ISL9104AIRUFZ-T [INTERSIL]

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter; 500毫安4.3MHz低智商高效率同步降压转换器
ISL9104AIRUFZ-T
型号: ISL9104AIRUFZ-T
厂家: Intersil    Intersil
描述:

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
500毫安4.3MHz低智商高效率同步降压转换器

转换器
文件: 总13页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL9104, ISL9104A  
®
Data Sheet  
July 9, 2009  
FN6829.3  
500mA 4.3MHz Low I High Efficiency  
Q
Features  
Synchronous Buck Converter  
• High Efficiency Integrated Synchronous Buck Regulator  
with up to 93% Efficiency  
The ISL9104, ISL9104A is a 500mA, 4.3MHz step-down  
regulator, which is ideal for powering low-voltage  
• 2.7V to 6.0V Supply Voltage  
microprocessors in compact devices such as PDAs and  
cellular phones. It is optimized for generating low output  
voltages down to 0.8V. The supply voltage range is from  
2.7V to 6V allowing the use of a single Li+ cell, three NiMH  
cells or a regulated 5V input. It has guaranteed minimum  
output current of 500mA. A high switching frequency of  
4.3MHz pulse-width modulation (PWM) allows using small  
external components. Under light load condition, the device  
• 4.3MHz PWM Switching Frequency  
• 500mA Guaranteed Output Current  
• 3% Output Accuracy Over-Temperature and Line for Fixed  
Output Options  
• 20µA Quiescent Supply Current in Skip Mode  
• Less than 1µA Logic Controlled Shutdown Current  
• 100% Maximum Duty Cycle for Lowest Dropout  
operates at low I skip mode with typical 20µA quiescent  
Q
current for highest light load efficiency to maximize battery  
life, and it automatically switches to fixed frequency PWM  
mode under heavy load condition.  
• Ultrasonic Switching Frequency at Skip Mode to Prevent  
Audible Frequency Noise (For ISL9104A Only)  
• Discharge Output Capacitor when Disabled  
• Internal Digital Soft-Start  
The ISL9104, ISL9104A includes a pair of low  
ON-resistance P-Channel and N-Channel internal MOSFETs  
to maximize system efficiency and minimize the external  
component count. 100% duty-cycle operation allows less  
than 300mV dropout voltage at 500mA.  
• Peak Current Limiting, Short Circuit Protection  
• Over-Temperature Protection  
The ISL9104, ISL9104A offers internal digital soft-start,  
enable for power sequence, overcurrent protection and  
thermal shutdown functions. In addition, the ISL9104,  
ISL9104A offers a quick bleeding function that discharges  
the output capacitor when the IC is disabled.  
• Chip Enable  
• Small 6 Pin 1.6mmx1.6mm µTDFN Package  
• Pb-Free (RoHS Compliant)  
Applications  
The ISL9104, ISL9104A is offered in a 1.6x1.6mm µTDFN  
package. The complete converter occupies less than  
• Single Li-ion Battery-Powered Equipment  
• Mobile Phones and MP3 Players  
• PDAs and Palmtops  
2
0.5CM .  
Pinout  
• WCDMA Handsets  
ISL9104, ISL9104A  
(6 LD 1.6x1.6 µTDFN)  
TOP VIEW  
• Portable Instruments  
VIN  
EN  
NC  
1
2
3
6
5
4
SW  
GND  
FB  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2008, 2009. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL9104, ISL9104A  
Ordering Information  
OUTPUT  
PART NUMBER  
(Notes 1, 3)  
PART  
MARKING  
VOLTAGE  
(V) (Note 2)  
TEMP RANGE  
PACKAGE  
(Pb-Free)  
PKG  
DWG. #  
ULTRASONIC  
FUNCTION  
(°C)  
ISL9104IRUNZ-T  
K6  
3.3  
2.8  
-40 to +85  
-40 to +85  
6 Ld µTDFN  
L6.1.6x1.6  
NO  
NO  
Coming Soon  
K7  
6 Ld µTDFN  
L6.1.6x1.6  
ISL9104IRUJZ-T  
ISL9104IRUFZ-T  
K8  
K9  
2.5  
2.0  
-40 to +85  
-40 to +85  
6 Ld µTDFN  
6 Ld µTDFN  
L6.1.6x1.6  
L6.1.6x1.6  
