ISL8002A [INTERSIL]

Compact Synchronous Buck Regulators; 紧凑的同步降压型稳压器
ISL8002A
型号: ISL8002A
厂家: Intersil    Intersil
描述:

Compact Synchronous Buck Regulators
紧凑的同步降压型稳压器

稳压器
文件: 总22页 (文件大小:3216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Compact Synchronous Buck Regulators  
ISL8002, ISL8002A, ISL80019, ISL80019A  
ISL8002, ISL8002A, ISL80019 and ISL80019A are highly  
efficient, monolithic, synchronous step-down DC/DC converters  
Features  
• V range 2.7V to 5.5V  
IN  
that can deliver up to 2A of continuous output current from a 2.7V  
to 5.5V input supply. They use peak current mode control  
architecture to allow very low duty cycle operation. They operate  
at either 1MHz or 2MHz switching frequency, thereby providing  
superior transient response and allowing for the use of small  
inductors. They also have excellent stability and provide both  
internal and external compensation options.  
• V  
range is 0.6V to V  
OUT  
IN  
maximum is 1.5A or 2A (see Table 1 on page 3)  
• I  
OUT  
• Switching frequency is 1MHz or 2MHz (see Table 1 on  
page 3)  
• Internal or external compensation option  
• Selectable PFM or PWM operation option  
• Overcurrent and short circuit protection  
• Over-temperature/thermal protection  
ISL8002, ISL8002A, ISL80019 and ISL80019A integrate very low  
r
MOSFETs in order to maximize efficiency. In addition,  
DS(ON)  
since the high side MOSFET is a PMOS, the need for a Boot  
capacitor is eliminated, thereby reducing external component  
count. They can operate at 100% duty cycle (at 1MHz) with a  
dropout of 200mV at 2A output current.  
• V Undervoltage Lockout and V  
IN  
Overvoltage Protection  
OUT  
• Up to 95% peak efficiency  
These devices can be configured for either PFM (discontinuous  
conduction) or PWM (continuous conduction) operation at light  
load. PFM provides high efficiency by reducing switching losses at  
light loads and PWM reduces noise susceptibility and RF  
interference.  
Applications  
• General purpose point of load DC/DC  
• Set-top boxes and cable modems  
• FPGA power  
These devices are offered in a space saving 8 pin 2mmx2mm  
TDFN lead free package with exposed pad for improved thermal  
performance. The complete converter occupies less than  
• DVD, HDD drives, LCD panels, TV  
2
0.10in area.  
Related Literature  
• See AN1803, “1.5A/2A Low Quiescent Current High  
Efficiency Synchronous Buck Regulator”  
ISL8002  
L1  
100  
90  
1.2μH  
+1.8V/2A  
+2.7V …+5.5V  
1
2
3
4
8
7
6
5
VIN  
PHASE  
PGND  
FB  
VOUT  
GND  
VIN  
C1  
C5  
C6  
22μF  
22μF  
22μF  
GND  
EN  
80  
R1  
200kΩ 1%  
+0.6V  
EN  
PG  
MODE  
PG  
70  
R2  
100kΩ 1%  
2.5V  
1.8V  
1.5V  
1.2V  
0.9V  
0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
COMP  
PAD  
60  
50  
40  
9
V
O
(EQ. 1)  
R
= R ----------- – 1  
0.0 0.2  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
OUTPUT LOAD (A)  
1
2
VFB  
FIGURE 1. TYPICAL APPLICATION CIRCUIT CONFIGURATION  
(INTERNAL COMPENSATION OPTION)  
FIGURE 2. EFFICIENCY vs LOAD  
= 1MHz, V = 3.3V, MODE = PFM, T = +25°C  
F
SW  
IN  
A
January 7, 2013  
FN7888.1  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2013. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL8002, ISL8002A, ISL80019, ISL80019A  
Table of Contents  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Load Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PFM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Short-Circuit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Negative Current Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
UVLO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Enable, Disable, and Soft Start-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Discharge Mode (Soft-Stop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
100% Duty Cycle (1MHz Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Output Inductor and Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Output Voltage Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Loop Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
FN7888.1  
January 7, 2013  
2
ISL8002, ISL8002A, ISL80019, ISL80019A  
TABLE 1. SUMMARY OF KEY DIFFERENCES  
I
(MAX)  
F
V
RANGE  
(V)  
V
OUT  
RANGE  
(V)  
PACKAGE  
SIZE  
OUT  
(A)  
SW  
IN  
PART#  
ISL80019  
ISL80019A  
ISL8002  
(MHz)  
1.5  
1.5  
2
1
2
1
2
2.7 to 5.5  
0.6 to 5.5  
8 pin 2mmx2mm TDFN  
ISL8002A  
2
NOTE: In this datasheet, the parts in the table above are collectively called "device".  
TABLE 2. COMPONENT VALUE SELECTION TABLE  
V
C1  
(µF)  
C5, C6  
(µF)  
C4  
(pF)  
L1  
(µH)  
R1  
(k)  
R2  
(k)  
OUT  
(V)  
0.8  
1.2  
1.5  
1.8  
2.5  
3.3  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
1.0~2.2  
1.0~2.2  
1.0~2.2  
1.0~3.3  
1.5~3.3  
1.5~4.7  
33  
100  
100  
100  
100  
100  
100  
100  
150  
200  
316  
450  
FN7888.1  
January 7, 2013  
3
ISL8002, ISL8002A, ISL80019, ISL80019A  
Pin Configuration  
ISL8002, ISL8002A, ISL80019, ISL80019A  
(8 LD 2x2 TDFN)  
TOP VIEW  
VIN  
EN  
1
2
3
4
8
7
6
5
PHASE  
PGND  
FB  
THERMAL  
PAD  
(GND)  
PIN 9  
MODE  
PG  
COMP  
Pin Descriptions  
PIN NUMBER  
SYMBOL  
PIN DESCRIPTION  
1
VIN  
The input supply for the power stage of the PWM regulator and the source for the internal linear regulator that provides  
bias for the IC. Place a minimum of 10µF ceramic capacitance from VIN to GND and as close as possible to the IC for  
