ISL80111IRAJZ [INTERSIL]

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs;
ISL80111IRAJZ
型号: ISL80111IRAJZ
厂家: Intersil    Intersil
描述:

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs

光电二极管 输出元件 调节器
文件: 总17页 (文件大小:761K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS  
LDOs  
ISL80111, ISL80112, ISL80113  
Features  
The ISL80111, ISL80112, and ISL80113 are ultra low dropout  
LDOs providing the optimum balance between performance, size  
and power consumption in size constrained designs for data  
communication, computing, storage and medical applications.  
These LDOs are specified for 1A, 2A and 3A of output current and  
• Ultra low dropout: 75mV at 3A, (typ)  
• Excellent V PSRR: 70dB at 1kHz (typ)  
IN  
• ±1.6% guaranteed V  
OUT  
accuracy for -40ºC < T < +125ºC  
J
• Very fast load transient response  
are optimized for low voltage conversions.Operating with a V of  
IN  
• Extensive protection and reporting features  
1V to 3.6V and with a legacy 3.3V to 5V on the BIAS, the V  
OUT  
is  
• V range: 1V to 3.6V, V  
IN OUT  
range: 0.8V to 3.3V  
adjustable from 0.8V to 3.3V. With a V PSRR greater than 40dB  
IN  
at 100kHz makes these LDOs an ideal choice in noise sensitive  
• Small 10 Ld 3x3 DFN package  
applications. The guaranteed ±1.6% V  
accuracy overall  
OUT  
conditions lends these parts to suppling an accurate voltage to  
the latest low voltage digital ICs.  
Applications  
• Noise-sensitive instrumentation and medical systems  
• Data acquisition and data communication systems  
• Storage, telecommunications and server equipment  
• Low voltage DSP, FPGA and ASIC core power supplies  
• Post-regulation of switched mode power supplies  
An enable input allows the part to be placed into a low quiescent  
current shutdown mode. A submicron CMOS process is utilized for  
this product family to deliver best-in-class analog performance  
and overall value for applications in need of input voltage  
conversions typically below 2.5V. It also has the superior load  
transient regulation unique to a NMOS power stage. These LDOs  
consume significantly lower quiescent current as a function of  
load compared to bipolar LDOs.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ISL80111, ISL80112, ISL80113  
3A  
2A  
1A  
1.0V  
VOUT  
1.2V ±5%  
1
2
9
VOUT  
VOUT  
VIN  
VIN  
VIN  
C
10µF  
C
IN  
10  
OUT  
10µF  
3.3V ±10%  
VBIAS  
4
7
VBIAS  
6
3
C
PGOOD  
PG  
BIAS  
1µF  
R
1.0k  
3
ADJ  
ENABLE  
EN  
R
4
1.0kΩ  
GND  
5
OPEN DRAIN COMPATIBLE  
-40  
25  
85  
125  
TEMPERATURE (°C)  
FIGURE 1. TYPICAL APPLICATION SCHEMATIC  
FIGURE 2. DROPOUT VOLTAGE OVER-TEMP AND I  
OUT  
100  
80  
60  
40  
20  
0
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
I
= 1A  
OUT  
I
= 0A  
OUT  
I
= 2A  
OUT  
I
= 3A  
OUT  
BIAS = 5V  
V
V
C
= 3.3V  
IN  
OUT  
OUT  
= 2.5V  
= 10µF  
-40  
0
25  
85  
125  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
TEMPERATURE (°C)  
FIGURE 3. V PSRR vs LOAD CURRENT (ISL80113)  
IN  
FIGURE 4. ΔV vs TEMPERATURE  
ADJ  
November 1, 2013  
FN7841.2  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2012, 2013. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL80111, ISL80112, ISL80113  
Block Diagram  
VIN  
VBIAS  
CURRENT  
LIMIT  
BIAS  
UVLO  
VIN  
UVLO  
POWER NMOS  
IL  
M3  
M1  
VIN  
R7  
DRIVER  
EN  
IL/10,000  
VOUT  
THERMAL  
SHUTDOWN  
EN  
EN  
ADJ  
PG  
-
EN  
+
ENABLE  
M7  
-
+
-
M
500mV  
2
+
+
-
*R3  
425mV  
GND  
Pin Configuration  
Pin Descriptions  
ISL80111, ISL80112, ISL80113  
(10 LD 3X3 DFN)  
PIN  
NUMBER  
PIN NAME  
VOUT  
DESCRIPTION  
Output voltage pin. Range 0.8V to 3.3V  
TOP VIEW  
1, 2  
3
VOUT  
VOUT  
ADJ  
1
2
3
4
5
10 VIN  
ADJ  
ADJ pin for externally setting V . Range  
OUT  
0.5V to V  
VIN  
9
8
7
6
OUT  
NC  
4
VBIAS  
Bias voltage pin for internal control circuits.  
Range 2.9V to 5.5V  
EPAD  
(GND)  
VBIAS  
GND  
ENABLE  
PG  
5
6
GND  
PG  
Ground pin  
V
in regulation signal. Logic low defines  
OUT  
when V  
BIAS  
is not in regulation. Range 0V to  
OUT  
7
ENABLE  
V
independent chip enable. TTL and CMOS  
IN  
compatible. Range 0V to V  
BIAS  
8
NC  
VIN  
No Connect  
9, 10  
Input supply pins. Range 1.0V to 3.6V  
EPAD  
EPAD at ground potential. It is recommended  
to solder the EPAD to the ground plane.  
FN7841.2  
November 1, 2013  
2