NO  
NO  
Coming Soon  
ISL9104IRUDZ-T  
Coming Soon  
L0  
1.8  
-40 to +85  
6 Ld µTDFN  
L6.1.6x1.6  
NO  
ISL9104IRUCZ-T  
ISL9104IRUBZ-T  
ISL9104IRUWZ-T  
ISL9104IRUAZ-T  
ISL9104AIRUNZ-T  
L1  
L2  
L3  
L4  
L5  
1.5  
1.2  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
6 Ld µTDFN  
6 Ld µTDFN  
6 Ld µTDFN  
6 Ld µTDFN  
6 Ld µTDFN  
L6.1.6x1.6  
L6.1.6x1.6  
L6.1.6x1.6  
L6.1.6x1.6  
L6.1.6x1.6  
NO  
NO  
ADJ  
3.3  
NO  
YES  
YES  
Coming Soon  
2.8  
ISL9104AIRUJZ-T  
ISL9104AIRUFZ-T  
L6  
L7  
2.5  
2.0  
-40 to +85  
-40 to +85  
6 Ld µTDFN  
6 Ld µTDFN  
L6.1.6x1.6  
L6.1.6x1.6  
YES  
YES  
Coming Soon  
ISL9104AIRUDZ-T  
Coming Soon  
L8  
1.8  
-40 to +85  
6 Ld µTDFN  
L6.1.6x1.6  
YES  
ISL9104AIRUCZ-T  
ISL9104AIRUBZ-T  
ISL9104AIRUWZ-T  
ISL9104AIRUAZ-T  
NOTES:  
L9  
1.5  
1.2  
-40 to +85  
-40 to +85  
-40 to +85  
6 Ld µTDFN  
6 Ld µTDFN  
6 Ld µTDFN  
L6.1.6x1.6  
L6.1.6x1.6  
L6.1.6x1.6  
YES  
YES  
YES  
M0  
M1  
ADJ  
1. Please refer to TB347 for details on reel specifications.  
2. Other output voltage options may be available upon request, please contact Intersil for more details.  
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu  
plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products  
are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN6829.3  
July 9, 2009  
2
ISL9104, ISL9104A  
Absolute Maximum Ratings  
Thermal Information  
VIN, EN to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
SW to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.5V to 6.5V  
FB to GND (for adjustable version) . . . . . . . . . . . . . . . -0.3V to 2.7V  
FB to GND (for fixed output version) . . . . . . . . . . . . . . -0.3V to 3.6V  
Thermal Resistance (Typical, Note 4)  
θ
(°C/W)  
160  
JA  
1.6x1.6 µTDFN Package . . . . . . . . . . . . . . . . . . . . .  
Junction Temperature Range. . . . . . . . . . . . . . . . . .-40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Recommended Operating Conditions  
VIN Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . 2.7V to 6.0V  
Load Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .up to 500mA  
Ambient Temperature Range. . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See  
JA  
Tech Brief TB379.  
Electrical Specifications Unless otherwise noted, all parameter limits are guaranteed over the recommended operating conditions and  
the typical specifications are measured at the following conditions: T = +25°C, V = V = 3.6V, L = 1.0µH,  
A
IN  
EN  
C
= 4.7µF, C = 4.7µF, I  
= 0A (see “Typical Applications” on page 8). Parameters with MIN and/or MAX  
1
2
OUT  
limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY  
Undervoltage Lockout Threshold (UVLO)  
UVLO Hysteresis  
V
T
= +25°C, Rising  
-
50  
-
2.5  
150  
20  
2.7  
-
V
UVLO  
A
mV  
µA  
Quiescent Supply Current (for ISL9104  
adjustable output voltage only)  
I
I
In skip mode, no load at the output, no switch,  
= 6.0V  
34  
VIN1  
VIN2  
V
IN  
In skip mode, no load at the output, no switch,  
= 6.0V  
Quiescent Supply Current (for ISL9104A  
adjustable output only)  
-
-
-
32  
84  
45  
-
µA  
µA  
μA  
V
IN  
Quiescent Supply Current (for ISL9104A 1.5V  
fixed output)  
In skip mode, no load at the output,  
V
V
= 6.0V  
IN  
IN  
Shut Down Supply Current  
I
= 6.0V, EN = LOW  
0.05  
1
SD  
OUTPUT REGULATION  
FB Voltage Accuracy (for adjustable output only)  
T
= 0°C to +85°C  
-2  
-
-
+2  
%
%
V
A
-2.5  
+2.5  
FB Voltage  
V
0.8  
5
FB  
FB Bias Current (for adjustable output only)  
