD TRANSIENT RESPONSE  
FN8082.17  
December 16, 2010  
27  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.0V (Continued)  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
I
= -7mA  
I = 7mA  
L
I
= -20mA  
I = 20mA  
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 94. LOAD TRANSIENT RESPONSE  
FIGURE 95. LOAD TRANSIENT RESPONSE  
160  
140  
120  
100  
80  
1nF LOAD  
NO LOAD  
5
4
3
2
1
V
IN  
10nF LOAD  
V
REF  
60  
40  
100nF LOAD  
20  
0
0
0
1
10  
100  
1k  
10k  
100k  
2
4
6
8
10  
12  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 96. TURN-ON TIME (+25°C)  
FIGURE 97. Z  
vs FREQUENCY  
OUT  
FN8082.17  
December 16, 2010  
28  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.3V  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
400  
380  
360  
340  
320  
300  
280  
260  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
+105°C  
+25°C  
UNIT 3  
UNIT 2  
-40°C  
UNIT 1  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
V
V
IN  
IN  
FIGURE 99. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 98. I vs V , 3 UNITS  
IN IN  
3.3008  
3.3006  
3.3004  
3.3002  
3.3000  
3.2998  
UNIT 1  
UNIT 3  
UNIT 2  
3.2996  
3.2994  
3.2992  
3.2990  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 100. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
3.30020  
3.30015  
3.30010  
3.30005  
3.30000  
3.29995  
3.29990  
3.29985  
3.29980  
3.29975  
3.29970  
150  
125  
100  
75  
UNIT 3  
UNIT 2  
UNIT 1  
50  
+105°C  
-40°C  
25  
0
-25  
-50  
+25°C  
-75  
-100  
-125  
-150  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
V
V
(V)  
IN  
IN  
FIGURE 102. LINE REGULATION OVER-TEMPERATURE  
FIGURE 101. LINE REGULATION, 3 UNITS  
FN8082.17  
December 16, 2010  
29  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.3V(Continued)  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
C
= 0nF  
C = 1nF  
L
L
ΔV = 0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = -0.30V  
ΔV = -0.30V  
IN  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 103. LINE TRANSIENT RESPONSE  
FIGURE 104. LINE TRANSIENT RESPONSE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
NO LOAD  
1nF LOAD  
10nF LOAD  
100nF LOAD  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 105. PSRR vs CAPACITIVE LOAD  
1.00  
0.80  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
+105°C  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
+105°C  
+25°C  
+25°C  
-40°C  
-40°C  
-0.50  
-0.60  
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
-20-18-16-14-12-10 -8 -6 -4 -2  
SINKING  
0
2
4
6
8
10 12 14 16 18 20  
SOURCING  
SOURCING  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
FIGURE 106. LOAD REGULATION  
FIGURE 107. LOAD REGULATION OVER-TEMPERATURE  
FN8082.17  
December 16, 2010  
30  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.3V(Continued)  
OUT  
V
= 5.0V, I  
= 0mA, T = +25°C unless otherwise specified  
OUT A  
IN  
I
= -1mA  
I = 1mA  
L
I
= -50µA  
I
= 50µA  
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 109. LOAD TRANSIENT RESPONSE  
FIGURE 108. LOAD TRANSIENT RESPONSE  
I
= -7mA  
I
= 7mA  
I
= -20mA  
I = 20mA  
L
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 110. LOAD TRANSIENT RESPONSE  
FIGURE 111. LOAD TRANSIENT RESPONSE  
160  
140  
120  
100  
80  
1nF LOAD  
NO LOAD  
5
4
3
2
1
V
IN  
10nF LOAD  
V
REF  
60  
40  
100nF LOAD  
20  
0
0
0
1
10  
100  
1k  
10k  
100k  
2
4
6
8
10  
12  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 112. TURN-ON TIME (+25°C)  
FIGURE 113. Z  
vs FREQUENCY  
OUT  
FN8082.17  
December 16, 2010  
31  
ISL60002  
High Current Application  
2.502  
2.500  
2.498  
2.496  
2.5001  
V
= 5V  
IN  
2.4998  
2.4995  
2.4992  
2.4989  
2.4986  
2.4983  
2.4980  
5V , +85°C  
IN  
V
= 3.3V  
IN  
2.494  
2.492  
2.490  
2.488  
2.486  
3.2V , +85°C  
IN  
V
= 3.5V  
25  
IN  
3.3V , +85°C  
IN  
0
5
10  
15  
(mA)  
20  
30  
0
4
8
12  
16  
(mA)  
LOAD  
20  
24  
28  
32  
I
I
LOAD  
FIGURE 115. DIFFERENT V AT HIGH TEMPERATURE  
IN  
FIGURE 114. DIFFERENT V AT ROOM TEMPERATURE  
IN  
Figure 116. Data acquisition circuits providing 12 to 24 bits of  
accuracy can operate with the reference device continuously  
biased with no power penalty, providing the highest accuracy and  
lowest possible long term drift.  
Applications Information  
FGA Technology  
The ISL60002 series of voltage references use the floating gate  
technology to create references with very low drift and supply  
current. Essentially, the charge stored on a floating gate cell is  
set precisely in manufacturing. The reference voltage output  
itself is a buffered version of the floating gate voltage. The  
resulting reference device has excellent characteristics which are  
unique in the industry: very low temperature drift, high initial  