ISL80111, ISL80112, ISL80113  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
V
(V)  
TEMP RANGE  
PACKAGE  
(Pb-Free)  
PKG  
DWG. #  
OUT  
(°C)  
ISL80111IRAJZ  
1ADJ  
2ADJ  
3ADJ  
ADJ  
ADJ  
ADJ  
-40 to +85  
-40 to +85  
-40 to +85  
10 Ld 3x3 DFN  
L10.3x3  
ISL80112IRAJZ  
ISL80113IRAJZ  
ISL80111EVAL1Z  
ISL80112EVAL1Z  
ISL80113EVAL1Z  
NOTES:  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
L10.3x3  
L10.3x3  
ISL80111 Evaluation Board  
ISL80112 Evaluation Board  
ISL80113 Evaluation Board  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information pages for ISL80111, ISL80112, and ISL80113. For more information on MSL  
please see Tech Brief TB363.  
FN7841.2  
November 1, 2013  
3
ISL80111, ISL80112, ISL80113  
Absolute Maximum Ratings (Note4)  
Thermal Information  
V
V
Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.3 to +6V  
Relative to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +4V  
Thermal Resistance (Typical)  
10 Ld 3x3 DFN Package (Notes 7, 8). . . . .  
θ
(°C/W)  
48  
θ
JC  
(°C/W)  
4
IN  
OUT  
JA  
PG, ENABLE, SENSE/ADJ, Relative to GND (Note 5) . . . . . . . . . -0.3 to +6V  
Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6V  
PG Rated Current (Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
V
BIAS  
ESD Rating  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . 4000V  
Machine Model (Tested per JESD22-115-A) . . . . . . . . . . . . . . . . . . . 300V  
Charged Device Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2000V  
Latch Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA  
Recommended Operating Conditions (Notes 4, 6)  
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
V
V
V
Relative to GND (ISL80113) (Note 9) . . . . . . . . . . . . V  
Relative to GND (ISL80112) (Note 9) . . . . . . . . . . . . V  
Relative to GND (ISL80111) (Note 9) . . . . . . . . . . . . V  
+ 0.4V to 5V  
+ 0.3V to 5V  
+ 0.2V to 5V  
IN  
IN  
IN  
OUT  
OUT  
OUT  
Nominal V  
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800mV to 3.3V  
OUT  
PG, ENABLE, SENSE/ADJ, SS Relative to GND . . . . . . . . . . . . . . .0V to 5.5V  
V
V
Relative to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to 5.5V  
BIAS  
BIAS  
Relative to V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.8V minimum  
OUT  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. Absolute maximum ratings define limits of safe operation. Extended operation at these conditions may compromise reliability. Exceeding these limits  
will result in damage. Recommended operating conditions define limits where specifications are guaranteed.  
5. Absolute maximum voltage rating is defined as the voltage applied for a lifetime average duty cycle above 6V of 1%.  
6. Electromigration specification defined as lifetime average junction temperature of +110°C where maximum rated DC current = lifetime average  
current.  
7. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
8. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
9. Minimum operating voltage applied to V is 1V if V - V < 1V  
IN IN DO  
Electrical Specifications Unless otherwise specified, V = V  
+ 0.4V, V  
= 2.9V, V  
OUT  
= 1.2V, C = 1µF, C = 10µF,  
BIAS IN  
IN  
OUT  
BIAS  
C
= 2.2µF, T = +25°C, I = 0mA. Applications must follow thermal guidelines of the package to determine worst-case junction temperature. Please  
OUT  
refer to “Power Dissipation” on page 13 and Tech Brief TB379.  
Boldface limits apply over junction temperature (T ) range, -40°C to +125°C. Pulse load techniques used by ATE to ensure T = T where datasheet limits  
J
L
J
J
A
are defined.  
MIN  
MAX  
PARAMETER  
DC CHARACTERISTICS  
SYMBOL  
TEST CONDITIONS  
(Note 10) TYP (Note 10) UNITS  
V
UVLO  
UVLO_BIAS_r  
UVLO_BIAS_f  
V
V
Rising  
Falling  
2.3  
2.1  
0.2  
502  
2.9  
2.8  
V
V
BIAS  
BIAS  
BIAS  
1.55  
494  
V
UVLO Hysteresis  
UVLO  
V
BIAS  
B_HYS  
DC ADJ Pin Voltage Accuracy  
V
1.0V V 3.6V, I  
IN LOAD  
= 0A, 2.9V V  
5.5V,  
BIAS  
510  
mV  
ADJ  
V
= V  
OUT  
ADJ  
DC Input Line Regulation  
DC Bias Line Regulation  
DC Output Load Regulation  
Feedback Input Current  
ΔV  
V
+ 0.4V V 3.6V  
IN  
0.01  
0.3  
-0.2  
10  
0.9  
1.4  
2
mV  
mV  
mV  
nA  
OUT  
OUT  
OUT  
OUT  
ΔV  
ΔV  
2.9V<V  
<5.5V with respect to ADJ pin  
BIAS  
0A I  
3A  
-2  
LOAD  
V
= 0.5V  
80  
10  
ADJ  
V
V
Quiescent Current  
Quiescent Current  