decoupling.  
2
3
EN  
Device enable input. When the voltage on this pin rises above 0.6V, the device is enabled. The device is disabled when  
the pin is pulled to ground. When the device is disabled, a 100resistor discharges the output through the PHASE pin.  
See Figure 3, “FUNCTIONAL BLOCK DIAGRAM” on page 5 for details.  
MODE  
Mode selection pin. Connect to logic high or input voltage VIN for PWM mode. Connect to logic low or ground for PFM  
mode. There is an internal 1Mpull-down resistor to prevent an undefined logic state in case the MODE pin is left  
floating, however, it is not recommended to leave this pin floating.  
4
5
PG  
Power Good output is pulled to ground during the soft-start interval and also when the output voltage is below regulation  
limits. There is an internal 5Minternal pull-up resistor on this pin.  
COMP  
COMP is the output of the error amplifier. When COMP is tied high to VIN, compensation is internal. When COMP is  
connected with a series resistor and capacitor to GND, compensation is external. See “Loop Compensation Design” on  
page 19 for more detail.  
6
FB  
Feedback pin for the regulator. FB is the negative input to the voltage loop error amplifier. The output voltage is set by  
an external resistor divider connected to FB. In addition, the Power Good PWM regulator’s power-good and Undervoltage  
protection circuits use FB to monitor the output voltage.  
7
8
PGND  
Power and analog ground connections. Connect directly to the board GROUND plane.  
PHASE  
Power stage switching node for output voltage regulation. Connect to the output inductor. This pin is discharged by an  
100resistor when the device is disabled. See Figure 3, “FUNCTIONAL BLOCK DIAGRAM” on page 5 for details.  
9
THERMAL PAD Power ground. This thermal pad provides a return path for the power stage and switching currents, as well as a thermal  
(T-PAD)  
path for removing heat from the IC to the board. Place thermal vias to the PGND plane in this pad.  
FN7888.1  
January 7, 2013  
4
ISL8002, ISL8002A, ISL80019, ISL80019A  
Functional Block Diagram  
COMP  
MODE  
27pF  
SOFT-  
SHUTDOWN  
*
START  
200k  
+
+
VIN  
OSCILLATOR  
EN  
VREF  
BANDGAP  
+
EAMP  
COMP  
-
P
N
-
PWM/PFM  
LOGIC  
SHUTDOWN  
PHASE  
PGND  
CONTROLLER  
PROTECTION  
HS DRIVER  
3pF  
+
FB  
SLOPE
COMP  
1.15*VREF  
6kΩ  
+
-
-
CSA  
OV  
+
+
-
OCP  
SKIP  
-
0.85*VREF  
VIN  
5MΩ  
+
UV  
+
-
PG  
1ms  
DELAY  
NEG CURRENT  
SENSING  
ZERO-CROSS  
SENSING  
-
SCP  
+
0.3V  
100Ω  
SHUTDOWN  
By default, when COMP is tied to VIN, the voltage loop is internally compensated with the 27pF and 200kRC network.  
*
Please see "COMP" pin in the “Pin Descriptions” table on page 4 for more details.  
FIGURE 3. FUNCTIONAL BLOCK DIAGRAM  
FN7888.1  
January 7, 2013  
5
ISL8002, ISL8002A, ISL80019, ISL80019A  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
TAPE AND REEL  
QUANTITY  
PART  
MARKING  
TECHNICAL  
SPECIFICATIONS  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
ISL8002IRZ-T  
ISL8002IRZ-T7A  
ISL8002AIRZ-T  
ISL8002AIRZ-T7A  
ISL80019IRZ-T  
ISL80019IRZ-T7A  
ISL80019AIRZ-T  
ISL80019AIRZ-T7A  
NOTES:  
1000  
250  
002  
002  
02A  
02A  
019  
019  
19A  
19A  
2A, 1MHz  
2A, 1MHz  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
8 Ld TDFN  
8 Ld TDFN  
8 Ld TDFN  
8 Ld TDFN  
8 Ld TDFN  
8 Ld TDFN  
8 Ld TDFN  
8 Ld TDFN  
L8.2x2C  
L8.2x2C  
L8.2x2C  
L8.2x2C  
L8.2x2C  
L8.2x2C  
L8.2x2C  
L8.2x2C  
1000  
250  
2A, 2MHz  
2A, 2MHz  
1000  
250  
1.5A, 1MHz  
1.5A, 1MHz  
1.5A, 2MHz  
1.5A, 2MHz  
1000  
250  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL8002, ISL8002A, ISL80019, ISL80019A. For more information on  
MSL please see techbrief TB363.  
FN7888.1  
January 7, 2013  
6
ISL8002, ISL8002A, ISL80019, ISL80019A  
Absolute Maximum Ratings  
Thermal Information  
VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6V (DC) or 7V (20ms)  
PHASE . . . . . . . . . . . . . . -1.5V (100ns)/-0.3V (DC) to 6V (DC) or 7V (20ms)  
EN, COMP, PG, MODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VIN+0.3V  
FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V  
Thermal Resistance (Typical, Notes 4, 5)  
2x2 TDFN Package . . . . . . . . . . . . . . . . . . .  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
(°C/W)  
71  
θ
(°C/W)  
7
JA  
JC  
Recommended Operating Conditions  
VIN Supply Voltage Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 2A  
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379 for details.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications  
T
= -40°C to +85°C, V = 2.7V to 5.5V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
IN  
A
A
limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
INPUT SUPPLY  
Undervoltage Lockout Threshold  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
V
V
Rising, no load  
2.5  
2.4  
35  
2.7  
V
V
IN  
UVLO  
Falling, no load  
2.2  
Quiescent Supply Current  
I
MODE = PFM (GND), F  
the output  
= 2MHz, no load at  
= 1MHz, no load at  
= 2MHz, no load at  
60  
15  
22  
10  
µA  
VIN  
SW  
SW  
SW  
MODE = PWM (VIN), F  
the output  
7
10  
5
mA  
mA  
µA  
MODE = PWM (VIN), F  
the output  
Shut Down Supply Current  
OUTPUT REGULATION  
Reference Voltage  
I
MODE = PFM (GND), V = 5.5V, EN = low  
IN  
SD  
V
0.595  
0.600  
0.1  
0.2  
1
0.605  
V