accuracy, and almost zero supply current. Also, the reference  
voltage itself is not limited by voltage bandgaps or zener settings,  
so a wide range of reference voltages can be programmed  
(standard voltage settings are provided, but customer-specific  
voltages are available).  
Other reference devices consuming higher supply currents will  
need to be disabled in between conversions to conserve battery  
capacity. Absolute accuracy will suffer as the device is biased and  
requires time to settle to its final value, or, may not actually settle  
to a final value as power on time may be short.  
V
= +3.0V  
IN  
10µF  
0.01µF  
V
IN  
V
OUT  
ISL60002-25  
VOUT = 2.5V  
GND  
The process used for these reference devices is a floating gate  
CMOS process, and the amplifier circuitry uses CMOS transistors  
for amplifier and output transistor circuitry. While providing  
excellent accuracy, there are limitations in output noise level and  
load regulation due to the MOS device characteristics. These  
limitations are addressed with circuit techniques discussed in  
other sections.  
0.001µF TO 0.01µF  
REF IN  
ENABLE  
SCK  
SERIAL  
BUS  
SDAT  
12 TO 24-BIT  
A/D CONVERTER  
Nanopower Operation  
Reference devices achieve their highest accuracy when powered  
up continuously, and after initial stabilization has taken place.  
This drift can be eliminated by leaving the power on continuously.  
FIGURE 116.  
The ISL60002 is the first high precision voltage reference with  
ultra low power consumption that makes it possible to leave  
power on continuously in battery operated circuits. The ISL60002  
consumes extremely low supply current due to the proprietary  
FGA technology. Supply current at room temperature is typically  
350nA, which is 1 to 2 orders of magnitude lower than  
competitive devices. Application circuits using battery power will  
benefit greatly from having an accurate, stable reference, which  
essentially presents no load to the battery.  
Board Mounting Considerations  
For applications requiring the highest accuracy, board mounting  
location should be reviewed. Placing the device in areas subject to  
slight twisting can cause degradation of the accuracy of the  
reference voltage due to die stresses. It is normally best to place the  
device near the edge of a board, or the shortest side, as the axis of  
bending is most limited at that location. Obviously mounting the  
device on flexprint or extremely thin PC material will likewise cause  
loss of reference accuracy.  
In particular, battery powered data converter circuits that would  
normally require the entire circuit to be disabled when not in use  
can remain powered up between conversions as shown in  
FN8082.17  
December 16, 2010  
32  
ISL60002  
recommended. This network reduces noise significantly over the  
full bandwidth. As shown in Figure 117, noise is reduced to less  
than 40µV from 1Hz to 1MHz using this network with a  
0.01µF capacitor and a 2kΩ resistor in series with a 10µF  
capacitor.  
Board Assembly Considerations  
FGA references provide high accuracy and low temperature drift  
but some PC board assembly precautions are necessary. Normal  
Output voltage shifts of 100µV to 1mV can be expected with Pb-  
free reflow profiles. Precautions should be taken to avoid  
excessive heat or extended exposure to high reflow  
P-P  
400  
temperatures, which may reduce device initial accuracy.  
CL = 0  
CL = 0.001µF  
350  
300  
250  
200  
150  
100  
Post-assembly x-ray inspection may also lead to permanent  
changes in device output voltage and should be minimized or  
avoided. If x-ray inspection is required, it is advisable to monitor  
the reference output voltage to verify excessive shift has not  
occurred. If large amounts of shift are observed, it is best to add  
an X-ray shield consisting of thin zinc (300µm) sheeting to allow  
clear imaging, yet block x-ray energy that affects the FGA  
reference.  
CL = 0.1µF  
CL = 0.01µF AND 10µF + 2k  
Ω
Special Applications Considerations  
50  
0
In addition to post-assembly examination, there are also other X-  
ray sources that may affect the FGA reference long term  
accuracy. Airport screening machines contain X-rays and will  
have a cumulative effect on the voltage reference output  
accuracy. Carry-on luggage screening uses low level X-rays and is  
not a major source of output voltage shift, however, if a product is  
expected to pass through that type of screening over 100 times,  
it may need to consider shielding with copper or aluminum.  
Checked luggage X-rays are higher intensity and can cause  
output voltage shift in much fewer passes, thus devices expected  
to go through those machines should definitely consider  
shielding. Note that just two layers of 1/2 ounce copper planes  