I
(V  
VOUT = 2.5V  
VOUT = 3.3,  
8
mA  
mA  
IN  
IN  
Q
IN)  
IN)  
I
(V  
10.6  
Q
FN7841.2  
November 1, 2013  
4
ISL80111, ISL80112, ISL80113  
Electrical Specifications Unless otherwise specified, V = V  
+ 0.4V, V  
= 2.9V, V  
OUT  
= 1.2V, C = 1µF, C = 10µF,  
BIAS IN  
IN  
OUT  
BIAS  
C
= 2.2µF, T = +25°C, I = 0mA. Applications must follow thermal guidelines of the package to determine worst-case junction temperature. Please  
OUT  
refer to “Power Dissipation” on page 13 and Tech Brief TB379.  
Boldface limits apply over junction temperature (T ) range, -40°C to +125°C. Pulse load techniques used by ATE to ensure T = T where datasheet limits  
J
L
J
J
A
are defined. (Continued)  
MIN  
MAX  
PARAMETER  
SYMBOL  
(V  
TEST CONDITIONS  
(Note 10) TYP (Note 10) UNITS  
V
V
Quiescent Current  
I
VOUT = 1.0V  
3.5  
2.9  
3
mA  
mA  
µA  
IN  
Q
IN)  
Quiescent Current  
I
(V  
0 I 3A, V  
= 5.5V  
4.6  
20  
BIAS  
Q
BIAS)  
L
BIAS  
Ground Pin Current in  
Shutdown  
I
SHDN  
ENABLE Pin = 0.2V, T = +125°C  
J
V
Dropout Voltage  
V
I
I
I
I
I
I
= 1A, V  
= 2A, V  
= 3A, V  
= 1A, V  
= 2A, V  
= 3A, V  
= 1.2V, 2.9V V  
= 1.2V, 2.9V V  
= 1.2V, 2.9V V  
= 1.2V  
5V  
5V  
5V  
27  
53  
90  
115  
140  
1.3  
1.4  
1.5  
mV  
mV  
mV  
V
IN  
(Note 11)  
DO(VIN)  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
BIAS  
BIAS  
BIAS  
75  
V
Dropout Voltage  
V
1.1  
1.2  
1.3  
BIAS  
DO(BIAS)  
(Note 11)  
= 1.2V  
V
= 1.2V  
V
OVERCURRENT PROTECTION  
Output Short Circuit Current  
(3A Version)  
ISC  
V
V
V
= 0.2V  
= 0.2V  
= 0.2V  
5.2  
3.2  
2.2  
A
A
A
OUT  
OUT  
OUT  
Output Short Circuit Current  
(2A Version)  
Output Short Circuit Current  
(1A Version)  
OVER-TEMPERATURE PROTECTION  
Thermal Shutdown  
Temperature  
TSD  
160  
20  
°C  
°C  
Thermal Shutdown  
Hysteresis  
TSDn  
AC CHARACTERISTICS  
Input Supply Ripple Rejection  
PSRR(V  
)
f = 120Hz, I  
f = 120Hz, I  
= 1A  
= 1A  
80  
60  
100  
7
dB  
dB  
IN  
LOAD  
PSRR(V  
)
BIAS  
LOAD  
Output Noise Voltage  
Spectral Noise Density  
e
I
I
I
= 10mA, BW = 100Hz f 100kHz  
= 3A, f = 10Hz  
µV  
N(RMS)  
LOAD  
LOAD  
LOAD  
RMS  
e
µV/Hz  
N
= 3A, f = 100Hz  
3
µV Hz  
/
DEVICE START-UP CHARACTERISTICS  
EN Start-up Time  
t
C
C
= 10µF, I  
LOAD  
= 1A  
50  
µs  
µs  
EN  
OUT  
OUT  
BIAS Start-up Time  
t
= 10µF, EN = BIAS  
100  
BIAS  
ENABLE PIN CHARACTERISTICS  
Turn-on Threshold (Rising)  
Hysteresis (Rising Threshold)  
PG PIN CHARACTERISTICS  
PG Flag Falling Threshold  
PG Flag Hysteresis  
V
+ 0.4V V 3.6V, 2.9V V  
IN  
5.5V  
400  
60  
680  
260  
850  
330  
mV  
mV  
OUT  
BIAS  
1.2V V 3.6V, 2.9V V  
IN  
5.5V  
BIAS  
PG  
2.9V V  
2.9V V  
5.5V  
5.5V  
71  
82  
93  
%V  
%V  
TH  
BIAS  
BIAS  
OUT  
PGHYS  
9.3  
OUT  
FN7841.2  
November 1, 2013  
5
ISL80111, ISL80112, ISL80113  
Electrical Specifications Unless otherwise specified, V = V  
+ 0.4V, V  
= 2.9V, V  
OUT  
= 1.2V, C = 1µF, C = 10µF,  
BIAS IN  
IN  
OUT  
BIAS  
C
= 2.2µF, T = +25°C, I = 0mA. Applications must follow thermal guidelines of the package to determine worst-case junction temperature. Please  
OUT  
refer to “Power Dissipation” on page 13 and Tech Brief TB379.  
Boldface limits apply over junction temperature (T ) range, -40°C to +125°C. Pulse load techniques used by ATE to ensure T = T where datasheet limits  
J
L
J
J
A
are defined. (Continued)  
MIN  
MAX  
PARAMETER  
PG Flag Low Voltage  
PG Flag Leakage Current  
PG Flag Sink Current  
NOTES:  
SYMBOL  
TEST CONDITIONS  
(Note 10) TYP (Note 10) UNITS  
I
= 500µA  
90  
11  
10  
130  
300  
mV  
nA  
SINK  
PG = V  
= 5.5V  
BIAS  
7
mA  
10. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
11. Dropout is defined by the difference in supply (V , V  
IN BIAS  
) and V  
OUT  
when the supply produces a 2% drop in V from its nominal value, output  
OUT  
voltage set to 2.5V.  
12. For normal operation, V must always be less than or equal to the voltage applied to V  
. Part is protected against fault conditions where V can  
IN  
IN BIAS  
be greater than V  
.
BIAS  
FN7841.2  
November 1, 2013  
6
ISL80111, ISL80112, ISL80113  
Typical Operating Performance Unless otherwise noted, V = 1.8V, V  
= 3.3V, V  
OUT  
= 1.2V, C = C  
IN  
= 10µF,  
OUT  
IN  
BIAS  
T = +25°C, I  
J
= 0A.  
LOAD  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
18  
16  