REF  
VFB Bias Current  
I
V
V
= 0.75V  
µA  
VFB  
FB  
IN  
Line Regulation  
= V + 0.5V to 5.5V (minimal 2.7V)  
%/V  
ms  
O
Soft-Start Ramp Time Cycle  
PROTECTIONS  
Positive Peak Current Limit  
IPLIMIT  
2A application  
3
3.5  
2.5  
4
A
A
1.5A application  
2.1  
2.9  
Peak Skip Limit  
I
V
= 3.6, V  
IN OUT  
= 1.8V (See “Applications  
450  
mA  
SKIP  
Information” on page 18 for more detail)  
Zero Cross Threshold  
Negative Current Limit  
Thermal Shutdown  
-170  
-2.3  
-70  
-1.5  
150  
25  
30  
-1  
mA  
A
INLIMIT  
Temperature rising  
Temperature falling  
°C  
°C  
Thermal Shutdown Hysteresis  
FN7888.1  
January 7, 2013  
7
ISL8002, ISL8002A, ISL80019, ISL80019A  
Electrical Specifications  
T
= -40°C to +85°C, V = 2.7V to 5.5V, unless otherwise noted. Typical values are at T = +25°C. Boldface  
IN  
A
A
limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
COMPENSATION  
SYMBOL  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNITS  
Error Amplifier Trans-Conductance  
COMP tied VIN  
COMP with RC  
40  
120  
0.3  
µA/V  
µA/V  
Trans-Resistance  
RT  
0.24  
0.40  
LX  
P-Channel MOSFET ON-Resistance  
N-Channel MOSFET ON-Resistance  
LX Maximum Duty Cycle  
LX Minimum On-Time  
OSCILLATOR  
V
V
= 5V, I = 200mA  
117  
86  
mΩ  
mΩ  
%
IN  
O
= 5V, I = 200mA  
IN  
O
100  
60  
MODE = PWM (High) 1MHz  
80  
ns  
Nominal Switching Frequency  
F
ISL8002, ISL80019  
850  
1000  
2000  
1150  
2300  
kHz  
kHz  
SW  
ISL8002A, ISL80019A  
1700  
PG  
Output Low Voltage  
Delay Time (Rising Edge)  
PGOOD Delay Time (Falling Edge)  
PG Pin Leakage Current  
OVP PG Rising Threshold  
OVP PG Hysteresis  
UVP PG Rising Threshold  
UVP PG Hysteresis  
EN AND MODE LOGIC  
Logic Input Low  
1mA sinking current  
PG = VIN  
0.3  
2
V
ms  
µs  
µA  
%
0.5  
1
15  
0.01  
115  
5
0.1  
110  
80  
120  
%
85  
5
90  
%
%
0.4  
8
V
V
Logic Input High  
1.4  
Logic Input Leakage Current  
NOTE:  
I
Pulled up to 5.5V  
5.5  
µA  
MODE  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN7888.1  
January 7, 2013  
8
ISL8002, ISL8002A, ISL80019, ISL80019A  
Typical Performance Curves  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
2.5V  
1.8V  
1.5V  
1.2V  
0.9V  
0.8V  
2.5V  
1.8V  
1.5V  
1.2V  
0.9V  
0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.0 0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 4. EFFICIENCY vs LOAD  
FIGURE 5. EFFICIENCY vs LOAD  
F
= 2MHz, V = 3.3V, MODE = PFM, T = +25°C  
F
= 2MHz, V = 3.3V, MODE = PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
2.5V  
1.8V  
1.5V  
1.2V  
0.9V  
0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2.5V  
1.8V  
1.5V  
1.2V  
0.9V  
0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 6. EFFICIENCY vs LOAD  
FIGURE 7. EFFICIENCY vs LOAD  
F
= 1MHz, V = 3.3V, MODE = PFM, T = +25°C  
F
= 1MHz, V = 3.3V, MODE = PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
0.9V  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
0.9V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.0 0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 8. EFFICIENCY vs LOAD  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
FIGURE 9. EFFICIENCY vs LOAD  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
F
F
SW  
SW  
IN  
A
IN  
A
FN7888.1  
January 7, 2013  
9
ISL8002, ISL8002A, ISL80019, ISL80019A  
Typical Performance Curves (Continued)  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
0.9V  
0.8V  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
0.9V  
0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0.0 0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 10. EFFICIENCY vs LOAD  
FIGURE 11. EFFICIENCY vs LOAD  
F
= 1MHz, V = 5V, MODE = PFM, T = +25°C  
F
= 1MHz, V = 5V, MODE = PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
0.925  
0.920  
0.915  
0.910  
0.905  
0.900  
0.895  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
5V PFM  
IN  
5V PWM  
IN  
3.3V PWM  
IN  
3.3V PFM  
IN  
5V PFM  
IN  
5V PWM  
IN  
3.3V PWM  
IN  
3.3V PFM  
IN  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 12. V  
F
REGULATION vs LOAD,  
FIGURE 13. V  
F
REGULATION vs LOAD,  
OUT  
SW  
OUT  
SW  
= 2MHz, V  
= 0.9V, T = +25°C  
= 2MHz, V  
= 1.2V, T = +25°C  
OUT  
A
OUT A  
1.520  
1.515  
1.510  
1.505  
1.500  
1.495  
1.490  
1.810  
1.805  
5V PFM  
IN  
5V PWM  
IN  
3.3V PWM  
IN  
3.3V PFM  
IN  
5V PFM  
IN  
5V PWM  
IN  
3.3V PWM  
IN  
3.3V PFM  
IN  
1.800  
1.795  
1.790  
1.785  
1.780  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8 2.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 14. V  
F
REGULATION vs LOAD,  
FIGURE 15. V  
F
REGULATION vs LOAD,  
OUT  
SW  
OUT  
SW  
= 2MHz, V  
= 1.5V, T = +25°C  
= 2MHz, V = 1.8V, T = +25°C  
OUT  
A
OUT A  
FN7888.1  
January 7, 2013  
10  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Typical Performance Curves (Continued)  
3.335  
3.330  
3.325  
3.320  
3.315  
3.310  
3.305  
2.505  
2.500  
2.495  
2.490  
2.485  
2.480  
2.475  
5V PFM MODE  
5V PFM  
IN  
5V PWM  
IN  
3.3V PWM  
IN  
3.3V PFM  
IN  
IN  
5V PWM MODE  
IN  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
OUTPUT LOAD (A)  
OUTPUT LOAD (A)  
FIGURE 16. V  
F
REGULATION vs LOAD,  
FIGURE 17. V  
OUT  
REGULATION vs LOAD,  
= 2MHz, V = 3.3V, T = +25°C  
OUT  
SW  
= 2MHz, V  
= 2.5V, T = +25°C  
F
OUT  
A
SW  
OUT  
A
LX 5V/DIV  