will reduce the received dose by over 90%. The leadframe for the  
device which is on the bottom also provides similar shielding.  
1
10  
100  
1k  
10k  
100k  
FIGURE 117. NOISE REDUCTION  
V
= 3.0V  
IN  
V
10µF  
IN  
V
O
0.1µF  
ISL60002-25  
VOUT = 2.50V  
GND  
2kΩ  
0.01µF  
10µF  
If a device is expected to pass through luggage X-ray machines  
numerous times, it is advised to mount a 2-layer (minimum) PC  
board on the top, and along with a ground plane underneath will  
effectively shield it from from 50 to 100 passes through the  
machine. Since these machines vary in X-ray dose delivered, it is  
difficult to produce an accurate maximum pass  
FIGURE 118. NOISE REDUCTION NETWORK  
Turn-On Time  
The ISL60002 devices have ultra-low supply current and thus the  
time to bias up internal circuitry to final values will be longer than  
with higher power references. Normal turn-on time is typically  
7ms. This is shown in Figure 119. Since devices can vary in  
supply current down to >300nA, turn-on time can last up to about  
12ms. Care should be taken in system design to include this  
delay before measurements or conversions are started.  
recommendation.  
Noise Performance and Reduction  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is  
typically 30µV . This is shown in the plot in the Typical  
P-P  
Performance Curves. The noise measurement is made with a  
bandpass filter made of a 1 pole high-pass filter with a corner  
frequency at 0.1Hz and a 2-pole low-pass filter with a corner  
frequency at 12.6Hz to create a filter with a 9.9Hz bandwidth.  
Noise in the 10kHz to 1MHz bandwidth is approximately 400µV  
P-  
with no capacitance on the output, as shown in Figure 117.  
P
These noise measurements are made with a 2 decade bandpass  
filter made of a 1 pole high-pass filter with a corner frequency at  
1/10 of the center frequency and 1-pole low-pass filter with a  
corner frequency at 10 times the center frequency. Figure 117  
also shows the noise in the 10kHz to 1MHz band can be reduced  
to about 50µV  
using a 0.001µF capacitor on the output. Noise  
P-P  
in the 1kHz to 100kHz band can be further reduced using a  
0.1µF capacitor on the output, but noise in the 1Hz to 100Hz  
band increases due to instability of the very low power amplifier  
with a 0.1µF capacitance load. For load capacitances above  
0.001µF the noise reduction network shown in Figure 118 is  
FN8082.17  
December 16, 2010  
33  
ISL60002  
Temperature Coefficient  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
The limits stated for temperature coefficient (tempco) are  
governed by the method of measurement. The overwhelming  
standard for specifying the temperature drift of a reference is to  
measure the reference voltage at two temperatures, take the  
V
IN  
total variation, (V  
– V  
), and divide by the temperature  
HIGH  
LOW  
extremes of measurement (T  
– T  
). The result is divided  
LOW  
HIGH  
UNIT 3  
by the nominal reference voltage (at T = +25°C) and multiplied  
6
by 10 to yield ppm/°C. This is the “Box” method for specifying  
temperature coefficient.  
UNIT 1  
UNIT 2  
0
-1  
1
3
5
7
9
11  
TIME (ms)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
IN  
UNIT 3  
UNIT 1  
UNIT 2  
0
-1  
1
3
5
7
9
11  
TIME (ms)  
FIGURE 119. TURN-ON TIME  
Typical Application Circuits  
V
= 3.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
0.001µF  
OUT  
ISL60002  
V
= 2.50V  
OUT  
GND  
FIGURE 120. PRECISION 2.5V 50mA REFERENCE  
FN8082.17  
December 16, 2010  
34  
ISL60002  
Typical Application Circuits(Continued)  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL60002-25  
V
= 2.50V  
OUT  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
+
SDA  
SCL  
2-WIRE BUS  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 121. 2.5V FULL SCALE LOW-DRIFT 10-BIT ADJUSTABLE VOLTAGE SOURCE  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
+
V
SENSE  
OUT  
V
OUT  
ISL60002-25  
LOAD  
V
= 2.50V  
OUT  
GND  
FIGURE 122. KELVIN SENSED LOAD  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8082.17  
December 16, 2010  
35  
ISL60002  
Package Outline Drawing  
P3.064  
3 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE (SOT23-3)  
Rev 2, 9/09  
4
2.92±0.12  
DETAIL "A"  
C
L
2.37±0.27  
1.30±0.10  
4
C
L
0.950  
0.435±0.065  
0.20 M C  
0 - 8 deg.  
TOP VIEW  
10° TYP  
(2 plcs)  
0.25  
0.91±0.03  
GAUGE PLANE  
1.00±0.12  
SEATING PLANE  
C
SEATING PLANE  
0.10 C  
0.31±0.10  
5
0.013(MIN)  
0.100(MAX)  
SIDE VIEW  
DETAIL "A"  
(0.60)  
NOTES:  
(2.15)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3. Reference JEDEC TO-236.  
(1.25)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
5. Footlength is measured at reference to gauge plane.  
(0.95 typ.)  
TYPICAL RECOMMENDED LAND PATTERN  
FN8082.17  
December 16, 2010  
36  