I
VFB = 0.75V  
PWM Mode  
-
100  
3
nA  
%
FB  
Output Voltage Accuracy (for fixed output  
voltage only)  
-3  
-
Line Regulation  
V
V
= V + 0.5V to 6V (minimal 2.7V)  
-
-
0.2  
-
-
%/V  
IN  
IN  
O
Load Regulation  
=3.6V, I = 150mA to 500mA  
0.0009  
%/mA  
O
SW  
P-Channel MOSFET ON-Resistance  
V
V
V
V
= 3.6V, I = 200mA  
-
-
-
-
-
0.45  
0.55  
0.4  
0.6  
0.72  
0.52  
0.65  
-
Ω
Ω
Ω
Ω
Ω
IN  
IN  
IN  
IN  
O
= 2.7V, I = 200mA  
O
N-Channel MOSFET ON-Resistance  
= 3.6V, I = 200mA  
O
= 2.7V, I = 200mA  
O
0.5  
N-Channel Bleeding MOSFET  
ON-Resistance  
100  
P-Channel MOSFET Peak Current Limit  
Maximum Duty Cycle  
I
V
= 4.2V  
0.75  
-
1.00  
100  
1.35  
-
A
PK  
IN  
%
FN6829.3  
July 9, 2009  
3
ISL9104, ISL9104A  
Electrical Specifications Unless otherwise noted, all parameter limits are guaranteed over the recommended operating conditions and  
the typical specifications are measured at the following conditions: T = +25°C, V = V = 3.6V, L = 1.0µH,  
A
IN  
EN  
C
= 4.7µF, C = 4.7µF, I  
= 0A (see “Typical Applications” on page 8). Parameters with MIN and/or MAX  
1
2
OUT  
limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested. (Continued)  
PARAMETER  
SW Leakage Current  
SYMBOL  
TEST CONDITIONS  
SW at Hi-Z state  
MIN  
TYP  
0.01  
4.3  
MAX  
UNITS  
µA  
-
3.6  
-
2
4.9  
-
PWM Switching Frequency  
SW Minimum On-Time  
Soft-Start-Up Time  
EN  
f
V
= 3.6V, T = -20°C to +85°C  
IN A  
MHz  
ns  
S
65  
-
1.0  
-
ms  
Logic Input Low  
-
-
-
0.4  
V
V
Logic Input High  
1.4  
-
1
-
Logic Input Leakage Current  
Thermal Shutdown  
Thermal Shutdown Hysteresis  
-
-
-
0.1  
130  
30  
µA  
°C  
°C  
-
Typical Operating Performance  
100  
100  
90  
V
= 2.7V  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
V
= 3.5V  
IN  
V
= 4.9V  
V
= 4.5V  
V
= 3.8V  
IN  
IN  
IN  
V
= 5.5V  
60  
50  
40  
30  
20  
10  
0
IN  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
FIGURE 1. EFFICIENCY vs LOAD CURRENT (V  
= 1.5V)  
FIGURE 2. EFFICIENCY vs LOAD CURRENT (V  
= 2.5V)  
OUT  
OUT  
30  
1.630  
1.625  
T = +85°C  
25  
20  
15  
10  
1.620  
1.615  
1.610  
1.605  
1.600  
LOAD CURRENT RISING  
T = +25°C  
LOAD CURRENT FALLING  
T = -45°C  
2.70  
3.25  
3.80  
4.35  
4.90  
5.45  
6.00  
0
100  
200  
I
300  
(mA)  
400  
500  
INPUT VOLTAGE (V)  
OUT  
FIGURE 3. INPUT QUIESCENT CURRENT vs V (V  
IN OUT  
= 2.5V)  
FIGURE 4. OUTPUT VOLTAGE vs LOAD CURRENT  
(V = 3.6V, V = 1.6V)  
IN  
OUT  
FN6829.3  
July 9, 2009  
4
ISL9104, ISL9104A  
Typical Operating Performance (Continued)  
2.505  
2.500  
2.495  
2.490  
2.485  
2.480  
2.475  
5V/DIV  
1V/DIV  
V
SW  
LOAD CURRENT RISING  
V
OUT  
200mA/DIV  
5V/DIV  
I
L
LOAD CURRENT FALLING  
EN  
0
100  
200  
I
300  
(mA)  
400  
500  
OUT  
FIGURE 6. SOFT-START TO PFM MODE (V = 3.6V,  
IN  
FIGURE 5. OUTPUT VOLTAGE vs LOAD CURRENT  
V
= 1.5V, I  
= 0.001mA)  
(V = 4.0V, V  
IN  
= 2.5V)  
OUT  
OUT  
OUT  
5V/DIV  
2V/DIV  
5V/DIV  
1V/DIV  
V
V
V
SW  
SW  
V
OUT  
OUT  
200mA/DIV  
5V/DIV  
500mA/DIV  
5V/DIV  
I
I
L
L
EN  
EN  
FIGURE 7. SOFT-START TO PWM MODE (V = 3.6V,  
IN  
FIGURE 8. SOFT-START TO PFM MODE (V = 3.6V,  
IN  
V
= 1.5V, I  
= 500mA)  
V
= 2.5V, I  
= 0.001mA)  
OUT  
OUT  
OUT  
OUT  
5V/DIV  
5V/DIV  
V
V
SW  
SW  
20mV/DIV  
20mV/DIV  
V
(AC COUPLED)  
OUT  
V
(AC COUPLED)  
OUT  
20mA/DIV  
20mA/DIV  
I
o
I
o
FIGURE 9. LOAD TRANSIENT IN PFM MODE (V = 3.6V,  
IN  
FIGURE 10. LOAD TRANSIENT IN PFM MODE (V = 3.6V,  
IN  
V
= 1.5V, 5mA TO 30mA)  
V