LX 5V/DIV  
VOUT 1V/DIV  
VEN 2V/DIV  
VOUT 1V/DIV  
VEN 1V/DIV  
PG 5V/DIV  
PG 5V/DIV  
1ms/DIV  
FIGURE 18. START-UP AT NO LOAD  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
1ms/DIV  
FIGURE 19. START-UP AT NO LOAD  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
F
F
SW  
SW  
IN  
A
IN  
A
LX 5V/DIV  
LX 5V/DIV  
VOUT 1V/DIV  
VOUT 1V/DIV  
VEN 2V/DIV  
PG 5V/DIV  
VEN 2V/DIV  
PG 5V/DIV  
1ms/DIV  
FIGURE 20. SHUTDOWN AT NO LOAD  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
1ms/DIV  
FIGURE 21. SHUTDOWN AT NO LOAD  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
F
F
SW  
SW  
IN  
A
IN  
A
FN7888.1  
January 7, 2013  
11  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Typical Performance Curves (Continued)  
LX 5V/DIV  
LX 5V/DIV  
VOUT 1V/DIV  
VEN 2V/DIV  
VOUT 1V/DIV  
PG 5V/DIV  
VEN 2V/DIV  
PG 5V/DIV  
1ms/DIV  
FIGURE 22. START-UP AT 2A LOAD  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
1ms/DIV  
FIGURE 23. SHUTDOWN AT 2A LOAD  
F
F
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
LX 5V/DIV  
LX 5V/DIV  
VOUT 1V/DIV  
VEN 2V/DIV  
VOUT 1V/DIV  
PG 5V/DIV  
VEN 2V/DIV  
PG 5V/DIV  
1ms/DIV  
FIGURE 24. START-UP AT 2A LOAD  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
1ms/DIV  
FIGURE 25. SHUTDOWN AT 2A LOAD  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
F
F
SW  
SW  
IN  
A
IN  
A
VEN 5V/DIV  
VEN 5V/DIV  
VOUT 1V/DIV  
VOUT 1V/DIV  
IL 1A/DIV  
PG 5V/DIV  
IL 1A/DIV  
PG 5V/DIV  
1ms/DIV  
FIGURE 26. START-UP AT 1.5A LOAD  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
1ms/DIV  
FIGURE 27. SHUTDOWN AT 1.5A LOAD  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
F
F
SW  
SW  
IN  
A
IN  
A
FN7888.1  
January 7, 2013  
12  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Typical Performance Curves (Continued)  
VEN 5V/DIV  
VEN 5V/DIV  
VOUT 1V/DIV  
VOUT 1V/DIV  
IL 1A/DIV  
PG 5V/DIV  
IL 1A/DIV  
PG 5V/DIV  
1ms/DIV  
FIGURE 28. START-UP AT 1.5A LOAD  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
1ms/DIV  
FIGURE 29. SHUTDOWN AT 1.5A LOAD  
F
F
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
VIN 5V/DIV  
VIN 5V/DIV  
VOUT 1V/DIV  
VOUT 1V/DIV  
IL 1A/DIV  
IL 1A/DIV  
PG 5V/DIV  
PG 5V/DIV  
500µs/DIV  
500µs/DIV  
FIGURE 30. START-UP V AT 2A LOAD  
FIGURE 31. START-UP V AT 2A LOAD  
IN  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
IN  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
F
F
SW  
IN  
A
SW  
IN  
A
VIN 5V/DIV  
VIN 5V/DIV  
IL 1A/DIV  
IL 1A/DIV  
VOUT 1V/DIV  
PG 5V/DIV  
VOUT 1V/DIV  
PG 5V/DIV  
1ms/DIV  
1ms/DIV  
FIGURE 32. SHUTDOWN V AT 2A LOAD  
IN  
FIGURE 33. SHUTDOWN V AT 2A LOAD  
IN  
F
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
F
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
FN7888.1  
January 7, 2013  
13  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Typical Performance Curves (Continued)  
LX 5V/DIV  
LX 5V/DIV  
VOUT 1V/DIV  
VOUT 1V/DIV  
VIN 5V/DIV  
PG 5V/DIV  
VIN 5V/DIV  
PG 5V/DIV  
500µs/DIV  
500µs/DIV  
FIGURE 34. START-UP V AT NO LOAD  
FIGURE 35. START-UP V AT NO LOAD  
IN  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
IN  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
F
F
SW  
IN  
A
SW  
IN  
A
LX 5V/DIV  
LX 5V/DIV  
VOUT 1V/DIV  
VIN 5V/DIV  
VOUT 1V/DIV  
VIN 5V/DIV  
PG 5V/DIV  
PG 5V/DIV  
100ms/DIV  
50ms/DIV  
FIGURE 36. SHUTDOWN V AT NO LOAD  
FIGURE 37. SHUTDOWN V AT NO LOAD  
IN  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
IN  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
F
F
SW  
IN  
A
SW  
IN  
A
LX 1V/DIV  
LX 1V/DIV  
10ns/DIV  
FIGURE 38. JITTER AT NO LOAD  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
10ns/DIV  
FIGURE 39. JITTER AT FULL LOAD  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
F
F
SW  
SW  
IN  
A
IN  
A
FN7888.1  
January 7, 2013  
14  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Typical Performance Curves (Continued)  
LX 5V/DIV  
LX 5V/DIV  
VOUT 20mV/DIV  
VOUT 10mV/DIV  
IL 0.5A/DIV  
IL 0.5A/DIV  
50ms/DIV  
500ns/DIV  
FIGURE 40. STEADY STATE AT NO LOAD  
FIGURE 41. STEADY STATE AT NO LOAD  
F
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
F
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
VOUT RIPPLE 50mV/DIV  
VOUT RIPPLE 50mV/DIV  
IL 1A/DIV  
IL 1A/DIV  
200µs/DIV  
FIGURE 42. LOAD TRANSIENT  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
200µs/DIV  
FIGURE 43. LOAD TRANSIENT  
F
F
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
LX 5V/DIV  
IL 2A/DIV  
VOUT 0.5V/DIV  
IL 1A/DIV  
VOUT 1V/DIV  
PG 5V/DIV  
PG 5V/DIV  
5µs/DIV  
FIGURE 44. OUTPUT SHORT-CIRCUIT  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
500µs/DIV  
FIGURE 45. OVERCURRENT PROTECTION  
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
F
F
SW  
SW  
IN  
A
IN  
A
FN7888.1  
January 7, 2013  
15  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Typical Performance Curves (Continued)  
LX 5V/DIV  
LX 5V/DIV  
675mA MODE TRANSITION, COMPLETELY  
ENTER TO PWM AT 770mA  
BACK TO PFM AT 121mA  
VOUT RIPPLE 20mV/DIV  
VOUT RIPPLE 20mV/DIV  
IL 2A/DIV  
IL 1A/DIV  
2µs/DIV  
2µs/DIV  
FIGURE 46. PFM TO PWM TRANSITION  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
FIGURE 47. PWM TO PFM TRANSITION  
F
F
= 2MHz, V = 5V, MODE = PWM, T = +25°C  
SW  
IN  
A
SW  
IN  
A
LX 5V/DIV  
IL 2A/DIV  
VOUT 0.5V/DIV  