相关型号:

ISL60007

Precision 1.25V and 2.50V, 1.08?-Watt, High Precision FGA Voltage References
INTERSIL

ISL60007BIB825

Precision 1.25V and 2.50V, 1.08?-Watt, High Precision FGA Voltage References
INTERSIL

ISL60007BIB825Z

Precision 2.50V, 1.08U-Watt, High Precision FGA Voltage References
INTERSIL

ISL60007CIB812

Precision 1.25V and 2.50V, 1.08?-Watt, High Precision FGA Voltage References
INTERSIL

ISL60007CIB825

Precision 1.25V and 2.50V, 1.08?-Watt, High Precision FGA Voltage References
INTERSIL

ISL60007CIB825Z

Precision 2.50V, 1.08U-Watt, High Precision FGA Voltage References
INTERSIL

ISL60007CIB825Z

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

ISL60007CIB825Z-TK

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

ISL60007DIB812

Precision 1.25V and 2.50V, 1.08?-Watt, High Precision FGA Voltage References
INTERSIL

ISL60007DIB825

Precision 1.25V and 2.50V, 1.08?-Watt, High Precision FGA Voltage References
INTERSIL

ISL60007DIB825Z

Precision 2.50V, 1.08U-Watt, High Precision FGA Voltage References
INTERSIL

ISL60007DIB825Z

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5V, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS