ISL97645IRZ-TK [INTERSIL]

Boost + VON Slice + VCOM; 提升+ VON片+ VCOM
ISL97645IRZ-TK
型号: ISL97645IRZ-TK
厂家: Intersil    Intersil
描述:

Boost + VON Slice + VCOM
提升+ VON片+ VCOM

文件: 总14页 (文件大小:531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL97645  
®
Data Sheet  
April 11, 2006  
FN9263.0  
Boost + V Slice + V  
The ISL97645 represents an integrated DC/DC regulator for  
monitor and notebook applications with screen sizes up to  
20”. The device integrates a boost converter for generating  
Features  
• 2.7V to 5.5V Input  
ON  
COM  
• 2.6A Integrated Boost for Up to 20V AVDD  
• Integrated VON Slice  
A
VDD, a VON slice circuit, and a high performance VCOM  
amplifier.  
• 600kHz/1.2MHz fS  
The boost converter features a 2.6A FET and has user  
programmable soft-start and compensation. With efficiencies  
up to 92%, the AVDD is user selectable from 7V to 20V.  
• VCOM Amplifier  
- 30MHz BW  
- 50V/µs SR  
The VON slice circuit can control gate voltages up to 30V.  
High and low levels are programmable, as well as discharge  
rate and timing.  
- 400mA Peak Output Current  
• UV and OT Protection  
• 24 Ld 4x4 QFN  
The integrated VCOM features high speed and drive  
capability. With 30MHz bandwidth and 50V/µs slew rate, the  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
V
COM amplifier is capable of driving 400mA peaks, and  
Applications  
100mA continuous output current.  
• LCD Monitors (15”+)  
Pinout  
• Notebook Display (up to 16”)  
ISL97645  
(24 LD 4x4 QFN)  
TOP VIEW  
Ordering Information  
TEMP.  
PART NUMBER  
(Note)  
PART  
RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG.  
MARKING  
DWG. #  
ISL97645IRZ  
97645IRZ -40 to 85 24 Ld 4x4 QFN  
L24.4x4D  
L24.4x4D  
24 23 22 21 20 19  
ISL97645IRZ-T 97645IRZ -40 to 85 24 Ld 4x4 QFN  
6k pc Tape & Reel  
GND  
1
LX  
18  
17  
16  
15  
14  
13  
VGH_M  
2
VIN  
ISL97645IRZ-TK 97645IRZ -40 to 85 24 Ld 4x4 QFN  
1k pc Tape & Reel  
L24.4x4D  
VFLK  
3
FREQ  
COMP  
SS  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
VDPM  
4
VDD_1  
VDD_2  
5
6
NC  
7
8
9
10 11 12  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2006. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL97645  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
GND  
FUNCTION  
1
2
Ground  
VGH_M  
VFLK  
VDPM  
VDD_1  
VDD_2  
OUT  
Gate Pulse Modulation Output  
Gate Pulse Modulation Control Input  
Gate Pulse Modulation Enable  
3
4
5
Gate Pulse Modulation Lower Voltage Input  
6
V
V
V
COM Amplifier Supply  
7
COM Amplifier Output  
8
NEG  
COM Amplifier Inverting Input  
9
POS  
VCOM Amplifier Noninverting Input  
VCOM Amplifier Ground  
10  
11  
12  
13  
14  
AGND  
NC  
NC  
NC  
SS  
Boost Converter Soft-start. Connect a capacitor between this pin and GND to set the soft-start  
time.  
15  
COMP  
Boost Converter Compensation Pin. Connect a series resistor and capacitor between this pin and  
GND to optimize transient response.  
16  
17  
18  
19  
20  
21  
22  
FREQ  
VIN  
Boost Converter Frequency Select.  
Boost Converter Power Supply  
LX  
Boost Converter Switching Node  
ENABLE  
FB  
Chip Enable Pin. Connect to Vin for normal operation, GND for shutdown.  
Boost Converter Feedback  
PGND  
CE  
Boost Converter Power Ground  
Gate Pulse Modulator Delay Control. Connect a capacitor between this pin and GND to set the  
delay time.  
23  
24  
RE  