VOUT 2V/DIV  
PG 2V/DIV  
PG 5V/DIV  
10µs/DIV  
FIGURE 48. OVERVOLTAGE PROTECTION  
= 2MHz, V = 5V, MODE = PFM, T = +25°C  
1ms/DIV  
FIGURE 49. OVER-TEMPERATURE PROTECTION  
= 2MHz, V = 5V, MODE = PWM, T = +163°C  
F
F
SW  
SW  
IN  
A
IN  
A
FN7888.1  
January 7, 2013  
16  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Theory of Operation  
V
EAMP  
The device is a step-down switching regulator optimized for battery  
powered applications. It operates at high switching frequency (1MHz  
or 2MHz) which enables the use of smaller inductors resulting in  
small form factor, while also providing excellent efficiency. Further,  
at light loads while in PFM mode, the regulator reduces the  
switching frequency, thereby minimizing the switching loss and  
maximizing battery life. The quiescent current when the output is  
not loaded is typically only 35µA. The supply current is typically only  
5µA when the regulator is shut down.  
V
CSA  
DUTY  
CYCLE  
I
L
V
OUT  
PWM Control Scheme  
Pulling the MODE pin HI (>2.5V) forces the converter into PWM  
mode, regardless of output current. The device employs the  
current-mode pulse-width modulation (PWM) control scheme for  
fast transient response and pulse-by-pulse current limiting. Page 5  
shows the “Functional Block Diagram”. The current loop consists of  
the oscillator, the PWM comparator, current sensing circuit and the  
slope compensation for the current loop stability. The slope  
compensation is 900mV/Ts, which changes with frequency. The  
gain for the current sensing circuit is typically 300mV/A. The control  
reference for the current loops comes from the error amplifier's  
(EAMP) output.  
FIGURE 50. PWM OPERATION WAVEFORMS  
The output voltage is regulated by controlling the V  
EAMP  
voltage  
to the current loop. The bandgap circuit outputs a 0.6V reference  
voltage to the voltage loop. The feedback signal comes from the  
VFB pin. The soft-start block only affects the operation during the  
start-up and will be discussed separately. The error amplifier is a  
transconductance amplifier that converts the voltage error signal  
to a current output. The voltage loop is internally compensated  
with the 27pF and 200kRC network. The maximum EAMP  
voltage output is precisely clamped to 1.6V.  
The PWM operation is initialized by the clock from the oscillator.  
The P-Channel MOSFET is turned on at the beginning of a PWM  
cycle and the current in the MOSFET starts to ramp up. When the  
sum of the current amplifier CSA and the slope compensation  
reaches the control reference of the current loop, the PWM  
comparator COMP sends a signal to the PWM logic to turn off the  
P-FET and turn on the N-Channel MOSFET. The N-FET stays on until  
the end of the PWM cycle. Figure 50 shows the typical operating  
waveforms during the PWM operation. The dotted lines illustrate  
the sum of the slope compensation ramp and the current-sense  
amplifier’s CSA output.  
PFM Mode  
Pulling the MODE pin LO (<0.4V) forces the converter into PFM  
mode. The device enters a pulse-skipping mode at light load to  
minimize the switching loss by reducing the switching frequency.  
Figure 51 illustrates the skip-mode operation. A zero-cross  
sensing circuit shown in Figure 51 monitors the N-FET current for  
zero crossing. When 16 consecutive cycles of the inductor current  
crossing zero are detected, the regulator enters the skip mode.  
During the eight detecting cycles, the current in the inductor is  
allowed to become negative. The counter is reset to zero when  
the current in any cycle does not cross zero.  
PWM  
PFM  
PWM  
CLOCK  
16 CYCLES  
PFM CURRENT LIMIT  
I
L
LOAD CURRENT  
0
NOMINAL +1.5%  
V
OUT  
NOMINAL -1.5%  
NOMINAL  
FIGURE 51. SKIP MODE OPERATION WAVEFORMS  
FN7888.1  
January 7, 2013  
17  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Once the skip mode is entered, the pulse modulation starts being  
external resistor can be added from PG to VIN for more pull-up  
controlled by the SKIP comparator shown in the “Functional  
Block Diagram” on page 5. Each pulse cycle is still synchronized  
by the PWM clock. The P-FET is turned on at the clock's rising  
edge and turned off when the output is higher than 1.5% of the  
nominal regulation or when its current reaches the peak Skip  
current limit value. Then the inductor current is discharging to 0A  
and stays at zero. The internal clock is disabled. The output  
voltage reduces gradually due to the load current discharging the  
output capacitor. When the output voltage drops to the nominal  
voltage, the P-FET will be turned on again at the rising edge of  
the internal clock as it repeats the previous operations.  
strength.  
UVLO  
When the input voltage is below the undervoltage lock-out (UVLO)  
threshold, the regulator is disabled.  
Enable, Disable, and Soft Start-Up  
After the VIN pin exceeds its rising POR trip point (nominal 2.7V),  
the device begins operation. If the EN pin is held low externally,  
nothing happens until this pin is released. Once the EN is  
released and above the logic threshold, the internal default  
soft-start time is 1ms.  
The regulator resumes normal PWM mode operation when the  
output voltage drops 1.5% below the nominal voltage.  
Discharge Mode (Soft-Stop)  
When a transition to shutdown mode occurs or the VIN UVLO is set,  