= 1.5V, 30mA TO 5mA)  
OUT  
OUT  
FN6829.3  
July 9, 2009  
5
ISL9104, ISL9104A  
Typical Operating Performance (Continued)  
5V/DIV  
5V/DIV  
V
V
SW  
SW  
20mV/DIV  
20mV/DIV  
V
(AC COUPLED)  
OUT  
V
(AC COUPLED)  
OUT  
I
20mA/DIV  
20mA/DIV  
o
I
o
FIGURE 11. LOAD TRANSIENT IN PFM MODE (V = 3.6V,  
IN  
FIGURE 12. LOAD TRANSIENT IN PFM MODE (V = 3.6V,  
IN  
V
= 2.5V, 5mA TO 30mA)  
V
= 2.5V, 30mA TO 5mA)  
OUT  
OUT  
5V/DIV  
5V/DIV  
V
V
SW  
SW  
V
(AC COUPLED)  
50mV/DIV  
OUT  
50mV/DIV  
V
(AC COUPLED)  
OUT  
200mA/DIV  
200mA/DIV  
I
I
o
o
FIGURE 13. LOAD TRANSIENT FROM PFM TO PWM MODE  
(V = 3.6V, V = 1.5V, 5mA TO 300mA)  
FIGURE 14. LOAD TRANSIENT FROM PWM TO PFM MODE  
(V = 3.6V, V = 1.5V, 300mA TO 5mA)  
IN OUT  
IN OUT  
5V/DIV  
5V/DIV  
V
V
SW  
V
SW  
50mV/DIV  
50mV/DIV  
V
(AC COUPLED)  
(AC COUPLED)  
OUT  
OUT  
200mA/DIV  
200mA/DIV  
I
I
o
o
FIGURE 15. LOAD TRANSIENT FROM PFM TO PWM MODE  
(V = 3.6V, V = 2.5V, 5mA TO 300mA)  
FIGURE 16. LOAD TRANSIENT FROM PWM TO PFM MODE  
(V = 3.6V, V = 2.5V, 300mA TO 5mA)  
IN OUT  
IN OUT  
FN6829.3  
July 9, 2009  
6
ISL9104, ISL9104A  
Typical Operating Performance (Continued)  
5V/DIV  
5V/DIV  
V
SW  
V
V
SW  
20mV/DIV  
20mV/DIV  
V
(AC COUPLED)  
OUT  
OUT  
500mA/DIV  
500mA/DIV  
I
o
I
o
FIGURE 18. LOAD TRANSIENT IN PWM MODE (V = 3.6V,  
IN  
FIGURE 17. LOAD TRANSIENT IN PWM MODE (V = 3.6V,  
IN  
V
= 1.5V, 500mA TO 200mA)  
V
= 1.5V, 200mA TO 500mA)  
O
O
5V/DIV  
5V/DIV  
V
V
V
SW  
SW  
20mV/DIV  
20mV/DIV  
(AC COUPLED)  
V
(AC COUPLED)  
OUT  
OUT  
500mA/DIV  
500mA/DIV  
I
I
o
o
FIGURE 19. LOAD TRANSIENT IN PWM MODE (V = 3.6V,  
IN  
FIGURE 20. LOAD TRANSIENT IN PWM MODE (V = 3.6V,  
IN  
V
= 2.5V, 200mA TO 500mA)  
V = 2.5V, 500mA TO 200mA)  
O
O
GND  
Pin Descriptions  
Ground connection.  
VIN  
FB  
Input supply voltage. Typically connect a 4.7µF ceramic  
capacitor to ground.  
Buck converter output feedback pin. For adjustable output  
version, its typical value is 0.8V and connect it to the output  
through a resistor divider for desired output voltage; for fixed  
output version, directly connect this pin to the converter  
output.  
NC  
No connect, leave it floating.  
EN  
Regulator enable pin. Enable the device when driven to  
high. Shut down the chip and discharge output capacitor  
when driven to low. Do not leave this pin floating.  
SW  
Switching node connection. Connect to one terminal of  
inductor.  
FN6829.3  
July 9, 2009  
7
ISL9104, ISL9104A  
Typical Applications  
ISL9104, ISL9104A ADJUSTABLE OUTPUT  
L
OUTPUT  
UP TO 500mA  
1.0µH  
INPUT: 2.7V TO 6V  
SW  
VIN  
C2  
4.7µF  
C1  
4.7µF  
R1  
100k  
C3  
47pF  
R2  
100k  
ENABLE  
EN  
FB  
DISABLE  
GND  
ISL9104, ISL9104A FIXED OUTPUT  
OUTPUT  
UP TO 500mA  
L
1.0µH  
INPUT: 2.7V TO 6V  
VIN  
SW  
C2  
4.7µF  
C1  
4.7µ F  
ENABLE  
FB  
EN  
DISABLE  
GND  
FIGURE 21. TYPICAL APPLICATIONS DIAGRAM  
Note: For adjustable output version, the internal feedback resistor divider is disabled and the FB pin is directly connected to the  
error amplifier.  
PARTS  
DESCRIPTION  
Inductor  
MANUFACTURERS  
KEMET  
PART NUMBER  
LB3218-T1R0MK  
SPECIFICATIONS  
1.0µH/1.0A/60mΩ  
4.7µF/6.3V, X5R  
SIZE  
3.2mmx1.8mmx1.8mm  
0603  
L
C1, C2  
Input and output  
capacitor  
Murata  
GRM188R60J475KE19D  
C3  
Capacitor  
Resistor  
KEMET  
Various  
C0402C470J5GACTU  
-
47pF/50V  
0402  
0402  
R1, R2  
100kΩ, SMD, 1%  
FN6829.3  
July 9, 2009  
8
ISL9104, ISL9104A  
Block Diagram  
SHUTDOWN  
SHUTDOWN  
SOFT-  
START  