14  
12  
10  
8
3A V  
BIAS  
= 3.3V  
2A V  
BIAS  
= 3.3V  
3A V  
BIAS  
= 5V  
2A V  
BIAS  
= 5V  
6
4
1A V  
BIAS  
= 3.3V  
125  
2
1A V  
BIAS  
= 5V  
0
-40  
25  
TEMPERATURE (°C)  
500.0 500.5 501.0 501.5 502.0 502.5 503.0 503.5 504.0  
@ +25°C (mV)  
V
ADJ  
FIGURE 5. DROPOUT vs V  
FIGURE 6. V  
DISTRIBUTION  
BIAS  
ADJ  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
-0.70  
-0.80  
-0.90  
-1.00  
I
= 0A - 3A  
125  
OUT  
-40  
0
25  
TEMPERATURE (°C)  
85  
125  
-40  
0
25  
TEMPERATURE (°C)  
85  
FIGURE 7. ΔV  
ADJ  
vs TEMPERATURE  
FIGURE 8. LOAD REGULATION vs TEMPERATURE  
1.2200  
1.2175  
1.2150  
1.2125  
1.2100  
1.2075  
1.2050  
1.2025  
1.2000  
1.1975  
1.1950  
1.1925  
1.205  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
1.196  
1.195  
V
= 3.7V  
V
= 1.6V, V  
2.0  
= 2.9V  
BIAS  
IN  
BIAS  
2.5  
1.1900  
0
0.5  
1.0  
1.5  
3.0  
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
FIGURE 9. LOAD REGULATION, V  
vs I  
FIGURE 10. V LINE REGULATION  
IN  
OUT  
OUT  
FN7841.2  
November 1, 2013  
7
ISL80111, ISL80112, ISL80113  
Typical Operating Performance Unless otherwise noted, V = 1.8V, V  
= 3.3V, V  
OUT  
= 1.2V, C = C  
IN  
= 10µF,  
OUT  
IN  
BIAS  
T = +25°C, I  
J
= 0A. (Continued)  
LOAD  
1.205  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
1.196  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
BIAS = 5V  
BIAS = 2.9V  
V
= 1.6V  
IN
1.195  
2.9  
3.2  
3.5  
3.8  
4.1  
4.4  
4.7 5.0  
0
1
2
3
BIAS VOLTAGE (V)  
OUTPUT CURRENT(A)  
FIGURE 11. V  
LINE REGULATION  
FIGURE 12. BIAS GROUND CURRENT vs LOAD CURRENT  
BIAS  
11  
10  
9
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
V
= 5V  
BIAS  
= 3.3V  
V
OUT  
8
V
V
= 3.3V  
BIAS  
7
= 1.8V  
OUT  
6
5
V
= 5V  
BIAS  
= 1.8V  
V
= 5V  
V
V
= 3.3V  
= 1.0V  
BIAS  
= 1.0V  
BIAS  
V
OUT  
4
3
V
OUT  
OUT  
V
V
= 3.3V  
= 0.8V  
V
V
= 5V  
BIAS  
BIAS  
= 0.8V  
2
1
V
= 0.8V  
OUT
OUT  
2.6  
VIN INPUT VOLTAGE (V)  
OUT  
3.4  
2.0  
2.9  
1.0  
1.4  
1.8  
2.2  
3.0  
3.8  
3.2  
3.5  
3.8  
4.1  
4.4  
4.7  
5.0  
BIAS VOLTAGE (V)  
FIGURE 13. INPUT GROUND CURRENT vs V and V  
IN  
FIGURE 14. INPUT GROUND CURRENT vs V  
BIAS  
OUT  
3.2  
3.1  
3.45  
3.25  
3.05  
2.85  
2.65  
2.45  
2.25  
2.05  
1.85  
V
= 5V  
= 0.8V  
V
= 5V  
= 1.2V  
V
= 5V  
BIAS  
BIAS  
BIAS  
= 2.5V  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
V
V
V
OUT  
OUT  
OUT  
V
= 3.3V  
= 0.8V  
V
V
= 3.3V  
= 1.2V  
BIAS  
BIAS  
V
OUT  
OUT  
V
V
= 3.3V  
= 2.5V  
BIAS  
OUT  
2.3  
2.2  
V
= 1.6V  
IN  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
2.9  
3.2  
3.5  
3.8  
4.1  
4.4  
4.7  
5.0  
INPUT VOLTAGE (V)  
BIAS VOLTAGE (V)  
FIGURE 15. BIAS GROUND CURRENT vs V and V  
IN  
FIGURE 16. BIAS GROUND CURRENT vs V  
BIAS  
OUT  
FN7841.2  
November 1, 2013  
8
ISL80111, ISL80112, ISL80113  
Typical Operating Performance Unless otherwise noted, V = 1.8V, V  
= 3.3V, V  
OUT  
= 1.2V, C = C  
IN  
= 10µF,  
OUT  
IN  
BIAS  
T = +25°C, I  
J
= 0A. (Continued)  
LOAD  
12  
10  
8
EN  
V
OUT  
6
4
PGOOD  
V
V
= 5.0V  
= 3.6V  
BIAS  
2
OUT  
I
IN  
0
1.0  
1.5  
1.8  
2.5  
3.3  
OUTPUT VOLTAGE(V)  
FIGURE 18. ENABLE START-UP WITH PGOOD  
FIGURE 17. V I vs VOUT VOLTAGE  
IN Q  
ISL80111 CURRENT LIMITING @ 2.1A  
DURING TURN-ON OC EVENT  
V
OUT  
EN  
PGOOD  
V
OUT  
PGOOD  
I
IN  
I
OUT  
C
= 1000µF  
LOAD  
FIGURE 19. ISL8011X INTO AND OUT OF THERMAL SHUTDOWN  
FIGURE 20. ISL80111 ENABLED INTO OVERCURRENT  
ISL80113 CURRENT LIMITING @ 5A  
DURING TURN-ON OC EVENT  
ISL80112 CURRENT LIMITING @ 3.4A  
DURING TURN-ON OC EVENT  
EN  
EN  
V
V
OUT  
OUT  
PGOOD  
PGOOD  
I
I
IN  
IN  
C
= 1000µF  
C
= 1000µF  
LOAD  
LOAD  
FIGURE 22. ISL80113 ENABLED INTO OVERCURRENT  
FIGURE 21. ISL80112 ENABLED INTO OVERCURRENT  
FN7841.2  
November 1, 2013  
9
ISL80111, ISL80112, ISL80113  
Typical Operating Performance Unless otherwise noted, V = 1.8V, V  
= 3.3V, V  
OUT  
= 1.2V, C = C  
IN  
= 10µF,  
OUT  
IN  
BIAS  
T = +25°C, I  
= 0A. (Continued)  
LOAD  
J
I
= 200mA  
I
= 1.1A  
OUT  
OUT  
I
=100mA  
I
= 0.1A  
OUT  
OUT  
V
(5mV/DIV)  
V
(20mV/DIV)  
OUT  
OUT  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
FIGURE 23. 100mA LOAD TRANSIENT RESPONSE  
FIGURE 24. 1A LOAD TRANSIENT RESPONSE  
I
= 2.1A  
OUT  
I
= 3.1A  
OUT  
I
= 0.1A  
I
= 0.1A  
OUT  
OUT  
V
(20mV/DIV)  
V