Gate Pulse Modulator Slew Control. Connect a resistor between this pin and GND to set the falling  
slew rate.  
VGH  
Gate Pulse Modulator High Voltage Input  
FN9263.0  
2
April 11, 2006  
ISL97645  
Absolute Maximum Ratings  
Thermal Information  
Thermal Resistance  
4x4 QFN Package (Notes 1, 2) . . . . . .  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Maximum Continuous Junction Temperature . . . . . . . . . . . . 125°C  
Power Dissipation  
Lx to GND, AGND and PGND . . . . . . . . . . . . . . . . . . . . -0.5 to +25V  
θJA (°C/W) θJC (°C/W)  
39 2.5  
VDD2, OUT, NEG and POS  
to GND, AGND and PGND. . . . . . . . . . . . . . . . . . . . . -0.5 to +25V  
VDD1, VGH and VGH_M  
to GND, AGND and PGND. . . . . . . . . . . . . . . . . . . . . -0.5 to +32V  
Differential Voltage Between POS and NEG . . . . . . . . . . . . . . . ±6V  
Voltage Between GND, AGND and PGND . . . . . . . . . . . . . . . ±0.5V  
All Other Pins to GND, AGND and PGND . . . . . . . . . . -0.5 to +6.5V  
Input, Output, or I/O Voltage . . . . . . . . . . .GND -0.3V to VIN + 0.3V  
T
A 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.44W  
TA = 70°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.34W  
TA = 85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.98W  
TA = 100°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.61W  
Recommended Operating Conditions  
Input Voltage Range, VS . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
Boost Output Voltage Range, AVDD . . . . . . . . . . . . . . . . . 8V to 20V  
Input Capacitance, CIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22µF  
Boost Inductor, L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3µH to 10µH  
Output Capacitance, COUT. . . . . . . . . . . . . . . . . . . . . . . . . .2x22µF  
Operating Ambient Temperature Range . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . .-40°C to +125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
Brief TB379.  
2. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.  
Electrical Specifications VIN = ENABLE = 5V, VDD1 = VDD2 = 14V, VGH = 25V, AVDD = 10V, TA = -40°C to 85°C  
Unless Otherwise Noted.  
SYMBOL  
GENERAL  
VS  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VINInput Voltage Range  
2.7  
3.3  
0.2  
5.5  
2
V
µA  
mA  
V
IS_DIS  
VIN Supply Currents when Disabled ENABLE = 0V  
IS  
VIN Supply Currents  
ENABLE = 5V, LX not switching  
1
UVLO  
Undervoltage Lockout Threshold  
VIN2 Rising  
2.3  
2.2  
2.45  
2.35  
140  
100  
2.6  
2.5  
VIN2 Falling  
V
OTR  
OTF  
Thermal Shutdown Temperature  
Temperature Rising  
Temperature Falling  
°C  
°C  
LOGIC INPUT CHARACTERISTICS - ENABLE, VFLK, FREQ, VDPM  
VIL  
VIH  
RIL  
Low Voltage Threshold  
High Voltage Threshold  
Pull-Down Resistor  
0.8  
400  
20  
V
V
2.2  
Enabled, Input at Vin  
150  
250  
kΩ  
STEP-UP SWITCHING REGULATOR  
AVDD  
Output Voltage Range  
Load Regulation  
VIN*1.25  
V
%
AVDD/IOUT  
AVDD/VIN  
ACCAVDD  
50mA < ILOAD < 250mA  
0.2  
Line Regulation  
ILOAD = 150mA, 3.0 < VIN < 5.5V  
0.15  
0.25  
3
%/V  
%
Overall Accuracy (Line, Load,  
Temperature)  
10mA < ILOAD < 300mA,  
3.0 < Vin < 5.5V, 0°C < TA < 85°C  
-3  
VFB  
Feedback Voltage (VFB  
)
ILOAD = 100mA, TA = 25°C  
1.20  
1.19  
1.21  
1.21  
1.22  
1.23  
V
V
ILOAD = 100mA, TA = -40°C to +85°C  
FN9263.0  
April 11, 2006  
3
ISL97645  
Electrical Specifications VIN = ENABLE = 5V, VDD1 = VDD2 = 14V, VGH = 25V, AVDD = 10V, TA = -40°C to 85°C  