OSCILLATOR  
VIN  
VREF  
EN  
+
BANDGAP  
+
EAMP  
PWM/PFM  
LOGIC  
COMP  
CONTROLLER  
PROTECTION  
DRIVER  
SW  
SLOPE  
COMP  
X
GND  
*NOTE  
FB  
BLEEDING  
FET  
100Ω  
+
+
CSA  
OCP  
SKIP  
VREF1  
SCP  
VREF3  
+
+
VREF2  
ZERO-CROSS  
SENSING  
*NOTE: FOR FIXED OUTPUT OPTIONS ONLY  
NOTE: For Adjustable output version, the internal feedback resistor divider is disabled and the FB pin is directly connected  
to the error amplifier.  
FIGURE 22. FUNCTIONAL BLOCK DIAGRAM  
PWM Control Scheme  
Theory of Operation  
The ISL9104, ISL9104A uses the peak-current-mode  
pulse-width modulation (PWM) control scheme for fast  
transient response and pulse-by-pulse current limiting.  
Figure 22 shows the circuit functional block diagram. The  
current loop consists of the oscillator, the PWM comparator  
COMP, current sensing circuit, and the slope compensation  
for the current loop stability. The current sensing circuit  
consists of the resistance of the P-Channel MOSFET when it  
is turned on and the Current Sense Amplifier (CSA). The  
control reference for the current loops comes from the Error  
Amplifier (EAMP) of the voltage loop.  
The ISL9104, ISL9104A is a step-down switching regulator  
optimized for battery-powered handheld applications. The  
regulator operates at typical 4.3MHz fixed switching  
frequency under heavy load condition to allow small external  
inductor and capacitors to be used for minimal printed-circuit  
board (PCB) area. At light load, the regulator can  
automatically enter the skip mode (PFM mode) to reduce the  
switching frequency to minimize the switching loss and to  
maximize the battery life. The quiescent current under skip  
mode under no load and no switch condition is typically only  
20µA. The supply current is typically only 0.05µA when the  
regulator is disabled.  
FN6829.3  
July 9, 2009  
9
ISL9104, ISL9104A  
The PWM operation is initialized by the clock from the  
skip mode operation. A zero-cross sensing circuit (as shown  
in Figure 22) monitors the current flowing through SW node  
for zero crossing. When it is detected to cross zero for  
16-consecutive cycles, the regulator enters the skip mode.  
During the 16-consecutive cycles, the inductor current could  
be negative. The counter is reset to zero when the sensed  
current flowing through SW node does not cross zero during  
any cycle within the 16-consecutive cycles. Once ISL9104,  
ISL9104A enters the skip mode, the pulse modulation starts  
being controlled by the SKIP comparator shown in Figure 22.  
Each pulse cycle is still synchronized by the PWM clock. The  
P-Channel MOSFET is turned on at the rising edge of clock  
and turned off when its current reaches ~20% of the peak  
current limit. As the average inductor current in each cycle is  
higher than the average current of the load, the output  
voltage rises cycle over cycle. When the output voltage is  
sensed to reach 1.5% above its nominal voltage, the  
oscillator. The P-Channel MOSFET is turned on at the  
beginning of a PWM cycle and the current in the P-Channel  
MOSFET starts ramping up. When the sum of the CSA  
output and the compensation slope reaches the control  
reference of the current loop, the PWM comparator COMP  
sends a signal to the PWM logic to turn off the P-Channel  
MOSFET and to turn on the N-Channel MOSFET. The  
N-MOSFET remains on till the end of the PWM cycle. Figure 23  
shows the typical operating waveforms during the normal PWM  
operation. The dotted lines illustrate the sum of the slope  