(50mV/DIV)  
OUT  
OUT  
TIME (20µs/DIV)  
TIME (20µs/DIV)  
FIGURE 25. 2A LOAD TRANSIENT RESPONSE  
FIGURE 26. 3A LOAD TRANSIENT RESPONSE  
100  
100  
BIAS = 5V  
BIAS = 5V  
V
V
= 3.3V  
IN  
OUT  
V
V
= 3.3V  
IN  
80  
60  
40  
20  
0
= 2.5V  
= 10µF  
80  
60  
40  
20  
0
= 2.5V  
= 10µF  
OUT  
C
OUT  
C
OUT  
I
= 1A  
OUT  
I
= 0A  
OUT  
I
= 2A  
OUT  
I
= 0A  
OUT  
I
= 3A  
OUT  
I
= 2A  
OUT  
I
= 3A  
OUT  
I
= 1A  
OUT  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FIGURE 28. BIAS PSRR vs LOAD CURRENT  
FIGURE 27. V PSRR vs LOAD CURRENT  
IN  
FN7841.2  
November 1, 2013  
10  
ISL80111, ISL80112, ISL80113  
Typical Operating Performance Unless otherwise noted, V = 1.8V, V  
= 3.3V, V  
OUT  
= 1.2V, C = C  
IN  
= 10µF,  
OUT  
IN  
BIAS  
T = +25°C, I  
J
= 0A. (Continued)  
LOAD  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
BIAS = 3.3V  
BIAS = 3.3V  
V
V
= 1.5V  
I
= 0A  
IN  
OUT  
OUT  
V
V
= 1.5V  
IN  
OUT  
= 1.0V  
= 10µF  
= 1.0V  
= 10µF  
C
OUT  
C
OUT  
I
= 2A  
OUT  
I
= 1A  
OUT  
I
= 2A  
OUT  
I
= 0A  
OUT  
I
= 3A  
I
= 1A  
OUT  
OUT  
I
= 3A  
OUT  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FIGURE 29. V  
PSRR vs LOAD CURRENT  
FIGURE 30. V  
PSRR vs LOAD CURRENT  
BIAS  
VIN  
100  
80  
100  
80  
60  
40  
20  
0
BIAS = 5V  
BIAS = 5V  
V
V
= 3.3V  
IN  
V
V
= 3.3V  
IN  
= 2.5V  
OUT  
= 2.5V  
OUT  
I
= 3A  
OUT  
I
= 1A  
OUT  
60  
C
= 10µF  
C
= 2.2µF  
OUT  
OUT  
C
= 10µF  
C
= 2.2µF  
OUT  
OUT  
40  
C
= 20µF  
OUT  
10k  
C
= 20µF  
OUT  
20  
0
100  
1k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 31. V PSRR vs C  
IN  
FIGURE 32. V PSRR vs C  
IN  
OUT  
OUT  
100  
80  
100  
80  
60  
40  
20  
0
BIAS = 5V  
BIAS = 5V  
V
V
= 3.3V  
I
= 1A  
V
= 3.3V  
IN  
OUT  
IN  
= 2.5V  
V
= 2.5V  
= 5x2.2µF  
OUT  
OUT  
C
= 5x2.2µF  
I
= 1A  
C
OUT  
OUT  
OUT  
60  
I
I
= 0A  
OUT  
= 2A  
I
= 0A  
OUT  
OUT  
I
= 3A  
OUT  
40  
20  
0
I
= 2A  
OUT  
I
= 3A  
OUT  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FIGURE 33. V PSRR vs LOAD CURRENT  
IN  
FIGURE 34. V  
PSRR vs LOAD CURRENT  
BIAS  
FN7841.2  
November 1, 2013  
11  
ISL80111, ISL80112, ISL80113  
Typical Operating Performance Unless otherwise noted, V = 1.8V, V  
= 3.3V, V  
OUT  
= 1.2V, C = C = 10µF,  
IN OUT  
IN  
BIAS  
T = +25°C, I  
J
= 0A. (Continued)  
LOAD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
100  
10  
V
V
V
= 5V  
BIAS  
= 3.8V  
300 lfm  
IN  
= 3.3V  
OUT  
= 3A  
I
OUT  
V
V
V
= 3.8V  
= 1.28V  
= 1V  
= 3A  
BIAS  
IN  
OUT  
0 lfm  
1
I
OUT  
0.1  
0.1  
25 30 35 40 45 50 55 60 65 70 75 80 85 105 125  
TEMPERATURE (°C)  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 35. CONTINUOUS POWER LIMIT vs AIR TEMP AND FLOW  
FIGURE 36. INPUT VOLTAGE NOISE vs BIAS VOLTAGE  
PGOOD pin should not be pulled up to a voltage source greater  
than V . A PGOOD fault can be caused by the output voltage  
Functional Description  
BIAS  
going below 84% of the nominal output voltage. PGOOD does not  
function during thermal shutdown as the V is less than the  
The ISL80111, ISL80112 and ISL80113 are high-performance,  
low-dropout regulators featuring an NMOS pass device. Benefits  
of using an NMOS as a pass device include low input voltage,  
stability over a wide range of output capacitors, and ultra low  
dropout voltage. The ISL80111, ISL80112 and ISL80113 are  
ideal for post regulation of switch mode power supplies.  
OUT  
minimum regulation voltage during that time.  
Output Voltage Selection  
An external resistor divider is used to scale the output voltage  
relative to the internal reference voltage. This voltage is then fed  
back to the error amplifier. The output voltage can be  
The ISL80111, ISL80112 and ISL80113 also integrate enable,  
power-good indicator, current limit protection, and thermal  
shutdown functions into a space-saving 3x3 DFN package.  
programmed to any level between 0.8V and 4V. Referring to  
Figure 1 the external resistor divider, R and R , is used to set  
3
4
Input Voltage Requirements  
the output voltage as shown in Equation 1. The recommended  
value for R is 500to 1k. R is then chosen according to  
4
3
The VIN pin provides the high current to the drain of the NMOS  
pass transistor. The specified minimum input voltage is 1V and  
dropout voltage for this family of LDOs has been conservatively  