Unless Otherwise Noted. (Continued)  
SYMBOL  
PARAMETER  
FB Input Bias Current  
Switch On Resistance  
Peak Efficiency  
TEST CONDITION  
MIN  
TYP  
250  
150  
92  
MAX  
500  
UNIT  
nA  
IFB  
RDS(ON)  
EFF  
300  
mΩ  
%
ILIM  
Switch Current Limit  
Max Duty Cycle  
2.1  
85  
2.6  
3.1  
A
DMAX  
FOSC  
90  
%
Oscillator Frequency  
FREQ = 0V  
550  
1.0  
650  
1.2  
800  
1.4  
kHz  
MHz  
µA  
FREQ = VIN2  
ISS  
Soft-Start Slew Current  
SS < 1V, TA = 25°C  
2.75  
VCOM AMPLIFIER RLOAD = 10k, CLOAD = 10pF, Unless Otherwise Stated  
VSAMP  
ISAMP  
VOS  
Supply Voltage  
4.5  
20  
V
mA  
mV  
nA  
V
Supply Current  
3
3
0
Offset Voltage  
20  
100  
IB  
Noninverting Input Bias Current  
CMIR  
Common Mode Input Voltage  
Range  
0
VDD2  
CMRR  
PSRR  
VOH  
VOH  
VOL  
VOL  
ISC  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing High  
Output Voltage Swing High  
Output Voltage Swing Low  
Output Voltage Swing Low  
Output Short Circuit Current  
Slew Rate  
50  
70  
70  
85  
dB  
dB  
Iout(source) = 5mA  
Iout(source) = 50mA  
Iout(sink) = 5mA  
VDD2-50  
VDD2-450  
50  
mV  
mV  
mV  
mV  
mA  
V/µs  
MHz  
Iout(sink) = 50mA  
450  
250  
400  
SR  
50  
BW  
Gain Bandwidth  
-3dB gain point  
30  
GATE PULSE MODULATOR  
VGH  
IVGH  
VGH Voltage  
7
30  
V
µA  
µA  
V
VGH Input Current  
VFLK = 0  
260  
40  
RE = 33k, VFLK = VDD1  
VDD1  
VDD1 Voltage  
3
VGH - 2  
2
IVDD1  
VDD1 Input Current  
VGH to VGH_M On Resistance  
-2  
0.1  
70  
8
µA  
RONVGH  
IDIS_VGH  
TDEL  
VGH_M Discharge Current (Note 1) RE = 33kΩ  
DELAY Time (Note 2) CE = 470pF, RE = 33kΩ  
mA  
µs  
1.9  
NOTES:  
1. Nominal discharge current = 300/(RE+5k).  
2. Nominal delay time = 4000*CE.  
FN9263.0  
April 11, 2006  
4
ISL97645  
I
Typical Performance Curves  
100  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
F
= 650kHz  
OSC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
F
= 1.2MHz  
OSC  
F
= 650kHz  
= 1.2MHz  
OSC  
F
OSC  
0
200  
400  
600  
(mA)  
800  
1000  
1200  
0
200  
400  
600  
IA (mA)  
VDD  
800  
1000  
1200  
IA  
VDD  
FIGURE 1. AVDD EFFICIENCY vs IAVDD  
FIGURE 2. AVDD LOAD REGULATION vs IAVDD  
10.5  
10.45  
10.4  
L = 10µH, C  
= 40µF, C  
= 2.2nF, R  
= 10k  
COMP  
OUT  
COMP  
A
150mA  
VDD  
IA  
VDD  
A
500mA  
VDD  
10.35  
10.3  
10.25  
10.2  
A
(AC COUPLED)  
VDD  
10.15  
3
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
V
IN  
FIGURE 3. LINE REGULATION AVDD vs VIN  
FIGURE 4. BOOST CONVERTER TRANSIENT RESPONSE  
CE = 1pF, RE = 100k  
CE = 1000pF, RE = 100k  
VGH_M  
VGH_M  
VFLK  
VFLK  
FIGURE 5. GPM CIRCUIT WAVEFORM  
FIGURE 6. GPM CIRCUIT WAVEFORM  
FN9263.0  
April 11, 2006  
5
ISL97645  
Typical Performance Curves (Continued)  
CE = 10pF, RE = 100k  
CE = 10pF, RE = 150k  
VGH_M  
VGH_M  
VFLK  
VFLK  
FIGURE 7. GPM CIRCUIT WAVEFORM  
FIGURE 8. GPM CIRCUIT WAVEFORM  
INPUT  
SIGNAL  
INPUT SIGNAL  
OUTPUT SIGNAL  
OUTPUT  
SIGNAL  
(-3dB ATTENTUATION  
FROM INPUT SIGNAL)  
FIGURE 9. VCOM RISING SLEW RATE  
FIGURE 10. VCOM BANDWIDTH MEASUREMENT  
FN9263.0  
April 11, 2006  
6
ISL97645  
Block Diagram  
FREQ  
LX  
OSCILLATION  
GENERATOR  
SLOPE  
COMPENSATION  
COMP  
SUMMING  
AMPLIFIER  
FB  
-
PWM  
LOGIC  
+
2.5µA  
-
+
PGND  
SS  
VIN  
REFERENCE  
GENERATOR  
START-UP AND  
FAULT CONTROL  
VDPM  
ENABLE  
NC  
NC  
VDD2  
POS  