compensation ramp and the CSA output.  
vEAMP  
vCSA  
d
P-Channel MOSFET is turned off immediately and the  
inductor current is fully discharged to zero and stays at zero.  
The output voltage reduces gradually due to the load current  
discharging the output capacitor. When the output voltage  
drops to the nominal voltage, the P-Channel MOSFET will  
be turned on again, repeating the previous operations.  
iL  
vOUT  
The regulator resumes normal PWM mode operation when  
the output voltage is sensed to drop below 1.5% of its  
nominal voltage value.  
FIGURE 23. PWM OPERATION WAVEFORMS  
The output voltage is regulated by controlling the reference  
voltage to the current loop. The bandgap circuit outputs a  
0.8V reference voltage to the voltage control loop. The  
feedback signal comes from the FB pin. The soft-start block  
only affects the operation during the start-up and will be  
discussed separately in “Soft-Start” on page 11. The EAMP  
is a transconductance amplifier, which converts the voltage  
error signal to a current output. The voltage loop is internally  
compensated by a RC network. The maximum EAMP  
voltage output is precisely clamped to the bandgap voltage.  
Enable  
The enable (EN) pin allows user to enable or disable the  
converter for purposes such as power-up sequencing. With  
EN pin pulled to high, the converter is enabled and the  
internal reference circuit wakes up first and then the soft  
start-up begins. When EN pin is pulled to logic low, the  
converter is disabled, both P-Channel MOSFET and  
N-Channel MOSFETS are turned off, and the output  
capacitor is discharged through internal discharge path.  
Skip Mode (PFM Mode)  
Under light load condition, ISL9104, ISL9104A automatically  
enters a pulse-skipping mode to minimize the switching loss  
by reducing the switching frequency. Figure 24 illustrates the  
16 CYCLES  
CLOCK  
20% PEAK CURRENT LIMIT  
IL  
0
1.015*VOUT_NOMINAL  
VOUT  
VOUT_NOMINAL  
FIGURE 24. SKIP MODE OPERATION WAVEFORMS  
FN6829.3  
July 9, 2009  
10  
ISL9104, ISL9104A  
In Equation 1, usually the typical values can be used but to  
Overcurrent Protection  
have a more conservative estimation, the inductance should  
consider the value with worst case tolerance; and for  
The overcurrent protection is provided on ISL9104, ISL9104A  
when overload condition happens. It is realized by monitoring  
the CSA output with the OCP comparator, as shown in  
Figure 22. When the current at P-Channel MOSFET is sensed  
to reach the current limit, the OCP comparator is trigged to  
turn off the P-Channel MOSFET immediately.  
switching frequency f , the minimum f from the “Electrical  
S
S
Specifications” table on page 3 can be used.  
To select the inductor, its saturation current rating should be  
at least higher than the sum of the maximum output current  
and half of the delta calculated from Equation 1. Another  
more conservative approach is to select the inductor with the  
current rating higher than the P-Channel MOSFET peak  
current limit.  
Short-Circuit Protection  
ISL9104, ISL9104A has a Short-Circuit Protection (SCP)  
comparator, which monitors the FB pin voltage for output  
short-circuit protection. When the output voltage is sensed to  
be lower than a certain threshold, the SCP comparator  
reduces the PWM oscillator frequency to a much lower  
frequency to protect the IC from being damaged.  
Another consideration is the inductor DC resistance since it  