specified.  
Equation 2.  
R
3
------  
(EQ. 1)  
(EQ. 2)  
V
= 0.5V ×  
+ 1  
OUT  
R
4
Bias Voltage Requirements  
V
The V  
input powers the internal control circuits, reference  
OUT  
0.5V  
BIAS  
voltage, and LDO gate driver. The difference between the V  
---------------  
R
= R  
×
4
1  
3
BIAS  
BIAS  
voltage and the output voltage must be greater than the V  
dropout voltage specified in the “Electrical Specifications” table  
Current Limit Protection  
beginning on Page 4. The minimum V  
input is 2.9V.  
The ISL80111, ISL80112, and ISL80113 incorporate protection  
against overcurrent due to a short, overload condition applied to  
the output and the in-rush current that occurs at start-up. The  
LDO performs as a constant current source when the output  
current exceeds the current limit threshold noted in “Electrical  
Specifications” on page 4. If the short or overload condition is  
BIAS  
Enable Operation  
The ENABLE turn-on threshold is typically 600mV with a  
hysteresis of 100mV. This pin must not be left floating. When this  
pin is not used, it must be tied to V  
. A 1kto 10kpull-up  
BIAS  
removed from V , then the output returns to normal voltage  
resistor is required for applications that use open collector or  
open drain outputs to control the ENABLE pin.  
OUT  
mode regulation. In the event of an overload condition, the LDO  
might begin to cycle on and off due to the die temperature  
exceeding the thermal fault condition.  
Soft-start Operation  
The ISL8011x has an internal 100µs typical soft-start function to  
prevent excessive in-rush current during start-up.  
Thermal Fault Protection  
If the die temperature exceeds (typically) +160°C, the LDO  
output shuts down until the die temperature cools to (typically)  
+140°C. The level of power, combined with the thermal  
impedance of the package (+48°C/W), determines whether the  
junction temperature exceeds the thermal shutdown  
temperature.  
Power-good Operation  
The PGOOD flag is an open-drain NMOS that can sink up to 10mA  
during a fault condition. Applications not using this feature must  
connect this pin to ground. The PGOOD pin requires an external  
pull-up resistor, which is typically connected to the V  
pin. The  
OUT  
FN7841.2  
November 1, 2013  
12  
ISL80111, ISL80112, ISL80113  
See Figure 35 for maximum continuous power dissipation  
46  
44  
42  
40  
38  
36  
34  
guidance for ambient temperature and linear air flow rate. This  
graph ignores the insignificant power dissipation contribution of  
the BIAS pin.  
External Capacitor  
Requirements  
External capacitors are required for proper operation. To ensure  
optimal performance, careful attention must be paid to the  
layout guidelines and selection of capacitor type and value.  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
2
EPAD-MOUNT COPPER LAND AREA ON PCB (mm )  
Input Capacitor  
The minimum input capacitor required for proper operation is  
10µF with a ceramic dielectric. This minimum capacitor must be  
FIGURE 37. 3mmx3mm-10 PIN DFN ON 4-LAYER PCB WITH  
THERMAL VIAS θ vs EPAD-MOUNT COPPER LAND  
JA  
AREA ON PCB  
For safe operation, ensure that power dissipation calculated in  
connected to the V and ground pins of the LDO no further than  
IN  
Equation 3 (P ) is less than the maximum allowable power  
D
0.5cm away.  
dissipation, P  
.
D(MAX)  
Output Capacitor  
The ISL8011x applies state-of-the-art internal compensation to  
simplify selection of the output capacitor. Stable operation over  
The DFN package uses the copper area on the PCB as a heat  
sink. For heat sinking, the EPAD of this package must be  
soldered to the copper plane (GND plane). Figure 37 shows a  
curve for the θ of the DFN package for different copper area  
sizes.  
the full temperature range, V range, V  
extremes is guaranteed for all capacitor types and values,  
range, and load  
JA  
IN OUT  
assuming a 1µF X5R/X7R is used for local bypass on V . This  
OUT  
and ground  
General PowerPAD Design Considerations  
The following is an example of how to use vias to remove heat  
from the IC.  
minimum capacitor must be connected to the V  
pins of the LDO no further than 0.5cm away.  
OUT  
Lower-cost Y5V and Z5U type ceramic capacitors are acceptable,  
if the size of the capacitor is larger, to compensate for the  