Overcurrent Protection  
The overcurrent protection is realized by monitoring the CSA  
output with the OCP comparator, as shown in the “Functional  
Block Diagram” on page 5. The current sensing circuit has a gain  
of 300mV/A, from the P-FET current to the CSA output. When the  
CSA output reaches a threshold, the OCP comparator is tripped to  
turn off the P-FET immediately. The overcurrent function protects  
the switching converter from a shorted output by monitoring the  
current flowing through the upper MOSFET.  
the outputs discharge to GND through an internal 100switch.  
100% Duty Cycle (1MHz Version)  
The device features 100% duty cycle operation to maximize the  
battery life. When the battery voltage drops to a level that the  
device can no longer maintain the regulation at the output, the  
regulator completely turns on the P-FET. The maximum dropout  
voltage under the 100% duty-cycle operation is the product of the  
load current and the ON-resistance of the P-FET.  
Upon detection of overcurrent condition, the upper MOSFET will  
be immediately turned off and will not be turned on again until  
the next switching cycle. If the overcurrent condition goes away,  
the output will resume back into regulation point after the hiccup  
mode expires.  
Thermal Shut-Down  
The device has built-in thermal protection. When the internal  
temperature reaches +150°C, the regulator is completely shut  
down. As the temperature drops to +125°C, the device resumes  
operation by stepping through the soft-start.  
Short-Circuit Protection  
The short-circuit protection (SCP) comparator monitors the VFB  
pin voltage for output short-circuit protection. When the VFB is  
lower than 0.3V, the SCP comparator forces the PWM oscillator  
frequency to drop to 1/3 of the normal operation value. This  
comparator is effective during start-up or an output short-circuit  
event.  
Applications Information  
Output Inductor and Capacitor Selection  
To consider steady state and transient operations,  
ISL8002A/ISL80019A typically requires a 1.2µH and  
ISL8002/ISL80019 typically requires a 2.2µH output inductor.  
Higher or lower inductor value can be used to optimize the total  
converter system performance. For example, for higher output  
voltage 3.3V application, in order to decrease the inductor ripple  
current and output voltage ripple, the output inductor value can  
be increased. It is recommended to set the inductor ripple  
current to be approximately 30% of the maximum output current  
for optimized performance. The inductor ripple current can be  
expressed as shown in Equation 2:  
Negative Current Protection  
Similar to the overcurrent, the negative current protection is  
realized by monitoring the current across the lowside N-FET, as  
shown in the “Functional Block Diagram” on page 5. When the  
valley point of the inductor current reaches -1.5A for 2 consecutive  
cycles, both P-FET and N-FET shut off. The 100in parallel to the  
N-FET will activate discharging the output into regulation. The  
control will begin to switch when output is within regulation. The  
regulator will be in PFM for 20µs before switching to PWM if  
necessary.  
V
O
V
1 ---------  
O
(EQ. 2)  
V
IN  
ΔI = --------------------------------------  
L F  
SW  
PG  
PG is an output of a window comparator that continuously monitors  
the buck regulator output voltage. PG is actively held low when EN is  
low and during the buck regulator soft-start period. After 1ms delay  
of the soft-start period, PG becomes high impedance as long as the  
output voltage is within nominal regulation voltage set by VFB.  
When VFB drops 15% below or raises 15% above the nominal  
regulation voltage, the device pulls PG low. Any fault condition forces  
PG low until the fault condition is cleared by attempts to soft-start.  
There is an internal 5Mpull-up resistor to fit most applications. An  
The inductor’s saturation current rating needs to be at least  
larger than the peak current.  
The device uses internal compensation network and the output  
capacitor value is dependent on the output voltage. The ceramic  
capacitor is recommended to be X5R or X7R.  
FN7888.1  
January 7, 2013  
18  
ISL8002, ISL8002A, ISL80019, ISL80019A  
If using electrolytic capacitors then:  
Output Voltage Selection  
V
= ΔI*ESR  
(EQ. 5)  
The output voltage of the regulator can be programmed via an  
external resistor divider that is used to scale the output voltage  
relative to the internal reference voltage and feed it back to the  
inverting input of the error amplifier. Refer to Figure 35.  
OUTripple  
Regarding transient response needs, a good starting point is to  
determine the allowable overshoot in V if the load is suddenly  
OUT  
removed. In this case, energy stored in the inductor will be  
transferred to C causing its voltage to rise. After calculating  
The output voltage programming resistor, R , will depend on the  
2
OUT  
value chosen for the feedback resistor and the desired output  
voltage of the regulator. The value for the feedback resistor is  
typically between 10kand 100k, as shown in Equation 3.  
capacitance required for both ripple and transient needs, choose  
the larger of the calculated values. The following equation  
determines the required output capacitor value in order to  
achieve a desired overshoot relative to the regulated voltage.  