NEG  
GND  
+
-
OUT  
GPM  
VDD1  
CIRCUIT  
VFLK VGH VGH_M CE  
RE  
FIGURE 11. ISL97645 BLOCK DIAGRAM  
FN9263.0  
April 11, 2006  
7
ISL97645  
Typical Application Diagram  
L1  
D1  
10µH  
V
A
IN  
VDD  
LX  
C2  
47µF  
C1  
22µF  
R1  
10K  
C3  
2.2nF  
COMP  
BOOST  
FB  
C4  
R2  
1.3K  
10nF  
PGND  
SS  
S1  
S2  
S3  
ENABLE  
FREQ-  
VDPM  
V
VGH  
ON  
VDD_1  
VFLK  
C5  
GPM  
CIRCUIT  
470P  
VGH_M  
VDD2  
CE  
TO ROW DRIVER  
RE  
R6  
130k  
0.47µF  
R3  
2K  
POS  
A
VDD  
C11  
1µF  
NEG-  
OUT  
VIN  
R7  
80k  
V
COM  
+4.0V  
NC  
C6  
0.1µF  
AGND  
GND  
NC  
FIGURE 12. TYPICAL APPLICATION DIAGRAM  
switching frequency can save power dissipation, while  
higher switching frequency can allow smaller external  
components like inductor and output capacitors, etc.  
Connecting FREQ pin to ground sets the PWM switching  
frequency to 650MHz, or connecting FREQ pin to VIN for  
1.2MHz.  
Applications Information  
The ISL97645 provides a complete power solution for TFT  
LCD applications. The system consists of one boost  
converter to generate AVDD voltage for column drivers, one  
integrated VCOM buffer which can provide up to 400mA peak  
current. This part also integrates Gate Pulse Modulator  
circuit that can help to optimize the picture quality.  
Soft-Start  
The soft-start is provided by an internal 2.5µA current source  
to charge the external soft start capacitor. The ISL97645  
ramps up current limit from 0A up to full value, as the voltage  
at SS pin ramps from 0 to 1.2V. Hence the soft-start time is  
4.8ms when the soft-start capacitor is 10nF, 22.6ms for 47nF  
and 48ms for 100nF.  
Enable Control  
When enable pin is pulling down, the ISL97645 is shut down  
reducing the supply current to <10µA. When the voltage at  
enable pin reaches 2.2V, the ISL97645 is on.  
Boost Converter  
Frequency Selection  
The ISL97645 switching frequency can be user selected to  
operate at either constant 650kHz or 1.2MHz. Lower  
Operation  
The boost converter is a current mode PWM converter  
operating at either a 650kHz or 1.2MHz. It can operate in  
both discontinuous conduction mode (DCM) at light load and  
FN9263.0  
8
April 11, 2006  
ISL97645  
continuous mode (CCM). In continuous current mode,  
current flows continuously in the inductor during the entire  
switching cycle in steady state operation. The voltage  
conversion ratio in continuous current mode is given by:  
This restricts the maximum output current (average) based  
on the following equation:  
V
V
I  
2
IN  
L
---------  
I
=
I
-------- ×  
OMAX  
LMT  
O
V
1
Boost  
------------------ = -------------  
V
1 D  
Where IL is peak to peak inductor ripple current, and is set  
by:  
IN  
Where D is the duty cycle of the switching MOSFET.  
V
L
D
IN  
×
--------- ---  
I  
=
Figure 11 shows the block diagram of the boost regulator. It  
uses a summing amplifier architecture consisting of gm  
stages for voltage feedback, current feedback and slope  
compensation. A comparator looks at the peak inductor  
current cycle by cycle and terminates the PWM cycle if the  
current limit is reached.  
L
f
s
where fS is the switching frequency (650kHz or 1.2MHz).  
The Table 2 gives typical values (margins are considered  
10%, 3%, 20%, 10% and 15% on VIN, VO, L, fS and IOMAX).  
Capacitor  
An external resistor divider is required to divide the output  