directly affects the efficiency of the converter. Ideally, the  
inductor with the lower DC resistance should be considered  
to achieve higher efficiency.  
Undervoltage Lockout (UVLO)  
Inductor specifications could be different from different  
manufacturers so please check with each manufacturer if  
additional information is needed.  
When the input voltage is below the Undervoltage Lock Out  
(UVLO) threshold, ISL9104, ISL9104A is disabled.  
Soft-Start  
For the output capacitor, a ceramic capacitor can be used  
because of the low ESR values, which helps to minimize the  
output voltage ripple. A typical value of 4.7µF/6.3V ceramic  
capacitor should be enough for most of the applications and  
the capacitor should be X5R or X7R.  
The soft-start feature eliminates the inrush current during the  
circuit start-up. The soft-start block outputs a ramp reference to  
both the voltage loop and the current loop. The two ramps limit  
the inductor current rising speed as well as the output voltage  
speed so that the output voltage rises in a controlled fashion.  
Input Capacitor Selection  
Low Dropout Operation  
The main function for the input capacitor is to provide  
decoupling of the parasitic inductance and to provide filtering  
function to prevent the switching current from flowing back to  
the battery rail. A 4.7µF/6.3V ceramic capacitor (X5R or X7R)  
is a good starting point for the input capacitor selection.  
The ISL9104, ISL9104A features low dropout operation to  
maximize the battery life. When the input voltage drops to a  
level that ISL9104, ISL9104A can no longer operate under  
switching regulation to maintain the output voltage, the  
P-Channel MOSFET is completely turned on (100% duty  
cycle). The dropout voltage under such condition is the product  
of the load current and the ON-resistance of the P-Channel  
Output Voltage Setting Resistor Selection  
For ISL9104, ISL9104A adjustable output option, the voltage  
MOSFET. Minimum required input voltage V under this  
IN  
resistors, R and R , as shown in Figure 21, set the desired  
1
2
condition is the sum of output voltage plus the voltage drop  
cross the inductor and the P-Channel MOSFET switch.  
output voltage values. The output voltage can be calculated  
using Equation 2:  
Thermal Shut Down  
R
1
(EQ. 2)  
------  
V
= V 1 +  
O
FB  
R
2
The ISL9104, ISL9104A provides built-in thermal protection  
function. The thermal shutdown threshold temperature is  
+130°C (typ) with a 30°C (typ) hysteresis. When the internal  
temperature is sensed to reach +130°C, the regulator is  
completely shut down and as the temperature drops to  
+100°C (typ), the ISL9104, ISL9104A resumes operation  
starting from the soft-start.  
where V is the feedback voltage (typically it is 0.8V). The  
FB  
current flowing through the voltage divider resistors can be  
calculated as V /(R + R ), so larger resistance is desirable  
O
1
2
to minimize this current. On the other hand, the FB pin has  
leakage current that will cause error in the output voltage  
setting. The leakage current has a typical value of 0.1µA. To  
minimize the accuracy impact on the output voltage, select  
Applications Information  
the R no larger than 200kΩ.  
2
Inductor and Output Capacitor Selection  
For adjustable output versions, C3 (shown in Figure 21) is  
highly recommended for improving stability and achieving  
better transient response.  
To achieve better steady state and transient response,  
ISL9104, ISL9104A typically uses a 1.0µH inductor. The peak-  