significantly lower tolerance over X5R/X7R types. Additional  
capacitors of any value, in ceramic, POSCAP, or alum/tantalum  
electrolytic types, can be placed in parallel to improve PSRR at  
higher frequencies or load-transient AC output voltage  
tolerances.  
Filling the thermal pad area with vias is recommended. A typical  
via array is to fill the thermal pad footprint with vias spaced such  
that they are center on center 3x the radius apart from each  
other. Keep the vias small but not so small that their inside  
diameter prevents solder from wicking through the holes during  
reflow.  
Bias Capacitor  
The minimum input capacitor required for proper operation is  
1µF with a ceramic dielectric. This minimum capacitor must be  
connected to the V  
and ground pins of the LDO no further  
than 0.5cm away. When the VBIAS pin is connected to the V  
BIAS  
IN  
pin, a total of 10µF of X5R/X7R connected to the V pin and  
IN  
ground is sufficient.  
Power Dissipation and Thermals  
Power Dissipation  
Junction temperature must not exceed the range specified in the  
“Recommended Operating Conditions” section on Page 4. Power  
dissipation can be calculated with Equation 3.  
FIGURE 38. PCB VIA PATTERN  
Connect all vias to the round plane. For efficient heat transfer, it  
is important that the vias have low thermal resistance. Do not  
use “thermal relief” patterns to connect the vias. It is important  
to have a complete connection of the plated through-hole to each  
plane.  
P
= (V V  
) × I  
+ V  
× IQ(BIAS) + V × IQ(V  
)
IN  
D
IN  
OUT  
OUT  
BIAS  
IN  
(EQ. 3)  
The maximum allowable junction temperature, T  
J(MAX)  
, and the  
maximum expected ambient temperature, T  
, determine  
the maximum allowable power dissipation, as shown in  
A(MAX)  
Equation 4, where θ is the junction-to-ambient thermal  
JA  
resistance.  
(EQ. 4)  
P
= (T  
T ) ⁄ θ  
J(MAX) A JA  
D(MAX)  
FN7841.2  
November 1, 2013  
13  
ISL80111, ISL80112, ISL80113  
These LDOs consume significantly lower quiescent current as a  
function of load compared to bipolar LDOs. This lower  
consumption translates into higher efficiency and the ability to  
consider packages with smaller footprints. The quiescent current  
has been modestly compromised in design to enable leading  
class fast load transient response and load regulation.  
ISL80111, ISL80112, ISL80113  
Split Supply LDO Evaluation  
Board User Guide  
Description  
The ISL8011XEVAL1Z provides a simple platform to evaluate  
performance of the ISL8011X family of split supply LDOs.  
Jumpers are provided to easily set popular output voltages.  
What’s Inside  
• The evaluation kit contains the following:  
• The ISL80113EVAL1Z with the appropriate parts installed  
• The ISL80111, ISL80112, ISL80113 data sheet  
The ISL80111, ISL80112, and ISL80113 are single-output LDOs  
specified for 1A, 2A, 3A of output current and are optimized for  
less than 2.5V and less output voltage conversions. The  
ISL8011X supports V voltages down to 1V, provided a standard  
IN  
legacy 3.3V or 5V is applied on the V  
is adjustable from 0.8V to 3.3V.  
pin. The output voltage  
Test Steps  
BIAS  
1. Select the desired output voltage by shorting one of the  
jumpers from JP2 through JP5.  
An enable input, having a threshold < 1V, allows the part to be  
placed into a low quiescent current shutdown mode. A submicron  
CMOS process is utilized for this product family to deliver  
best-in-class analog performance and overall value for  
applications in need of input voltage conversions to typically  
below 2.5V. It also has the superior load transient regulation  
unique to a NMOS power stage.  
2. Connect both the BIAS and VIN supplies and the load. Enable  
the IC using jumper JP6 (bottom position) or via a signal on  
the center post, observe the output.  
3. The shipped configuration is enabled and V  
= 3.3V.  
4. Scope shots taken from ISL8011XEVAL1Z boards.  
OUT  
FIGURE 39. ISL80113EVAL1Z (TOP PCB LEFT, PHOTOGRAPH RIGHT)  
FN7841.2  
November 1, 2013  
14  
ISL80111, ISL80112, ISL80113  
Schematic  
Bill of Materials  
REFERENCE  
PART  
DESIGNATOR  
VALUE  
DESCRIPTION  
MANUFACTURER  
NUMBER  
U1  
ISL80111, ISL80112 or ISL80113 as noted on Intersil  
the evaluation board  
ISL80111IRAJZ,  
ISL80112IRAJZ,  
ISL80113IRAJZ  
C1, C3  
10µF  
CAP, SMD, 0805, 50V, 10%  
Generic  