voltage down to the nominal reference voltage. Current  
drawn by the resistor network should be limited to maintain  
the overall converter efficiency. The maximum value of the  
resistor network is limited by the feedback input bias current  
and the potential for noise being coupled into the feedback  
pin. A resistor network in the order of 60kis recommended.  
The boost converter output voltage is determined by the  
following equation:  
An input capacitor is used to suppress the voltage ripple  
injected into the boost converter. The ceramic capacitor with  
capacitance larger than 10µF is recommended. The voltage  
rating of input capacitor should be larger than the maximum  
input voltage. Some capacitors are recommended in Table 1  
for input capacitor.  
TABLE 1. BOOST CONVERTER INPUT CAPACITOR  
RECOMMENDATION  
R
+ R  
2
1
CAPACITOR  
10µF/16V  
SIZE  
1206  
0805  
1210  
MFG  
TDK  
PART NUMBER  
--------------------  
V
=
× V  
Boost  
FB  
R
2
C3216X7R1C106M  
10µF/10V  
22µF/10V  
Murata GRM21BR61A106K  
Murata GRB32ER61A226K  
The current through the MOSFET is limited to 2.6APEAK  
.
TABLE 2. MAXIMUM OUTPUT CURRENT CALCULATION  
VIN (V)  
VO (V)  
9
L (µH)  
10  
Fs (MHz)  
0.65  
0.65  
0.65  
0.65  
0.65  
0.65  
0.65  
1.2  
IOMAX (mA)  
636  
3
3
3
5
5
5
5
3
3
3
5
5
5
5
12  
15  
9
10  
419  
10  
289  
10  
1060  
699  
12  
15  
18  
9
10  
10  
482  
10  
338  
10  
742  
12  
15  
9
10  
1.2  
525  
10  
1.2  
395  
10  
1.2  
1236  
875  
12  
15  
18  
10  
1.2  
10  
1.2  
658  
10  
1.2  
514  
FN9263.0  
April 11, 2006  
9
ISL97645  
For low ESR ceramic capacitors, the output ripple is  
Inductor  
dominated by the charging and discharging of the output  
capacitor. The voltage rating of the output capacitor should  
be greater than the maximum output voltage.  
The boost inductor is a critical part which influences the  
output voltage ripple, transient response, and efficiency.  
Values of 3.3µH to 10µH are used to match the internal  
slope compensation. The inductor must be able to handle  
the following average and peak current:  
Note: Capacitors have a voltage coefficient that makes their  
effective capacitance drop as the voltage across then  
increases. COUT in the equation above assumes the  
effective value of the capacitor at a particular voltage and not  
the manufacturer’s stated value, measured at zero volts.  
I
O
I
= -------------  
LAVG  
LPK  
1 D  
I  
2
L
I
= I  
+ --------  
LAVG  
The following table shows some selections of output  
capacitors.  
Some inductors are recommended in Table 3.  
TABLE 5. BOOST OUTPUT CAPACITOR RECOMMENDATION  
TABLE 3. BOOST INDUCTOR RECOMMENDATION  
DIMENSIONS  
CAPACITOR SIZE  
MFG  
TDK  
Murata  
PART NUMBER  
C3225X7R1E106M  
GRM32DR61E106K  
INDUCTOR  
6.8µH/3APEAK  
10µH/4APEAK  
(mm)  
MFG  
PART NUMBER  
RLF7030T-6R8N3R0  
CDR8D43-100NC  
CD1-5R2  
10µF/25V  
10µF/25V  
1210  
1210  
7.3x6.8x3.2 TDK  
8.3x8.3x4.5 Sumida  
5.2µH/4.55APEAK 10x10.1x3.8 Cooper  
Bussmann  
Compensation  
The boost converter of ISL97645 can be compensated by a  
RC network connected from CM1 pin to ground. 4.7nF and  
10k RC network is used in the demo board. The larger value  
resistor and lower value capacitor can lower the transient  
overshoot, however, at the expense of stability of the loop.  
Rectifier Diode  
A high-speed diode is necessary due to the high switching  