2
V
O
(EQ. 3)  
⎛ ⎞  
= R ----------- – 1  
2
R
1
VFB  
I
L
*
OUT  
C
= --------------------------------------------------------------------------------------------  
(EQ. 6)  
OUT  
2
2
If the output voltage desired is 0.6V, then R is left unpopulated  
V
(V  
V  
) 1)  
2
*
OUT  
OUTMAX  
OUT  
and R is shorted. There is a leakage current from VIN to LX. It is  
1
recommended to preload the output with 10µA minimum. For  
where V is the relative maximum overshoot  
/V  
OUTMAX OUT  
allowed during the removal of the load. For an overshoot of 5%,  
the equation becomes as follows:  
better performance, add 22pF in parallel with R . Check loop  
analysis before use in application.  
1
2
I
L
*
OUT  
C
= -----------------------------------------------------  
(EQ. 7)  
Input Capacitor Selection  
OUT  
2
2
V
(1.05 1)  
*
OUT  
The main functions for the input capacitor are to provide  
decoupling of the parasitic inductance and to provide filtering  
function to prevent the switching current flowing back to the  
battery rail. At least two 22µF X5R or X7R ceramic capacitors are  
a good starting point for the input capacitor selection.  
Loop Compensation Design  
When COMP is not connected to VDD, the COMP pin is active for  
external loop compensation. The ISL8002, ISL8002A, ISL80019,  
and ISL80019A use constant frequency peak current mode  
control architecture to achieve fast loop transient response. An  
accurate current sensing pilot device in parallel with the upper  
MOSFET is used for peak current control signal and overcurrent  
protection. The inductor is not considered as a state variable  
since its peak current is constant, and the system becomes a  
single order system. It is much easier to design a type II  
compensator to stabilize the loop than to implement voltage  
mode control. Peak current mode control has an inherent input  
voltage feed-forward function to achieve good line regulation.  
Figure 52 shows the small signal model of the synchronous buck  
regulator.  
Output Capacitor Selection  
An output capacitor is required to filter the inductor current.  
Output ripple voltage and transient response are 2 critical factors  
when considering output capacitance choice. The current mode  
control loop allows for the usage of low ESR ceramic capacitors  
and thus smaller board layout. Electrolytic and polymer  
capacitors may also be used.  
Additional consideration applies to ceramic capacitors. While  
they offer excellent overall performance and reliability, the actual  
in-circuit capacitance must be considered. Ceramic capacitors  
are rated using large peak-to-peak voltage swings and with no DC  
bias. In the DC/DC converter application, these conditions do not  
reflect reality. As a result, the actual capacitance may be  
considerably lower than the advertised value. Consult the  
manufacturers data sheet to determine the actual in-application  
capacitance. Most manufacturers publish capacitance vs DC bias  
so that this effect can be easily accommodated. The effects of  
AC voltage are not frequently published, but an assumption of  
~20% further reduction will generally suffice. The result of these  
considerations can easily result in an effective capacitance 50%  
lower than the rated value. Nonetheless, they are a very good  
choice in many applications due to their reliability and extremely  
low ESR.  
^
^
^
L
R
LP  
i
P
i
L
v
in  
o
^
d
V
in  
^
^
1:D  
I d  
V
L
in  
Rc  
Co  
+
R
T
Ro  
T (S)  
i
^
d
K
Fm  
The following equations allow calculation of the required  
capacitance to meet a desired ripple voltage level. Additional  
capacitance may be used.  
T (S)  
+
v
He(S)  
^
v
comp  
-Av(S)  
For the ceramic capacitors (low ESR) =  
ΔI  
FIGURE 52. SMALL SIGNAL MODEL OF SYNCHRONOUS BUCK  
REGULATOR  
V
= --------------------------------------  
(EQ. 4)  
is the  
OUTripple  
C
OUT  
8 F  
SW  
where ΔI is the inductor’s peak to peak ripple current, F  
SW  
switching frequency and C  
is the output capacitor.  
OUT  
FN7888.1  
January 7, 2013  
19  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Put compensator zero 2 to 5 times f :  
c
V
OUT  
1
(EQ. 12)  
C = ---------------  
4
πf R  
c
1
R
R
1
2
C
4
V
FB  
Example: V = 5V, V  
IN OUT  
= 1.8V, I = 2A, F  
= 1MHz,  
O
SW  
-
V
COMP  
R = 200kΩ, R = 100kΩ, C  
= 2x22µF/3m, L = 2.2µH,  
1
2
OUT  
GM  
V
REF  
f = 100kHz, then compensator resistance R  
:
c
14  
+
3
(EQ. 13)  
R
= 26×10 100kHz 1.8V 44μF = 205kΩ  
R
14  
14  
C
8
Using the closest standard value for R value is fine (200kΩ).  
14  
C
7
1.8V 44μF  
(EQ. 14)  
-------------------------------  
= 198pF  
C
=
7
2A 200kΩ  
3mΩ ⋅ 44μF  
200kΩ  
1
(EQ. 15)  
C = max(--------------------------------,------------------------------------------------ )= (1pF,2.3pF)  
8
π ⋅ 1MHz(200kΩ)  
FIGURE 53. TYPE II COMPENSATOR  
The closest standard values for C and C are also fine. There is  
7
8
Figure 53 shows the type II compensator and its transfer function  
is expressed as Equation 8:  
approximately 3pF parasitic capacitance from V  
to GND;  
Therefore, C is optional. Use C = 220pF and C = OPEN.  
COMP  
8
7
8
S
S
⎞ ⎛  
1 + ------------ 1 + ------------  
1
ˆ
⎠ ⎝  
GM R  
ω
ω
v
(EQ. 16)  
C = ----------------------------------------------- = 16pF  
comp  
2
cz1  
cz2  
S
4