C2  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
1µF  
CAP, SMD, 0603  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
Generic  
1k  
RES, SMD, 0603, 1%  
RES, SMD, 0603, 1%  
RES, SMD, 0603, 1%  
RES, SMD, 0603, 1%  
RES, SMD, 0603, 1%  
RES, SMD, 0603, 1%  
RES, SMD, 0603, 1%  
Jumper  
2.05kꢀ  
2.61kꢀ  
4.02kꢀ  
5.62kꢀ  
1kꢀ  
100kꢀ  
JP1, JP2, JP3,  
JP4, JP5, JP6  
TP1, TP2, TP3  
TP4, TP5, TP6  
Terminal Connector  
Generic  
FN7841.2  
November 1, 2013  
15  
ISL80111, ISL80112, ISL80113  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
FN7841.2  
CHANGE  
Electrical Spec table: Bold the Min and Max values.  
November 1, 2013  
Page 4- Electrical Spec table title area: Removed “Unless otherwise noted, all parameters are guaranteed  
over the conditions specified as follows” and replaced by “Unless otherwise specified”.  
Updated POD to latest revision from rev 7 to rev 8. The changes as follow: Corrected L-shaped leads in  
Bottom view and land pattern so that they align with the rest of the leads (L shaped leads were shorter)  
June 5, 2012  
FN7841.1  
Ordering Information table on Page 3: Changed evaluation board names from: ISL80111IRAJEVALZ,  
ISL80112IRAJEVALZ and ISL80113IRAJEVALZ to ISL80111EVAL1Z, ISL80112EVAL1Z and  
ISL80113VAL1Z.  
Changed POD L10.3x3 on Page 17 to latest revision from Rev 6 to Rev 7. Change to POD is as follows:  
Removed package outline and included center to center distance between lands on recommended land  
pattern.  
Removed Note 4 "Dimension b applies to the metallized terminal and is measured between 0.18mm and  
0.30mm from the terminal tip." since it is not applicable to this package. Renumbered notes accordingly.  
Figure 6 VADJ Distribution , corrected "Y" scale units from (0.18, 0.16, 0.14, 0.12, 0.10, 0.08, 0.06, 0.04,  
0.02, and 0.00) to (18, 16,14,12,10, 8, 6, 4, 2, and 0).  
Electrical Specifications table on Page 4 "Added UVLO rising spec to show max of 2.9V so implementation  
at 3.3V is not a math problem".  
March 30 2012  
FN7841.0  
Initial Release and Added “UVLO _BIAS _r” spec on pg 4. Modified Figures 13 - 17.  
About Intersil  
Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management  
semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal  
computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting  
www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at  
http://www.intersil.com/en/support/qualandreliability.html#reliability  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7841.2  
November 1, 2013  
16  
ISL80111, ISL80112, ISL80113  
Package Outline Drawing  
L10.3x3  
10 LEAD DUAL FLAT PACKAGE (DFN)  
Rev 8, 7/12  
5
3.00  
A
B
PIN #1 INDEX AREA  
1
2
5
PIN 1  
INDEX AREA  
10 x 0.23  
(4X)  
0.10  
1.60  
10x 0.35  
TOP VIEW  
BOTTOM VIEW  
A B  
C
M
0.10  
(4X)  
0.415  
0.23  
0.35  
SEE DETAIL "X"  
0.10  
(10 x 0.55)  
(10x 0.23)  
C
C
BASE PLANE  
0.20  
SEATING PLANE  
0.08 C  
SIDE VIEW  
(8x 0.50)  
4
0.20 REF  
0.05  
C
1.60  
2.85 TYP  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
4.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
Tiebar shown (if present) is a non-functional feature.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
5.  
FN7841.2  
November 1, 2013  
17  

相关型号:

ISL80111IRAJZ-T

Ultra Low Dropout 1A Low Input Voltage NMOS LDOs; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL80111IRAJZ-T7A

Ultra Low Dropout 1A Low Input Voltage NMOS LDOs; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL80112

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs
INTERSIL

ISL80112EVAL1Z

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs
INTERSIL

ISL80112IRAJZ

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs
INTERSIL

ISL80112IRAJZ-T

Ultra Low Dropout 2A Low Input Voltage NMOS LDOs; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL80113

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs
INTERSIL

ISL80113EVAL1Z

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs
INTERSIL

ISL80113IRAJZ

Ultra Low Dropout 1A, 2A, 3A Low Input Voltage NMOS LDOs
INTERSIL

ISL80113IRAJZ-T

Ultra Low Dropout 3A Low Input Voltage NMOS LDOs; DFN10; Temp Range: -40&deg; to 85&deg;C
RENESAS

ISL8011IRZ

1.2A Integrated FETs, High Efficiency Synchronous Buck Regulator
INTERSIL

ISL8011IRZ-T

1.2A Integrated FETs, High Efficiency Synchronous Buck Regulator
INTERSIL