to-peak inductor current ripple can be expressed in Equation 1:  
V
Table 1 provides the recommended component values for  
some output voltage options.  
O
---------  
V
1 –  
O
(EQ. 1)  
V
IN  
--------------------------------------  
ΔI =  
L f  
S
FN6829.3  
July 9, 2009  
11  
ISL9104, ISL9104A  
TABLE 1. RECOMMENDED IISL9104, ISL9104A  
ADJUSTABLE OUTPUT VERSION CIRCUIT  
Layout Recommendation  
The PCB layout is a very important converter design step to  
make sure the designed converter works well, especially  
under the high current high switching frequency condition.  
CONFIGURATION vs V  
OUT  
VOUT (V) L (µH)  
C2 (µF)  
4.7  
R1 (kΩ)  
0
C3 (pF)  
N/A  
100  
47  
R2 (kΩ)  
N/A  
0.8  
1.0  
1.2  
1.5  
1.8  
2.5  
2.8  
3.3  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
For ISL9104, ISL9104A, the power loop is composed of the  
output inductor L, the output capacitor C , the SW pin and  
the PGND pin. It is necessary to make the power loop as  
small as possible and the connecting traces among them  
should be direct, short and wide; the same type of traces  
should be used to connect the VIN pin, the input capacitor  
4.7  
44.2  
80.6  
84.5  
100  
178  
OUT  
4.7  
162  
4.7  
47  
97.6  
80.6  
47.5  
40.2  
32.4  
4.7  
47  
C
and its ground.  
IN  
4.7  
100  
47  
The switching node of the converter, the SW pin, and the  
traces connected to this node are very noisy, so keep the  
voltage feedback trace and other noise sensitive traces  
away from these noisy traces.  
4.7  
100  
47  
4.7  
102  
47  
The input capacitor should be placed as close as possible to  
the VIN pin. The ground of the input and output capacitors  
should be connected as close as possible as well. In  
addition, a solid ground plane is helpful for EMI performance.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6829.3  
July 9, 2009  
12  
ISL9104, ISL9104A  
Package Outline Drawing  
L6.1.6x1.6  
6 LEAD ULTRA THIN DUAL FLAT NO-LEAD COL PLASTIC PACKAGE (UTDFN COL)  
Rev 1, 11/07  
2X 1.00  
1.60  
A
PIN #1 INDEX AREA  
6
6
4X 0.50  
PIN 1  
INDEX AREA  
B
1
3
5X 0 . 40 ± 0 . 1  
1X 0.5 ±0.1  
1.60  
(4X)  
0.15  
4
6
0.10 M C A B  
TOP VIEW  
4
0.25 +0.05 / -0.07  
BOTTOM VIEW  
( 6X 0 . 25 )  
SEE DETAIL "X"  
( 1X 0 .70 )  
0 . 55 MAX  
C
0.10  
BASE PLANE  
SEATING PLANE  
C
0.08  
C
( 1 . 4 )  
SIDE VIEW  
0 . 2 REF  
C
( 5X 0 . 60 )  
0 . 00 MIN.  
0 . 05 MAX.  
DETAIL "X"  
( 4X 0 . 5 )  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN6829.3  
July 9, 2009  
13  

相关型号:

ISL9104AIRUJEVAL1Z

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
RENESAS

ISL9104AIRUJZ-T

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
INTERSIL

ISL9104AIRUJZ-T

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
RENESAS

ISL9104AIRUNEVAL1Z

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
RENESAS

ISL9104AIRUNZ-T

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
INTERSIL

ISL9104AIRUNZ-T

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
RENESAS

ISL9104AIRUWEVAL1Z

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
RENESAS

ISL9104AIRUWZ-T

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
INTERSIL

ISL9104AIRUWZ-T

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
RENESAS

ISL9104IRUAEVAL1Z

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
RENESAS

ISL9104IRUAZ-T

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
INTERSIL

ISL9104IRUAZ-T

500mA 4.3MHz Low IQ High Efficiency Synchronous Buck Converter
RENESAS