---------------- -------------------------------------------------------- --------------------------------------------------------------  
A (S)=  
=
π100kHz 200kΩ  
v
ˆ
(C + C ) ⋅ (R + R )  
S
v
⎞ ⎛  
7
8
1
2
FB  
S 1 + ------------- 1 + -------------  
⎠ ⎝  
ω
ω
cp1  
cp2  
Use C = 15pF. Note that C may increase the loop bandwidth  
4
4
(EQ. 8)  
from previously estimated value. Figure 54 shows the simulated  
voltage loop gain. It is shown that it has 114kHz loop bandwidth  
with 52° phase margin and 10dB gain margin. It may be more  
desirable to achieve more phase margin. This can be  
where,  
C
+ C  
8
R
+ R  
1
-----------------  
7
1
1
2
-------------------------  
ω
=
,
ω
= --------------, ω  
=
, ω  
= ----------------------  
cp2  
cz1  
cz2  
cp1  
R
C
R
C C  
14 7 8  
R C  
C R R  
4 1 2  
accomplished by lowering R by 20% to 50%.  
14  
7
1
4
14  
60  
45  
30  
15  
0
COMPENSATOR DESIGN GOAL  
• High DC gain  
• Choose Loop bandwidth f less than 100kHz  
c
• Gain margin: >10dB  
• Phase margin: >50°  
The compensator design procedure is as follows:  
The loop gain at crossover frequency of f has unity gain.  
c
-15  
-30  
Therefore, the compensator resistance R is determined by  
14  
Equation 9.  
2πf V C R  
o o t  
100  
1k  
10k  
100k  
1M  
(EQ. 9)  
3
c
R
= --------------------------------- = 26×10 f V C  
c o o  
14  
GM V  
FREQUENCY (Hz)  
FB  
Where GM is the trans-conductance of the voltage error  
amplifier.  
180  
Compensator capacitors C and C are then given by  
Equations 10 and 11.  
7
8
150  
120  
90  
60  
30  
0
R C  
V C  
o
o
o
o
(EQ. 10)  
(EQ. 11)  
--------------  
C
=
= ---------------  
7
R
I R  
14  
o
14  
R C  
1
c
o
C = max(--------------,------------------)  
8
R
πf R  
s 14  
14  
An optional zero can boost the phase margin. ωCZ2 is a zero due  
to R and C .  
1
4
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 54. SIMULATED LOOP GAIN  
FN7888.1  
January 7, 2013  
20  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Layout Considerations  
The PCB layout is a very important converter design step to make  
sure the designed converter works well. The power loop is  
composed of the output inductor Ls, the output capacitor C  
,
OUT  
the PHASE’s pins, and the PGND pin. It is necessary to make the  
power loop as small as possible and the connecting traces  
among them should be direct, short and wide. The switching  
node of the converter, the PHASE pins, and the traces connected  
to the node are very noisy, so keep the voltage feedback trace  
away from these noisy traces. The input capacitor should be  
placed as closely as possible to the VIN pin and the ground of the  
input and output capacitors should be connected as closely as  
possible. The heat of the IC is mainly dissipated through the  
thermal pad. Maximizing the copper area connected to the  
thermal pad is preferable. In addition, a solid ground plane is  
helpful for better EMI performance. It is recommended to add at  
least 4 vias ground connection within the pad for the best  
thermal relief.  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
CHANGE  
January 7, 2013  
FN7888.1 Initial release.  
About Intersil  
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management  
semiconductors. The company's products address some of the fastest growing markets within the industrial and infrastructure,  
personal computing and high-end consumer markets. For more information about Intersil or to find out how to become a member of  
our winning team, visit our website and career page at www.intersil.com.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective product information page.  
Also, please check the product information page to ensure that you have the most updated datasheet: ISL8002, ISL8002A, ISL80019,  
ISL80019A  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
Reliability reports are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7888.1  
January 7, 2013  
21  
ISL8002, ISL8002A, ISL80019, ISL80019A  
Package Outline Drawing  
L8.2x2C  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE (TDFN) WITH E-PAD  
Rev 0, 07/08  
2.00  
6
A
PIN #1 INDEX AREA  
6
B
PIN 1  
INDEX AREA  
8
1
0.50  
1.45±0.050  
Exp.DAP  
(4X)  
0.15  
0.25  
( 8x0.30 )  
0.10  
C A B  
M
TOP VIEW  
0.80±0.050  
Exp.DAP  
BOTTOM VIEW  
( 8x0.20 )  
( 8x0.30 )  
Package Outline  
SEE DETAIL "X"  
( 6x0.50 )  
C
0.10  
C
0 . 75 ( 0 . 80 max)  
1.45  
2.00  
BASE PLANE  
SEATING PLANE  
0.08  
C
SIDE VIEW  
( 8x0.25 )  
0.80  
2.00  
TYPICAL RECOMMENDED LAND PATTERN  
0 . 2 REF  
C
0 . 00 MIN.  
0 . 05 MAX.  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN7888.1  
January 7, 2013  
22  

相关型号:

ISL8002AEVAL1Z

Compact Synchronous Buck Regulators
RENESAS

ISL8002AFRZ-T

Compact Synchronous Buck Regulators
INTERSIL

ISL8002AFRZ-T

Compact Synchronous Buck Regulators
RENESAS

ISL8002AFRZ-T7A

Compact Synchronous Buck Regulators
INTERSIL

ISL8002AFRZ-T7A

Compact Synchronous Buck Regulators
RENESAS

ISL8002AIRZ-T

Compact Synchronous Buck Regulators
INTERSIL

ISL8002AIRZ-T

Compact Synchronous Buck Regulators
RENESAS

ISL8002AIRZ-T7A

Compact Synchronous Buck Regulators
INTERSIL

ISL8002AIRZ-T7A

Compact Synchronous Buck Regulators
RENESAS

ISL8002B

Compact Synchronous Buck Regulator
RENESAS

ISL8002BDEMO1Z

Compact Synchronous Buck Regulator
RENESAS

ISL8002BFRZ-T

Compact Synchronous Buck Regulator
RENESAS