frequency. Schottky diodes are recommended because of  
their fast recovery time and low forward voltage. The reverse  
voltage rating of this diode should be higher than the  
maximum output voltage. The rectifier diode must meet the  
output current and peak inductor current requirements. The  
following table is some recommendations for boost converter  
diode.  
Cascaded MOSFET Application  
An 20V N-channel MOSFET is integrated in the boost  
regulator. For the applications where the output voltage is  
greater than 20V, an external cascaded MOSFET is needed  
as shown in Figure 13. The voltage rating of the external  
MOSFET should be greater than AVDD  
.
TABLE 4. BOOST CONVERTER RECTIFIER DIODE  
RECOMMENDATION  
A
V
VDD  
IN  
DIODE  
SS23  
VR/IAVG RATING PACKAGE  
MFG  
30V/2A  
40V/3A  
30V/2A  
SMB  
SMC  
SMB  
Fairchild  
Semiconductor  
MBRS340  
SL23  
International  
Rectifier  
LX  
FB  
Vishay  
Semiconductor  
Intersil  
ISL97645  
Output Capacitor  
The output capacitor supplies the load directly and reduces  
the ripple voltage at the output. Output ripple voltage  
consists of two components: the voltage drop due to the  
inductor ripple current flowing through the ESR of output  
capacitor, and the charging and discharging of the output  
capacitor.  
FIGURE 13. CASCADED MOSFET TOPOLOGY FOR HIGH  
OUTPUT VOLTAGE APPLICATIONS  
V
V  
I
1
×
O
IN  
O
----------------------- --------------- ---  
V
= I  
× ESR +  
LPK  
×
RIPPLE  
V
C
f
s
O
OUT  
FN9263.0  
April 11, 2006  
10  
ISL97645  
Gate Pulse Modulator Circuit  
The gate pulse modulator circuit functions as a three way  
multiplexer, switching VGHM between ground, VDD1 and  
VGH. Voltage selection is provided by digital inputs VDPM  
(enable) and VFLK (control). High to low delay and slew  
control is provided by external components on pins CE and  
RE, respectively. A block diagram of the gate pulse  
modulator circuit is shown in Figure 14.  
When VDPM is LOW, the block is disabled and VGHM is  
grounded. When VDPM is HIGH, the output is determined  
by VFLK. When VFLK goes high, VGHM is pulled to VGH by  
a 70switch. When VFLK goes low, there is a delay  
controlled by capacitor CE, following which VGHM is driven  
to VDD1, with a slew rate controlled by resistor RE. Note  
that VDD1 is used only as a reference voltage for an  
amplifier, thus does not have to source or sink a significant  
DC current.  
VGH_M  
FIGURE 14. GATE PULSE MODULATOR CIRCUIT BLOCK DIAGRAM  
FN9263.0  
11  
April 11, 2006  
ISL97645  
Low to high transition is determined primarily by the switch  
resistance and the external capacitive load. High to low  
transition is more complex. Take the case where the block is  
already enabled (VDPM is H). When VFLK is H, pin CE is  
grounded. On the falling edge of VFLK, a current is passed  
into pin CE, to charge an external capacitor to 1.2V. This  
creates a delay, equal to CE * 4200. At this point, the output  
begins to pull down from VGH to VDD1. The slew current is  
equal to 300/(RE+5000)*Load Capacitance.  
the following circuit can be inserted between input and  
inductor to disconnect the DC path when the part is disabled.  
INPUT  
TO INDUCTOR  
ENABLE  
VDPM  
0
FIGURE 17. CIRCUIT TO DISCONNECT THE DC PATH OF  
BOOST CONVERTER  
VFLK  
SLOPE CONTROLLED  
0
V
Amplifier  
BY RE AND LOAD  
COM  
CAPACITANCE  
The VCOM amplifier is designed to control the voltage on the  
back plate of an LCD display. This plate is capacitively  
coupled to the pixel drive voltage which alternately cycles  
positive and negative at the line rate for the display. Thus the  
amplifier must be capable of sourcing and sinking capacitive  
pulses of current, which can occasionally be quite large (a  
few 100mA for typical applications).  
VGH  
VGH_M  
VDD_1  
0
DELAY TIME  
CONTROLLED BY CE  
The ISL97645 VCOM amplifier's output current is limited to  
400mA. This limit level, which is roughly the same for  
sourcing and sinking, is included to maintain reliable  
operation of the part. It does not necessarily prevent a large  
temperature rise if the current is maintained. (In this case the  
whole chip may be shut down by the thermal trip to protect  
functionality.) If the display occasionally demands current  
pulses higher than this limit, the reservoir capacitor will  
provide the excess and the amplifier will top the reservoir  
capacitor back up once the pulse has stopped. This will  
happen on the µs time scale in practical systems and for  
pulses 2 or 3 times the current limit, the VCOM voltage will  
have settled again before the next line is processed.  
FIGURE 15. GATE PULSE MODULATOR TIMING DIAGRAM  
Start-Up Sequence  
Figure 16 shows a detailed start-up sequence waveform.  
V
IN  
0
ENABLE  
0
VIN THRESHOLD  
VDPM  
0
Fault Protection  
ISL97645 provides the overall fault protections including  
over current protection and over-temperature protection.  
AVDD  
VGH_M  
An internal temperature sensor continuously monitors the  
die temperature. In the event that die temperature exceeds  
the thermal trip point, the device will shut down and disable  
itself. The upper and lower trip points are typically set to  
140°C and 100°C respectively.  
0
FIGURE 16. START-UP SEQUENCE  
When VIN exceeds 2.5V and ENABLE reaches the VIH  
threshold value, Boost converter starts up, and gate pulse  
modulator circuit output holds until VDPM goes to high. Note  
that there is a DC path in the boost converter from the input  
to the output through the inductor and diode, hence the input  
voltage will be seen at output with a forward voltage drop of  
diode before the part is enabled. If this voltage is not desired,  
FN9263.0  
12  
April 11, 2006  
ISL97645  
Layout Recommendation  
The device’s performance including efficiency, output noise,  
transient response and control loop stability is dramatically  
affected by the PCB layout. PCB layout is critical, especially  
at high switching frequency.  
There are some general guidelines for layout:  
1. Place the external power components (the input  
capacitors, output capacitors, boost inductor and output  
diodes, etc.) in close proximity to the device. Traces to  
these components should be kept as short and wide as  
possible to minimize parasitic inductance and resistance.  
2. Place VIN and VDD bypass capacitors close to the pins.  
3. Reduce the loop area with large AC amplitudes and fast  
slew rate.  
4. The feedback network should sense the output voltage  
directly from the point of load, and be as far away from LX  
node as possible.  
5. The power ground (PGND) and signal ground (SGND)  
pins should be connected at only one point.  
6. The exposed die plate, on the underneath of the  
package, should be soldered to an equivalent area of  
metal on the PCB. This contact area should have multiple  
via connections to the back of the PCB as well as  
connections to intermediate PCB layers, if available, to  
maximize thermal dissipation away from the IC.  
7. To minimize the thermal resistance of the package when  
soldered to a multi-layer PCB, the amount of copper track  
and ground plane area connected to the exposed die  
plate should be maximized and spread out as far as  
possible from the IC. The bottom and top PCB areas  
especially should be maximized to allow thermal  
dissipation to the surrounding air.  
8. A signal ground plane, separate from the power ground  
plane and connected to the power ground pins only at the  
exposed die plate, should be used for ground return  
connections for control circuit.  
9. Minimize feedback input track lengths to avoid switching  
noise pick-up.  
A demo board is available to illustrate the proper layout  
implementation.  
FN9263.0  
13  
April 11, 2006  
ISL97645  
Quad Flat No-Lead Plastic Package (QFN)  
L24.4x4D  
24 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
MILLIMETERS  
2X  
0.15  
C A  
A
D
SYMBOL  
MIN  
0.80  
-
NOMINAL  
MAX  
1.00  
0.05  
0.30  
NOTES  
D/2  
A
A1  
b
0.90  
-
2X  
-
-
N
0.15  
C B  
6
0.18  
0.23  
5, 8  
INDEX  
1
2
3
AREA  
D
4.00 BSC  
-
E/2  
D2  
E
2.30  
2.30  
2.50  
2.65  
2.65  
7, 8  
E
4.00 BSC  
-
E2  
e
2.50  
7, 8  
0.50 BSC  
-
0.15  
0.15  
C B  
B
2X  
2X  
k
0.25  
0.30  
-
0.40  
24  
6
-
-
TOP VIEW  
C
A
L
0.50  
8
N
2
Nd  
Ne  
3
A
// 0.10  
0.08  
C
C
6
3
Rev. 0 2/06  
NOTES:  
C
A1  
SEATING  
PLANE  
SIDE VIEW  
5
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.  
2. N is the number of terminals.  
3. Nd and Ne refer to the number of terminals on each D and E.  
4. All dimensions are in millimeters. Angles are in degrees.  
NX b  
M
0.10  
C A B  
NX k  
5. Dimension b applies to the metallized terminal and is measured  
D2  
7
between 0.15mm and 0.30mm from the terminal tip.  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
(DATUM B)  
D2  
2
7. Dimensions D2 and E2 are for the exposed pad which provides  
improved electrical and thermal performance.  
8. Nominal dimensions are provided to assist with PCB Land  
Pattern Design efforts, see Intersil Technical Brief TB389.  
(DATUM A)  
(Ne-1) X e  
REF.  
E2/2  
E2  
7
3
2
1
6
INDEX  
AREA  
NX L  
N
e
C
C
(Nd-1)Xe  
REF.  
BOTTOM VIEW  
(A1)  
NX (b)  
5
SECTION "C-C"  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN9263.0  
14  
April 11, 2006  

相关型号:

ISL97645_07

Boost + VON Slice + VCOM
INTERSIL

ISL97646

Boost + LDO + VON Slice + VCOM
INTERSIL

ISL97646IRZ-T

Boost + LDO + VON Slice + VCOM
INTERSIL

ISL97646IRZ-T7

Switching Regulator
RENESAS

ISL97646IRZ-TK

Boost + LDO + VON Slice + VCOM
INTERSIL

ISL97646IRZ-TK7

Switching Regulator
RENESAS

ISL97646_07

Boost + LDO + VON Slice + VCOM
INTERSIL

ISL97648IRTZ

LIQUID CRYSTAL DISPLAY DRIVER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, PLASTIC, TQFN-56
RENESAS

ISL97648IRTZ-T

LIQUID CRYSTAL DISPLAY DRIVER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, PLASTIC, TQFN-56
RENESAS

ISL97648IRTZ-TK

LIQUID CRYSTAL DISPLAY DRIVER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, PLASTIC, TQFN-56
RENESAS

ISL97649A

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649AIRTZ-EVALZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL